From 3e54ff2bd5eb2c718ad37faacb03a774d312a1d9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 4 Jul 2022 19:35:36 +0200 Subject: images updated, nav/bsp.tex -> nav/bsp2.tex --- buch/papers/nav/bsp2.tex | 235 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 235 insertions(+) create mode 100644 buch/papers/nav/bsp2.tex (limited to 'buch/papers/nav/bsp2.tex') diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex new file mode 100644 index 0000000..fe8f423 --- /dev/null +++ b/buch/papers/nav/bsp2.tex @@ -0,0 +1,235 @@ +\section{Beispielrechnung} + +\subsection{Einführung} +In diesem Abschnitt wird die Theorie vom Abschnitt 21.6 in einem Praxisbeispiel angewendet. +Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Arktur und die Sternzeit von Greenwich als Ausgangslage. +Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden von unserem Dozenten digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt. +Wir werden rechnerisch beweisen, dass wir mit diesen Ergebnissen genau auf diese Koordinaten kommen. +\subsection{Vorgehen} + +\begin{compactenum} +\item +Koordinaten der Bildpunkte der Gestirne bestimmen +\item +Dreiecke aufzeichnen und richtig beschriften +\item +Dreieck ABC bestimmmen +\item +Dreieck BPC bestimmen +\item +Dreieck ABP bestimmen +\item +Geographische Breite bestimmen +\item +Geographische Länge bestimmen +\end{compactenum} + +\subsection{Ausgangslage} +\hbox to\textwidth{% +\begin{minipage}{8.4cm} +Die Rektaszension und die Sternzeit sind in der Regeln in Stunden angegeben. +Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden: +\[ +\text{Stunden} \cdot 15 = \text{Grad}. +\] +Dies wurde hier bereits gemacht. +\begin{center} +\begin{tabular}{l l >{$}l<{$}} +Sternzeit $s$ & $118.610804^\circ$ \\ +Deneb &\\ + & Rektaszension $RA_{\text{Deneb}}$ & 310.55058^\circ\\ + & Deklination $DEC_{\text{Deneb}}$ & \phantom{0}45.361194^\circ \\ + & Höhe $h_c$ & \phantom{0}50.256027^\circ \\ +Arktur &\\ + & Rektaszension $RA_{\text{Arktur}}$& 214.17558^\circ \\ + & Deklination $DEC_{\text{Arktur}}$ & \phantom{0}19.063222^\circ \\ + & Höhe $h_b$ & \phantom{0}47.427444^\circ \\ +\end{tabular} +\end{center} +\end{minipage}% +\hfill% +\raisebox{-2cm}{\includegraphics{papers/nav/bilder/position1.pdf}}% +} +\medskip + +\subsection{Koordinaten der Bildpunkte} +Als erstes benötigen wir die Koordinaten der Bildpunkte von Arktur und Deneb. +$\delta$ ist die Breite, $\lambda$ die Länge. +\begin{align} +\delta_{\text{Deneb}}&=DEC_{\text{Deneb}} = \underline{\underline{45.361194^\circ}} \nonumber \\ +\lambda_{\text{Deneb}}&=RA_{\text{Deneb}} - s = 310.55058^\circ -118.610804^\circ =\underline{\underline{191.939776^\circ}} \nonumber \\ +\delta_{\text{Arktur}}&=DEC_{\text{Arktur}} = \underline{\underline{19.063222^\circ}} \nonumber \\ +\lambda_{\text{Arktur}}&=RA_{\text{Arktur}} - s = 214.17558^\circ -118.610804^\circ = \underline{\underline{5.5647759^\circ}} \nonumber +\end{align} + + +\subsection{Dreiecke definieren} +\begin{figure} +\hbox{% +\includegraphics{papers/nav/bilder/beispiele1.pdf}% +\hfill% +\includegraphics{papers/nav/bilder/beispiele2.pdf}} +\caption{Arktur-Deneb; Spica-Altiar +\label{nav:beispiele}} +\end{figure} +Das Festlegen der Dreiecke ist essenziell für die korrekten Berechnungen. +Ein Problem, welches in der Theorie nicht berücksichtigt wurde ist, dass der Punkt $P$ nicht zwingend unterhalb der Seite $a$ sein muss. +Wenn man das nicht berücksichtigt, erhält man falsche oder keine Ergebnisse. +In der Realität weiss man jedoch ungefähr auf welchem Breitengrad man ist, so kann man relativ einfach entscheiden, ob der eigene Standort über $a$ ist oder nicht. +Beim unserem genutzten Paar Arktur-Deneb ist dies kein Problem, da der Punkt unterhalb der Seite $a$ liegt. +Würde man aber das Paar Altair-Spica nehmen, liegt $P$ über $a$ +(vgl. Abbildung\ref{nav:beispiele}) und man müsste trigonometrisch +anders vorgehen. + +\subsection{Dreieck $ABC$} +\vspace*{-3mm} +\hbox to\textwidth{% +\begin{minipage}{8.4cm}% +Nun berechnen wir alle Seitenlängen $a$, $b$, $c$ und die +Innnenwinkel $\alpha$, $\beta$ und $\gamma$. +Wir können $b$ und $c$ mit den geltenten Zusammenhängen des nautischen Dreiecks wie folgt bestimmen: +\begin{align*} +b +&= +90^\circ-DEC_{\text{Deneb}} += +90^\circ - 45.361194^\circ +\\ +&= +\underline{\underline{44.638806^\circ}} +\\ +c +&= +90^\circ-DEC_{\text{Arktur}} += +90^\circ - 19.063222^\circ +\\ +&= +\underline{\underline{70.936778^\circ}} +\end{align*} +\end{minipage}% +\hfill% +\raisebox{-2.4cm}{\includegraphics{papers/nav/bilder/position2.pdf}}% +} +Um $a$ zu bestimmen, benötigen wir zuerst den Winkel +\begin{align*} +\alpha +&= +RA_{\text{Deneb}} - RA_{\text{Arktur}} += +310.55058^\circ -214.17558^\circ +\\ +&= +\underline{\underline{96.375^\circ}}. +\end{align*} +Danach nutzen wir den sphärischen Winkelkosinussatz, um $a$ zu berechnen: +\begin{align*} + a &= \cos^{-1}(\cos(b) \cdot \cos(c) + \sin(b) \cdot \sin(c) \cdot \cos(\alpha)) \\ + &= \cos^{-1}(\cos(44.638806) \cdot \cos(70.936778) + \sin(44.638806) \cdot \sin(70.936778) \cdot \cos(96.375)) \\ + &= \underline{\underline{80.8707801^\circ}} +\end{align*} +Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz: +\begin{align*} + \beta &= \cos^{-1} \bigg[\frac{\cos(b)-\cos(a) \cdot \cos(c)}{\sin(a) \cdot \sin(c)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(44.638806)-\cos(80.8707801) \cdot \cos(70.936778)}{\sin(80.8707801) \cdot \sin(70.936778)}\bigg] \\ + &= \underline{\underline{45.0115314^\circ}} +\\ +\gamma &= \cos^{-1} \bigg[\frac{\cos(c)-\cos(b) \cdot \cos(a)}{\sin(a) \cdot \sin(b)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(70.936778)-\cos(44.638806) \cdot \cos(80.8707801)}{\sin(80.8707801) \cdot \sin(44.638806)}\bigg] \\ + &=\underline{\underline{72.0573328^\circ}} +\end{align*} + + + +\subsection{Dreieck $BPC$} +\vspace*{-4mm} +\hbox to\textwidth{% +\begin{minipage}{8.4cm}% +Als nächstes berechnen wir die Seiten $h_b$, $h_c$ und die Innenwinkel $\beta_1$ und $\gamma_1$. +\begin{align*} +h_b&=90^\circ - h_b + = 90^\circ - 47.42744^\circ \\ + &= \underline{\underline{42.572556^\circ}} +\\ + h_c &= 90^\circ - h_c + = 90^\circ - 50.256027^\circ \\ + &= \underline{\underline{39.743973^\circ}} +\end{align*} +\end{minipage}% +\hfill% +\raisebox{-2.8cm}{\includegraphics{papers/nav/bilder/position3.pdf}}% +} +\begin{align*} +\beta_1 &= \cos^{-1} \bigg[\frac{\cos(h_c)-\cos(a) \cdot \cos(h_b)}{\sin(a) \cdot \sin(h_b)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(39.743973)-\cos(80.8707801) \cdot \cos(42.572556)}{\sin(80.8707801) \cdot \sin(42.572556)}\bigg] \\ + &=\underline{\underline{12.5211127^\circ}} +\\ +\gamma_1 &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(a) \cdot \cos(h_c)}{\sin(a) \cdot \sin(h_c)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(80.8707801) \cdot \cos(39.743973)}{\sin(80.8707801) \cdot \sin(39.743973)}\bigg] \\ + &=\underline{\underline{13.2618475^\circ}} +\end{align*} + +\subsection{Dreieck $ABP$} +\vspace*{-2mm} +\hbox to\textwidth{% +\begin{minipage}{8.4cm}% +Als erstes müssen wir den Winkel $\beta_2$ berechnen: +\begin{align*} + \beta_2 &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \\ + &=\underline{\underline{44.6687451^\circ}} +\end{align*} +Danach können wir mithilfe von $\beta_2$, $c$ und $h_b$ die Seite $l$ berechnen: +\begin{align*} +l +&= +\cos^{-1}(\cos(c) \cdot \cos(h_b) + + \sin(c) \cdot \sin(h_b) \cdot \cos(\beta_2)) \\ +&= +\cos^{-1}(\cos(70.936778) \cdot \cos(42.572556)\\ +&\qquad + \sin(70.936778) \cdot \sin(42.572556) \cdot \cos(57.5326442)) \\ +&= \underline{\underline{54.2833404^\circ}} +\end{align*} +\end{minipage}% +\hfill% +\raisebox{-2.0cm}{\includegraphics{papers/nav/bilder/position4.pdf}}% +} + +\medskip + +Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$: +\begin{align*} + \omega &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \\ + &=\cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(70.936778) \cdot \cos(54.2833404)}{\sin(70.936778) \cdot \sin(54.2833404)}\bigg] \\ + &= \underline{\underline{44.6687451^\circ}} +\end{align*} + +\subsection{Längengrad und Breitengrad bestimmen} + +\begin{align*} +\delta &= 90^\circ - l & + \lambda &= \lambda_{Arktur} + \omega \\ +&= 90^\circ - 54.2833404 & + &= 95.5647759^\circ + 44.6687451^\circ \\ +&= \underline{\underline{35.7166596^\circ}} & + &= \underline{\underline{140.233521^\circ}} +\end{align*} +Wie wir sehen, stimmen die berechneten Koordinaten mit den Koordinaten des Punktes, an welchem gemessen wurde überein. + +\subsection{Fazit} +Die theoretische Anleitung im Abschnitt 21.6 scheint grundsätzlich zu funktionieren. +Allerdings gab es zwei interessante Probleme. + +Einerseits das Problem, ob der Punkt P sich oberhalb oder unterhalb von $a$ befindet. +Da wir eigentlich wussten, wo der gesuchte Punkt P ist, konnten wir das Dreieck anhand der Koordinaten der Bildpunkte richtig aufstellen. +In der Praxis muss man aber schon wissen, auf welchem Breitengrad man ungefähr ist. +Dies weis man in der Regeln aber, da die eigene Breite die Höhe des Polarsterns ist. +Diese Höhe wird mit dem Sextant gemessen. + +Andererseits ist da noch ein Problem mit dem Sinussatz. +Beim Sinussatz gibt es immer zwei Lösungen, weil \[ \sin(\pi-a)=\sin(a).\] +Da kann es sein (und war in unserem Fall auch so), dass man das falsche Ergebnis erwischt. +Durch diese Erkenntnis haben wir nur Kosinussätze verwendet und dies ebenfalls im Abschnitt 21.6 abgeändert, da es für den Leser auch relevant sein kann, wenn er es Probieren möchte. + + + + -- cgit v1.2.1 From fb34a6ec01db936f85fc977ceee02dcc8525f208 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 4 Jul 2022 19:59:45 +0200 Subject: missing \text{} --- buch/papers/nav/bsp2.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/nav/bsp2.tex') diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex index fe8f423..fde44b8 100644 --- a/buch/papers/nav/bsp2.tex +++ b/buch/papers/nav/bsp2.tex @@ -207,7 +207,7 @@ Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Wink \begin{align*} \delta &= 90^\circ - l & - \lambda &= \lambda_{Arktur} + \omega \\ + \lambda &= \lambda_{\text{Arktur}} + \omega \\ &= 90^\circ - 54.2833404 & &= 95.5647759^\circ + 44.6687451^\circ \\ &= \underline{\underline{35.7166596^\circ}} & -- cgit v1.2.1 From 3fbbafce1a5d906a12c1f8035fa2e16f6c187de0 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 5 Jul 2022 15:31:16 +0200 Subject: abschluss --- buch/papers/nav/bsp2.tex | 50 ++++++++++++++++++++++++------------------------ 1 file changed, 25 insertions(+), 25 deletions(-) (limited to 'buch/papers/nav/bsp2.tex') diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex index fde44b8..23380eb 100644 --- a/buch/papers/nav/bsp2.tex +++ b/buch/papers/nav/bsp2.tex @@ -1,12 +1,12 @@ \section{Beispielrechnung} \subsection{Einführung} -In diesem Abschnitt wird die Theorie vom Abschnitt 21.6 in einem Praxisbeispiel angewendet. +In diesem Abschnitt wird die Theorie vom Abschnitt \ref{sta} in einem Praxisbeispiel angewendet. Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Arktur und die Sternzeit von Greenwich als Ausgangslage. -Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden von unserem Dozenten digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt. -Wir werden rechnerisch beweisen, dass wir mit diesen Ergebnissen genau auf diese Koordinaten kommen. +Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt. +Wir werden nachrechnen, dass wir mit unserer Methode genau auf diese Koordinaten kommen. \subsection{Vorgehen} - +Unser vorgehen erschliesst sicht aus unserer Methode, die wir im Abschnitt \ref{p} theoretisch erklärt haben. \begin{compactenum} \item Koordinaten der Bildpunkte der Gestirne bestimmen @@ -27,7 +27,7 @@ Geographische Länge bestimmen \subsection{Ausgangslage} \hbox to\textwidth{% \begin{minipage}{8.4cm} -Die Rektaszension und die Sternzeit sind in der Regeln in Stunden angegeben. +Die Rektaszension und die Sternzeit sind in der Regel in Stunden angegeben. Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden: \[ \text{Stunden} \cdot 15 = \text{Grad}. @@ -125,17 +125,17 @@ RA_{\text{Deneb}} - RA_{\text{Arktur}} Danach nutzen wir den sphärischen Winkelkosinussatz, um $a$ zu berechnen: \begin{align*} a &= \cos^{-1}(\cos(b) \cdot \cos(c) + \sin(b) \cdot \sin(c) \cdot \cos(\alpha)) \\ - &= \cos^{-1}(\cos(44.638806) \cdot \cos(70.936778) + \sin(44.638806) \cdot \sin(70.936778) \cdot \cos(96.375)) \\ + &= \cos^{-1}(\cos(44.638806^\circ) \cdot \cos(70.936778^\circ) + \sin(44.638806^\circ) \cdot \sin(70.936778^\circ) \cdot \cos(96.375^\circ)) \\ &= \underline{\underline{80.8707801^\circ}} \end{align*} Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz: \begin{align*} \beta &= \cos^{-1} \bigg[\frac{\cos(b)-\cos(a) \cdot \cos(c)}{\sin(a) \cdot \sin(c)}\bigg] \\ - &= \cos^{-1} \bigg[\frac{\cos(44.638806)-\cos(80.8707801) \cdot \cos(70.936778)}{\sin(80.8707801) \cdot \sin(70.936778)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(44.638806^\circ)-\cos(80.8707801^\circ) \cdot \cos(70.936778^\circ)}{\sin(80.8707801^\circ) \cdot \sin(70.936778^\circ)}\bigg] \\ &= \underline{\underline{45.0115314^\circ}} \\ \gamma &= \cos^{-1} \bigg[\frac{\cos(c)-\cos(b) \cdot \cos(a)}{\sin(a) \cdot \sin(b)}\bigg] \\ - &= \cos^{-1} \bigg[\frac{\cos(70.936778)-\cos(44.638806) \cdot \cos(80.8707801)}{\sin(80.8707801) \cdot \sin(44.638806)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(70.936778^\circ)-\cos(44.638806^\circ) \cdot \cos(80.8707801^\circ)}{\sin(80.8707801^\circ) \cdot \sin(44.638806^\circ)}\bigg] \\ &=\underline{\underline{72.0573328^\circ}} \end{align*} @@ -145,13 +145,13 @@ Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz: \vspace*{-4mm} \hbox to\textwidth{% \begin{minipage}{8.4cm}% -Als nächstes berechnen wir die Seiten $h_b$, $h_c$ und die Innenwinkel $\beta_1$ und $\gamma_1$. +Als nächstes berechnen wir die Seiten $h_B$, $h_B$ und die Innenwinkel $\beta_1$ und $\gamma_1$. \begin{align*} -h_b&=90^\circ - h_b +h_B&=90^\circ - pbb = 90^\circ - 47.42744^\circ \\ &= \underline{\underline{42.572556^\circ}} \\ - h_c &= 90^\circ - h_c + h_C &= 90^\circ - pc = 90^\circ - 50.256027^\circ \\ &= \underline{\underline{39.743973^\circ}} \end{align*} @@ -160,12 +160,12 @@ h_b&=90^\circ - h_b \raisebox{-2.8cm}{\includegraphics{papers/nav/bilder/position3.pdf}}% } \begin{align*} -\beta_1 &= \cos^{-1} \bigg[\frac{\cos(h_c)-\cos(a) \cdot \cos(h_b)}{\sin(a) \cdot \sin(h_b)}\bigg] \\ - &= \cos^{-1} \bigg[\frac{\cos(39.743973)-\cos(80.8707801) \cdot \cos(42.572556)}{\sin(80.8707801) \cdot \sin(42.572556)}\bigg] \\ +\beta_1 &= \cos^{-1} \bigg[\frac{\cos(h_c)-\cos(a) \cdot \cos(h_B)}{\sin(a) \cdot \sin(h_B)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(39.743973^\circ)-\cos(80.8707801^\circ) \cdot \cos(42.572556^\circ)}{\sin(80.8707801^\circ) \cdot \sin(42.572556^\circ)}\bigg] \\ &=\underline{\underline{12.5211127^\circ}} \\ -\gamma_1 &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(a) \cdot \cos(h_c)}{\sin(a) \cdot \sin(h_c)}\bigg] \\ - &= \cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(80.8707801) \cdot \cos(39.743973)}{\sin(80.8707801) \cdot \sin(39.743973)}\bigg] \\ +\gamma_1 &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(a) \cdot \cos(h_C)}{\sin(a) \cdot \sin(h_C)}\bigg] \\ + &= \cos^{-1} \bigg[\frac{\cos(42.572556^\circ)-\cos(80.8707801^\circ) \cdot \cos(39.743973^\circ)}{\sin(80.8707801^\circ) \cdot \sin(39.743973^\circ)}\bigg] \\ &=\underline{\underline{13.2618475^\circ}} \end{align*} @@ -178,15 +178,15 @@ Als erstes müssen wir den Winkel $\beta_2$ berechnen: \beta_2 &= \beta + \beta_1 = 45.011513^\circ + 12.5211127^\circ \\ &=\underline{\underline{44.6687451^\circ}} \end{align*} -Danach können wir mithilfe von $\beta_2$, $c$ und $h_b$ die Seite $l$ berechnen: +Danach können wir mithilfe von $\beta_2$, $c$ und $h_B$ die Seite $l$ berechnen: \begin{align*} l &= -\cos^{-1}(\cos(c) \cdot \cos(h_b) - + \sin(c) \cdot \sin(h_b) \cdot \cos(\beta_2)) \\ +\cos^{-1}(\cos(c) \cdot \cos(h_B) + + \sin(c) \cdot \sin(h_B) \cdot \cos(\beta_2)) \\ &= -\cos^{-1}(\cos(70.936778) \cdot \cos(42.572556)\\ -&\qquad + \sin(70.936778) \cdot \sin(42.572556) \cdot \cos(57.5326442)) \\ +\cos^{-1}(\cos(70.936778^\circ) \cdot \cos(42.572556^\circ)\\ +&\qquad + \sin(70.936778^\circ) \cdot \sin(42.572556^\circ) \cdot \cos(57.5326442^\circ)) \\ &= \underline{\underline{54.2833404^\circ}} \end{align*} \end{minipage}% @@ -199,7 +199,7 @@ l Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$: \begin{align*} \omega &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \\ - &=\cos^{-1} \bigg[\frac{\cos(42.572556)-\cos(70.936778) \cdot \cos(54.2833404)}{\sin(70.936778) \cdot \sin(54.2833404)}\bigg] \\ + &=\cos^{-1} \bigg[\frac{\cos(42.572556^\circ)-\cos(70.936778^\circ) \cdot \cos(54.2833404^\circ)}{\sin(70.936778^\circ) \cdot \sin(54.2833404^\circ)}\bigg] \\ &= \underline{\underline{44.6687451^\circ}} \end{align*} @@ -216,11 +216,11 @@ Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Wink Wie wir sehen, stimmen die berechneten Koordinaten mit den Koordinaten des Punktes, an welchem gemessen wurde überein. \subsection{Fazit} -Die theoretische Anleitung im Abschnitt 21.6 scheint grundsätzlich zu funktionieren. +Die theoretische Anleitung im Abschnitt \ref{sta} scheint grundsätzlich zu funktionieren. Allerdings gab es zwei interessante Probleme. -Einerseits das Problem, ob der Punkt P sich oberhalb oder unterhalb von $a$ befindet. -Da wir eigentlich wussten, wo der gesuchte Punkt P ist, konnten wir das Dreieck anhand der Koordinaten der Bildpunkte richtig aufstellen. +Einerseits das Problem, ob der Punkt $P$ sich oberhalb oder unterhalb von $a$ befindet. +Da wir eigentlich wussten, wo der gesuchte Punkt $P$ ist, konnten wir das Dreieck anhand der Koordinaten der Bildpunkte richtig aufstellen. In der Praxis muss man aber schon wissen, auf welchem Breitengrad man ungefähr ist. Dies weis man in der Regeln aber, da die eigene Breite die Höhe des Polarsterns ist. Diese Höhe wird mit dem Sextant gemessen. @@ -228,7 +228,7 @@ Diese Höhe wird mit dem Sextant gemessen. Andererseits ist da noch ein Problem mit dem Sinussatz. Beim Sinussatz gibt es immer zwei Lösungen, weil \[ \sin(\pi-a)=\sin(a).\] Da kann es sein (und war in unserem Fall auch so), dass man das falsche Ergebnis erwischt. -Durch diese Erkenntnis haben wir nur Kosinussätze verwendet und dies ebenfalls im Abschnitt 21.6 abgeändert, da es für den Leser auch relevant sein kann, wenn er es Probieren möchte. +Wegen dieser Erkenntnis haben wir nur Kosinussätze verwendet und dies ebenfalls im Abschnitt \ref{sta} abgeändert, da es für den Leser auch relevant sein kann, wenn er es Probieren möchte. -- cgit v1.2.1 From a58f08028c11d87c3d45e10648fbb7e1e0f080b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 5 Jul 2022 19:37:34 +0200 Subject: minor fixes --- buch/papers/nav/bsp2.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/papers/nav/bsp2.tex') diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex index 23380eb..8ca214f 100644 --- a/buch/papers/nav/bsp2.tex +++ b/buch/papers/nav/bsp2.tex @@ -1,4 +1,5 @@ \section{Beispielrechnung} +\rhead{Beispielrechnung} \subsection{Einführung} In diesem Abschnitt wird die Theorie vom Abschnitt \ref{sta} in einem Praxisbeispiel angewendet. -- cgit v1.2.1 From ac98ecfb4f0142b418cd501045ac797da564f059 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Fri, 15 Jul 2022 20:38:18 +0200 Subject: finito --- buch/papers/nav/bsp2.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/nav/bsp2.tex') diff --git a/buch/papers/nav/bsp2.tex b/buch/papers/nav/bsp2.tex index 8ca214f..8d9083b 100644 --- a/buch/papers/nav/bsp2.tex +++ b/buch/papers/nav/bsp2.tex @@ -7,7 +7,7 @@ Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Ar Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden digital in einer Stadt in Japan mit den Koordinaten 35.716672 N, 140.233336 E bestimmt. Wir werden nachrechnen, dass wir mit unserer Methode genau auf diese Koordinaten kommen. \subsection{Vorgehen} -Unser vorgehen erschliesst sicht aus unserer Methode, die wir im Abschnitt \ref{p} theoretisch erklärt haben. +Unser Vorgehen erschliesst sich aus unserer Methode, die wir im Abschnitt \ref{p} theoretisch erklärt haben. \begin{compactenum} \item Koordinaten der Bildpunkte der Gestirne bestimmen @@ -199,7 +199,7 @@ l Damit wir gleich den Längengrad berechnen können, benötigen wir noch den Winkel $\omega$: \begin{align*} - \omega &= \cos^{-1} \bigg[\frac{\cos(h_b)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \\ + \omega &= \cos^{-1} \bigg[\frac{\cos(h_B)-\cos(c) \cdot \cos(l)}{\sin(c) \cdot \sin(l)}\bigg] \\ &=\cos^{-1} \bigg[\frac{\cos(42.572556^\circ)-\cos(70.936778^\circ) \cdot \cos(54.2833404^\circ)}{\sin(70.936778^\circ) \cdot \sin(54.2833404^\circ)}\bigg] \\ &= \underline{\underline{44.6687451^\circ}} \end{align*} -- cgit v1.2.1