From a5f6eeefeab2d84d51b94f780387be6e5264f0ca Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 7 Jun 2022 15:30:25 +0200 Subject: synch --- buch/papers/nav/trigo.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch/papers/nav/trigo.tex') diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index aca8bd2..fa53189 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -87,20 +87,21 @@ So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärisch Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: \begin{align} a &\approx \sin(a) \nonumber \intertext{und} - a^2 &\approx 1-\cos(a). \nonumber + \frac{a^2}{2} &\approx 1-\cos(a). \nonumber \end{align} Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. \subsubsection{Sphärischer Satz des Pythagoras} -Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich +Die Korrespondenz \[ a^2 \approx 1- \cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich \begin{align} \cos(a)\cdot \cos(b) &= \cos(c) \\ - \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ - \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \\ -a^2-b^2 &=-c^2\\ a^2+b^2&=c^2 \end{align} +Dies ist der wohlbekannte ebener Satz des Pythagoras. \subsubsection{Sphärischer Sinussatz} Den sphärischen Sinussatz @@ -116,7 +117,6 @@ In der sphärischen Trigonometrie gibt es den Seitenkosinussatz \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz - \begin{align} \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber \end{align} der nur in der sphärischen Trigonometrie vorhanden ist. @@ -124,8 +124,8 @@ und den Winkelkosinussatz Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich \begin{align} \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ - 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ - \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} + 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \intertext{Höhere Potenzen vernachlässigen} + \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\\ a^2&=b^2+c^2-2bc \cdot \cos(\alpha) \end{align} -- cgit v1.2.1