From fee7a11b5b0309e89aae17485c24fe250c55d548 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Sun, 12 Jun 2022 18:31:01 +0200 Subject: Abgabe --- buch/papers/nav/bsp.tex | 70 +++++++++++++++++++++++++++++++++++++++---------- 1 file changed, 56 insertions(+), 14 deletions(-) (limited to 'buch/papers/nav/bsp.tex') diff --git a/buch/papers/nav/bsp.tex b/buch/papers/nav/bsp.tex index ac749c5..d544588 100644 --- a/buch/papers/nav/bsp.tex +++ b/buch/papers/nav/bsp.tex @@ -20,6 +20,10 @@ Wir werden rechnerisch beweisen, dass wir mit diesen Ergebnissen genau auf diese \end{center} \subsection{Ausgangslage} +\begin{wrapfigure}{R}{5.6cm} + \includegraphics{papers/nav/bilder/position1.pdf} + \caption{Ausgangslage} +\end{wrapfigure} Die Rektaszension und die Sternzeit sind in der Regeln in Stunden angegeben. Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden: \[ Stunden \cdot 15 = Grad\]. @@ -30,11 +34,11 @@ Dies wurde hier bereits gemacht. Deneb&\\ & Rektaszension $RA_{Deneb}$& $310.55058^\circ$ \\ & Deklination $DEC_{Deneb}$& $45.361194^\circ$ \\ - & Höhe $H_{Deneb}$ & $50.256027^\circ$ \\ + & Höhe $h_c$ & $50.256027^\circ$ \\ Arktur &\\ & Rektaszension $RA_{Arktur}$& $214.17558^\circ$ \\ & Deklination $DEC_{Arktur}$& $19.063222^\circ$ \\ - & Höhe $H_{Arktur}$ & $47.427444^\circ$ \\ + & Höhe $h_b$ & $47.427444^\circ$ \\ \end{tabular} \end{center} \subsection{Koordinaten der Bildpunkte} @@ -49,9 +53,25 @@ $\delta$ ist die Breite, $\lambda$ die Länge. \subsection{Dreiecke definieren} +\begin{figure} + \begin{center} + \includegraphics[width=6cm]{papers/nav/bilder/beispiele1.pdf} + \includegraphics[width=6cm]{papers/nav/bilder/beispiele2.pdf} + \caption{Arktur-Deneb; Spica-Altiar} +\end{center} +\end{figure} Das Festlegen der Dreiecke ist essenziell für die korrekten Berechnungen. -BILD +Ein Problem, welches in der Theorie nicht berücksichtigt wurde ist, dass der Punkt $P$ nicht zwingend unterhalb der Seite $a$ sein muss. +Wenn man das nicht berücksichtigt, erhält man falsche oder keine Ergebnisse. +In der Realität weiss man jedoch ungefähr auf welchem Breitengrad man ist, so kann man relativ einfach entscheiden, ob der eigene Standort über $a$ ist oder nicht. +Beim unserem genutzten Paar Arktur-Deneb ist dies kein Problem, da der Punkt unterhalb der Seite $a$ liegt. +Würde man aber das Paar Altair-Spica nehmen, liegt $P$ über $a$ (vgl. Abbildung 21.11) und man müsste trigonometrisch anders vorgehen. + \subsection{Dreieck $ABC$} +\begin{wrapfigure}{R}{5.6cm} + \includegraphics{papers/nav/bilder/position2.pdf} + \caption{Dreieck ABC} +\end{wrapfigure} Nun berechnen wir alle Seitenlängen $a$, $b$, $c$ und die Innnenwinkel $\alpha$, $\beta$ und $\gamma$ Wir können $b$ und $c$ mit den geltenten Zusammenhängen des nautischen Dreiecks wie folgt bestimmen: \begin{align} @@ -78,43 +98,51 @@ Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz: &=\underline{\underline{72.0573328^\circ}} \nonumber \end{align} \subsection{Dreieck $BPC$} -Als nächstes berechnen wir die Seiten $pb$, $pc$ und die Innenwinkel $\beta_1$ und $\gamma_1$. +\begin{wrapfigure}{R}{5.6cm} + \includegraphics{papers/nav/bilder/position3.pdf} + \caption{Dreieck BPC} +\end{wrapfigure} +Als nächstes berechnen wir die Seiten $h_b$, $h_c$ und die Innenwinkel $\beta_1$ und $\gamma_1$. \begin{align} - pb&=90^\circ - H_{Arktur} \nonumber \\ + h_b&=90^\circ - h_b \nonumber \\ &= 90^\circ - 47.42744^\circ \nonumber \\ &= \underline{\underline{42.572556^\circ}} \nonumber \end{align} \begin{align} - pc &= 90^\circ - H_{Deneb} \nonumber \\ + h_c &= 90^\circ - h_c \nonumber \\ &= 90^\circ - 50.256027^\circ \nonumber \\ &= \underline{\underline{39.743973^\circ}} \nonumber \end{align} \begin{align} - \beta_1 &= \cos^{-1} \bigg[\frac{\cos(pc)-\cos(a) \cdot \cos(pb)}{\sin(a) \cdot \sin(pb)}\bigg] \nonumber \\ + \beta_1 &= \cos^{-1} \bigg[\frac{\cos(h_c)-\cos(a) \cdot \cos(h_b)}{\sin(a) \cdot \sin(h_b)}\bigg] \nonumber \\ &= \cos^{-1} \bigg[\frac{\cos(39.743973)-\cos(80.8707801) \cdot \cos(42.572556)}{\sin(80.8707801) \cdot \sin(42.572556)}\bigg] \nonumber \\ &=\underline{\underline{12.5211127^\circ}} \nonumber \end{align} \begin{align} - \gamma_1 &= \cos^{-1} \bigg[\frac{\cos(pb)-\cos(a) \cdot \cos(pc)}{\sin(a) \cdot \sin(pc)}\bigg] \nonumber \\ + \gamma_1 &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(a) \cdot \cos(h_c)}{\sin(a) \cdot \sin(h_c)}\bigg] \nonumber \\ &= \cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(80.8707801) \cdot \cos(39.743973)}{\sin(80.8707801) \cdot \sin(39.743973)}\bigg] \nonumber \\ &=\underline{\underline{13.2618475^\circ}} \nonumber \end{align} \subsection{Dreieck $ABP$} -Als erster müssen wir den Winkel $\kappa$ berechnen: +\begin{wrapfigure}{R}{5.6cm} + \includegraphics{papers/nav/bilder/position4.pdf} + \caption{Dreieck ABP} +\end{wrapfigure} +Als erster müssen wir den Winkel $\beta_2$ berechnen: \begin{align} - \kappa &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \nonumber \\ + \beta_2 &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \nonumber \\ &=\underline{\underline{44.6687451^\circ}} \nonumber \end{align} -Danach können wir mithilfe von $\kappa$, $c$ und $pb$ die Seite $l$ berechnen: +Danach können wir mithilfe von $\beta_2$, $c$ und $h_b$ die Seite $l$ berechnen: \begin{align} - l &= \cos^{-1}(\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)) \nonumber \\ + l &= \cos^{-1}(\cos(c) \cdot \cos(h_b) + \sin(c) \cdot \sin(h_b) \cdot \cos(\beta_2)) \nonumber \\ &= \cos^{-1}(\cos(70.936778) \cdot \cos(42.572556) + \sin(70.936778) \cdot \sin(42.572556) \cdot \cos(57.5326442)) \nonumber \\ &= \underline{\underline{54.2833404^\circ}} \nonumber \end{align} Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$: \begin{align} - \omega &= \cos^{-1} \bigg[\frac{\cos(pb)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \nonumber \\ + \omega &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \nonumber \\ &=\cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(70.936778) \cdot \cos(54.2833404)}{\sin(70.936778) \cdot \sin(54.2833404)}\bigg] \nonumber \\ &= \underline{\underline{44.6687451^\circ}} \nonumber \end{align} @@ -132,7 +160,21 @@ Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Wink &= \underline{\underline{140.233521^\circ}} \nonumber \end{align} Wie wir sehen, stimmen die berechneten Koordinaten mit den Koordinaten des Punktes, an welchem gemessen wurde überein. -Unsere Methode scheint also zu funktionieren. + +\subsection{Fazit} +Die theoretische Anleitung im Abschnitt 21.6 scheint grundsätzlich zu funktionieren. +Allerdings gab es zwei interessante Probleme. + +Einerseits das Problem, ob der Punkt P sich oberhalb oder unterhalb von $a$ befindet. +Da wir eigentlich wussten, wo der gesuchte Punkt P ist, konnten wir das Dreieck anhand der Koordinaten der Bildpunkte richtig aufstellen. +In der Praxis muss man aber schon wissen, auf welchem Breitengrad man ungefähr ist. +Dies weis man in der Regeln aber, da die eigene Breite die Höhe des Polarsterns ist. +Diese Höhe wird mit dem Sextant gemessen. + +Andererseits ist da noch ein Problem mit dem Sinussatz. +Beim Sinussatz gibt es immer zwei Lösungen, weil \[ \sin(\pi-a)=\sin(a).\] +Da kann es sein (und war in unserem Fall auch so), dass man das falsche Ergebnis erwischt. +Durch diese Erkenntnis haben wir nur Kosinussätze verwendet und dies ebenfalls im Abschnitt 21.6 abgeändert, da es für den Leser auch relevant sein kann, wenn er es Probieren möchte. -- cgit v1.2.1