From 7a1207f6d66f245cda06e06ecbae1ec0d6a99b02 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 00:14:54 +0200 Subject: eqref->ref, Improved some sentences --- buch/papers/lambertw/teil0.tex | 48 ++++++++++++++++++++++-------------------- 1 file changed, 25 insertions(+), 23 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 36ef7c3..6ab0bae 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,10 +7,10 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie welchen Pfad begeht ein Hund während er einer Katze nachrennt. +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. -Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. +Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. @@ -30,64 +30,66 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline - \text{}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ + \text{Strategie}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ \hline - \text{Strategie 1} + \text{Jagd} & \text{konstant} & \text{-} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 2} + \text{Beschattung} & \text{-} & \text{konstant} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 3} + \text{Vorhalt} & \text{konstant} & \text{-} & \text{etwas voraus Zielen}\\ \hline \end{tabular} \caption{mögliche Verfolgungsstrategien} \label{lambertw:table:Strategien} \end{table} - +% \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} \caption{Vektordarstellung Strategie 1} \label{lambertw:grafic:pursuerDGL2} \end{figure} - -In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. +% +In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. Im Folgenden wird nur noch auf die Strategie 1 eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. -In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, -wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. + +In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, +wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} - |\dot{\vec{V}}| + |\dot{v}| = \operatorname{const} = A \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}| + \frac{z-v}{|z-v|}\cdot|\dot{v}| = - \dot{\vec{V}} + \dot{v} \end{equation} beschrieben werden. -Die Differenz der Ortsvektoren $\vec{V}$ und $\vec{Z}$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. +Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich +Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}|\cdot\dot{\vec{V}} + \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} &= - |\dot{\vec{V}}|^2 + |\dot{v}|^2 \\ \label{lambertw:pursuerDGL} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} + \frac{z-v}{|z-v|}\cdot \frac{\dot{v}}{|\dot{v}|} &= 1 \text{.} \end{align} Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. - +% \subsection{Ziel \label{lambertw:subsection:Ziel}} Als nächstes gehen wir auf das Ziel ein. @@ -96,14 +98,14 @@ Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschri Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung \begin{equation} - \vec{Z}(t) + z(t) = \left( \begin{array}{c} 0 \\ t \end{array} \right) \end{equation} - +% beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve immer komplexer. +Für die Fluchtkurve kann eine beliebige Form gewählt werden, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve komplexer. -- cgit v1.2.1 From 66adfe693cae143039fe70c473d3b0a6b7d64687 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:07:36 +0200 Subject: Notation in Teil0 adjusted --- buch/papers/lambertw/teil0.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 6ab0bae..1431faa 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,7 +7,7 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. @@ -25,7 +25,7 @@ Der Verfolger hat nur einen direkten Einfluss auf seinen Geschwindigkeitsvektor. Mit diesem kann er neben Richtung und Betrag auch den Abstand zwischen Verfolger und Ziel kontrollieren. Wenn zwei dieser drei Parameter durch die Strategie definiert werden, ist der dritte nicht mehr frei. Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um den Verfolger komplett zu beschreiben. - +% \begin{table} \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} @@ -64,7 +64,7 @@ Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A - \quad A\in\mathbb{R}>0 + \text{,}\quad A\in\mathbb{R}^+ \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} @@ -77,6 +77,7 @@ Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} -- cgit v1.2.1 From 141e6d40c59f7cc3eda4ae04b5b1b57e7c7f4075 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:10:05 +0200 Subject: adjusted notation in Teil0 --- buch/papers/lambertw/teil0.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 1431faa..f0589e5 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -49,32 +49,32 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} - \caption{Vektordarstellung Strategie 1} + \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} % In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. -Im Folgenden wird nur noch auf die Strategie 1 eingegangen. +Im Folgenden wird nur noch auf die Jagdstrategie eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. - In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} -darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung +darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} -beschrieben werden. +beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. @@ -89,7 +89,7 @@ Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssyst &= 1 \text{.} \end{align} -Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} -- cgit v1.2.1 From 8210e25cc561db3dea0464019dea50eb5dc482ed Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 21:39:05 +0200 Subject: adjusted errors in teil1 and improved some sentences and structure --- buch/papers/lambertw/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index f0589e5..5007867 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -48,7 +48,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} -- cgit v1.2.1 From 05ec2574b277820e0e07dc56392add19ecbc6565 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 29 Jul 2022 17:41:50 +0200 Subject: polished teil0 und teil1, created a new figure Strategie.pdf --- buch/papers/lambertw/teil0.tex | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 5007867..8fa8f9b 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -6,15 +6,14 @@ \section{Was sind Verfolgungskurven? \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} - +% Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. - - +% \subsection{Verfolger und Verfolgungsstrategie \label{lambertw:subsection:Verfolger}} Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie definiert. @@ -48,7 +47,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} + \includegraphics[scale=0.6]{./papers/lambertw/Bilder/Strategie.pdf} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} @@ -61,23 +60,27 @@ In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung +% \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} +% darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung +% \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} +% beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. - +% Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} @@ -97,7 +100,7 @@ Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung - +% \begin{equation} z(t) = -- cgit v1.2.1 From 05b1350074c1c62340c7c32f240cb46078c152e7 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 4 Aug 2022 17:31:48 +0200 Subject: changed textsize in Strategie.pdf. Did minor changes in Teil0 and Teil1 --- buch/papers/lambertw/teil0.tex | 47 ++++++++++++++++++++++++++++-------------- 1 file changed, 31 insertions(+), 16 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 8fa8f9b..088cb7b 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,7 +7,7 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} % -Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". +Verfolgungskurven tauchen oft auf bei Fragen wie ``Welchen Pfad begeht ein Hund während er einer Katze nachrennt?''. Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. @@ -27,15 +27,15 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{table} \centering - \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} + \begin{tabular}{|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline \text{Strategie}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ \hline \text{Jagd} - & \text{konstant} & \text{-} & \text{direkt auf Ziel hinzu}\\ + & \text{konstant} & \text{-} & \text{direkt auf Ziel zu}\\ \text{Beschattung} - & \text{-} & \text{konstant} & \text{direkt auf Ziel hinzu}\\ + & \text{-} & \text{konstant} & \text{direkt auf Ziel zu}\\ \text{Vorhalt} & \text{konstant} & \text{-} & \text{etwas voraus Zielen}\\ @@ -59,7 +59,7 @@ Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. -Die konstante Geschwindigkeit kann man mit der Gleichung +Die konstante Geschwindigkeit kann man mit % \begin{equation} |\dot{v}| @@ -67,38 +67,53 @@ Die konstante Geschwindigkeit kann man mit der Gleichung \text{,}\quad A\in\mathbb{R}^+ \end{equation} % -darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung -% +darstellen. Der Geschwindigkeitsvektor muss auf das Ziel zeigen, woraus folgt +\begin{equation} + \dot{v} + \quad||\quad + z-v + \text{.} +\end{equation} +Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $\dot{v}$ gestreckt werden, was zu \begin{equation} - \frac{z-v}{|z-v|}\cdot|\dot{v}| + \dot{v} = + |\dot{v}|\cdot e_{z-v} +\end{equation} +führt. Dies kann noch ausgeschrieben werden zu +\begin{equation} \dot{v} + = + |\dot{v}|\cdot\frac{z-v}{|z-v|} + \text{.} \end{equation} % -beschrieben werden, wenn die Jagdstrategie verwendet wird. -Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -% -Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich + +Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergibt sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} &= |\dot{v}|^2 - \\ +\end{align} +was algebraisch zu +\begin{align} \label{lambertw:pursuerDGL} \frac{z-v}{|z-v|}\cdot \frac{\dot{v}}{|\dot{v}|} &= - 1 \text{.} + 1 \end{align} +umgeformt werden kann. Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. -Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. +Als Strategie eignet sich eine definierte Fluchtkurve oder ähnlich wie beim Verfolger ein Verhalten, das vom Verfolger abhängig ist. +Ein vom Verfolger abhängiges Verhalten führt zu einem gekoppeltem DGL-System, das schwierig zu lösen sein wird. +Eine definierte Fluchtkurve kann mit einer Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung % \begin{equation} -- cgit v1.2.1 From ded30e493c1b05f1f412f2e78636d7195ea054e0 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 4 Aug 2022 21:24:11 +0200 Subject: added new subsection wird das Ziel erreicht? --- buch/papers/lambertw/teil0.tex | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 088cb7b..6632eca 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -74,7 +74,7 @@ darstellen. Der Geschwindigkeitsvektor muss auf das Ziel zeigen, woraus folgt z-v \text{.} \end{equation} -Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $\dot{v}$ gestreckt werden, was zu +Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $|\dot{v}|$ gestreckt werden, was zu \begin{equation} \dot{v} = @@ -86,6 +86,7 @@ führt. Dies kann noch ausgeschrieben werden zu = |\dot{v}|\cdot\frac{z-v}{|z-v|} \text{.} + \label{lambertw:richtungsvektor} \end{equation} % Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. @@ -105,7 +106,7 @@ was algebraisch zu 1 \end{align} umgeformt werden kann. -Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, sofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} -- cgit v1.2.1