From dc51fe760249ea37d410599690df96c94f6d808d Mon Sep 17 00:00:00 2001 From: daHugen Date: Wed, 6 Apr 2022 11:36:23 +0200 Subject: made some changes in teil4.tex --- buch/papers/lambertw/teil4.tex | 22 ++++++++++++++++++---- 1 file changed, 18 insertions(+), 4 deletions(-) (limited to 'buch/papers/lambertw/teil4.tex') diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index 74b6b02..d3269ee 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -10,13 +10,15 @@ In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve beschre \subsection{Ziel bewegt sich auf einer Gerade \label{lambertw:subsection:malorum}} -Das zu verfolgende Ziel \(Z\) wandert auf einer Gerade, wobei diese Gerade der \(y\)-Achse entspricht. Der Verfolger \(V\) startet auf einem beliebigen Punkt auf dem ersten Quadrant. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: +Das zu verfolgende Ziel \(A\) wandert auf einer Gerade, wobei diese Gerade der \(y\)-Achse entspricht. Der Verfolger \(P\) startet auf einem beliebigen Punkt auf dem ersten Quadrant.Um die Rechnungen zu vereinfachen wir die Geschwindigkeit \(v\) auf 1 gesetzt. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: \begin{equation} - Z + A + = + \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) = \left( \begin{array}{c} 0 \\ t \end{array} \right) ; - V + P = \left( \begin{array}{c} x \\ y \end{array} \right) \label{lambertw:equation2} @@ -53,7 +55,7 @@ Im nächsten Schritt quadriert man beide Seiten, erweitert den neu entstandenen (\dot{x}^2 - 1) \cdot x^2 - 2x(t-y) \dot{x} \dot{y} + (\dot{y}^2 - 1) \cdot (t-y)^2 &= 0 \end{align*} -Der letzte Ausdruck kann mittels folgender Beziehung \(\dot{x}^2 + \dot{y}^2 = 1\) vereinfacht werden und anschliessend mit \(-1\) multiplizieren: +Der letzte Ausdruck kann mittels folgender Beziehung \(\dot{x}^2 + \dot{y}^2 = 1\) vereinfacht werden, anschliessend wird die Gleichung mit \(-1\) multipliziert: \[ \underbrace{(\dot{x}^2 - 1)}_{\mathclap{-\dot{y}^2}} \cdot x^2 - 2x(t-y) \dot{x} \dot{y} + \underbrace{(\dot{y}^2 - 1)}_{\mathclap{-\dot{x}^2}} \cdot (t-y)^2 = 0 @@ -77,5 +79,17 @@ Wenn man nun beidseitig die Quadratwurzel zieht, dann ergibt sich im Vergleich z = 0 \label{lambertw:equation5} \end{equation} +Um die Ableitung nach der Zeit wegzubringen wird beidseitig mit \(\dot{x}\) dividiert, wobei \(\frac{\dot{y}}{\dot{x}} = \frac{dy}{dt}/\frac{dx}{dt} = \frac{dy}{dx}\) entspricht. +\[ + x \frac{\dot{y}}{\dot{x}} + (t-y) \frac{\dot{x}}{\dot{x}} + = 0 +\] +Nach dem kürzen ergibt sich folgende DGL: +\begin{equation} + x y^{\prime} + t - y + = 0 + \label{lambertw:equation6} +\end{equation} +Hier wäre es passend wenn man die Abhängigkeit nach \(t\) komplett wegbringen könnte. Um dies zu erreichen muss man -- cgit v1.2.1