From d2a5fa34c505f498845f3c8ab8335c090bd1bfec Mon Sep 17 00:00:00 2001 From: Yanik Kuster Date: Wed, 6 Apr 2022 11:30:37 +0200 Subject: derivation of pursuerproblem DGL --- buch/papers/lambertw/teil1.tex | 109 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 108 insertions(+), 1 deletion(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 7b545c3..493ec05 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -3,9 +3,116 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Beispiel () \label{lambertw:section:teil1}} \rhead{Problemstellung} + + + +%\begin{figure}[H] +% \centering +% \includegraphics[width=0.5\textwidth]{.\Bilder\something.pdf} +% \label{pursuer:grafik1} +%\end{figure} + + + +Je nach Verfolgungsstrategie die der Verfolger verwendet, entsteht eine andere DGL. +Für dieses konkrete Beispiel wird einfachheitshalber die simpelste Strategie gewählt. +Bei dieser Strategie bewegt sich der Verfolger immer direkt auf sein Ziel hinzu. +Womit der Geschwindigkeitsvektor des Verfolgers zu jeder Zeit direkt auf das Ziel zeigt. + +Um die DGL dieses Problems herzuleiten wird der Sachverhalt in der Grafik \eqref{pursuer:grafik1} aufgezeigt. +Der Punkt $P$ ist der Verfolger und der Punkt $A$ ist sein Ziel. + +Um dies mathematisch beschreiben zu können, wird der Richtungsvektor +\begin{equation} + \frac{A-P}{|A-P|} + = + \frac{\dot{P}}{|\dot{P}|} +\end{equation} +benötigt. Durch die Subtraktion der Ortsvektoren $\overrightarrow{OP}$ und $\overrightarrow{OA}$ entsteht ein Vektor der vom Punkt $P$ auf $A$ zeigt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division mit dem Betrag, die Länge auf eins festgelegt. +Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $A$ und $P$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. +Wenn die Punkte $A$ und $P$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + +Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. +\begin{equation} + \label{pursuer:pursuerDGL} + \frac{A-P}{|A-P|}\cdot \frac{\dot{P}}{|\dot{P}|} + = + 1 +\end{equation} +Diese DGL ist der Kern des Verfolgungsproblems, insofern sich der Verfolger immer direkt auf sein Ziel zubewegt. + + +\subsection{Beispiel} +Das Verfolgungsproblem wird mithilfe eines konkreten Beispiels veranschaulicht. Dafür wird die einfachste Strategie verwendet, bei der sich der Verfolger direkt auf sein Ziel hinzu bewegt. Für dieses Problem wurde bereits die DGL \eqref{pursuer:pursuerDGL} hergeleitet. + +Um dieses Beispiel einfach zu halten, wird für den Verfolger und das Ziel jeweils eine konstante Geschwindigkeit von eins gewählt. Das Ziel wiederum startet im Ursprung und bewegt sich linear auf der positiven Y-Achse. + +\begin{align} + v_P^2 + &= + \dot{P}\cdot\dot{P} + = + 1 + \\[5pt] + v_A + &= + 1 + \\[5pt] + A + &= + \begin{pmatrix} + 0 \\ + v_A\cdot t + \end{pmatrix} + = + \begin{pmatrix} + 0 \\ + t + \end{pmatrix} + \\[5pt] + P + &= + \begin{pmatrix} + x \\ + y + \end{pmatrix} +\end{align} + +Die Anfangsbedingungen dieses Problems sind. + +\begin{align} + y(t)\bigg|_{t=0} + &= + y_0 + \\[5pt] + x(t)\bigg|_{t=0} + &= + x_0 \\[5pt] + \frac{\,dy}{\,dx}(t)\bigg|_{t=0} + &= + \frac{y_A(t) -y_P(t)}{x_A(t)-x_P(t)}\bigg|_{t=0} +\end{align} + +Mit den vorangegangenen Definitionen kann nun die DGL \eqref{pursuer:pursuerDGL} gelöst werden. +Dafür wird als erstes das Skalarprodukt ausgerechnet. + +\begin{equation} + \dfrac{-x\cdot\dot{x}+(t-y)\cdot\dot{y}}{\sqrt{x^2+(t-y)^2}} = 1 +\end{equation} + + + + + + + + + + Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae -- cgit v1.2.1 From 1badf707f9ebd0642bb6a1d282059b6e867a44af Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Mon, 18 Jul 2022 20:06:05 +0200 Subject: rearranged the introduction --- buch/papers/lambertw/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 493ec05..cc4a62a 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Beispiel () +\section{Ziel \label{lambertw:section:teil1}} \rhead{Problemstellung} -- cgit v1.2.1 From 35d08feb3fdcae56cad97ab48822b0f8c2ab4aa1 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Tue, 19 Jul 2022 19:38:35 +0200 Subject: Added analysis of reaching target --- buch/papers/lambertw/teil1.tex | 204 +++++++++++++++-------------------------- 1 file changed, 73 insertions(+), 131 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index cc4a62a..3415c45 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -3,160 +3,102 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Ziel +\section{Wird das Ziel erreicht? \label{lambertw:section:teil1}} \rhead{Problemstellung} - - -%\begin{figure}[H] -% \centering -% \includegraphics[width=0.5\textwidth]{.\Bilder\something.pdf} -% \label{pursuer:grafik1} -%\end{figure} - - - -Je nach Verfolgungsstrategie die der Verfolger verwendet, entsteht eine andere DGL. -Für dieses konkrete Beispiel wird einfachheitshalber die simpelste Strategie gewählt. -Bei dieser Strategie bewegt sich der Verfolger immer direkt auf sein Ziel hinzu. -Womit der Geschwindigkeitsvektor des Verfolgers zu jeder Zeit direkt auf das Ziel zeigt. - -Um die DGL dieses Problems herzuleiten wird der Sachverhalt in der Grafik \eqref{pursuer:grafik1} aufgezeigt. -Der Punkt $P$ ist der Verfolger und der Punkt $A$ ist sein Ziel. - -Um dies mathematisch beschreiben zu können, wird der Richtungsvektor -\begin{equation} - \frac{A-P}{|A-P|} +Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. +Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. +Sobald diese Frage beantwortet wurde stellt sich meist die Frage, wie lange es dauert bis das Ziel erreicht wird. +Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel betrachtet. + +\subsection{Ziel erreichen (überarbeiten) +\label{lambertw:subsection:ZielErreichen}} +Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. +Wir verwenden die Hergeleiteten Gleichungen +\begin{align*} + x\left(t\right) + &= + \sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ + y(x) + &= + \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) \\ + \chi + &= + \frac{r_0+y_0}{r_0-y_0}; \cdot\chi \\ + \eta + &= + \left(\frac{x}{x_0}\right)^2 + \:;\: + r_0 = - \frac{\dot{P}}{|\dot{P}|} -\end{equation} -benötigt. Durch die Subtraktion der Ortsvektoren $\overrightarrow{OP}$ und $\overrightarrow{OA}$ entsteht ein Vektor der vom Punkt $P$ auf $A$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division mit dem Betrag, die Länge auf eins festgelegt. -Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $A$ und $P$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. -Wenn die Punkte $A$ und $P$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + \sqrt{x_0^2+y_0^2} \\ +\end{align*} +Wir definieren einen Treffer wenn die Koordinaten des Verfolgers mit denen des Ziels übereinstimmen bei einem diskreten Zeitpunkt $t_1$. Aus dem vorangegangenem Beispiel, sind die Gleichungen zu den x- und y-Koordinaten des Verfolgers bekannt. Die Des Ziels sind -Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. \begin{equation} - \label{pursuer:pursuerDGL} - \frac{A-P}{|A-P|}\cdot \frac{\dot{P}}{|\dot{P}|} + \overrightarrow{Z}(t) + = + \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) = - 1 + \left( \begin{array}{c} 0 \\ t \end{array} \right) + ;\quad + \overrightarrow{V}(t) + = + \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right) + \label{lambertw:Anfangspunkte} \end{equation} -Diese DGL ist der Kern des Verfolgungsproblems, insofern sich der Verfolger immer direkt auf sein Ziel zubewegt. +Somit gilt es -\subsection{Beispiel} -Das Verfolgungsproblem wird mithilfe eines konkreten Beispiels veranschaulicht. Dafür wird die einfachste Strategie verwendet, bei der sich der Verfolger direkt auf sein Ziel hinzu bewegt. Für dieses Problem wurde bereits die DGL \eqref{pursuer:pursuerDGL} hergeleitet. +\begin{equation*} + \overrightarrow{Z}(t_1)=\overrightarrow{V}(t_1) +\end{equation*} -Um dieses Beispiel einfach zu halten, wird für den Verfolger und das Ziel jeweils eine konstante Geschwindigkeit von eins gewählt. Das Ziel wiederum startet im Ursprung und bewegt sich linear auf der positiven Y-Achse. +zu lösen. Da die $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. -\begin{align} - v_P^2 +\begin{align*} + 0 &= - \dot{P}\cdot\dot{P} + x(t) = - 1 - \\[5pt] - v_A - &= - 1 - \\[5pt] - A + \sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} + \\ + v \cdot t &= - \begin{pmatrix} - 0 \\ - v_A\cdot t - \end{pmatrix} - = - \begin{pmatrix} - 0 \\ - t - \end{pmatrix} - \\[5pt] - P - &= - \begin{pmatrix} - x \\ - y - \end{pmatrix} -\end{align} - -Die Anfangsbedingungen dieses Problems sind. - -\begin{align} - y(t)\bigg|_{t=0} - &= - y_0 - \\[5pt] - x(t)\bigg|_{t=0} - &= - x_0 \\[5pt] - \frac{\,dy}{\,dx}(t)\bigg|_{t=0} - &= - \frac{y_A(t) -y_P(t)}{x_A(t)-x_P(t)}\bigg|_{t=0} -\end{align} - -Mit den vorangegangenen Definitionen kann nun die DGL \eqref{pursuer:pursuerDGL} gelöst werden. -Dafür wird als erstes das Skalarprodukt ausgerechnet. + y(t) + = + \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) + \\ +\end{align*} + +Zuerst wird die Bedingung der x-Koordinate betrachtet. Diese kann durch quadrieren und anschliessendes multiplizieren von $\chi$ vereinfacht werden. \begin{equation} - \dfrac{-x\cdot\dot{x}+(t-y)\cdot\dot{y}}{\sqrt{x^2+(t-y)^2}} = 1 + 0 + = + W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) \end{equation} +Dies entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +\begin{equation*} + W(0)=0 +\end{equation*} +besitzt. Kann die Bedingung weiter vereinfacht werden zu - - - - - - -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt \begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{lambertw:equation1} + 0 + = + \chi\cdot e^{\chi-\frac{4t}{r_0-y_0}} \end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{lambertw:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{lambertw:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{lambertw:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. + +Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. +Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. +Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Treffer möglich wäre. +Somit kann nach den Gestellten Bedingungen das Ziel nie getroffen werden. +Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. +Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. -- cgit v1.2.1 From 8d63b7cdea0c9bed2fed397a7dd35cf9c53aae8b Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 20 Jul 2022 22:04:39 +0200 Subject: adjusted chapter --- buch/papers/lambertw/teil1.tex | 21 +++++++++++++++------ 1 file changed, 15 insertions(+), 6 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 3415c45..2f71f43 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -25,7 +25,7 @@ Wir verwenden die Hergeleiteten Gleichungen \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) \\ \chi &= - \frac{r_0+y_0}{r_0-y_0}; \cdot\chi \\ + \frac{r_0+y_0}{r_0-y_0}\\ \eta &= \left(\frac{x}{x_0}\right)^2 @@ -37,13 +37,13 @@ Wir verwenden die Hergeleiteten Gleichungen Wir definieren einen Treffer wenn die Koordinaten des Verfolgers mit denen des Ziels übereinstimmen bei einem diskreten Zeitpunkt $t_1$. Aus dem vorangegangenem Beispiel, sind die Gleichungen zu den x- und y-Koordinaten des Verfolgers bekannt. Die Des Ziels sind \begin{equation} - \overrightarrow{Z}(t) + \vec{Z}(t) = \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) = \left( \begin{array}{c} 0 \\ t \end{array} \right) ;\quad - \overrightarrow{V}(t) + \vec{V}(t) = \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right) \label{lambertw:Anfangspunkte} @@ -52,7 +52,7 @@ Wir definieren einen Treffer wenn die Koordinaten des Verfolgers mit denen des Z Somit gilt es \begin{equation*} - \overrightarrow{Z}(t_1)=\overrightarrow{V}(t_1) + \vec{Z}(t_1)=\vec{V}(t_1) \end{equation*} zu lösen. Da die $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. @@ -72,7 +72,10 @@ zu lösen. Da die $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei \\ \end{align*} -Zuerst wird die Bedingung der x-Koordinate betrachtet. Diese kann durch quadrieren und anschliessendes multiplizieren von $\chi$ vereinfacht werden. +Zuerst wird die Bedingung der x-Koordinate betrachtet. +Diese kann durch quadrieren und anschliessendes multiplizieren von $\chi$ vereinfacht werden. +Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +Die Gleichung \begin{equation} 0 @@ -80,7 +83,8 @@ Zuerst wird die Bedingung der x-Koordinate betrachtet. Diese kann durch quadrier W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) \end{equation} -Dies entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei + +entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei \begin{equation*} W(0)=0 @@ -100,5 +104,10 @@ Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Treffe Somit kann nach den Gestellten Bedingungen das Ziel nie getroffen werden. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. +Dies kann mathematisch mit + +\begin{equation} + |\vec{V}-\vec{Z]|0 +\end{equation} -- cgit v1.2.1 From a7da84afe5d97069c243f103bb1438a459764cd3 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 20 Jul 2022 22:07:21 +0200 Subject: further adjustment --- buch/papers/lambertw/teil1.tex | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2f71f43..eb43b3e 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -104,10 +104,20 @@ Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Treffe Somit kann nach den Gestellten Bedingungen das Ziel nie getroffen werden. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. -Dies kann mathematisch mit +Somit wird in einer nächsten Betrachtung untersucht, ob der Verfolger dem Ziel näher kommt als ein definierter Trefferradius. +Falls dies stattfinden sollte, wird dies als Treffer interpretiert. +Mathematisch kann dies mit \begin{equation} |\vec{V}-\vec{Z]|0 \end{equation} +beschrieben werden, wobei $a_min$ dem Trefferradius entspricht. +Diese Gleichung wird noch quadriert, um die Wurzeln des Betrages loszuwerden. +Da sowohl der Betrag als auch $a_min$ grösser null sind, bleibt die Aussage unverändert. + +\begin{equation} + |\vec{V}-\vec{Z]|^20 +\end{equation} + -- cgit v1.2.1 From 1504ba1daa40a4ea1057a767dab89a210a9f4ae4 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 21 Jul 2022 12:07:31 +0200 Subject: Corrected writing Error --- buch/papers/lambertw/teil1.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index eb43b3e..aa7f226 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -29,9 +29,9 @@ Wir verwenden die Hergeleiteten Gleichungen \eta &= \left(\frac{x}{x_0}\right)^2 - \:;\: + \\ r_0 - = + &= \sqrt{x_0^2+y_0^2} \\ \end{align*} Wir definieren einen Treffer wenn die Koordinaten des Verfolgers mit denen des Ziels übereinstimmen bei einem diskreten Zeitpunkt $t_1$. Aus dem vorangegangenem Beispiel, sind die Gleichungen zu den x- und y-Koordinaten des Verfolgers bekannt. Die Des Ziels sind @@ -55,7 +55,7 @@ Somit gilt es \vec{Z}(t_1)=\vec{V}(t_1) \end{equation*} -zu lösen. Da die $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. +zu lösen. Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. \begin{align*} 0 -- cgit v1.2.1 From 0a60dc01038a4c9444043f6675877e1d52cd12d6 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 21 Jul 2022 12:29:12 +0200 Subject: corrected a typo --- buch/papers/lambertw/teil1.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index aa7f226..e8171fd 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -109,7 +109,7 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit \begin{equation} - |\vec{V}-\vec{Z]|0 + |\vec{V}-\vec{Z}|0 \end{equation} beschrieben werden, wobei $a_min$ dem Trefferradius entspricht. @@ -117,7 +117,7 @@ Diese Gleichung wird noch quadriert, um die Wurzeln des Betrages loszuwerden. Da sowohl der Betrag als auch $a_min$ grösser null sind, bleibt die Aussage unverändert. \begin{equation} - |\vec{V}-\vec{Z]|^20 + |\vec{V}-\vec{Z}|^2 0 \end{equation} -- cgit v1.2.1 From 137e7755104042841230d40f0e6f1132d9d430db Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 22 Jul 2022 15:26:31 +0200 Subject: Polished some sentences. Corrected missing amount in formula. Added new information in chapter Wird das Ziel erreicht? --- buch/papers/lambertw/teil1.tex | 116 ++++++++++++++++++++++++++++------------- 1 file changed, 81 insertions(+), 35 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index e8171fd..819658a 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -4,18 +4,18 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Wird das Ziel erreicht? -\label{lambertw:section:teil1}} -\rhead{Problemstellung} +\label{lambertw:section:Wird_das_Ziel_erreicht}} +\rhead{Wird das Ziel erreicht?} Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. -Sobald diese Frage beantwortet wurde stellt sich meist die Frage, wie lange es dauert bis das Ziel erreicht wird. +Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird. Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel betrachtet. - -\subsection{Ziel erreichen (überarbeiten) -\label{lambertw:subsection:ZielErreichen}} +% +%\subsection{Ziel erreichen (überarbeiten) +%\label{lambertw:subsection:ZielErreichen}} Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Wir verwenden die Hergeleiteten Gleichungen +Wir verwenden die Hergeleiteten Gleichungen für Startbedingung im ersten Quadranten \begin{align*} x\left(t\right) &= @@ -32,30 +32,36 @@ Wir verwenden die Hergeleiteten Gleichungen \\ r_0 &= - \sqrt{x_0^2+y_0^2} \\ + \sqrt{x_0^2+y_0^2} \text{.}\\ \end{align*} -Wir definieren einen Treffer wenn die Koordinaten des Verfolgers mit denen des Ziels übereinstimmen bei einem diskreten Zeitpunkt $t_1$. Aus dem vorangegangenem Beispiel, sind die Gleichungen zu den x- und y-Koordinaten des Verfolgers bekannt. Die Des Ziels sind +% +Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. +Somit gilt es + +\begin{equation*} + \vec{Z}(t_1)=\vec{V}(t_1) +\end{equation*} +% +zu lösen. +Aus dem vorangegangenem Beispiel, ist die Parametrisierung des Verfolgers und des Ziels bekannt. +Das Ziel wird parametrisiert durch \begin{equation} \vec{Z}(t) = - \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) - = \left( \begin{array}{c} 0 \\ t \end{array} \right) - ;\quad +\end{equation} +% +und der Verfolger durch + +\begin{equation} \vec{V}(t) = \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right) - \label{lambertw:Anfangspunkte} + \text{.} \end{equation} - -Somit gilt es - -\begin{equation*} - \vec{Z}(t_1)=\vec{V}(t_1) -\end{equation*} - -zu lösen. Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. +% + Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen \begin{align*} 0 @@ -71,7 +77,8 @@ zu lösen. Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einz \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) \\ \end{align*} - +% +, welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der x-Koordinate betrachtet. Diese kann durch quadrieren und anschliessendes multiplizieren von $\chi$ vereinfacht werden. Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. @@ -82,26 +89,62 @@ Die Gleichung = W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) \end{equation} - - +% entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei \begin{equation*} W(0)=0 \end{equation*} - -besitzt. Kann die Bedingung weiter vereinfacht werden zu +% +besitzt, kann die Bedingung weiter vereinfacht werden zu \begin{equation} 0 = \chi\cdot e^{\chi-\frac{4t}{r_0-y_0}} + \text{.} \end{equation} - +% Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. -Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Treffer möglich wäre. -Somit kann nach den Gestellten Bedingungen das Ziel nie getroffen werden. +Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. +Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. +Aus der Symmetrie des Problems an der y-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. +Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. +Wenn die Wertemenge der Anfangsbedingung um die positive y-Achse erweitert wird, kann das Ziel wiederum erreicht werden. +Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel Zeigt und der Verfolger sich auf der Fluchtgeraden befindet. +Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. +Die Verfolgungskurve kann in diesem Fall mit + +\begin{equation} + \vec{V}(t) + = + \left( \begin{array}{c} 0 \\ y_0-t \end{array} \right) +\end{equation} +% +parametrisiert werden. +Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden. +Daraus folgt + +\begin{equation} + 0 + = + |\vec{V}(t_1)-\vec{Z}(t_1)| + = + y_0-2t_1 +\end{equation} +% +, was aufgelöst zu + +\begin{equation} + t_1 + = + \frac{y_0}{2} +\end{equation} +% +führt. +Nun ist klar, dass lediglich Anfangspunkte auf der positiven y-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. Somit wird in einer nächsten Betrachtung untersucht, ob der Verfolger dem Ziel näher kommt als ein definierter Trefferradius. @@ -109,15 +152,18 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit \begin{equation} - |\vec{V}-\vec{Z}|0 + |\vec{V}-\vec{Z}|0 \end{equation} - -beschrieben werden, wobei $a_min$ dem Trefferradius entspricht. -Diese Gleichung wird noch quadriert, um die Wurzeln des Betrages loszuwerden. -Da sowohl der Betrag als auch $a_min$ grösser null sind, bleibt die Aussage unverändert. +% +beschrieben werden, wobei $a_{min}$ dem Trefferradius entspricht. +Durch quadrieren verschwindet die Wurzel des Betrages, womit \begin{equation} - |\vec{V}-\vec{Z}|^2 0 + |\vec{V}-\vec{Z}|^2 0 \end{equation} +% +die neue Bedingung ist. +Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage unverändert. + -- cgit v1.2.1 From df7209b60ecfb28b0f32a674920357cec038d6a0 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 22 Jul 2022 15:58:02 +0200 Subject: Corrected typos --- buch/papers/lambertw/teil1.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 819658a..b46ed12 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -15,7 +15,7 @@ Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel bet %\subsection{Ziel erreichen (überarbeiten) %\label{lambertw:subsection:ZielErreichen}} Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Wir verwenden die Hergeleiteten Gleichungen für Startbedingung im ersten Quadranten +Wir verwenden die hergeleiteten Gleichungen für Startbedingung im ersten Quadranten \begin{align*} x\left(t\right) &= @@ -112,7 +112,7 @@ Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. Aus der Symmetrie des Problems an der y-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. Wenn die Wertemenge der Anfangsbedingung um die positive y-Achse erweitert wird, kann das Ziel wiederum erreicht werden. -Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel Zeigt und der Verfolger sich auf der Fluchtgeraden befindet. +Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. Die Verfolgungskurve kann in diesem Fall mit -- cgit v1.2.1 From f203a63e8310dac852efccd3ed957362b0ed0761 Mon Sep 17 00:00:00 2001 From: Yanik Kuster Date: Sat, 23 Jul 2022 19:39:26 +0200 Subject: Adjusted x(t), due to earlier error --- buch/papers/lambertw/teil1.tex | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index b46ed12..fa7deb1 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -15,21 +15,20 @@ Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel bet %\subsection{Ziel erreichen (überarbeiten) %\label{lambertw:subsection:ZielErreichen}} Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Wir verwenden die hergeleiteten Gleichungen für Startbedingung im ersten Quadranten +Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für Startbedingung im ersten Quadranten \begin{align*} x\left(t\right) &= - \sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ - y(x) + x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ + y(t) &= - \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) \\ + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ \chi &= \frac{r_0+y_0}{r_0-y_0}\\ \eta &= - \left(\frac{x}{x_0}\right)^2 - \\ + \left(\frac{x}{x_0}\right)^2\\ r_0 &= \sqrt{x_0^2+y_0^2} \text{.}\\ @@ -68,29 +67,28 @@ und der Verfolger durch &= x(t) = - \sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} + x_0\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ - v \cdot t + t &= y(t) = - \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)ln\left(\eta\right)-r_0+3y_0\right) + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right) \\ \end{align*} % , welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der x-Koordinate betrachtet. -Diese kann durch quadrieren und anschliessendes multiplizieren von $\chi$ vereinfacht werden. -Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. -Die Gleichung - +Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt \begin{equation} - 0 - = - W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) + 0 + = + W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) + \text{.} \end{equation} % -entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei \begin{equation*} W(0)=0 @@ -167,3 +165,5 @@ Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage u + + -- cgit v1.2.1 From 7a1207f6d66f245cda06e06ecbae1ec0d6a99b02 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 00:14:54 +0200 Subject: eqref->ref, Improved some sentences --- buch/papers/lambertw/teil1.tex | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index fa7deb1..2e75a19 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -15,7 +15,7 @@ Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel bet %\subsection{Ziel erreichen (überarbeiten) %\label{lambertw:subsection:ZielErreichen}} Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für Startbedingung im ersten Quadranten +Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Startbedingung im ersten Quadranten verwendet, welche \begin{align*} x\left(t\right) &= @@ -25,15 +25,16 @@ Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für S \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ \chi &= - \frac{r_0+y_0}{r_0-y_0}\\ + \frac{r_0+y_0}{r_0-y_0}, \quad \eta - &= - \left(\frac{x}{x_0}\right)^2\\ + = + \left(\frac{x}{x_0}\right)^2,\quad r_0 - &= - \sqrt{x_0^2+y_0^2} \text{.}\\ + = + \sqrt{x_0^2+y_0^2} \end{align*} % +sind. Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es @@ -60,7 +61,7 @@ und der Verfolger durch \text{.} \end{equation} % - Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen + Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen \begin{align*} 0 @@ -73,12 +74,11 @@ und der Verfolger durch &= y(t) = - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right) - \\ + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} \end{align*} % -, welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. -Zuerst wird die Bedingung der x-Koordinate betrachtet. +welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. +Zuerst wird die Bedingung der $x$-Koordinate betrachtet. Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt \begin{equation} 0 @@ -107,10 +107,10 @@ Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingu Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. -Aus der Symmetrie des Problems an der y-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. +Aus der Symmetrie des Problems an der $y$-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. -Wenn die Wertemenge der Anfangsbedingung um die positive y-Achse erweitert wird, kann das Ziel wiederum erreicht werden. -Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. +Wenn die Wertemenge der Anfangsbedingung um die positive $y$-Achse erweitert wird, kann das Ziel wiederum erreicht werden. +Sobald der Verfolger auf der positiven $y$-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. Die Verfolgungskurve kann in diesem Fall mit @@ -141,7 +141,7 @@ Daraus folgt \end{equation} % führt. -Nun ist klar, dass lediglich Anfangspunkte auf der positiven y-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. -- cgit v1.2.1 From 8210e25cc561db3dea0464019dea50eb5dc482ed Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 21:39:05 +0200 Subject: adjusted errors in teil1 and improved some sentences and structure --- buch/papers/lambertw/teil1.tex | 97 +++++++++++++++++++++++++----------------- 1 file changed, 57 insertions(+), 40 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2e75a19..a330838 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -10,16 +10,35 @@ Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird. -Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel betrachtet. +Diese beiden Fragen werden in diesem Kapitel behandelt und am Beispiel aus \ref{lambertw:section:teil4} betrachtet. +Das Beispiel wird bei dieser Betrachtung noch etwas erweitert indem alle Punkte auf der gesamtem $xy$-Ebene als Startwerte zugelassen werden. + +Nun gilt es zu definieren, wann das Ziel erreicht wird. +Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. +Somit gilt es + +\begin{equation*} + z(t_1)=v(t_1) +\end{equation*} +% +zu lösen. +Die Parametrisierung von $z(t)$ ist im Beispiel definiert als +\begin{equation} + z(t) + = + \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} +\end{equation} +% +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. + +\subsection{Anfangsbedingung im \RN{1}-Quadranten} % -%\subsection{Ziel erreichen (überarbeiten) -%\label{lambertw:subsection:ZielErreichen}} -Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Startbedingung im ersten Quadranten verwendet, welche +$ x_0$ $\boldsymbol{x}$ dd +Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche \begin{align*} x\left(t\right) &= - x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ + x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp(\chi-\frac{4t}{r_0-y_0})\right)} \\ y(t) &= \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ @@ -34,34 +53,16 @@ Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Star \sqrt{x_0^2+y_0^2} \end{align*} % -sind. -Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. -Somit gilt es - -\begin{equation*} - \vec{Z}(t_1)=\vec{V}(t_1) -\end{equation*} -% -zu lösen. -Aus dem vorangegangenem Beispiel, ist die Parametrisierung des Verfolgers und des Ziels bekannt. -Das Ziel wird parametrisiert durch - -\begin{equation} - \vec{Z}(t) - = - \left( \begin{array}{c} 0 \\ t \end{array} \right) -\end{equation} -% -und der Verfolger durch - +Der Folger ist durch \begin{equation} - \vec{V}(t) + v(t) = \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right) \text{.} \end{equation} % - Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen +parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. +Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen \begin{align*} 0 @@ -107,27 +108,41 @@ Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingu Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. -Aus der Symmetrie des Problems an der $y$-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. -Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. -Wenn die Wertemenge der Anfangsbedingung um die positive $y$-Achse erweitert wird, kann das Ziel wiederum erreicht werden. -Sobald der Verfolger auf der positiven $y$-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. -Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. -Die Verfolgungskurve kann in diesem Fall mit + +\subsection{Anfangsbedingung $y_0<0$} +Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. +Dies kann veranschaulicht werden anhand + +\begin{equation} + v(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) + \leq + z(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) + = + 1\text{.} +\end{equation} +% +Da der $y$-Anteil der Geschwindigkeit des Ziels grösser-gleich der des Verfolgers ist, können die $y$-Koordinaten nie übereinstimmen. + +\subsection{Anfangsbedingung auf positiven $y$-Achse} +Wenn der Verfolger auf der positiven $y$-Achse startet, befindet er sich direkt auf der Fluchtgeraden des Ziels. +Dies führt dazu, dass der Verfolger und das Ziel sich direkt aufeinander zu bewegen, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt. +Die Folge ist, dass das Ziel zwingend erreicht wird. +Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit \begin{equation} - \vec{V}(t) + v(t) = \left( \begin{array}{c} 0 \\ y_0-t \end{array} \right) \end{equation} % parametrisiert werden. Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden. -Daraus folgt +Woraus folgt \begin{equation} 0 = - |\vec{V}(t_1)-\vec{Z}(t_1)| + |v(t_1)-z(t_1)| = y_0-2t_1 \end{equation} @@ -141,7 +156,9 @@ Daraus folgt \end{equation} % führt. -Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Somit wird das Ziel immer erreicht bei $t_1$, wenn der Verfolger auf der positiven $y$-Achse startet. +\subsection{Fazit} +Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen in den Quadranten \RN{1} und \RN{2} zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. @@ -150,14 +167,14 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit \begin{equation} - |\vec{V}-\vec{Z}|0 + |v-z| 0 + |v-z|^2 Date: Fri, 29 Jul 2022 17:41:50 +0200 Subject: polished teil0 und teil1, created a new figure Strategie.pdf --- buch/papers/lambertw/teil1.tex | 94 +++++++++++++++++++++++++++--------------- 1 file changed, 60 insertions(+), 34 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index a330838..2733759 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -6,7 +6,7 @@ \section{Wird das Ziel erreicht? \label{lambertw:section:Wird_das_Ziel_erreicht}} \rhead{Wird das Ziel erreicht?} - +% Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird. @@ -16,7 +16,7 @@ Das Beispiel wird bei dieser Betrachtung noch etwas erweitert indem alle Punkte Nun gilt es zu definieren, wann das Ziel erreicht wird. Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es - +% \begin{equation*} z(t_1)=v(t_1) \end{equation*} @@ -30,15 +30,14 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \end{equation} % Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. - +% \subsection{Anfangsbedingung im \RN{1}-Quadranten} % -$ x_0$ $\boldsymbol{x}$ dd Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche \begin{align*} x\left(t\right) &= - x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp(\chi-\frac{4t}{r_0-y_0})\right)} \\ + x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ y(t) &= \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ @@ -63,13 +62,13 @@ Der Folger ist durch % parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen - +% \begin{align*} 0 &= x(t) = - x_0\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} + x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \\ t &= @@ -80,39 +79,66 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding % welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. -Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt +Da $x_0 \neq 0$ und $\chi \neq 0$ mit \begin{equation} - 0 - = - W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) - \text{.} + 0 + = + x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \end{equation} -% -Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. -Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei - -\begin{equation*} - W(0)=0 -\end{equation*} -% -besitzt, kann die Bedingung weiter vereinfacht werden zu - +ist diese Bedingung genau dann erfüllt, wenn \begin{equation} 0 = - \chi\cdot e^{\chi-\frac{4t}{r_0-y_0}} + W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) \text{.} \end{equation} % +Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +\begin{equation} + W(0)=0 +\end{equation} +% Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. -Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. - +Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. +% +% +% +%Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt +%\begin{equation} +% 0 +% = +% W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) +% \text{.} +%5\end{equation} +% +%Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +%Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +% +%\begin{equation*} +% W(0)=0 +%\end{equation*} +% +%besitzt, kann die Bedingung weiter vereinfacht werden zu +% +%\begin{equation} +% 0 +% = +% \chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) +% \text{.} +%\end{equation} +% +%Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. +%Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. +%Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. +%Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. +% \subsection{Anfangsbedingung $y_0<0$} Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. Dies kann veranschaulicht werden anhand - +% \begin{equation} v(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) \leq @@ -122,13 +148,13 @@ Dies kann veranschaulicht werden anhand \end{equation} % Da der $y$-Anteil der Geschwindigkeit des Ziels grösser-gleich der des Verfolgers ist, können die $y$-Koordinaten nie übereinstimmen. - +% \subsection{Anfangsbedingung auf positiven $y$-Achse} Wenn der Verfolger auf der positiven $y$-Achse startet, befindet er sich direkt auf der Fluchtgeraden des Ziels. Dies führt dazu, dass der Verfolger und das Ziel sich direkt aufeinander zu bewegen, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt. Die Folge ist, dass das Ziel zwingend erreicht wird. Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit - +% \begin{equation} v(t) = @@ -138,17 +164,17 @@ Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit parametrisiert werden. Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden. Woraus folgt - +% \begin{equation} 0 = |v(t_1)-z(t_1)| = - y_0-2t_1 + y_0-2t_1\text{,} \end{equation} % -, was aufgelöst zu - +was aufgelöst zu +% \begin{equation} t_1 = @@ -165,14 +191,14 @@ Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumli Somit wird in einer nächsten Betrachtung untersucht, ob der Verfolger dem Ziel näher kommt als ein definierter Trefferradius. Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit - +% \begin{equation} |v-z| Date: Tue, 2 Aug 2022 21:14:53 +0200 Subject: Created python files for graphics. Created addtional subsection verlockende Intuition --- buch/papers/lambertw/teil1.tex | 76 ++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 73 insertions(+), 3 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2733759..2da07db 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -205,8 +205,78 @@ Durch quadrieren verschwindet die Wurzel des Betrages, womit % die neue Bedingung ist. Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage unverändert. - - - +% +\subsection{verleitende/trügerisch/verführerisch Intuition} +In der Grafik \ref{lambertw:grafic:intuition} ist eine Mögliche Verfolgungskurve dargestellt, wobei für die Startbedingung der erste-Quadrant verwendet wurde. +Als erste Intuition bietet sich der tiefste Punkt der Verfolgungskurve an, bei dem der y-Anteil des Richtungsvektors null entspricht. +Wenn sich der Verfolger an diesem Punkt befindet, muss zwingend das Ziel auf gleicher Höhe sein. +Es lässt sich vermuten, dass bei diesem Punkt der Abstand zum Ziel minimal sein könnte. +\begin{figure} + \centering + \includegraphics[scale=0.4]{./papers/lambertw/Bilder/Intuition.pdf} + \caption{Intuition} + \label{lambertw:grafic:intuition} +\end{figure} +% +Dies kann leicht überprüft werden, indem wir lokal alle relevanten benachbarten Punkte betrachten und das Vorzeichen der Änderung des Abstandes prüfen. +Dafür wird ein Ausdruck benötigt, der den Abstand und die benachbarten Punkte beschreibt. +Der Richtungsvektor wird allgemein mit dem Winkel $\alpha \in[ 0, 2\pi)$ +Die Ortsvektoren der Punkte können wiederum mit +\begin{align} + v + &= + t\cdot\left(\begin{array}{c} \cos (\alpha) \\ \sin (\alpha) \end{array}\right) +\left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) + \\ + z + &= + \left(\begin{array}{c} 0 \\ t \end{array}\right) +\end{align} +beschrieben werden. Der Verfolger wurde allgemein für jede Richtung $\alpha$ definiert, um alle unmittelbar benachbarten Punkte beschreiben zu können. +Da der Abstand +\begin{equation} + a + = + |v-z| + \geq + 0 +\end{equation} +ist, kann durch quadrieren ohne Informationsverlust die Rechnung vereinfacht werden zu +\begin{equation} + a^2 + = + |v-z|^2 + = + (t\cdot\cos(\alpha)+x_0)^2+t^2(\sin(\alpha)-1)^2 + \text{.} +\end{equation} +Der Abstand im Quadrat abgeleitet nach der Zeit ist +\begin{equation} + \frac{d a^2}{d t} + = + 2(t\cdot\cos (\alpha)+x_0)\cdot\cos(\alpha)(\alpha)+2t(\sin(\alpha)-1)^2 + \text{.} +\end{equation} +Da nur die unmittelbar benachbarten Punkten von Interesse sind, wird die Ableitung für $t=0$ untersucht. Dabei kann die Ableitung in +\begin{align} + \frac{d a^2}{d t} + &= + 2x_0\cos(\alpha) + \\ + \frac{d a^2}{d t} + &< + 0\Leftrightarrow\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right) + \\ + \frac{d a^2}{d t} + &> + 0\Leftrightarrow\alpha\in\left[0, \frac{\pi}{2}\right)\cup\left(\frac{3\pi}{2}, 2\pi\right) + \\ + \frac{d a^2}{d t} + &= + 0\Leftrightarrow\alpha\in\left\{ \frac{\pi}{2}, \frac{3\pi}{2}\right\} +\end{align} +unterteilt werden. +Von Interesse ist lediglich das Intervall $\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right)$, da der Verfolger sich stets in die negative $y$-Richtung bewegt. +In diesem Intervall ist die Ableitung negativ, woraus folgt, dass jeglicher unmittelbar benachbarte Punkt, den der Verfolger als nächstes begehen könnte, stets näher am Ziel ist als zuvor. +Dies bedeutet, dass der Scheitelpunkt der Verfolgungskurve nie ein lokales Minimum bezüglich des Abstandes sein kann. -- cgit v1.2.1 From 05b1350074c1c62340c7c32f240cb46078c152e7 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 4 Aug 2022 17:31:48 +0200 Subject: changed textsize in Strategie.pdf. Did minor changes in Teil0 and Teil1 --- buch/papers/lambertw/teil1.tex | 36 +++++++++++++++++++----------------- 1 file changed, 19 insertions(+), 17 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2da07db..0fd0108 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -17,9 +17,10 @@ Nun gilt es zu definieren, wann das Ziel erreicht wird. Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es % -\begin{equation*} +\begin{equation} z(t_1)=v(t_1) -\end{equation*} + \label{bedingung_treffer} +\end{equation} % zu lösen. Die Parametrisierung von $z(t)$ ist im Beispiel definiert als @@ -29,12 +30,12 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} \end{equation} % -Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. % -\subsection{Anfangsbedingung im \RN{1}-Quadranten} +\subsection{Anfangsbedingung im ersten Quadranten} % -Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche -\begin{align*} +Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche +\begin{align} x\left(t\right) &= x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ @@ -50,7 +51,8 @@ Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleich r_0 = \sqrt{x_0^2+y_0^2} -\end{align*} + \text{.} +\end{align} % Der Folger ist durch \begin{equation} @@ -61,9 +63,9 @@ Der Folger ist durch \end{equation} % parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. -Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen +Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher die Bedingungen % -\begin{align*} +\begin{align} 0 &= x(t) @@ -75,7 +77,7 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding y(t) = \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} -\end{align*} +\end{align} % welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. @@ -101,7 +103,7 @@ Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die % Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. -Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. +Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste, damit ein Einholen möglich wäre. Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. % % @@ -136,7 +138,7 @@ Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. %Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. % \subsection{Anfangsbedingung $y_0<0$} -Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. +Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolger niemals das Ziel einholen. Dies kann veranschaulicht werden anhand % \begin{equation} @@ -184,7 +186,7 @@ was aufgelöst zu führt. Somit wird das Ziel immer erreicht bei $t_1$, wenn der Verfolger auf der positiven $y$-Achse startet. \subsection{Fazit} -Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen in den Quadranten \RN{1} und \RN{2} zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen im ersten und zweiten Quadranten zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. @@ -193,18 +195,18 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit % \begin{equation} - |v-z| Date: Thu, 4 Aug 2022 21:24:11 +0200 Subject: added new subsection wird das Ziel erreicht? --- buch/papers/lambertw/teil1.tex | 101 +++++++++++++++++++++++++++++++++-------- 1 file changed, 83 insertions(+), 18 deletions(-) (limited to 'buch/papers/lambertw/teil1.tex') diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 0fd0108..e8eca2c 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -30,7 +30,7 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} \end{equation} % -Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die Bedingung \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. % \subsection{Anfangsbedingung im ersten Quadranten} % @@ -41,7 +41,7 @@ Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleich x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ y(t) &= - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ \chi &= \frac{r_0+y_0}{r_0-y_0}, \quad @@ -54,7 +54,7 @@ Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleich \text{.} \end{align} % -Der Folger ist durch +Der Verfolger ist durch \begin{equation} v(t) = @@ -76,31 +76,37 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding &= y(t) = - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} \end{align} % -welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. +welche beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. -Da $x_0 \neq 0$ und $\chi \neq 0$ mit +Da $x_0 \neq 0$ und $\chi \neq 0$ kann \begin{equation} 0 = x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \end{equation} -ist diese Bedingung genau dann erfüllt, wenn +algebraisch zu \begin{equation} 0 = W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) - \text{.} \end{equation} -% +umgeformt werden. Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. -Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei -\begin{equation} +Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Mit der einzigen Nullstelle der Lambert W-Funktion bei +\begin{equation*} W(0)=0 + \text{,} +\end{equation*} +kann die Bedingung weiter vereinfacht werden zu +\begin{equation} + 0 + = + \chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) + \text{.} \end{equation} -% Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste, damit ein Einholen möglich wäre. @@ -203,16 +209,18 @@ Durch quadrieren verschwindet die Wurzel des Betrages, womit % \begin{equation} |v-z|^2e_y\cdot v$. +Aus diesem Argument würde folgen, dass beim tiefsten Punkt der Verfolgungskurve im Beispiel den minimalen Abstand befindet. +% \begin{figure} \centering \includegraphics[scale=0.4]{./papers/lambertw/Bilder/Intuition.pdf} @@ -220,7 +228,8 @@ Es lässt sich vermuten, dass bei diesem Punkt der Abstand zum Ziel minimal sein \label{lambertw:grafic:intuition} \end{figure} % -Dies kann leicht überprüft werden, indem wir lokal alle relevanten benachbarten Punkte betrachten und das Vorzeichen der Änderung des Abstandes prüfen. + +Dieses Argument kann leicht überprüft werden, indem lokal alle relevanten benachbarten Punkte betrachtet und das Vorzeichen der Änderung des Abstandes überprüft wird. Dafür wird ein Ausdruck benötigt, der den Abstand und die benachbarten Punkte beschreibt. Der Richtungsvektor wird allgemein mit dem Winkel $\alpha \in[ 0, 2\pi)$ Die Ortsvektoren der Punkte können wiederum mit @@ -280,5 +289,61 @@ unterteilt werden. Von Interesse ist lediglich das Intervall $\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right)$, da der Verfolger sich stets in die negative $y$-Richtung bewegt. In diesem Intervall ist die Ableitung negativ, woraus folgt, dass jeglicher unmittelbar benachbarte Punkt, den der Verfolger als nächstes begehen könnte, stets näher am Ziel ist als zuvor. Dies bedeutet, dass der Scheitelpunkt der Verfolgungskurve nie ein lokales Minimum bezüglich des Abstandes sein kann. +% +\subsection{Wo ist der Abstand minimal?} +Damit der Verfolger das Ziel erreicht muss die Bedingung \eqref{lambertw:minimumAbstand} erfüllt sein. +Somit ist es ausreichend zu zeigen, dass +\begin{equation} + \operatorname{min}(|z-v|)