From 35d08feb3fdcae56cad97ab48822b0f8c2ab4aa1 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Tue, 19 Jul 2022 19:38:35 +0200 Subject: Added analysis of reaching target --- buch/papers/lambertw/teil0.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 73fe187..50d2255 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -4,7 +4,7 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Was sind Verfolgungskurven? -\label{lambertw:section:teil0}} +\label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Teil 0} Verfolgungskurven tauchen oft auf bei fragen wie, welchen Pfad begeht ein Hund während er einer Katze nachrennt. Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger versucht sein Ziel zu ergattern und das Ziel versucht zu entkommen. Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als DGL formuliert werden. Diese DGL entspringt der Verfolgungsstrategie des Verfolgers. @@ -31,17 +31,17 @@ Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie defini \hline \end{tabular} \caption{mögliche Verfolgungsstrategien} - \label{lambertw:Strategien} + \label{lambertw:table:Strategien} \end{table} -%\begin{figure} -% \centering -% \includegraphics{.\papers\lambertw\Bilder\pursuerDGL2.pdf} -% \label{pursuer:pursuerDGL2} -%\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.2]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \label{lambertw:grafic:pursuerDGL2} +\end{figure} In der Tabelle \eqref{lambertw:Strategien} sind drei mögliche Strategien aufgezählt. Folgend wird nur noch auf die Strategie 1 eingegangen. @@ -67,7 +67,7 @@ Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nic Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. \begin{align} - \label{pursuer:pursuerDGL} + \label{lambertw:pursuerDGL} \frac{\overrightarrow{Z}-\overrightarrow{V}}{|\overrightarrow{Z}-\overrightarrow{V}|}\cdot \overrightarrow{\dot{V}} &= @@ -87,7 +87,7 @@ Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halte Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung \begin{equation} - \vec{r}(t) + \vec{Z}(t) = \begin{Bmatrix} 0\\ -- cgit v1.2.1 From 6dd01e88ff8b1d93decb31fabef8edb95b361e87 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 20 Jul 2022 20:16:26 +0200 Subject: made some adjustments --- buch/papers/lambertw/teil0.tex | 65 ++++++++++++++++++++++++------------------ 1 file changed, 37 insertions(+), 28 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 50d2255..2905605 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -5,14 +5,26 @@ % \section{Was sind Verfolgungskurven? \label{lambertw:section:Was_sind_Verfolgungskurven}} -\rhead{Teil 0} +\rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei fragen wie, welchen Pfad begeht ein Hund während er einer Katze nachrennt. Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger versucht sein Ziel zu ergattern und das Ziel versucht zu entkommen. Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als DGL formuliert werden. Diese DGL entspringt der Verfolgungsstrategie des Verfolgers. +Verfolgungskurven tauchen oft auf bei Fragen wie welchen Pfad begeht ein Hund während er einer Katze nachrennt. +Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. +Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. +Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. +Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. +Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. \subsection{Verfolger und Verfolgungsstrategie \label{lambertw:subsection:Verfolger}} -Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie definiert. Wir nehmen an, dass sich der Verfolger stur an eine Verfolgungsstrategie hält. Dabei gibt es viele mögliche Strategien, die der Verfolger wählen könnte. Die möglichen Strategien entstehen durch Festlegung einzelner Parameter, die der Verfolger kontrollieren kann. Der Verfolger hat nur einen direkten Einfluss auf seinen Geschwindigkeitsvektor. Mit diesem kann er neben Richtung und Betrag auch den Abstand zwischen Verfolger und Ziel kontrollieren. Wenn zwei dieser drei Parameter durch die Strategie definiert werden, ist der dritte nicht mehr frei. Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um den Verfolger komplett zu beschreiben. +Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie definiert. +Wir nehmen an, dass sich der Verfolger stur an eine Verfolgungsstrategie hält. +Dabei gibt es viele mögliche Strategien, die der Verfolger wählen könnte. +Die möglichen Strategien entstehen durch Festlegung einzelner Parameter, die der Verfolger kontrollieren kann. +Der Verfolger hat nur einen direkten Einfluss auf seinen Geschwindigkeitsvektor. +Mit diesem kann er neben Richtung und Betrag auch den Abstand zwischen Verfolger und Ziel kontrollieren. +Wenn zwei dieser drei Parameter durch die Strategie definiert werden, ist der dritte nicht mehr frei. +Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um den Verfolger komplett zu beschreiben. \begin{table} \centering @@ -39,46 +51,46 @@ Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie defini \begin{figure} \centering - \includegraphics[scale=0.2]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \caption{Vektordarstellung Strategie 1} \label{lambertw:grafic:pursuerDGL2} \end{figure} -In der Tabelle \eqref{lambertw:Strategien} sind drei mögliche Strategien aufgezählt. -Folgend wird nur noch auf die Strategie 1 eingegangen. -Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel hinzu. -In der Grafik \eqref{lambertw:pursuerDGL2} ist das Problem dargestellt. -Wobei $\overrightarrow{V}$ der Ortsvektor des Verfolgers, $\overrightarrow{Z}$ der Ortsvektor des Ziels und $\overrightarrow{\dot{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. +In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. +Im Folgend wird nur noch auf die Strategie 1 eingegangen. +Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. +In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, +wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} - |\overrightarrow{\dot{V}}| - = konst = A - \quad|A\in\mathbb{R}>0 + |\dot{\vec{V}}| + = const = A + \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} - \frac{\overrightarrow{Z}-\overrightarrow{V}}{|\overrightarrow{Z}-\overrightarrow{V}|}\cdot|\overrightarrow{\dot{V}}| + \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}| = - \overrightarrow{\dot{V}} + \dot{\vec{V}} \end{equation} beschrieben werden. -Durch die Subtraktion der Ortsvektoren $\overrightarrow{V}$ und $\overrightarrow{Z}$ entsteht ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division mit dem Betrag, die Länge auf eins festgelegt. +Die Differenz der Ortsvektoren $\vec{V}$ und $\vec{Z}$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. +Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. \begin{align} \label{lambertw:pursuerDGL} - \frac{\overrightarrow{Z}-\overrightarrow{V}}{|\overrightarrow{Z}-\overrightarrow{V}|}\cdot - \overrightarrow{\dot{V}} + \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot + \dot{\vec{V}} &= - |\overrightarrow{\dot{V}}|^2 + |\dot{\vec{V}}|^2 \\ - \frac{\overrightarrow{Z}-\overrightarrow{V}}{|\overrightarrow{Z}-\overrightarrow{V}|}\cdot \frac{\overrightarrow{\dot{V}}}{|\overrightarrow{\dot{V}}|} + \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} &= 1 \end{align} -Diese DGL ist der Kern des Verfolgungsproblems, insofern der Verfolger die Strategie 1 verwendet. - +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. \subsection{Ziel \label{lambertw:subsection:Ziel}} @@ -89,14 +101,11 @@ Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebe \begin{equation} \vec{Z}(t) = - \begin{Bmatrix} - 0\\ - t - \end{Bmatrix} + \left( \begin{array}{c} 0 \\ t \end{array} \right) \end{equation} beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende DGL immer komplexer. +Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung immer komplexer. -- cgit v1.2.1 From 137e7755104042841230d40f0e6f1132d9d430db Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 22 Jul 2022 15:26:31 +0200 Subject: Polished some sentences. Corrected missing amount in formula. Added new information in chapter Wird das Ziel erreicht? --- buch/papers/lambertw/teil0.tex | 14 +++++--------- 1 file changed, 5 insertions(+), 9 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 2905605..30c4b60 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -46,9 +46,6 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \label{lambertw:table:Strategien} \end{table} - - - \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} @@ -57,14 +54,14 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \end{figure} In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. -Im Folgend wird nur noch auf die Strategie 1 eingegangen. +Im Folgenden wird nur noch auf die Strategie 1 eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{\vec{V}}| - = const = A + = \operatorname{const} = A \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung @@ -80,12 +77,11 @@ Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nic Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. \begin{align} - \label{lambertw:pursuerDGL} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot - \dot{\vec{V}} + \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}|\cdot\dot{\vec{V}} &= |\dot{\vec{V}}|^2 \\ + \label{lambertw:pursuerDGL} \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} &= 1 @@ -105,7 +101,7 @@ Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebe \end{equation} beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung immer komplexer. +Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve immer komplexer. -- cgit v1.2.1 From 7152877683f6ee147a404b5ab5f00a10a9a80c16 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 22 Jul 2022 15:36:14 +0200 Subject: polished sentence in chapter Verfolger und Verfolgungsstrategie --- buch/papers/lambertw/teil0.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 2905605..41257e6 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -78,7 +78,7 @@ Die Differenz der Ortsvektoren $\vec{V}$ und $\vec{Z}$ ist ein Vektor der vom Pu Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. +Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \label{lambertw:pursuerDGL} \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot @@ -88,7 +88,7 @@ Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichun \\ \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} &= - 1 + 1 \text{.} \end{align} Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. @@ -98,11 +98,13 @@ Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung + \begin{equation} \vec{Z}(t) = \left( \begin{array}{c} 0 \\ t \end{array} \right) \end{equation} + beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung immer komplexer. -- cgit v1.2.1 From 7a1207f6d66f245cda06e06ecbae1ec0d6a99b02 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 00:14:54 +0200 Subject: eqref->ref, Improved some sentences --- buch/papers/lambertw/teil0.tex | 48 ++++++++++++++++++++++-------------------- 1 file changed, 25 insertions(+), 23 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 36ef7c3..6ab0bae 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,10 +7,10 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie welchen Pfad begeht ein Hund während er einer Katze nachrennt. +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. -Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. +Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. @@ -30,64 +30,66 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline - \text{}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ + \text{Strategie}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ \hline - \text{Strategie 1} + \text{Jagd} & \text{konstant} & \text{-} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 2} + \text{Beschattung} & \text{-} & \text{konstant} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 3} + \text{Vorhalt} & \text{konstant} & \text{-} & \text{etwas voraus Zielen}\\ \hline \end{tabular} \caption{mögliche Verfolgungsstrategien} \label{lambertw:table:Strategien} \end{table} - +% \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} \caption{Vektordarstellung Strategie 1} \label{lambertw:grafic:pursuerDGL2} \end{figure} - -In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. +% +In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. Im Folgenden wird nur noch auf die Strategie 1 eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. -In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, -wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. + +In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, +wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} - |\dot{\vec{V}}| + |\dot{v}| = \operatorname{const} = A \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}| + \frac{z-v}{|z-v|}\cdot|\dot{v}| = - \dot{\vec{V}} + \dot{v} \end{equation} beschrieben werden. -Die Differenz der Ortsvektoren $\vec{V}$ und $\vec{Z}$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. +Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich +Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}|\cdot\dot{\vec{V}} + \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} &= - |\dot{\vec{V}}|^2 + |\dot{v}|^2 \\ \label{lambertw:pursuerDGL} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} + \frac{z-v}{|z-v|}\cdot \frac{\dot{v}}{|\dot{v}|} &= 1 \text{.} \end{align} Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. - +% \subsection{Ziel \label{lambertw:subsection:Ziel}} Als nächstes gehen wir auf das Ziel ein. @@ -96,14 +98,14 @@ Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschri Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung \begin{equation} - \vec{Z}(t) + z(t) = \left( \begin{array}{c} 0 \\ t \end{array} \right) \end{equation} - +% beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve immer komplexer. +Für die Fluchtkurve kann eine beliebige Form gewählt werden, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve komplexer. -- cgit v1.2.1 From 66adfe693cae143039fe70c473d3b0a6b7d64687 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:07:36 +0200 Subject: Notation in Teil0 adjusted --- buch/papers/lambertw/teil0.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 6ab0bae..1431faa 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,7 +7,7 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. @@ -25,7 +25,7 @@ Der Verfolger hat nur einen direkten Einfluss auf seinen Geschwindigkeitsvektor. Mit diesem kann er neben Richtung und Betrag auch den Abstand zwischen Verfolger und Ziel kontrollieren. Wenn zwei dieser drei Parameter durch die Strategie definiert werden, ist der dritte nicht mehr frei. Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um den Verfolger komplett zu beschreiben. - +% \begin{table} \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} @@ -64,7 +64,7 @@ Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A - \quad A\in\mathbb{R}>0 + \text{,}\quad A\in\mathbb{R}^+ \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} @@ -77,6 +77,7 @@ Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} -- cgit v1.2.1 From 141e6d40c59f7cc3eda4ae04b5b1b57e7c7f4075 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:10:05 +0200 Subject: adjusted notation in Teil0 --- buch/papers/lambertw/teil0.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 1431faa..f0589e5 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -49,32 +49,32 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} - \caption{Vektordarstellung Strategie 1} + \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} % In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. -Im Folgenden wird nur noch auf die Strategie 1 eingegangen. +Im Folgenden wird nur noch auf die Jagdstrategie eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. - In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} -darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung +darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} -beschrieben werden. +beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. @@ -89,7 +89,7 @@ Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssyst &= 1 \text{.} \end{align} -Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} -- cgit v1.2.1 From 8210e25cc561db3dea0464019dea50eb5dc482ed Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 21:39:05 +0200 Subject: adjusted errors in teil1 and improved some sentences and structure --- buch/papers/lambertw/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index f0589e5..5007867 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -48,7 +48,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} -- cgit v1.2.1 From 05ec2574b277820e0e07dc56392add19ecbc6565 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 29 Jul 2022 17:41:50 +0200 Subject: polished teil0 und teil1, created a new figure Strategie.pdf --- buch/papers/lambertw/teil0.tex | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 5007867..8fa8f9b 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -6,15 +6,14 @@ \section{Was sind Verfolgungskurven? \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} - +% Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. - - +% \subsection{Verfolger und Verfolgungsstrategie \label{lambertw:subsection:Verfolger}} Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie definiert. @@ -48,7 +47,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} + \includegraphics[scale=0.6]{./papers/lambertw/Bilder/Strategie.pdf} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} @@ -61,23 +60,27 @@ In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung +% \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} +% darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung +% \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} +% beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. - +% Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} @@ -97,7 +100,7 @@ Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung - +% \begin{equation} z(t) = -- cgit v1.2.1