From d7bff7e403a0e54880cb04b350a91a2f664b2708 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:30:44 +0200 Subject: =?UTF-8?q?Ich=20habe=20nun=20alle=20Kapitel=20als=20Textfile=20se?= =?UTF-8?q?perat=20eingef=C3=BCgt,=20einen=20zus=C3=A4tzlichen=20unterordn?= =?UTF-8?q?er=20gemacht=20f=C3=BCr=20die=20bilder,=20dann=20im=20main.tex?= =?UTF-8?q?=20die=20input=20befehle=20angepasst=20und=20committe=20nun.=20?= =?UTF-8?q?Bemerkung:=20Wir=20werden=20diese=20Woche=20noch=20das=202D=20-?= =?UTF-8?q?=20Dreieck=20mit=20einem=20Kugeldreieck=20ersetzen!=20Sonst=20w?= =?UTF-8?q?=C3=A4re=20unsere=20Arbeit=20(=20Bis=20auf=20finishing=20wie=20?= =?UTF-8?q?Rechtschreibung=20und=20Formatierung)=20eigentlich=20fertig.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++++++++++++++++++++ 1 file changed, 190 insertions(+) create mode 100644 buch/papers/nav/nautischesdreieck.tex (limited to 'buch/papers/nav/nautischesdreieck.tex') diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex new file mode 100644 index 0000000..0bb213c --- /dev/null +++ b/buch/papers/nav/nautischesdreieck.tex @@ -0,0 +1,190 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + \usepackage{xcolor, soul} + \sethlcolor{yellow} +\begin{document} + \setlength{\parindent}{0em} +\section{Das Nautische Dreieck} +\subsection{Definition des Nautischen Dreiecks} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ +Das Nautische Dreieck definiert sich durch folgende Ecken: +\begin{itemize} + \item Zenit + \item Gestirn + \item Himmelspol +\end{itemize} +Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. +Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. +Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +\\ +Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} +Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: + +$\alpha \ \widehat{=} \ Rektaszension $ + +$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns + +$\theta \ \widehat{=} \ Sternzeit$ + +$\phi \ \widehat{=} \ Geographische \ Breite $ + +$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns + +$a \ \widehat{=} \ Azimut $ + +$h \ \widehat{=} \ Hoehe$ + + + +\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} + + \begin{center} + \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \end{center} +Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. + +\subsection{Varianten vom Nautischen Dreieck} +\section{Standortbestimmung ohne elektronische Hilfsmittel} +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. +Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. + + \begin{center} + \includegraphics[width=6cm]{Bilder/dreieck.png} + \end{center} + + + +\subsection{Ecke P - Unser Standort} +Unser eigener Standort ist der gesuchte Punkt A. + +\subsection{Ecke A - Nordpol} +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. + +\subsection{Ecke B und C - Bildpunkt XXX und YYY} +Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. +Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. +\\ +Es gibt diverse Gestirne, die man nutzen kann. +\begin{itemize} + \item Sonne + \item Mond + \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn +\end{itemize} + +Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). +Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. +Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. + +\subsubsection{Sternzeit und Rektaszension} +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. +Die Lösung ist die Sternzeit. +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. + +Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. +Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} + +Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich + + $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. + + Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. + Dies gilt analog auch für das zweite Gestirn. + + \subsubsection{Deklination} + Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. + + + +\subsection{Bestimmung des eigenen Standortes P} +Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. +Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. + + + \begin{center} + \includegraphics[width=5cm]{Bilder/dreieck.png} + \end{center} + + +\subsubsection{Bestimmung des ersten Dreiecks} + Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. + Dann ist $c = \frac{\pi}{2} - \delta_1$. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. + Dann ist $b = \frac{\pi}{2} - \delta_2$. + + Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. + Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + +mit + + $\delta_1 =$ Deklination Bildpunkt XXX + +$\delta_2 =$ Deklination Bildpunk YYY + +$\lambda_1 =$ Längengrad Bildpunkt XXX + +$\lambda_2 =$ Längengrad Bildpunkt YYY + + Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. + +Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. + +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. + +\subsubsection{Bestimmung des zweiten Dreiecks} +Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort P. +Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. + +Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ + +mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +\\ + +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes + +$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. + +Es fehlt uns noch $\beta1$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen +\\ + +Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. +\\ + +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ + +Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ + + + +\end{document} \ No newline at end of file -- cgit v1.2.1