From a7a12c313b1a4fb528337eb354668e69d6d20942 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 11 May 2022 22:13:59 +0200 Subject: dreiecksgraphik --- buch/papers/nav/images/Makefile | 11 ++++++ buch/papers/nav/images/dreieck.tex | 68 ++++++++++++++++++++++++++++++++++++++ buch/papers/nav/images/macros.tex | 54 ++++++++++++++++++++++++++++++ buch/papers/nav/images/pk.m | 55 ++++++++++++++++++++++++++++++ 4 files changed, 188 insertions(+) create mode 100644 buch/papers/nav/images/Makefile create mode 100644 buch/papers/nav/images/dreieck.tex create mode 100644 buch/papers/nav/images/macros.tex create mode 100644 buch/papers/nav/images/pk.m (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile new file mode 100644 index 0000000..a0d7b34 --- /dev/null +++ b/buch/papers/nav/images/Makefile @@ -0,0 +1,11 @@ +# +# Makefile to build images +# +# (c) 2022 +# + +dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex + pdflatex dreieck.tex + +dreieckdata.tex: pk.m + octave pk.m diff --git a/buch/papers/nav/images/dreieck.tex b/buch/papers/nav/images/dreieck.tex new file mode 100644 index 0000000..55f6a81 --- /dev/null +++ b/buch/papers/nav/images/dreieck.tex @@ -0,0 +1,68 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\def\punktbeschriftung{ + \node at (A) [above] {$A$}; + \node at (B) [left] {$B$}; + \node at (C) [right] {$C$}; + \node at (P) [below] {$P$}; +} + +\winkelKappa{gray} + +\winkelAlpha{red} +\winkelGamma{blue} +\winkelBeta{darkgreen} + +\winkelOmega{gray} +\winkelBetaEins{brown} + +\seiteC{black} +\seiteB{black} +\seiteA{black} + +\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\punktbeschriftung + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/macros.tex b/buch/papers/nav/images/macros.tex new file mode 100644 index 0000000..69a620d --- /dev/null +++ b/buch/papers/nav/images/macros.tex @@ -0,0 +1,54 @@ +\def\winkelAlpha#1{ + \begin{scope} + \clip (A) circle[radius=1.1]; + \fill[color=#1!20] \kanteAB -- \kanteCA -- cycle; + \end{scope} + \node[color=#1] at ($(A)+(222:0.82)$) {$\alpha$}; +} + +\def\winkelOmega#1{ + \begin{scope} + \clip (A) circle[radius=0.7]; + \fill[color=#1!20] \kanteAP -- \kanteCA -- cycle; + \end{scope} + \node[color=#1] at ($(A)+(285:0.50)$) {$\omega$}; +} + +\def\winkelGamma#1{ + \begin{scope} + \clip (C) circle[radius=1.0]; + \fill[color=#1!20] \kanteCA -- \kanteBC -- cycle; + \end{scope} + \node[color=#1] at ($(C)+(155:0.60)$) {$\gamma$}; +} + +\def\winkelKappa#1{ + \begin{scope} + \clip (B) circle[radius=1.2]; + \fill[color=#1!20] \kanteBP -- \kanteAB -- cycle; + \end{scope} + \node[color=#1] at ($(B)+(15:1.00)$) {$\kappa$}; +} + +\def\winkelBeta#1{ + \begin{scope} + \clip (B) circle[radius=0.8]; + \fill[color=#1!20] \kanteBC -- \kanteAB -- cycle; + \end{scope} + \node[color=#1] at ($(B)+(35:0.40)$) {$\beta$}; +} + +\def\winkelBetaEins#1{ + \begin{scope} + \clip (B) circle[radius=0.8]; + \fill[color=#1!20] \kanteBP -- \kanteCB -- cycle; + \end{scope} + \node[color=#1] at ($(B)+(330:0.60)$) {$\beta_1$}; +} + +\def\seiteC#1{ \node[color=#1] at (-1.9,5.9) {$c$}; } +\def\seiteB#1{ \node[color=#1] at (3.2,6.5) {$b$}; } +\def\seiteL#1{ \node[color=#1] at (-0.2,4.5) {$l$}; } +\def\seiteA#1{ \node[color=#1] at (2,3) {$a$}; } +\def\seitePB#1{ \node[color=#1] at (-2.1,1) {$p_b$}; } +\def\seitePC#1{ \node[color=#1] at (2.5,1.5) {$p_c$}; } diff --git a/buch/papers/nav/images/pk.m b/buch/papers/nav/images/pk.m new file mode 100644 index 0000000..6e89e9a --- /dev/null +++ b/buch/papers/nav/images/pk.m @@ -0,0 +1,55 @@ +# +# pk.m -- Punkte und Kanten für sphärisches Dreieck +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +A = [ 1, 8 ]; +B = [ -3, 3 ]; +C = [ 4, 4 ]; +P = [ 0, 0 ]; + +global fn; +fn = fopen("dreieckdata.tex", "w"); + +fprintf(fn, "\\coordinate (P) at (%.4f,%.4f);\n", P(1,1), P(1,2)); +fprintf(fn, "\\coordinate (A) at (%.4f,%.4f);\n", A(1,1), A(1,2)); +fprintf(fn, "\\coordinate (B) at (%.4f,%.4f);\n", B(1,1), B(1,2)); +fprintf(fn, "\\coordinate (C) at (%.4f,%.4f);\n", C(1,1), C(1,2)); + +function retval = seite(A, B, l, nameA, nameB) + global fn; + d = fliplr(B - A); + d(1, 2) = -d(1, 2); + # Zentrum + C = 0.5 * (A + B) + l * d; + # Radius: + r = hypot(C(1,1)-A(1,1), C(1,2)-A(1,2)) + # Winkel von + winkelvon = atan2(A(1,2)-C(1,2),A(1,1)-C(1,1)); + # Winkel bis + winkelbis = atan2(B(1,2)-C(1,2),B(1,1)-C(1,1)); + if (abs(winkelvon - winkelbis) > pi) + if (winkelbis < winkelvon) + winkelbis = winkelbis + 2 * pi + else + winkelvon = winkelvon + 2 * pi + end + end + # Kurve + fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n", + nameA, nameB, + A(1,1), A(1,2), winkelvon * 180 / pi, winkelbis * 180 / pi, r); + fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n", + nameB, nameA, + B(1,1), B(1,2), winkelbis * 180 / pi, winkelvon * 180 / pi, r); +endfunction + +seite(A, B, -1, "A", "B"); +seite(A, C, 1, "A", "C"); +seite(A, P, -1, "A", "P"); +seite(B, C, -2, "B", "C"); +seite(B, P, -1, "B", "P"); +seite(C, P, 2, "C", "P"); + +fclose(fn); -- cgit v1.2.1 From 1067af52a6b066174b7306e96766e9e4e11cbac7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 11 May 2022 22:14:11 +0200 Subject: dreiecksdaten --- buch/papers/nav/images/dreieckdata.tex | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) create mode 100644 buch/papers/nav/images/dreieckdata.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/dreieckdata.tex b/buch/papers/nav/images/dreieckdata.tex new file mode 100644 index 0000000..c0fb720 --- /dev/null +++ b/buch/papers/nav/images/dreieckdata.tex @@ -0,0 +1,16 @@ +\coordinate (P) at (0.0000,0.0000); +\coordinate (A) at (1.0000,8.0000); +\coordinate (B) at (-3.0000,3.0000); +\coordinate (C) at (4.0000,4.0000); +\def\kanteAB{(1.0000,8.0000) arc (114.77514:167.90524:7.1589)} +\def\kanteBA{(-3.0000,3.0000) arc (167.90524:114.77514:7.1589)} +\def\kanteAC{(1.0000,8.0000) arc (63.43495:10.30485:5.5902)} +\def\kanteCA{(4.0000,4.0000) arc (10.30485:63.43495:5.5902)} +\def\kanteAP{(1.0000,8.0000) arc (146.30993:199.44003:9.0139)} +\def\kantePA{(0.0000,0.0000) arc (199.44003:146.30993:9.0139)} +\def\kanteBC{(-3.0000,3.0000) arc (-95.90614:-67.83365:14.5774)} +\def\kanteCB{(4.0000,4.0000) arc (-67.83365:-95.90614:14.5774)} +\def\kanteBP{(-3.0000,3.0000) arc (-161.56505:-108.43495:4.7434)} +\def\kantePB{(0.0000,0.0000) arc (-108.43495:-161.56505:4.7434)} +\def\kanteCP{(4.0000,4.0000) arc (-30.96376:-59.03624:11.6619)} +\def\kantePC{(0.0000,0.0000) arc (-59.03624:-30.96376:11.6619)} -- cgit v1.2.1 From 951cc9bc8c55fe00180ee97023ed79452e8b4a25 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 12:47:50 +0200 Subject: fix some bugs --- buch/papers/nav/images/Makefile | 33 +++++++++++++++++++ buch/papers/nav/images/dreieck1.pdf | Bin 0 -> 11578 bytes buch/papers/nav/images/dreieck1.tex | 59 +++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck2.pdf | Bin 0 -> 8812 bytes buch/papers/nav/images/dreieck2.tex | 59 +++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck3.pdf | Bin 0 -> 10636 bytes buch/papers/nav/images/dreieck3.tex | 59 +++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck4.pdf | Bin 0 -> 13231 bytes buch/papers/nav/images/dreieck4.tex | 64 ++++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck5.pdf | Bin 0 -> 8721 bytes buch/papers/nav/images/dreieck5.tex | 64 ++++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck6.pdf | Bin 0 -> 10699 bytes buch/papers/nav/images/dreieck6.tex | 64 ++++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck7.pdf | Bin 0 -> 11079 bytes buch/papers/nav/images/dreieck7.tex | 64 ++++++++++++++++++++++++++++++++++++ 15 files changed, 466 insertions(+) create mode 100644 buch/papers/nav/images/dreieck1.pdf create mode 100644 buch/papers/nav/images/dreieck1.tex create mode 100644 buch/papers/nav/images/dreieck2.pdf create mode 100644 buch/papers/nav/images/dreieck2.tex create mode 100644 buch/papers/nav/images/dreieck3.pdf create mode 100644 buch/papers/nav/images/dreieck3.tex create mode 100644 buch/papers/nav/images/dreieck4.pdf create mode 100644 buch/papers/nav/images/dreieck4.tex create mode 100644 buch/papers/nav/images/dreieck5.pdf create mode 100644 buch/papers/nav/images/dreieck5.tex create mode 100644 buch/papers/nav/images/dreieck6.pdf create mode 100644 buch/papers/nav/images/dreieck6.tex create mode 100644 buch/papers/nav/images/dreieck7.pdf create mode 100644 buch/papers/nav/images/dreieck7.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index a0d7b34..0c1cbc3 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -3,9 +3,42 @@ # # (c) 2022 # +all: dreiecke dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex pdflatex dreieck.tex dreieckdata.tex: pk.m octave pk.m + +DREIECKE = \ + dreieck1.pdf \ + dreieck2.pdf \ + dreieck3.pdf \ + dreieck4.pdf \ + dreieck5.pdf \ + dreieck6.pdf \ + dreieck7.pdf + +dreiecke: $(DREIECKE) + +dreieck1.pdf: dreieck1.tex dreieckdata.tex macros.tex + pdflatex dreieck1.tex + +dreieck2.pdf: dreieck2.tex dreieckdata.tex macros.tex + pdflatex dreieck2.tex + +dreieck3.pdf: dreieck3.tex dreieckdata.tex macros.tex + pdflatex dreieck3.tex + +dreieck4.pdf: dreieck4.tex dreieckdata.tex macros.tex + pdflatex dreieck4.tex + +dreieck5.pdf: dreieck5.tex dreieckdata.tex macros.tex + pdflatex dreieck5.tex + +dreieck6.pdf: dreieck6.tex dreieckdata.tex macros.tex + pdflatex dreieck6.tex + +dreieck7.pdf: dreieck7.tex dreieckdata.tex macros.tex + pdflatex dreieck7.tex diff --git a/buch/papers/nav/images/dreieck1.pdf b/buch/papers/nav/images/dreieck1.pdf new file mode 100644 index 0000000..5bdf23d Binary files /dev/null and b/buch/papers/nav/images/dreieck1.pdf differ diff --git a/buch/papers/nav/images/dreieck1.tex b/buch/papers/nav/images/dreieck1.tex new file mode 100644 index 0000000..436314c --- /dev/null +++ b/buch/papers/nav/images/dreieck1.tex @@ -0,0 +1,59 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelAlpha{red} +\winkelGamma{blue} +\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck2.pdf b/buch/papers/nav/images/dreieck2.pdf new file mode 100644 index 0000000..a872b25 Binary files /dev/null and b/buch/papers/nav/images/dreieck2.pdf differ diff --git a/buch/papers/nav/images/dreieck2.tex b/buch/papers/nav/images/dreieck2.tex new file mode 100644 index 0000000..99aabb7 --- /dev/null +++ b/buch/papers/nav/images/dreieck2.tex @@ -0,0 +1,59 @@ +% +% dreieck2.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +%\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck3.pdf b/buch/papers/nav/images/dreieck3.pdf new file mode 100644 index 0000000..65070c6 Binary files /dev/null and b/buch/papers/nav/images/dreieck3.pdf differ diff --git a/buch/papers/nav/images/dreieck3.tex b/buch/papers/nav/images/dreieck3.tex new file mode 100644 index 0000000..0cf5363 --- /dev/null +++ b/buch/papers/nav/images/dreieck3.tex @@ -0,0 +1,59 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +%\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck4.pdf b/buch/papers/nav/images/dreieck4.pdf new file mode 100644 index 0000000..4871a1e Binary files /dev/null and b/buch/papers/nav/images/dreieck4.pdf differ diff --git a/buch/papers/nav/images/dreieck4.tex b/buch/papers/nav/images/dreieck4.tex new file mode 100644 index 0000000..19a7d12 --- /dev/null +++ b/buch/papers/nav/images/dreieck4.tex @@ -0,0 +1,64 @@ +% +% dreieck4.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +\winkelBetaEins{brown} + +%\seiteC{gray} +%\seiteB{gray} +%\seiteL{gray} + +\seiteA{black} +\seitePB{black} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=gray] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[color=black,line width=1.4pt] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{gray}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node[color=gray] at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck5.pdf b/buch/papers/nav/images/dreieck5.pdf new file mode 100644 index 0000000..cf686e0 Binary files /dev/null and b/buch/papers/nav/images/dreieck5.pdf differ diff --git a/buch/papers/nav/images/dreieck5.tex b/buch/papers/nav/images/dreieck5.tex new file mode 100644 index 0000000..d1117d1 --- /dev/null +++ b/buch/papers/nav/images/dreieck5.tex @@ -0,0 +1,64 @@ +% +% dreieck4.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +%\winkelBetaEins{brown} + +%\seiteC{gray} +%\seiteB{gray} +%\seiteL{gray} + +%\seiteA{black} +\seitePB{black} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=gray] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[color=black,line width=1.4pt] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{gray}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node[color=gray] at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck6.pdf b/buch/papers/nav/images/dreieck6.pdf new file mode 100644 index 0000000..7efd673 Binary files /dev/null and b/buch/papers/nav/images/dreieck6.pdf differ diff --git a/buch/papers/nav/images/dreieck6.tex b/buch/papers/nav/images/dreieck6.tex new file mode 100644 index 0000000..87db1c2 --- /dev/null +++ b/buch/papers/nav/images/dreieck6.tex @@ -0,0 +1,64 @@ +% +% dreieck6.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +%\winkelBetaEins{brown} + +\seiteC{black} +\seiteB{black} +%\seiteA{gray} + +\seiteL{black} +\seitePB{black} +\seitePC{black} + +\draw[color=black,line width=1.4pt] \kanteAB; +\draw[color=black,line width=1.4pt] \kanteAC; +\draw[color=black,line width=1.4pt] \kanteAP; +%\draw[color=gray] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck7.pdf b/buch/papers/nav/images/dreieck7.pdf new file mode 100644 index 0000000..aa83e28 Binary files /dev/null and b/buch/papers/nav/images/dreieck7.pdf differ diff --git a/buch/papers/nav/images/dreieck7.tex b/buch/papers/nav/images/dreieck7.tex new file mode 100644 index 0000000..f084708 --- /dev/null +++ b/buch/papers/nav/images/dreieck7.tex @@ -0,0 +1,64 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\winkelOmega{gray} +%\winkelBetaEins{brown} + +\seiteC{black} +\seiteB{black} +\seiteA{gray} + +\seiteL{black} +\seitePB{gray} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=black,line width=1.4pt] \kanteAC; +\draw[color=black,line width=1.4pt] \kanteAP; +\draw[color=gray] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[line width=1.4pt] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{gray}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node at (A) [above] {$A$}; +\node[color=gray] at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From d223b0ff1fb5364b2b243b8fd4fd7a0e9ffba285 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 20:12:50 +0200 Subject: 3dimages --- buch/papers/nav/images/Makefile | 66 ++++++++++++++- buch/papers/nav/images/common.inc | 149 ++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck3d1.pov | 58 +++++++++++++ buch/papers/nav/images/dreieck3d1.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d2.pov | 26 ++++++ buch/papers/nav/images/dreieck3d2.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d3.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d3.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d4.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d4.tex | 54 ++++++++++++ buch/papers/nav/images/dreieck3d5.pov | 26 ++++++ buch/papers/nav/images/dreieck3d5.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d6.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d6.tex | 55 +++++++++++++ buch/papers/nav/images/dreieck3d7.pov | 39 +++++++++ buch/papers/nav/images/dreieck3d7.tex | 55 +++++++++++++ 16 files changed, 850 insertions(+), 1 deletion(-) create mode 100644 buch/papers/nav/images/common.inc create mode 100644 buch/papers/nav/images/dreieck3d1.pov create mode 100644 buch/papers/nav/images/dreieck3d1.tex create mode 100644 buch/papers/nav/images/dreieck3d2.pov create mode 100644 buch/papers/nav/images/dreieck3d2.tex create mode 100644 buch/papers/nav/images/dreieck3d3.pov create mode 100644 buch/papers/nav/images/dreieck3d3.tex create mode 100644 buch/papers/nav/images/dreieck3d4.pov create mode 100644 buch/papers/nav/images/dreieck3d4.tex create mode 100644 buch/papers/nav/images/dreieck3d5.pov create mode 100644 buch/papers/nav/images/dreieck3d5.tex create mode 100644 buch/papers/nav/images/dreieck3d6.pov create mode 100644 buch/papers/nav/images/dreieck3d6.tex create mode 100644 buch/papers/nav/images/dreieck3d7.pov create mode 100644 buch/papers/nav/images/dreieck3d7.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index 0c1cbc3..c9dcacc 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2022 # -all: dreiecke +all: dreiecke3d dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex pdflatex dreieck.tex @@ -42,3 +42,67 @@ dreieck6.pdf: dreieck6.tex dreieckdata.tex macros.tex dreieck7.pdf: dreieck7.tex dreieckdata.tex macros.tex pdflatex dreieck7.tex + +DREIECKE3D = \ + dreieck3d1.pdf \ + dreieck3d2.pdf \ + dreieck3d3.pdf \ + dreieck3d4.pdf \ + dreieck3d5.pdf \ + dreieck3d6.pdf \ + dreieck3d7.pdf + +dreiecke3d: $(DREIECKE3D) + +POVRAYOPTIONS = -W1080 -H1080 +#POVRAYOPTIONS = -W480 -H480 + +dreieck3d1.png: dreieck3d1.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d1.png dreieck3d1.pov +dreieck3d1.jpg: dreieck3d1.png + convert dreieck3d1.png -density 300 -units PixelsPerInch dreieck3d1.jpg +dreieck3d1.pdf: dreieck3d1.tex dreieck3d1.jpg + pdflatex dreieck3d1.tex + +dreieck3d2.png: dreieck3d2.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d2.png dreieck3d2.pov +dreieck3d2.jpg: dreieck3d2.png + convert dreieck3d2.png -density 300 -units PixelsPerInch dreieck3d2.jpg +dreieck3d2.pdf: dreieck3d2.tex dreieck3d2.jpg + pdflatex dreieck3d2.tex + +dreieck3d3.png: dreieck3d3.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d3.png dreieck3d3.pov +dreieck3d3.jpg: dreieck3d3.png + convert dreieck3d3.png -density 300 -units PixelsPerInch dreieck3d3.jpg +dreieck3d3.pdf: dreieck3d3.tex dreieck3d3.jpg + pdflatex dreieck3d3.tex + +dreieck3d4.png: dreieck3d4.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d4.png dreieck3d4.pov +dreieck3d4.jpg: dreieck3d4.png + convert dreieck3d4.png -density 300 -units PixelsPerInch dreieck3d4.jpg +dreieck3d4.pdf: dreieck3d4.tex dreieck3d4.jpg + pdflatex dreieck3d4.tex + +dreieck3d5.png: dreieck3d5.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d5.png dreieck3d5.pov +dreieck3d5.jpg: dreieck3d5.png + convert dreieck3d5.png -density 300 -units PixelsPerInch dreieck3d5.jpg +dreieck3d5.pdf: dreieck3d5.tex dreieck3d5.jpg + pdflatex dreieck3d5.tex + +dreieck3d6.png: dreieck3d6.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d6.png dreieck3d6.pov +dreieck3d6.jpg: dreieck3d6.png + convert dreieck3d6.png -density 300 -units PixelsPerInch dreieck3d6.jpg +dreieck3d6.pdf: dreieck3d6.tex dreieck3d6.jpg + pdflatex dreieck3d6.tex + +dreieck3d7.png: dreieck3d7.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d7.png dreieck3d7.pov +dreieck3d7.jpg: dreieck3d7.png + convert dreieck3d7.png -density 300 -units PixelsPerInch dreieck3d7.jpg +dreieck3d7.pdf: dreieck3d7.tex dreieck3d7.jpg + pdflatex dreieck3d7.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc new file mode 100644 index 0000000..33d9384 --- /dev/null +++ b/buch/papers/nav/images/common.inc @@ -0,0 +1,149 @@ +// +// common.inc -- 3d Darstellung +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.034; + +#declare A = vnormalize(< 0, 1, 0>); +#declare B = vnormalize(< 1, 2, -8>); +#declare C = vnormalize(< 5, 1, 0>); +#declare P = vnormalize(< 5, -1, -7>); + +camera { + location <40, 20, -20> + look_at <0, 0.24, -0.20> + right x * imagescale + up y * imagescale +} + +light_source { + <10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro grosskreis(normale, staerke) +union { + #declare v1 = vcross(normale, ); + #declare v1 = vnormalize(v1); + #declare v2 = vnormalize(vcross(v1, normale)); + #declare phisteps = 100; + #declare phistep = pi / phisteps; + #declare phi = 0; + #declare p1 = v1; + #while (phi < 2 * pi - phistep/2) + sphere { p1, staerke } + #declare phi = phi + phistep; + #declare p2 = v1 * cos(phi) + v2 * sin(phi); + cylinder { p1, p2, staerke } + #declare p1 = p2; + #end +} +#end + +#macro seite(p, q, staerke) + #declare n = vcross(p, q); + intersection { + grosskreis(n, staerke) + plane { -vcross(n, q) * vdot(vcross(n, q), p), 0 } + plane { -vcross(n, p) * vdot(vcross(n, p), q), 0 } + } +#end + +#macro winkel(w, p, q, staerke) + #declare n = vnormalize(w); + #declare pp = vnormalize(p - vdot(n, p) * n); + #declare qq = vnormalize(q - vdot(n, q) * n); + intersection { + sphere { <0, 0, 0>, 1 + staerke } + cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), 0.4 } + plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } + plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } + } +#end + +#macro punkt(p, staerke) + sphere { p, 1.5 * staerke } +#end + +#declare fett = 0.015; +#declare fine = 0.010; + +#declare dreieckfarbe = rgb<0.6,0.6,0.6>; +#declare rot = rgb<0.8,0.2,0.2>; +#declare gruen = rgb<0,0.6,0>; +#declare blau = rgb<0.2,0.2,0.8>; + +sphere { + <0, 0, 0>, 1 + pigment { + color rgb<0.8,0.8,0.8> + } +} + +//union { +// sphere { A, 0.02 } +// sphere { B, 0.02 } +// sphere { C, 0.02 } +// sphere { P, 0.02 } +// pigment { +// color Red +// } +//} + +//union { +// winkel(A, B, C) +// winkel(B, P, C) +// seite(B, C, 0.01) +// seite(B, P, 0.01) +// pigment { +// color rgb<0,0.6,0> +// } +//} diff --git a/buch/papers/nav/images/dreieck3d1.pov b/buch/papers/nav/images/dreieck3d1.pov new file mode 100644 index 0000000..8afe60e --- /dev/null +++ b/buch/papers/nav/images/dreieck3d1.pov @@ -0,0 +1,58 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fine) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, A, fine) + pigment { + color gruen + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(C, A, B, fine) + pigment { + color blau + } + finish { + specular 0.95 + metallic + } +} diff --git a/buch/papers/nav/images/dreieck3d1.tex b/buch/papers/nav/images/dreieck3d1.tex new file mode 100644 index 0000000..799b21a --- /dev/null +++ b/buch/papers/nav/images/dreieck3d1.tex @@ -0,0 +1,53 @@ +% +% dreieck3d1.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d1.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3) {$\alpha$}; +\node at (-2.5,-0.5) {$\beta$}; +\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d2.pov b/buch/papers/nav/images/dreieck3d2.pov new file mode 100644 index 0000000..c23a54c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d2.pov @@ -0,0 +1,26 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d2.tex b/buch/papers/nav/images/dreieck3d2.tex new file mode 100644 index 0000000..0f6e10c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d2.tex @@ -0,0 +1,53 @@ +% +% dreieck3d2.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d2.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d3.pov b/buch/papers/nav/images/dreieck3d3.pov new file mode 100644 index 0000000..f2496b5 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d3.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fine) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d3.tex b/buch/papers/nav/images/dreieck3d3.tex new file mode 100644 index 0000000..a047b1b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d3.tex @@ -0,0 +1,53 @@ +% +% dreieck3d3.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d3.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d4.pov b/buch/papers/nav/images/dreieck3d4.pov new file mode 100644 index 0000000..bddcf7c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d4.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fine) + seite(A, C, fine) + punkt(A, fine) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + seite(B, C, fett) + seite(B, P, fett) + seite(C, P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, P, fine) + pigment { + color rgb<0.6,0.4,0.2> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d4.tex b/buch/papers/nav/images/dreieck3d4.tex new file mode 100644 index 0000000..d49fb66 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d4.tex @@ -0,0 +1,54 @@ +% +% dreieck3d4.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d4.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +%\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +%\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.3,-1.5) {$\beta_1$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d5.pov b/buch/papers/nav/images/dreieck3d5.pov new file mode 100644 index 0000000..32fc9e6 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d5.pov @@ -0,0 +1,26 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fine) + seite(A, C, fine) + punkt(A, fine) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + seite(B, C, fett) + seite(B, P, fett) + seite(C, P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d5.tex b/buch/papers/nav/images/dreieck3d5.tex new file mode 100644 index 0000000..8011b37 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d5.tex @@ -0,0 +1,53 @@ +% +% dreieck3d5.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d5.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +%\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +%\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d6.pov b/buch/papers/nav/images/dreieck3d6.pov new file mode 100644 index 0000000..7611950 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d6.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(A, C, fett) + seite(B, P, fett) + seite(C, P, fett) + seite(A, P, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, A, P, fine) + pigment { + color rgb<0.6,0.2,0.6> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d6.tex b/buch/papers/nav/images/dreieck3d6.tex new file mode 100644 index 0000000..bbca2ca --- /dev/null +++ b/buch/papers/nav/images/dreieck3d6.tex @@ -0,0 +1,55 @@ +% +% dreieck3d6.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d6.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.7,0.3) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.4,-0.6) {$\kappa$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d7.pov b/buch/papers/nav/images/dreieck3d7.pov new file mode 100644 index 0000000..fa48f5b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d7.pov @@ -0,0 +1,39 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, C, fett) + seite(A, P, fett) + seite(C, P, fett) + + seite(A, B, fine) + seite(B, C, fine) + seite(B, P, fine) + punkt(A, fett) + punkt(C, fett) + punkt(P, fett) + punkt(B, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, P, C, fine) + pigment { + color rgb<0.4,0.4,1> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d7.tex b/buch/papers/nav/images/dreieck3d7.tex new file mode 100644 index 0000000..4027a8b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d7.tex @@ -0,0 +1,55 @@ +% +% dreieck3d7.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d7.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.7,0.3) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (0.8,3.1) {$\omega$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From d7bff7e403a0e54880cb04b350a91a2f664b2708 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:30:44 +0200 Subject: =?UTF-8?q?Ich=20habe=20nun=20alle=20Kapitel=20als=20Textfile=20se?= =?UTF-8?q?perat=20eingef=C3=BCgt,=20einen=20zus=C3=A4tzlichen=20unterordn?= =?UTF-8?q?er=20gemacht=20f=C3=BCr=20die=20bilder,=20dann=20im=20main.tex?= =?UTF-8?q?=20die=20input=20befehle=20angepasst=20und=20committe=20nun.=20?= =?UTF-8?q?Bemerkung:=20Wir=20werden=20diese=20Woche=20noch=20das=202D=20-?= =?UTF-8?q?=20Dreieck=20mit=20einem=20Kugeldreieck=20ersetzen!=20Sonst=20w?= =?UTF-8?q?=C3=A4re=20unsere=20Arbeit=20(=20Bis=20auf=20finishing=20wie=20?= =?UTF-8?q?Rechtschreibung=20und=20Formatierung)=20eigentlich=20fertig.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/nav/bilder/dreieck.png | Bin 0 -> 91703 bytes buch/papers/nav/bilder/kugel1.png | Bin 0 -> 9051 bytes buch/papers/nav/bilder/kugel2.png | Bin 0 -> 9103 bytes buch/papers/nav/bilder/kugel3.png | Bin 0 -> 215188 bytes buch/papers/nav/bilder/projektion.png | Bin 0 -> 41289 bytes buch/papers/nav/einleitung.tex | 17 +++ buch/papers/nav/flatearth.tex | 31 ++++++ buch/papers/nav/geschichte.tex | 22 ++++ buch/papers/nav/main.log | 109 +++++++++++++++++++ buch/papers/nav/main.tex | 29 ++---- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++++++++++++++++++++ buch/papers/nav/packages.tex | 6 ++ buch/papers/nav/trigo.tex | 51 +++++++++ 13 files changed, 433 insertions(+), 22 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.png create mode 100644 buch/papers/nav/bilder/kugel1.png create mode 100644 buch/papers/nav/bilder/kugel2.png create mode 100644 buch/papers/nav/bilder/kugel3.png create mode 100644 buch/papers/nav/bilder/projektion.png create mode 100644 buch/papers/nav/einleitung.tex create mode 100644 buch/papers/nav/flatearth.tex create mode 100644 buch/papers/nav/geschichte.tex create mode 100644 buch/papers/nav/main.log create mode 100644 buch/papers/nav/nautischesdreieck.tex create mode 100644 buch/papers/nav/trigo.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png new file mode 100644 index 0000000..2b02105 Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.png differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png new file mode 100644 index 0000000..b3188b7 Binary files /dev/null and b/buch/papers/nav/bilder/kugel1.png differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png new file mode 100644 index 0000000..057740f Binary files /dev/null and b/buch/papers/nav/bilder/kugel2.png differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png new file mode 100644 index 0000000..97066a2 Binary files /dev/null and b/buch/papers/nav/bilder/kugel3.png differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png new file mode 100644 index 0000000..5dcc0c8 Binary files /dev/null and b/buch/papers/nav/bilder/projektion.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex new file mode 100644 index 0000000..42f4b6c --- /dev/null +++ b/buch/papers/nav/einleitung.tex @@ -0,0 +1,17 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Einleitung} +Heut zu Tage ist die Navigation ein Teil des Lebens. +Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex new file mode 100644 index 0000000..b14dd4b --- /dev/null +++ b/buch/papers/nav/flatearth.tex @@ -0,0 +1,31 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} + \section{Warum ist die Erde nicht flach?} + + \begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{bilder/projektion.png} + \caption{Mercator Projektion} + \end{center} + \end{figure} + +Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Die Fotos von unserem Planeten oder die Berichte der Astronauten. + Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. + Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. + Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. + Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. +Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex new file mode 100644 index 0000000..a20eb6d --- /dev/null +++ b/buch/papers/nav/geschichte.tex @@ -0,0 +1,22 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Geschichte der sphärischen Navigation} +Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. +Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. +Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. +Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. +Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. +Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. +Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. +Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. +Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. +Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. +Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. +Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.log b/buch/papers/nav/main.log new file mode 100644 index 0000000..d7aa0a9 --- /dev/null +++ b/buch/papers/nav/main.log @@ -0,0 +1,109 @@ +This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 16 MAY 2022 20:27 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**./main.tex +(main.tex +LaTeX2e <2021-11-15> patch level 1 +L3 programming layer <2022-02-24> +! Undefined control sequence. +l.6 \chapter + {Thema\label{chapter:nav}} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + + +! LaTeX Error: Missing \begin{document}. + +See the LaTeX manual or LaTeX Companion for explanation. +Type H for immediate help. + ... + +l.6 \chapter{T + hema\label{chapter:nav}} +You're in trouble here. Try typing to proceed. +If that doesn't work, type X to quit. + +Missing character: There is no T in font nullfont! +Missing character: There is no h in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no m in font nullfont! +Missing character: There is no a in font nullfont! +! Undefined control sequence. +l.7 \lhead + {Thema} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + +Missing character: There is no T in font nullfont! +Missing character: There is no h in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no m in font nullfont! +Missing character: There is no a in font nullfont! + +! LaTeX Error: Environment refsection undefined. + +See the LaTeX manual or LaTeX Companion for explanation. +Type H for immediate help. + ... + +l.8 \begin{refsection} + +Your command was ignored. +Type I to replace it with another command, +or to continue without it. + +! Undefined control sequence. +l.9 \chapterauthor + {Hans Muster} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + +Missing character: There is no H in font nullfont! +Missing character: There is no a in font nullfont! +Missing character: There is no n in font nullfont! +Missing character: There is no s in font nullfont! +Missing character: There is no M in font nullfont! +Missing character: There is no u in font nullfont! +Missing character: There is no s in font nullfont! +Missing character: There is no t in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no r in font nullfont! + +Overfull \hbox (20.0pt too wide) in paragraph at lines 6--10 +[][] + [] + + +! LaTeX Error: File `papers/nav/einleitung.tex' not found. + +Type X to quit or to proceed, +or enter new name. (Default extension: tex) + +Enter file name: +! Emergency stop. + + +l.13 \input{papers/nav/einleitung.tex} + ^^M +*** (cannot \read from terminal in nonstop modes) + + +Here is how much of TeX's memory you used: + 22 strings out of 478582 + 530 string characters out of 2856069 + 288951 words of memory out of 3000000 + 18307 multiletter control sequences out of 15000+600000 + 469259 words of font info for 28 fonts, out of 8000000 for 9000 + 1141 hyphenation exceptions out of 8191 + 16i,0n,26p,84b,28s stack positions out of 10000i,1000n,20000p,200000b,80000s +! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e11e2c0..1ad16da 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,29 +8,14 @@ \begin{refsection} \chapterauthor{Hans Muster} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} -\input{papers/nav/teil0.tex} -\input{papers/nav/teil1.tex} -\input{papers/nav/teil2.tex} -\input{papers/nav/teil3.tex} + +\input{papers/nav/einleitung.tex} +\input{papers/nav/geschichte.tex} +\input{papers/nav/flatearth.tex} +\input{papers/nav/trigo.tex} +\input{papers/nav/nautischesdreieck.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex new file mode 100644 index 0000000..0bb213c --- /dev/null +++ b/buch/papers/nav/nautischesdreieck.tex @@ -0,0 +1,190 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + \usepackage{xcolor, soul} + \sethlcolor{yellow} +\begin{document} + \setlength{\parindent}{0em} +\section{Das Nautische Dreieck} +\subsection{Definition des Nautischen Dreiecks} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ +Das Nautische Dreieck definiert sich durch folgende Ecken: +\begin{itemize} + \item Zenit + \item Gestirn + \item Himmelspol +\end{itemize} +Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. +Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. +Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +\\ +Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} +Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: + +$\alpha \ \widehat{=} \ Rektaszension $ + +$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns + +$\theta \ \widehat{=} \ Sternzeit$ + +$\phi \ \widehat{=} \ Geographische \ Breite $ + +$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns + +$a \ \widehat{=} \ Azimut $ + +$h \ \widehat{=} \ Hoehe$ + + + +\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} + + \begin{center} + \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \end{center} +Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. + +\subsection{Varianten vom Nautischen Dreieck} +\section{Standortbestimmung ohne elektronische Hilfsmittel} +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. +Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. + + \begin{center} + \includegraphics[width=6cm]{Bilder/dreieck.png} + \end{center} + + + +\subsection{Ecke P - Unser Standort} +Unser eigener Standort ist der gesuchte Punkt A. + +\subsection{Ecke A - Nordpol} +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. + +\subsection{Ecke B und C - Bildpunkt XXX und YYY} +Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. +Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. +\\ +Es gibt diverse Gestirne, die man nutzen kann. +\begin{itemize} + \item Sonne + \item Mond + \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn +\end{itemize} + +Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). +Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. +Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. + +\subsubsection{Sternzeit und Rektaszension} +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. +Die Lösung ist die Sternzeit. +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. + +Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. +Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} + +Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich + + $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. + + Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. + Dies gilt analog auch für das zweite Gestirn. + + \subsubsection{Deklination} + Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. + + + +\subsection{Bestimmung des eigenen Standortes P} +Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. +Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. + + + \begin{center} + \includegraphics[width=5cm]{Bilder/dreieck.png} + \end{center} + + +\subsubsection{Bestimmung des ersten Dreiecks} + Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. + Dann ist $c = \frac{\pi}{2} - \delta_1$. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. + Dann ist $b = \frac{\pi}{2} - \delta_2$. + + Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. + Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + +mit + + $\delta_1 =$ Deklination Bildpunkt XXX + +$\delta_2 =$ Deklination Bildpunk YYY + +$\lambda_1 =$ Längengrad Bildpunkt XXX + +$\lambda_2 =$ Längengrad Bildpunkt YYY + + Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. + +Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. + +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. + +\subsubsection{Bestimmung des zweiten Dreiecks} +Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort P. +Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. + +Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ + +mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +\\ + +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes + +$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. + +Es fehlt uns noch $\beta1$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen +\\ + +Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. +\\ + +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ + +Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ + + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..15c7fdc 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,9 @@ % following example %\usepackage{packagename} +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{xcolor, soul} diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex new file mode 100644 index 0000000..0dbd7a1 --- /dev/null +++ b/buch/papers/nav/trigo.tex @@ -0,0 +1,51 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + + +\begin{document} + \section{Sphärische Trigonometrie} + \subsection{Das Kugeldreieck} + +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. +A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. +Laut dieser Definition ist die Seite c der Winkel AMB. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. +Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +\begin{figure}[h] + \begin{center} + \includegraphics[width=6cm]{Bilder/kugel1.png} + \end{center} + +\end{figure} + +\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} +Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. + \newpage +\subsection{Winkelangabe} + + \begin{center} + \includegraphics[width=8cm]{Bilder/kugel2.png} + \end{center} + +Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. +Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und +$\alpha+\beta+\gamma > \pi$. +Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. + +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. +Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. + +\end{document} \ No newline at end of file -- cgit v1.2.1 From e898a9c36fb707474ee869f6ec47119d0592e59f Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:32:38 +0200 Subject: =?UTF-8?q?Revert=20"Ich=20habe=20nun=20alle=20Kapitel=20als=20Tex?= =?UTF-8?q?tfile=20seperat=20eingef=C3=BCgt,=20einen=20zus=C3=A4tzlichen?= =?UTF-8?q?=20unterordner=20gemacht=20f=C3=BCr=20die=20bilder,=20dann=20im?= =?UTF-8?q?=20main.tex=20die=20input=20befehle=20angepasst=20und=20committ?= =?UTF-8?q?e=20nun."?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This reverts commit d7bff7e403a0e54880cb04b350a91a2f664b2708. --- buch/papers/nav/bilder/dreieck.png | Bin 91703 -> 0 bytes buch/papers/nav/bilder/kugel1.png | Bin 9051 -> 0 bytes buch/papers/nav/bilder/kugel2.png | Bin 9103 -> 0 bytes buch/papers/nav/bilder/kugel3.png | Bin 215188 -> 0 bytes buch/papers/nav/bilder/projektion.png | Bin 41289 -> 0 bytes buch/papers/nav/einleitung.tex | 17 --- buch/papers/nav/flatearth.tex | 31 ------ buch/papers/nav/geschichte.tex | 22 ---- buch/papers/nav/main.log | 109 ------------------- buch/papers/nav/main.tex | 29 ++++-- buch/papers/nav/nautischesdreieck.tex | 190 ---------------------------------- buch/papers/nav/packages.tex | 6 -- buch/papers/nav/trigo.tex | 51 --------- 13 files changed, 22 insertions(+), 433 deletions(-) delete mode 100644 buch/papers/nav/bilder/dreieck.png delete mode 100644 buch/papers/nav/bilder/kugel1.png delete mode 100644 buch/papers/nav/bilder/kugel2.png delete mode 100644 buch/papers/nav/bilder/kugel3.png delete mode 100644 buch/papers/nav/bilder/projektion.png delete mode 100644 buch/papers/nav/einleitung.tex delete mode 100644 buch/papers/nav/flatearth.tex delete mode 100644 buch/papers/nav/geschichte.tex delete mode 100644 buch/papers/nav/main.log delete mode 100644 buch/papers/nav/nautischesdreieck.tex delete mode 100644 buch/papers/nav/trigo.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png deleted file mode 100644 index 2b02105..0000000 Binary files a/buch/papers/nav/bilder/dreieck.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png deleted file mode 100644 index b3188b7..0000000 Binary files a/buch/papers/nav/bilder/kugel1.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png deleted file mode 100644 index 057740f..0000000 Binary files a/buch/papers/nav/bilder/kugel2.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png deleted file mode 100644 index 97066a2..0000000 Binary files a/buch/papers/nav/bilder/kugel3.png and /dev/null differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png deleted file mode 100644 index 5dcc0c8..0000000 Binary files a/buch/papers/nav/bilder/projektion.png and /dev/null differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex deleted file mode 100644 index 42f4b6c..0000000 --- a/buch/papers/nav/einleitung.tex +++ /dev/null @@ -1,17 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Einleitung} -Heut zu Tage ist die Navigation ein Teil des Lebens. -Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. -Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. -Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex deleted file mode 100644 index b14dd4b..0000000 --- a/buch/papers/nav/flatearth.tex +++ /dev/null @@ -1,31 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} - \section{Warum ist die Erde nicht flach?} - - \begin{figure}[h] - \begin{center} - \includegraphics[width=10cm]{bilder/projektion.png} - \caption{Mercator Projektion} - \end{center} - \end{figure} - -Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. -Die Fotos von unserem Planeten oder die Berichte der Astronauten. - Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. - Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. - Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. - Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. - Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. -In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. -Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex deleted file mode 100644 index a20eb6d..0000000 --- a/buch/papers/nav/geschichte.tex +++ /dev/null @@ -1,22 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Geschichte der sphärischen Navigation} -Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. -Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. -Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. -Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. -Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. -Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. -Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. -Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. -Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. -Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. -Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. -Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. -Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.log b/buch/papers/nav/main.log deleted file mode 100644 index d7aa0a9..0000000 --- a/buch/papers/nav/main.log +++ /dev/null @@ -1,109 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 16 MAY 2022 20:27 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**./main.tex -(main.tex -LaTeX2e <2021-11-15> patch level 1 -L3 programming layer <2022-02-24> -! Undefined control sequence. -l.6 \chapter - {Thema\label{chapter:nav}} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - - -! LaTeX Error: Missing \begin{document}. - -See the LaTeX manual or LaTeX Companion for explanation. -Type H for immediate help. - ... - -l.6 \chapter{T - hema\label{chapter:nav}} -You're in trouble here. Try typing to proceed. -If that doesn't work, type X to quit. - -Missing character: There is no T in font nullfont! -Missing character: There is no h in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no m in font nullfont! -Missing character: There is no a in font nullfont! -! Undefined control sequence. -l.7 \lhead - {Thema} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - -Missing character: There is no T in font nullfont! -Missing character: There is no h in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no m in font nullfont! -Missing character: There is no a in font nullfont! - -! LaTeX Error: Environment refsection undefined. - -See the LaTeX manual or LaTeX Companion for explanation. -Type H for immediate help. - ... - -l.8 \begin{refsection} - -Your command was ignored. -Type I to replace it with another command, -or to continue without it. - -! Undefined control sequence. -l.9 \chapterauthor - {Hans Muster} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - -Missing character: There is no H in font nullfont! -Missing character: There is no a in font nullfont! -Missing character: There is no n in font nullfont! -Missing character: There is no s in font nullfont! -Missing character: There is no M in font nullfont! -Missing character: There is no u in font nullfont! -Missing character: There is no s in font nullfont! -Missing character: There is no t in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no r in font nullfont! - -Overfull \hbox (20.0pt too wide) in paragraph at lines 6--10 -[][] - [] - - -! LaTeX Error: File `papers/nav/einleitung.tex' not found. - -Type X to quit or to proceed, -or enter new name. (Default extension: tex) - -Enter file name: -! Emergency stop. - - -l.13 \input{papers/nav/einleitung.tex} - ^^M -*** (cannot \read from terminal in nonstop modes) - - -Here is how much of TeX's memory you used: - 22 strings out of 478582 - 530 string characters out of 2856069 - 288951 words of memory out of 3000000 - 18307 multiletter control sequences out of 15000+600000 - 469259 words of font info for 28 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 16i,0n,26p,84b,28s stack positions out of 10000i,1000n,20000p,200000b,80000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 1ad16da..e11e2c0 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,14 +8,29 @@ \begin{refsection} \chapterauthor{Hans Muster} +Ein paar Hinweise für die korrekte Formatierung des Textes +\begin{itemize} +\item +Absätze werden gebildet, indem man eine Leerzeile einfügt. +Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. +\item +Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende +Optionen werden gelöscht. +Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. +\item +Beginnen Sie jeden Satz auf einer neuen Zeile. +Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen +in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt +anzuwenden. +\item +Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren +Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. +\end{itemize} - -\input{papers/nav/einleitung.tex} -\input{papers/nav/geschichte.tex} -\input{papers/nav/flatearth.tex} -\input{papers/nav/trigo.tex} -\input{papers/nav/nautischesdreieck.tex} - +\input{papers/nav/teil0.tex} +\input{papers/nav/teil1.tex} +\input{papers/nav/teil2.tex} +\input{papers/nav/teil3.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex deleted file mode 100644 index 0bb213c..0000000 --- a/buch/papers/nav/nautischesdreieck.tex +++ /dev/null @@ -1,190 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - \usepackage{xcolor, soul} - \sethlcolor{yellow} -\begin{document} - \setlength{\parindent}{0em} -\section{Das Nautische Dreieck} -\subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. -Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ -Das Nautische Dreieck definiert sich durch folgende Ecken: -\begin{itemize} - \item Zenit - \item Gestirn - \item Himmelspol -\end{itemize} -Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. -Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. -Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. -\\ -Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} -Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: - -$\alpha \ \widehat{=} \ Rektaszension $ - -$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns - -$\theta \ \widehat{=} \ Sternzeit$ - -$\phi \ \widehat{=} \ Geographische \ Breite $ - -$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns - -$a \ \widehat{=} \ Azimut $ - -$h \ \widehat{=} \ Hoehe$ - - - -\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} - - \begin{center} - \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} - \end{center} -Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. - -\subsection{Varianten vom Nautischen Dreieck} -\section{Standortbestimmung ohne elektronische Hilfsmittel} -Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. -Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. - - \begin{center} - \includegraphics[width=6cm]{Bilder/dreieck.png} - \end{center} - - - -\subsection{Ecke P - Unser Standort} -Unser eigener Standort ist der gesuchte Punkt A. - -\subsection{Ecke A - Nordpol} -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. - -\subsection{Ecke B und C - Bildpunkt XXX und YYY} -Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. -Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. -\\ -Es gibt diverse Gestirne, die man nutzen kann. -\begin{itemize} - \item Sonne - \item Mond - \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn -\end{itemize} - -Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). -Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. -Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. - -\subsubsection{Sternzeit und Rektaszension} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. -Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. -Die Lösung ist die Sternzeit. -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. - -Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. -Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} - -Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich - - $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. - - Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. - Dies gilt analog auch für das zweite Gestirn. - - \subsubsection{Deklination} - Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. - - - -\subsection{Bestimmung des eigenen Standortes P} -Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. -Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. - - - \begin{center} - \includegraphics[width=5cm]{Bilder/dreieck.png} - \end{center} - - -\subsubsection{Bestimmung des ersten Dreiecks} - Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. - Dann ist $c = \frac{\pi}{2} - \delta_1$. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. - Dann ist $b = \frac{\pi}{2} - \delta_2$. - - Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. - Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - -mit - - $\delta_1 =$ Deklination Bildpunkt XXX - -$\delta_2 =$ Deklination Bildpunk YYY - -$\lambda_1 =$ Längengrad Bildpunkt XXX - -$\lambda_2 =$ Längengrad Bildpunkt YYY - - Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - -Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. -Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. -Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. - -Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. - -Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. - -\subsubsection{Bestimmung des zweiten Dreiecks} -Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. -Die dritte Ecke ist der eigene Standort P. -Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. - -Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. -Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ - -mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. -\\ - -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes - -$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. - -Es fehlt uns noch $\beta1$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen -\\ - -Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. -\\ - -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. -\\ - -Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ - - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 15c7fdc..9faa48d 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,9 +8,3 @@ % following example %\usepackage{packagename} -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\usepackage{xcolor, soul} diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex deleted file mode 100644 index 0dbd7a1..0000000 --- a/buch/papers/nav/trigo.tex +++ /dev/null @@ -1,51 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - - -\begin{document} - \section{Sphärische Trigonometrie} - \subsection{Das Kugeldreieck} - -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. -A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. -Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite c der Winkel AMB. -Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. -Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. -Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. -\begin{figure}[h] - \begin{center} - \includegraphics[width=6cm]{Bilder/kugel1.png} - \end{center} - -\end{figure} - -\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} -Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. - \newpage -\subsection{Winkelangabe} - - \begin{center} - \includegraphics[width=8cm]{Bilder/kugel2.png} - \end{center} - -Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. -Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und -$\alpha+\beta+\gamma > \pi$. -Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. - -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. - -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. - -\end{document} \ No newline at end of file -- cgit v1.2.1 From 309284c1f79df5b8553b0b8875db188ff7d930af Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:43:09 +0200 Subject: no message --- buch/papers/nav/bilder/dreieck.png | Bin 0 -> 91703 bytes buch/papers/nav/bilder/kugel1.png | Bin 0 -> 9051 bytes buch/papers/nav/bilder/kugel2.png | Bin 0 -> 9103 bytes buch/papers/nav/bilder/kugel3.png | Bin 0 -> 215188 bytes buch/papers/nav/bilder/projektion.png | Bin 0 -> 41289 bytes buch/papers/nav/einleitung.tex | 17 +++ buch/papers/nav/flatearth.tex | 31 ++++++ buch/papers/nav/geschichte.tex | 22 ++++ buch/papers/nav/main.tex | 28 ++--- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++++++++++++++++++++ buch/papers/nav/packages.tex | 5 + buch/papers/nav/teil0.tex | 22 ---- buch/papers/nav/teil1.tex | 55 ---------- buch/papers/nav/teil2.tex | 40 ------- buch/papers/nav/teil3.tex | 40 ------- buch/papers/nav/trigo.tex | 51 +++++++++ 16 files changed, 322 insertions(+), 179 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.png create mode 100644 buch/papers/nav/bilder/kugel1.png create mode 100644 buch/papers/nav/bilder/kugel2.png create mode 100644 buch/papers/nav/bilder/kugel3.png create mode 100644 buch/papers/nav/bilder/projektion.png create mode 100644 buch/papers/nav/einleitung.tex create mode 100644 buch/papers/nav/flatearth.tex create mode 100644 buch/papers/nav/geschichte.tex create mode 100644 buch/papers/nav/nautischesdreieck.tex delete mode 100644 buch/papers/nav/teil0.tex delete mode 100644 buch/papers/nav/teil1.tex delete mode 100644 buch/papers/nav/teil2.tex delete mode 100644 buch/papers/nav/teil3.tex create mode 100644 buch/papers/nav/trigo.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png new file mode 100644 index 0000000..2b02105 Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.png differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png new file mode 100644 index 0000000..b3188b7 Binary files /dev/null and b/buch/papers/nav/bilder/kugel1.png differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png new file mode 100644 index 0000000..057740f Binary files /dev/null and b/buch/papers/nav/bilder/kugel2.png differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png new file mode 100644 index 0000000..97066a2 Binary files /dev/null and b/buch/papers/nav/bilder/kugel3.png differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png new file mode 100644 index 0000000..5dcc0c8 Binary files /dev/null and b/buch/papers/nav/bilder/projektion.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex new file mode 100644 index 0000000..42f4b6c --- /dev/null +++ b/buch/papers/nav/einleitung.tex @@ -0,0 +1,17 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Einleitung} +Heut zu Tage ist die Navigation ein Teil des Lebens. +Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex new file mode 100644 index 0000000..b14dd4b --- /dev/null +++ b/buch/papers/nav/flatearth.tex @@ -0,0 +1,31 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} + \section{Warum ist die Erde nicht flach?} + + \begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{bilder/projektion.png} + \caption{Mercator Projektion} + \end{center} + \end{figure} + +Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Die Fotos von unserem Planeten oder die Berichte der Astronauten. + Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. + Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. + Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. + Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. +Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex new file mode 100644 index 0000000..a20eb6d --- /dev/null +++ b/buch/papers/nav/geschichte.tex @@ -0,0 +1,22 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Geschichte der sphärischen Navigation} +Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. +Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. +Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. +Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. +Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. +Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. +Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. +Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. +Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. +Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. +Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. +Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e11e2c0..9758de9 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,29 +8,13 @@ \begin{refsection} \chapterauthor{Hans Muster} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} -\input{papers/nav/teil0.tex} -\input{papers/nav/teil1.tex} -\input{papers/nav/teil2.tex} -\input{papers/nav/teil3.tex} + +\input{papers/nav/einleitung.tex} +\input{papers/nav/geschichte.tex} +\input{papers/nav/flatearth.tex} +\input{papers/nav/trigo.tex} +\input{papers/nav/nautischesdreieck.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex new file mode 100644 index 0000000..0bb213c --- /dev/null +++ b/buch/papers/nav/nautischesdreieck.tex @@ -0,0 +1,190 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + \usepackage{xcolor, soul} + \sethlcolor{yellow} +\begin{document} + \setlength{\parindent}{0em} +\section{Das Nautische Dreieck} +\subsection{Definition des Nautischen Dreiecks} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ +Das Nautische Dreieck definiert sich durch folgende Ecken: +\begin{itemize} + \item Zenit + \item Gestirn + \item Himmelspol +\end{itemize} +Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. +Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. +Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +\\ +Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} +Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: + +$\alpha \ \widehat{=} \ Rektaszension $ + +$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns + +$\theta \ \widehat{=} \ Sternzeit$ + +$\phi \ \widehat{=} \ Geographische \ Breite $ + +$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns + +$a \ \widehat{=} \ Azimut $ + +$h \ \widehat{=} \ Hoehe$ + + + +\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} + + \begin{center} + \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \end{center} +Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. + +\subsection{Varianten vom Nautischen Dreieck} +\section{Standortbestimmung ohne elektronische Hilfsmittel} +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. +Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. + + \begin{center} + \includegraphics[width=6cm]{Bilder/dreieck.png} + \end{center} + + + +\subsection{Ecke P - Unser Standort} +Unser eigener Standort ist der gesuchte Punkt A. + +\subsection{Ecke A - Nordpol} +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. + +\subsection{Ecke B und C - Bildpunkt XXX und YYY} +Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. +Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. +\\ +Es gibt diverse Gestirne, die man nutzen kann. +\begin{itemize} + \item Sonne + \item Mond + \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn +\end{itemize} + +Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). +Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. +Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. + +\subsubsection{Sternzeit und Rektaszension} +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. +Die Lösung ist die Sternzeit. +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. + +Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. +Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} + +Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich + + $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. + + Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. + Dies gilt analog auch für das zweite Gestirn. + + \subsubsection{Deklination} + Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. + + + +\subsection{Bestimmung des eigenen Standortes P} +Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. +Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. + + + \begin{center} + \includegraphics[width=5cm]{Bilder/dreieck.png} + \end{center} + + +\subsubsection{Bestimmung des ersten Dreiecks} + Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. + Dann ist $c = \frac{\pi}{2} - \delta_1$. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. + Dann ist $b = \frac{\pi}{2} - \delta_2$. + + Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. + Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + +mit + + $\delta_1 =$ Deklination Bildpunkt XXX + +$\delta_2 =$ Deklination Bildpunk YYY + +$\lambda_1 =$ Längengrad Bildpunkt XXX + +$\lambda_2 =$ Längengrad Bildpunkt YYY + + Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. + +Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. + +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. + +\subsubsection{Bestimmung des zweiten Dreiecks} +Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort P. +Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. + +Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ + +mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +\\ + +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes + +$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. + +Es fehlt uns noch $\beta1$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen +\\ + +Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. +\\ + +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ + +Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ + + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..16d3a3c 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,8 @@ % following example %\usepackage{packagename} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{xcolor, soul} \ No newline at end of file diff --git a/buch/papers/nav/teil0.tex b/buch/papers/nav/teil0.tex deleted file mode 100644 index f3323a9..0000000 --- a/buch/papers/nav/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{nav:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{nav:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/nav/teil1.tex b/buch/papers/nav/teil1.tex deleted file mode 100644 index 996202f..0000000 --- a/buch/papers/nav/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{nav:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{nav:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{nav:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{nav:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/nav/teil2.tex b/buch/papers/nav/teil2.tex deleted file mode 100644 index 5a52e03..0000000 --- a/buch/papers/nav/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{nav:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/nav/teil3.tex b/buch/papers/nav/teil3.tex deleted file mode 100644 index 2b5d2d5..0000000 --- a/buch/papers/nav/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{nav:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex new file mode 100644 index 0000000..0dbd7a1 --- /dev/null +++ b/buch/papers/nav/trigo.tex @@ -0,0 +1,51 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + + +\begin{document} + \section{Sphärische Trigonometrie} + \subsection{Das Kugeldreieck} + +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. +A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. +Laut dieser Definition ist die Seite c der Winkel AMB. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. +Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +\begin{figure}[h] + \begin{center} + \includegraphics[width=6cm]{Bilder/kugel1.png} + \end{center} + +\end{figure} + +\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} +Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. + \newpage +\subsection{Winkelangabe} + + \begin{center} + \includegraphics[width=8cm]{Bilder/kugel2.png} + \end{center} + +Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. +Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und +$\alpha+\beta+\gamma > \pi$. +Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. + +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. +Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. + +\end{document} \ No newline at end of file -- cgit v1.2.1 From 800ca10daf88dd073c239b6478bb34f81e48410f Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 17 May 2022 13:34:13 +0200 Subject: first commit nav --- buch/papers/nav/einleitung.tex | 12 +-- buch/papers/nav/flatearth.tex | 38 ++++------ buch/papers/nav/main.tex | 5 +- buch/papers/nav/nautischesdreieck.tex | 139 +++++++++++++++++++--------------- buch/papers/nav/packages.tex | 5 -- buch/papers/nav/sincos.tex | 16 ++++ buch/papers/nav/trigo.tex | 28 +++---- 7 files changed, 123 insertions(+), 120 deletions(-) create mode 100644 buch/papers/nav/sincos.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 42f4b6c..e24f294 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -1,17 +1,9 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\begin{document} + \section{Einleitung} Heut zu Tage ist die Navigation ein Teil des Lebens. Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. - - -\end{document} \ No newline at end of file +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index b14dd4b..fbabbde 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -1,31 +1,23 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\begin{document} - \section{Warum ist die Erde nicht flach?} - - \begin{figure}[h] - \begin{center} - \includegraphics[width=10cm]{bilder/projektion.png} - \caption{Mercator Projektion} - \end{center} - \end{figure} + +\section{Warum ist die Erde nicht flach?} + +\begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/projektion.png} + \caption[Mercator Projektion]{Mercator Projektion} + \end{center} +\end{figure} Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. Die Fotos von unserem Planeten oder die Berichte der Astronauten. - Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. - Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. - Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. - Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. - Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. +Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. +Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. +Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. +Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - - -\end{document} \ No newline at end of file +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 9758de9..8688421 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -4,9 +4,9 @@ % (c) 2020 Hochschule Rapperswil % \chapter{Thema\label{chapter:nav}} -\lhead{Thema} +\lhead{Sphärische Navigation} \begin{refsection} -\chapterauthor{Hans Muster} +\chapterauthor{Enez Erdem, Marc Kühne} @@ -15,6 +15,7 @@ \input{papers/nav/flatearth.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} +\input{papers/nav/sincos.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 0bb213c..d6e1388 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,12 +1,3 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - \usepackage{xcolor, soul} - \sethlcolor{yellow} -\begin{document} - \setlength{\parindent}{0em} \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. @@ -19,7 +10,7 @@ Das Nautische Dreieck definiert sich durch folgende Ecken: \end{itemize} Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. -Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. \\ Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: \begin{itemize} @@ -35,7 +26,7 @@ $\alpha \ \widehat{=} \ Rektaszension $ $\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns -$\theta \ \widehat{=} \ Sternzeit$ +$\theta \ \widehat{=} \ Sternzeit\ von\ Greenwich$ $\phi \ \widehat{=} \ Geographische \ Breite $ @@ -46,24 +37,31 @@ $a \ \widehat{=} \ Azimut $ $h \ \widehat{=} \ Hoehe$ - +\newpage \subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} - +\begin{figure}[h] \begin{center} - \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \includegraphics[height=5cm,width=5cm]{papers/nav/bilder/kugel3.png} + \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} +\end{figure} + Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. -\subsection{Varianten vom Nautischen Dreieck} + \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. +\begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{Bilder/dreieck.png} - \end{center} + \includegraphics[width=6cm]{papers/nav/bilder/dreieck.png} + \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} + \end{center} +\end{figure} + @@ -73,8 +71,8 @@ Unser eigener Standort ist der gesuchte Punkt A. \subsection{Ecke A - Nordpol} Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. - -\subsection{Ecke B und C - Bildpunkt XXX und YYY} +\newpage +\subsection{Ecke B und C - Bildpunkt X und Y} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. \\ @@ -96,64 +94,80 @@ Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eige Die Lösung ist die Sternzeit. Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. - + Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} - -Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Im Anschluss berechnet man die Sternzeit von Greenwich +\\ +\\ +$T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +\\ +\\ +Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. +Dies gilt analog auch für das zweite Gestirn. - $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. - - Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. - Dies gilt analog auch für das zweite Gestirn. - - \subsubsection{Deklination} - Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. - +\subsubsection{Deklination} +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +\newpage \subsection{Bestimmung des eigenen Standortes P} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. +\begin{figure}[h] \begin{center} - \includegraphics[width=5cm]{Bilder/dreieck.png} - \end{center} + \includegraphics[width=4.5cm]{papers/nav/bilder/dreieck.png} + \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} + \end{center} +\end{figure} \subsubsection{Bestimmung des ersten Dreiecks} - Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. - Dann ist $c = \frac{\pi}{2} - \delta_1$. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. - Dann ist $b = \frac{\pi}{2} - \delta_2$. - - Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. - Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - + +$A=$ Nordpol + +$B=$ Bildpunkt des Gestirns XXX + +$C=$ Bildpunkt des Gestirns YYY +\\ +\\ +Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + +Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. +Dann ist $c = \frac{\pi}{2} - \delta_1$. + +Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. +Dann ist $b = \frac{\pi}{2} - \delta_2$. + +Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. +Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + mit - - $\delta_1 =$ Deklination Bildpunkt XXX - + +$\delta_1 =$ Deklination Bildpunkt XXX + $\delta_2 =$ Deklination Bildpunk YYY $\lambda_1 =$ Längengrad Bildpunkt XXX $\lambda_2 =$ Längengrad Bildpunkt YYY - Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. -Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Mithilfe des Seiten-Kosinussatzes + +$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. + Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. @@ -168,23 +182,22 @@ Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. \\ -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. -$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. +Für den Seiten-Kosinussatz benötigt es noch $\kappa$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen und anschliessend $\beta + \beta1 =\kappa$. -Es fehlt uns noch $\beta1$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen -\\ +Somit ist $cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ -Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. -\\ +und -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +$\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]$. \\ -Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ - - +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ -\end{document} \ No newline at end of file +Somit ist $\omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}]$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ mit $\lambda_1$=Längengrad Bildpunkt XXX. +\newpage +\listoffigures \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 16d3a3c..9faa48d 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,8 +8,3 @@ % following example %\usepackage{packagename} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\usepackage{xcolor, soul} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex new file mode 100644 index 0000000..23e3303 --- /dev/null +++ b/buch/papers/nav/sincos.tex @@ -0,0 +1,16 @@ + + + +\section{Warum sind die Sinus- und Kosinusfunktionen spezielle Funktionen?} +Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen (Himmelskörper) zu berechnen. +Jedoch konnten sie sie nicht lösen. +Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und wurde zu einer Hilfswissenschaft der Astronomen. +In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen zu diesem Thema angestellt. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. +Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um 900 den Sinussatz. +Zur Zeit der großen Entdeckungsreisen im 15. Jahrhundert wurden die Forschungen in sphärischer Trigonometrie wieder forciert. +Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet. +Im nächsten Jahrhundert folgte der Winkelkosinussatz. +Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. +Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 0dbd7a1..2edd651 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,14 +1,6 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} +\section{Sphärische Trigonometrie} +\subsection{Das Kugeldreieck} - -\begin{document} - \section{Sphärische Trigonometrie} - \subsection{Das Kugeldreieck} - Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. @@ -19,7 +11,8 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. \begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{Bilder/kugel1.png} + \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} \end{figure} @@ -27,12 +20,15 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. - \newpage +\newpage \subsection{Winkelangabe} - +\begin{figure}[h] + \begin{center} - \includegraphics[width=8cm]{Bilder/kugel2.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} +\end{figure} Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und @@ -46,6 +42,4 @@ Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta) \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. - -\end{document} \ No newline at end of file +Es gilt nämlich: $\cos c = \cos a \cdot \cos b$ wenn $\alpha= \frac{\pi}{2} \lor \beta=\frac{\pi}{2} \lor \gamma = \frac{\pi}{2} $. \ No newline at end of file -- cgit v1.2.1 From c0f7b4bd46fa66526f8ddfb20ce9edbcfbb03d81 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 17 May 2022 16:02:53 +0200 Subject: no message --- buch/papers/nav/main.tex | 5 +++-- buch/papers/nav/nautischesdreieck.tex | 37 +++++++++++++++++++---------------- buch/papers/nav/packages.tex | 1 + buch/papers/nav/trigo.tex | 36 +++++++++++++++++++++++++++------- 4 files changed, 53 insertions(+), 26 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 8688421..de8d1d6 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -3,7 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:nav}} +\chapter{Spährische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} \chapterauthor{Enez Erdem, Marc Kühne} @@ -11,11 +11,12 @@ \input{papers/nav/einleitung.tex} +\input{papers/nav/sincos.tex} \input{papers/nav/geschichte.tex} \input{papers/nav/flatearth.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} -\input{papers/nav/sincos.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index d6e1388..b61e908 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -37,6 +37,7 @@ $a \ \widehat{=} \ Azimut $ $h \ \widehat{=} \ Hoehe$ + \newpage \subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure}[h] @@ -129,45 +130,47 @@ Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. $A=$ Nordpol -$B=$ Bildpunkt des Gestirns XXX +$B=$ Bildpunkt des Gestirns X -$C=$ Bildpunkt des Gestirns YYY +$C=$ Bildpunkt des Gestirns Y \\ \\ Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. +Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. Dann ist $c = \frac{\pi}{2} - \delta_1$. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. +Die Seitenlänge der Seite "Nordpol zum Bildpunkt Y" sei $b$. Dann ist $b = \frac{\pi}{2} - \delta_2$. Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - +\\ +\\ mit -$\delta_1 =$ Deklination Bildpunkt XXX - -$\delta_2 =$ Deklination Bildpunk YYY +$\delta_1 =$ Deklination Bildpunkt X -$\lambda_1 =$ Längengrad Bildpunkt XXX +$\delta_2 =$ Deklination Bildpunk Y -$\lambda_2 =$ Längengrad Bildpunkt YYY +$\lambda_1 =$ Längengrad Bildpunkt X +$\lambda_2 =$ Längengrad Bildpunkt Y Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - +\\ +\\ Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes - -$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. - +$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ +können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. -Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. +Diese bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. +Im Zähler sind die Seiten, im Nenner die Winkel. +Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..5b87303 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,4 @@ % following example %\usepackage{packagename} +\usepackage{amsmath} \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 2edd651..8b4634f 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,3 +1,4 @@ +\setlength{\parindent}{0em} \section{Sphärische Trigonometrie} \subsection{Das Kugeldreieck} @@ -11,7 +12,7 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. \begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + %\includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} @@ -25,21 +26,42 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \begin{figure}[h] \begin{center} - \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + %\includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} \end{figure} + Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. -Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und -$\alpha+\beta+\gamma > \pi$. -Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. +Für die Summe der Innenwinkel gilt +\begin{align} + \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber +\end{align} + +Der sphärische Exzess +\begin{align} + \epsilon = \alpha+\beta+\gamma - \pi \nonumber +\end{align} +beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +Das bedeutet, dass + +\begin{align} + \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} +\end{align} + + \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a \cdot \cos b$ wenn $\alpha= \frac{\pi}{2} \lor \beta=\frac{\pi}{2} \lor \gamma = \frac{\pi}{2} $. \ No newline at end of file + +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & + \alpha = \frac{\pi}{2} \lor \beta =\frac{\pi}{2} \lor \gamma = \frac{\pi}{2}.\nonumber +\end{align} + \ No newline at end of file -- cgit v1.2.1 From ad5607531d028801836823469f82d5e7c0a4f11f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:20:41 +0200 Subject: =?UTF-8?q?Dreiecke=20f=C3=BCr=20Nav?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/nav/images/Makefile | 10 +++- buch/papers/nav/images/common.inc | 28 ++++++++-- buch/papers/nav/images/dreieck3d1.pdf | Bin 0 -> 90451 bytes buch/papers/nav/images/dreieck3d1.pov | 12 ++--- buch/papers/nav/images/dreieck3d2.pdf | Bin 0 -> 69523 bytes buch/papers/nav/images/dreieck3d2.pov | 6 +-- buch/papers/nav/images/dreieck3d3.pdf | Bin 0 -> 82512 bytes buch/papers/nav/images/dreieck3d3.pov | 8 +-- buch/papers/nav/images/dreieck3d4.pdf | Bin 0 -> 85037 bytes buch/papers/nav/images/dreieck3d4.pov | 8 +-- buch/papers/nav/images/dreieck3d5.pdf | Bin 0 -> 70054 bytes buch/papers/nav/images/dreieck3d5.pov | 6 +-- buch/papers/nav/images/dreieck3d6.pov | 2 +- buch/papers/nav/images/dreieck3d7.pov | 10 ++-- buch/papers/nav/images/dreieck3d8.jpg | Bin 0 -> 93432 bytes buch/papers/nav/images/dreieck3d8.pdf | Bin 0 -> 107370 bytes buch/papers/nav/images/dreieck3d8.pov | 96 ++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck3d8.tex | 57 ++++++++++++++++++++ 18 files changed, 213 insertions(+), 30 deletions(-) create mode 100644 buch/papers/nav/images/dreieck3d1.pdf create mode 100644 buch/papers/nav/images/dreieck3d2.pdf create mode 100644 buch/papers/nav/images/dreieck3d3.pdf create mode 100644 buch/papers/nav/images/dreieck3d4.pdf create mode 100644 buch/papers/nav/images/dreieck3d5.pdf create mode 100644 buch/papers/nav/images/dreieck3d8.jpg create mode 100644 buch/papers/nav/images/dreieck3d8.pdf create mode 100644 buch/papers/nav/images/dreieck3d8.pov create mode 100644 buch/papers/nav/images/dreieck3d8.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index c9dcacc..bbdea2f 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -50,7 +50,8 @@ DREIECKE3D = \ dreieck3d4.pdf \ dreieck3d5.pdf \ dreieck3d6.pdf \ - dreieck3d7.pdf + dreieck3d7.pdf \ + dreieck3d8.pdf dreiecke3d: $(DREIECKE3D) @@ -106,3 +107,10 @@ dreieck3d7.jpg: dreieck3d7.png dreieck3d7.pdf: dreieck3d7.tex dreieck3d7.jpg pdflatex dreieck3d7.tex +dreieck3d8.png: dreieck3d8.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d8.png dreieck3d8.pov +dreieck3d8.jpg: dreieck3d8.png + convert dreieck3d8.png -density 300 -units PixelsPerInch dreieck3d8.jpg +dreieck3d8.pdf: dreieck3d8.tex dreieck3d8.jpg + pdflatex dreieck3d8.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc index 33d9384..e2a1ed0 100644 --- a/buch/papers/nav/images/common.inc +++ b/buch/papers/nav/images/common.inc @@ -97,13 +97,13 @@ union { } #end -#macro winkel(w, p, q, staerke) +#macro winkel(w, p, q, staerke, r) #declare n = vnormalize(w); #declare pp = vnormalize(p - vdot(n, p) * n); #declare qq = vnormalize(q - vdot(n, q) * n); intersection { sphere { <0, 0, 0>, 1 + staerke } - cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), 0.4 } + cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), r } plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } } @@ -113,8 +113,30 @@ union { sphere { p, 1.5 * staerke } #end +#macro dreieck(p, q, r, farbe) + #declare n1 = vnormalize(vcross(p, q)); + #declare n2 = vnormalize(vcross(q, r)); + #declare n3 = vnormalize(vcross(r, p)); + intersection { + plane { n1, 0 } + plane { n2, 0 } + plane { n3, 0 } + sphere { <0, 0, 0>, 1 + 0.001 } + pigment { + color farbe + } + finish { + metallic + specular 0.4 + } + } +#end + #declare fett = 0.015; -#declare fine = 0.010; +#declare fein = 0.010; + +#declare klein = 0.3; +#declare gross = 0.4; #declare dreieckfarbe = rgb<0.6,0.6,0.6>; #declare rot = rgb<0.8,0.2,0.2>; diff --git a/buch/papers/nav/images/dreieck3d1.pdf b/buch/papers/nav/images/dreieck3d1.pdf new file mode 100644 index 0000000..015bce7 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d1.pdf differ diff --git a/buch/papers/nav/images/dreieck3d1.pov b/buch/papers/nav/images/dreieck3d1.pov index 8afe60e..e491075 100644 --- a/buch/papers/nav/images/dreieck3d1.pov +++ b/buch/papers/nav/images/dreieck3d1.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } @@ -25,7 +25,7 @@ union { } object { - winkel(A, B, C, fine) + winkel(A, B, C, fein, gross) pigment { color rot } @@ -36,7 +36,7 @@ object { } object { - winkel(B, C, A, fine) + winkel(B, C, A, fein, gross) pigment { color gruen } @@ -47,7 +47,7 @@ object { } object { - winkel(C, A, B, fine) + winkel(C, A, B, fein, gross) pigment { color blau } diff --git a/buch/papers/nav/images/dreieck3d2.pdf b/buch/papers/nav/images/dreieck3d2.pdf new file mode 100644 index 0000000..6b3f09d Binary files /dev/null and b/buch/papers/nav/images/dreieck3d2.pdf differ diff --git a/buch/papers/nav/images/dreieck3d2.pov b/buch/papers/nav/images/dreieck3d2.pov index c23a54c..c0625ce 100644 --- a/buch/papers/nav/images/dreieck3d2.pov +++ b/buch/papers/nav/images/dreieck3d2.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } diff --git a/buch/papers/nav/images/dreieck3d3.pdf b/buch/papers/nav/images/dreieck3d3.pdf new file mode 100644 index 0000000..7d79455 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d3.pdf differ diff --git a/buch/papers/nav/images/dreieck3d3.pov b/buch/papers/nav/images/dreieck3d3.pov index f2496b5..b6f64d5 100644 --- a/buch/papers/nav/images/dreieck3d3.pov +++ b/buch/papers/nav/images/dreieck3d3.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } @@ -25,7 +25,7 @@ union { } object { - winkel(A, B, C, fine) + winkel(A, B, C, fein, gross) pigment { color rot } diff --git a/buch/papers/nav/images/dreieck3d4.pdf b/buch/papers/nav/images/dreieck3d4.pdf new file mode 100644 index 0000000..e1ea757 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d4.pdf differ diff --git a/buch/papers/nav/images/dreieck3d4.pov b/buch/papers/nav/images/dreieck3d4.pov index bddcf7c..b6f17e3 100644 --- a/buch/papers/nav/images/dreieck3d4.pov +++ b/buch/papers/nav/images/dreieck3d4.pov @@ -6,9 +6,9 @@ #include "common.inc" union { - seite(A, B, fine) - seite(A, C, fine) - punkt(A, fine) + seite(A, B, fein) + seite(A, C, fein) + punkt(A, fein) punkt(B, fett) punkt(C, fett) punkt(P, fett) @@ -25,7 +25,7 @@ union { } object { - winkel(B, C, P, fine) + winkel(B, C, P, fein, gross) pigment { color rgb<0.6,0.4,0.2> } diff --git a/buch/papers/nav/images/dreieck3d5.pdf b/buch/papers/nav/images/dreieck3d5.pdf new file mode 100644 index 0000000..6848331 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d5.pdf differ diff --git a/buch/papers/nav/images/dreieck3d5.pov b/buch/papers/nav/images/dreieck3d5.pov index 32fc9e6..188f181 100644 --- a/buch/papers/nav/images/dreieck3d5.pov +++ b/buch/papers/nav/images/dreieck3d5.pov @@ -6,9 +6,9 @@ #include "common.inc" union { - seite(A, B, fine) - seite(A, C, fine) - punkt(A, fine) + seite(A, B, fein) + seite(A, C, fein) + punkt(A, fein) punkt(B, fett) punkt(C, fett) punkt(P, fett) diff --git a/buch/papers/nav/images/dreieck3d6.pov b/buch/papers/nav/images/dreieck3d6.pov index 7611950..191a1e7 100644 --- a/buch/papers/nav/images/dreieck3d6.pov +++ b/buch/papers/nav/images/dreieck3d6.pov @@ -25,7 +25,7 @@ union { } object { - winkel(B, A, P, fine) + winkel(B, A, P, fein, gross) pigment { color rgb<0.6,0.2,0.6> } diff --git a/buch/papers/nav/images/dreieck3d7.pov b/buch/papers/nav/images/dreieck3d7.pov index fa48f5b..aae5c6c 100644 --- a/buch/papers/nav/images/dreieck3d7.pov +++ b/buch/papers/nav/images/dreieck3d7.pov @@ -10,13 +10,13 @@ union { seite(A, P, fett) seite(C, P, fett) - seite(A, B, fine) - seite(B, C, fine) - seite(B, P, fine) + seite(A, B, fein) + seite(B, C, fein) + seite(B, P, fein) punkt(A, fett) punkt(C, fett) punkt(P, fett) - punkt(B, fine) + punkt(B, fein) pigment { color dreieckfarbe } @@ -27,7 +27,7 @@ union { } object { - winkel(A, P, C, fine) + winkel(A, P, C, fein, gross) pigment { color rgb<0.4,0.4,1> } diff --git a/buch/papers/nav/images/dreieck3d8.jpg b/buch/papers/nav/images/dreieck3d8.jpg new file mode 100644 index 0000000..52bd25e Binary files /dev/null and b/buch/papers/nav/images/dreieck3d8.jpg differ diff --git a/buch/papers/nav/images/dreieck3d8.pdf b/buch/papers/nav/images/dreieck3d8.pdf new file mode 100644 index 0000000..9d630aa Binary files /dev/null and b/buch/papers/nav/images/dreieck3d8.pdf differ diff --git a/buch/papers/nav/images/dreieck3d8.pov b/buch/papers/nav/images/dreieck3d8.pov new file mode 100644 index 0000000..9e9921a --- /dev/null +++ b/buch/papers/nav/images/dreieck3d8.pov @@ -0,0 +1,96 @@ +// +// dreiecke3d8.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + seite(A, P, fein) + seite(B, P, fett) + seite(C, P, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fein, klein) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, A, fein, klein) + pigment { + color gruen + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(C, A, B, fein, gross) + pigment { + color blau + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, P, C, fein/2, gross) + pigment { + color rgb<0.8,0,0.8> + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, P, C, fein, klein) + pigment { + color rgb<1,0.8,0> + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, P, A, fein/2, gross) + pigment { + color rgb<0.4,0.6,0.8> + } + finish { + specular 0.95 + metallic + } +} + +dreieck(A, B, C, White) + + diff --git a/buch/papers/nav/images/dreieck3d8.tex b/buch/papers/nav/images/dreieck3d8.tex new file mode 100644 index 0000000..c59c7b0 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d8.tex @@ -0,0 +1,57 @@ +% +% dreieck3d8.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d8.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.8,0) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3.3) {$\alpha$}; +\node at (0.8,2.85) {$\omega$}; +\node at (-2.6,-0.6) {$\beta$}; +\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.6,-1.3) {$\beta_1$}; +\node at (-2.1,-0.8) {$\kappa$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From 525ff82400b685dc6dd0d6376253545720471be0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:25:26 +0200 Subject: remove bad files --- buch/papers/nav/images/dreieck3d5.pdf | Bin 70054 -> 70045 bytes 1 file changed, 0 insertions(+), 0 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/dreieck3d5.pdf b/buch/papers/nav/images/dreieck3d5.pdf index 6848331..0c86d36 100644 Binary files a/buch/papers/nav/images/dreieck3d5.pdf and b/buch/papers/nav/images/dreieck3d5.pdf differ -- cgit v1.2.1 From 93bdfca3b41397e43537ee334e57883a9ef79279 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:30:12 +0200 Subject: fix nav/makefile.inc --- buch/papers/nav/Makefile.inc | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/Makefile.inc b/buch/papers/nav/Makefile.inc index b30377e..24ab4ee 100644 --- a/buch/papers/nav/Makefile.inc +++ b/buch/papers/nav/Makefile.inc @@ -6,9 +6,11 @@ dependencies-nav = \ papers/nav/packages.tex \ papers/nav/main.tex \ - papers/nav/references.bib \ - papers/nav/teil0.tex \ - papers/nav/teil1.tex \ - papers/nav/teil2.tex \ - papers/nav/teil3.tex + papers/nav/einleitung.tex \ + papers/nav/flatearth.tex \ + papers/nav/geschichte.tex \ + papers/nav/nautischesdreieck.tex \ + papers/nav/sincos.tex \ + papers/nav/trigo.tex \ + papers/nav/references.bib -- cgit v1.2.1 From b37f9519bbfd57b3a7d25cca887ff44ff2253921 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Thu, 19 May 2022 14:40:25 +0200 Subject: Korrektur von Feedback --- buch/papers/nav/bilder/dreieck.pdf | Bin 0 -> 107370 bytes buch/papers/nav/bilder/ephe.png | Bin 0 -> 184799 bytes buch/papers/nav/einleitung.tex | 6 +- buch/papers/nav/flatearth.tex | 12 ++- buch/papers/nav/geschichte.tex | 22 ---- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++------------------ buch/papers/nav/sincos.tex | 21 ++-- buch/papers/nav/trigo.tex | 57 +++++++--- 8 files changed, 158 insertions(+), 150 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.pdf create mode 100644 buch/papers/nav/bilder/ephe.png delete mode 100644 buch/papers/nav/geschichte.tex (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/bilder/dreieck.pdf b/buch/papers/nav/bilder/dreieck.pdf new file mode 100644 index 0000000..9d630aa Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.pdf differ diff --git a/buch/papers/nav/bilder/ephe.png b/buch/papers/nav/bilder/ephe.png new file mode 100644 index 0000000..0aeef6f Binary files /dev/null and b/buch/papers/nav/bilder/ephe.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index e24f294..8d8c5c1 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -1,9 +1,9 @@ \section{Einleitung} -Heut zu Tage ist die Navigation ein Teil des Lebens. -Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Heutzutage ist die Navigation ein Teil des Lebens. +Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file +In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index fbabbde..bec242e 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -2,7 +2,7 @@ \section{Warum ist die Erde nicht flach?} -\begin{figure}[h] +\begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/projektion.png} \caption[Mercator Projektion]{Mercator Projektion} @@ -14,10 +14,14 @@ Die Fotos von unserem Planeten oder die Berichte der Astronauten. Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. -Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. +Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. +Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. + +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex deleted file mode 100644 index a20eb6d..0000000 --- a/buch/papers/nav/geschichte.tex +++ /dev/null @@ -1,22 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Geschichte der sphärischen Navigation} -Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. -Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. -Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. -Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. -Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. -Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. -Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. -Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. -Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. -Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. -Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. -Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. -Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index b61e908..a85b119 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,17 +1,13 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. -Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ -Das Nautische Dreieck definiert sich durch folgende Ecken: -\begin{itemize} - \item Zenit - \item Gestirn - \item Himmelspol -\end{itemize} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. + Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -\\ + Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: \begin{itemize} \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ @@ -21,34 +17,30 @@ Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfach \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ \end{itemize} Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: - -$\alpha \ \widehat{=} \ Rektaszension $ - -$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns - -$\theta \ \widehat{=} \ Sternzeit\ von\ Greenwich$ - -$\phi \ \widehat{=} \ Geographische \ Breite $ - -$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns - -$a \ \widehat{=} \ Azimut $ - -$h \ \widehat{=} \ Hoehe$ - - - -\newpage -\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} -\begin{figure}[h] +\begin{center} + \begin{tabular}{ c c c } + Winkel && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} + +\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\begin{figure} \begin{center} - \includegraphics[height=5cm,width=5cm]{papers/nav/bilder/kugel3.png} + \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} -Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Wie man im oberen Bild sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren und es hat dann die Ecken Standort, Bildpunkt und Nordpol. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. @@ -56,9 +48,9 @@ Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -\begin{figure}[h] +\begin{figure} \begin{center} - \includegraphics[width=6cm]{papers/nav/bilder/dreieck.png} + \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} @@ -66,75 +58,76 @@ Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann di -\subsection{Ecke P - Unser Standort} -Unser eigener Standort ist der gesuchte Punkt A. - -\subsection{Ecke A - Nordpol} -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +\subsection{Ecke $P$ und $A$} +Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. -\newpage -\subsection{Ecke B und C - Bildpunkt X und Y} + +\subsection{Ecke $B$ und $C$ - Bildpunkt X und Y} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. -\\ -Es gibt diverse Gestirne, die man nutzen kann. -\begin{itemize} - \item Sonne - \item Mond - \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn -\end{itemize} +Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mond oder die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn. + +\subsection{Ephemeriden} +Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. +In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Da diese Angaben in Stundenabständen gegeben sind, muss man für die minutengenaue Bestimmung zwischen den Stunden interpolieren. +Was diese Begriffe bedeuten, wird in den kommenden beiden Abschnitten erklärt. -Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). -Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. -Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. +\begin{figure} + \begin{center} + \includegraphics[width=18cm]{papers/nav/bilder/ephe.png} + \caption[Astrodienst - Ephemeriden Januar 2022]{Astrodienst - Ephemeriden Januar 2022} + \end{center} +\end{figure} + +\subsubsection{Deklination} +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. \subsubsection{Sternzeit und Rektaszension} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich -\\ -\\ -$T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. -\\ -\\ -Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. -Dies gilt analog auch für das zweite Gestirn. -\subsubsection{Deklination} -Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +$\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Dies gilt analog auch für das zweite Gestirn. -\newpage \subsection{Bestimmung des eigenen Standortes P} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. -Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. - +Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. +Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trigonometrie anwenden und benötigen lediglich ein Ephemeride zu den Gestirnen und einen Sextant. -\begin{figure}[h] +\begin{figure} \begin{center} - \includegraphics[width=4.5cm]{papers/nav/bilder/dreieck.png} + \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} -\subsubsection{Bestimmung des ersten Dreiecks} - -$A=$ Nordpol +\subsubsection{Dreieck $ABC$} -$B=$ Bildpunkt des Gestirns X +\begin{center} + \begin{tabular}{ c c c } + Ecke && Name \\ + \hline + $A$ && Nordpol \\ + $B$ && Bildpunkt des Gestirns $X$ \\ + $C$&& Bildpunkt des Gestirns $Y$ + \end{tabular} +\end{center} -$C=$ Bildpunkt des Gestirns Y -\\ -\\ Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. @@ -145,24 +138,24 @@ Dann ist $b = \frac{\pi}{2} - \delta_2$. Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. -\\ -\\ -mit - -$\delta_1 =$ Deklination Bildpunkt X -$\delta_2 =$ Deklination Bildpunk Y - -$\lambda_1 =$ Längengrad Bildpunkt X - -$\lambda_2 =$ Längengrad Bildpunkt Y +mit +\begin{center} + \begin{tabular}{ c c c } + Ecke && Name \\ + \hline + $\delta_1$ && Deklination Bildpunkt $X$ \\ + $\delta_2$ && Deklination Bildpunk $Y$ \\ + $\lambda_1 $&& Längengrad Bildpunkt $X$\\ + $\lambda_2$ && Längengrad Bildpunkt $Y$ + \end{tabular} +\end{center} Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! -\\ -\\ + Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes -$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ +$\cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. @@ -174,7 +167,7 @@ Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. -\subsubsection{Bestimmung des zweiten Dreiecks} +\subsubsection{Dreieck $BPC$} Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. Die dritte Ecke ist der eigene Standort P. Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. @@ -183,24 +176,23 @@ Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. -\\ +Zum Schluss müssen wir noch den Winkel $\beta1$ mithilfe des Seiten-Kosinussatzes mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. +\subsubsection{Dreieck $ABP$} Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. -Für den Seiten-Kosinussatz benötigt es noch $\kappa$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen und anschliessend $\beta + \beta1 =\kappa$. +Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta1$. -Somit ist $cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ +Somit ist $\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ und -$\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]$. -\\ +\[ +\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]. +\] Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. -\\ -Somit ist $\omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}]$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ mit $\lambda_1$=Längengrad Bildpunkt XXX. -\newpage -\listoffigures \ No newline at end of file +Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich +\[\lambda=\lambda_1 - \omega\] +mit $\lambda_1$=Längengrad Bildpunkt XXX. diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index 23e3303..bb7f1e4 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -1,16 +1,19 @@ -\section{Warum sind die Sinus- und Kosinusfunktionen spezielle Funktionen?} -Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen (Himmelskörper) zu berechnen. -Jedoch konnten sie sie nicht lösen. -Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und wurde zu einer Hilfswissenschaft der Astronomen. -In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen zu diesem Thema angestellt. +\section{Sphärische Navigation und Winkelfunktionen} +Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen zu berechnen. +Jedoch konnten sie dieses Problem nicht lösen. + +Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. +In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen mithilfe des Sternkataloges von Hipparchos angestellt und darauffolgend Kartenmaterial erstellt. In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. -Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um 900 den Sinussatz. -Zur Zeit der großen Entdeckungsreisen im 15. Jahrhundert wurden die Forschungen in sphärischer Trigonometrie wieder forciert. -Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet. -Im nächsten Jahrhundert folgte der Winkelkosinussatz. +Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. +Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. +Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. + + Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 8b4634f..cf2f242 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,18 +1,38 @@ -\setlength{\parindent}{0em} + \section{Sphärische Trigonometrie} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. +Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: +\begin{center} + + +\begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ +\end{tabular} +\end{center} + \subsection{Das Kugeldreieck} -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. -A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. + +Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite c der Winkel AMB. -Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Laut dieser Definition ist die Seite $c$ der Winkel $AMB$. + Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. -\begin{figure}[h] + +\begin{figure} \begin{center} - %\includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} @@ -21,12 +41,12 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. -\newpage -\subsection{Winkelangabe} -\begin{figure}[h] + +\subsection{Winkelsumme} +\begin{figure} \begin{center} - %\includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} \end{figure} @@ -37,13 +57,15 @@ Für die Summe der Innenwinkel gilt \begin{align} \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber \end{align} - +\subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} \epsilon = \alpha+\beta+\gamma - \pi \nonumber \end{align} beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. +\subsubsection{Flächeninnhalt} +Der Flächeninhalt $A$ lässt sich aus den Winkeln $\alpha,\ \beta, \ \gamma$ und dem Kugelradius $r$ berechnen. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. @@ -53,7 +75,16 @@ Das bedeutet, dass \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} \end{align} +\subsection{Sphärischer Kosinussätze} +Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz +\begin{align} + cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber +\end{align} %Seitenkosinussatz +und den Winkelkosinussatz +\begin{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c \nonumber +\end{align} \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. @@ -62,6 +93,6 @@ In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Se Es gilt nämlich: \begin{align} \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \lor \beta =\frac{\pi}{2} \lor \gamma = \frac{\pi}{2}.\nonumber + \alpha = \frac{\pi}{2} \nonumber \end{align} \ No newline at end of file -- cgit v1.2.1 From b3283eb05091a88841668c39d422da53d66e1cdd Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Thu, 19 May 2022 14:51:50 +0200 Subject: update korrektur --- buch/papers/nav/main.tex | 5 ++--- buch/papers/nav/nautischesdreieck.tex | 4 ++-- 2 files changed, 4 insertions(+), 5 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index de8d1d6..47764e8 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -6,14 +6,13 @@ \chapter{Spährische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} -\chapterauthor{Enez Erdem, Marc Kühne} +\chapterauthor{Enez Erdem und Marc Kühne} \input{papers/nav/einleitung.tex} -\input{papers/nav/sincos.tex} -\input{papers/nav/geschichte.tex} \input{papers/nav/flatearth.tex} +\input{papers/nav/sincos.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index a85b119..0a498f0 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,6 +1,6 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel}. +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel. Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. @@ -195,4 +195,4 @@ Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Wink Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt XXX. +mit $\lambda_1$=Längengrad Bildpunkt $X -- cgit v1.2.1 From 0fe9bb56da147bf7986852e6f657149206d967a4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 19 May 2022 17:31:23 +0200 Subject: fixes --- buch/papers/nav/Makefile.inc | 1 - buch/papers/nav/nautischesdreieck.tex | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/Makefile.inc b/buch/papers/nav/Makefile.inc index 24ab4ee..5e86543 100644 --- a/buch/papers/nav/Makefile.inc +++ b/buch/papers/nav/Makefile.inc @@ -8,7 +8,6 @@ dependencies-nav = \ papers/nav/main.tex \ papers/nav/einleitung.tex \ papers/nav/flatearth.tex \ - papers/nav/geschichte.tex \ papers/nav/nautischesdreieck.tex \ papers/nav/sincos.tex \ papers/nav/trigo.tex \ diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 0a498f0..c1ad38a 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -195,4 +195,4 @@ Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Wink Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt $X +mit $\lambda_1$=Längengrad Bildpunkt $X$ -- cgit v1.2.1 From f0a6f930187eb0226ddd4735feba1d93667b8a58 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 19 May 2022 22:12:27 +0200 Subject: add dreieck3d9.pov --- buch/papers/nav/images/Makefile | 7 ++++ buch/papers/nav/images/common.inc | 60 +++++++++++++++++++------------ buch/papers/nav/images/dreieck3d9.pov | 66 +++++++++++++++++++++++++++++++++++ 3 files changed, 111 insertions(+), 22 deletions(-) create mode 100644 buch/papers/nav/images/dreieck3d9.pov (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index bbdea2f..da4defa 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -114,3 +114,10 @@ dreieck3d8.jpg: dreieck3d8.png dreieck3d8.pdf: dreieck3d8.tex dreieck3d8.jpg pdflatex dreieck3d8.tex +dreieck3d9.png: dreieck3d9.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d9.png dreieck3d9.pov +dreieck3d9.jpg: dreieck3d9.png + convert dreieck3d9.png -density 300 -units PixelsPerInch dreieck3d9.jpg +dreieck3d9.pdf: dreieck3d9.tex dreieck3d9.jpg + pdflatex dreieck3d9.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc index e2a1ed0..2c0ae6e 100644 --- a/buch/papers/nav/images/common.inc +++ b/buch/papers/nav/images/common.inc @@ -12,6 +12,7 @@ global_settings { #declare imagescale = 0.034; +#declare O = <0, 0, 0>; #declare A = vnormalize(< 0, 1, 0>); #declare B = vnormalize(< 1, 2, -8>); #declare C = vnormalize(< 5, 1, 0>); @@ -102,8 +103,8 @@ union { #declare pp = vnormalize(p - vdot(n, p) * n); #declare qq = vnormalize(q - vdot(n, q) * n); intersection { - sphere { <0, 0, 0>, 1 + staerke } - cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), r } + sphere { O, 1 + staerke } + cone { O, 0, 1.2 * vnormalize(w), r } plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } } @@ -132,6 +133,35 @@ union { } #end +#macro ebenerwinkel(a, p, q, s, r, farbe) + #declare n = vnormalize(-vcross(p, q)); + #declare np = vnormalize(-vcross(p, n)); + #declare nq = -vnormalize(-vcross(q, n)); +// arrow(a, a + n, 0.02, White) +// arrow(a, a + np, 0.01, Red) +// arrow(a, a + nq, 0.01, Blue) + intersection { + cylinder { a - (s/2) * n, a + (s/2) * n, r } + plane { np, vdot(np, a) } + plane { nq, vdot(nq, a) } + pigment { + farbe + } + finish { + metallic + specular 0.5 + } + } +#end + +#macro komplement(a, p, q, s, r, farbe) + #declare n = vnormalize(-vcross(p, q)); +// arrow(a, a + n, 0.015, Orange) + #declare m = vnormalize(-vcross(q, n)); +// arrow(a, a + m, 0.015, Pink) + ebenerwinkel(a, p, m, s, r, farbe) +#end + #declare fett = 0.015; #declare fein = 0.010; @@ -143,29 +173,15 @@ union { #declare gruen = rgb<0,0.6,0>; #declare blau = rgb<0.2,0.2,0.8>; +#declare kugelfarbe = rgb<0.8,0.8,0.8>; +#declare kugeltransparent = rgbt<0.8,0.8,0.8,0.5>; + +#macro kugel(farbe) sphere { <0, 0, 0>, 1 pigment { - color rgb<0.8,0.8,0.8> + color farbe } } +#end -//union { -// sphere { A, 0.02 } -// sphere { B, 0.02 } -// sphere { C, 0.02 } -// sphere { P, 0.02 } -// pigment { -// color Red -// } -//} - -//union { -// winkel(A, B, C) -// winkel(B, P, C) -// seite(B, C, 0.01) -// seite(B, P, 0.01) -// pigment { -// color rgb<0,0.6,0> -// } -//} diff --git a/buch/papers/nav/images/dreieck3d9.pov b/buch/papers/nav/images/dreieck3d9.pov new file mode 100644 index 0000000..24d3843 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d9.pov @@ -0,0 +1,66 @@ +// +// dreiecke3d8.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +//union { +// seite(A, B, fein) +// seite(B, C, fein) +// seite(A, C, fein) +// seite(A, P, fein) +// seite(B, P, fett) +// seite(C, P, fett) +// punkt(A, fein) +// punkt(B, fett) +// punkt(C, fett) +// punkt(P, fett) +// pigment { +// color dreieckfarbe +// } +// finish { +// specular 0.95 +// metallic +// } +//} + +//dreieck(A, B, C, White) + +kugel(kugeltransparent) + +ebenerwinkel(O, C, P, 0.01, 1.001, rot) +ebenerwinkel(P, C, P, 0.01, 0.3, rot) +komplement(P, C, P, 0.01, 0.3, Yellow) + +ebenerwinkel(O, B, P, 0.01, 1.001, blau) +ebenerwinkel(P, B, P, 0.01, 0.3, blau) +komplement(P, B, P, 0.01, 0.3, Green) + +arrow(B, 1.5 * B, 0.015, White) +arrow(C, 1.5 * C, 0.015, White) +arrow(P, 1.5 * P, 0.015, White) + +union { + cylinder { O, P, 0.7 * fein } + + cylinder { P, P + 3 * B, 0.7 * fein } + cylinder { O, B + 3 * B, 0.7 * fein } + + cylinder { P, P + 3 * C, 0.7 * fein } + cylinder { O, C + 3 * C, 0.7 * fein } + + pigment { + color White + } +} + +#declare imagescale = 0.044; + +camera { + location <40, 20, -20> + look_at <0, 0.24, -0.20> + right x * imagescale + up y * imagescale +} + -- cgit v1.2.1 From 411fb410f790fcc1bb3da381c17119ebb5130032 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Sat, 21 May 2022 18:56:21 +0200 Subject: Korrektur 21.05 --- buch/papers/nav/bilder/ephe.png | Bin 184799 -> 543515 bytes buch/papers/nav/bilder/recht.jpg | Bin 0 -> 42889 bytes buch/papers/nav/bilder/sextant.jpg | Bin 0 -> 8280 bytes buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 15 +++-- buch/papers/nav/main.tex | 2 +- buch/papers/nav/nautischesdreieck.tex | 123 +++++++++++++++++----------------- buch/papers/nav/sincos.tex | 6 +- buch/papers/nav/trigo.tex | 66 ++++++++++-------- 9 files changed, 114 insertions(+), 100 deletions(-) create mode 100644 buch/papers/nav/bilder/recht.jpg create mode 100644 buch/papers/nav/bilder/sextant.jpg (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/bilder/ephe.png b/buch/papers/nav/bilder/ephe.png index 0aeef6f..3f99a36 100644 Binary files a/buch/papers/nav/bilder/ephe.png and b/buch/papers/nav/bilder/ephe.png differ diff --git a/buch/papers/nav/bilder/recht.jpg b/buch/papers/nav/bilder/recht.jpg new file mode 100644 index 0000000..3f60370 Binary files /dev/null and b/buch/papers/nav/bilder/recht.jpg differ diff --git a/buch/papers/nav/bilder/sextant.jpg b/buch/papers/nav/bilder/sextant.jpg new file mode 100644 index 0000000..53dd784 Binary files /dev/null and b/buch/papers/nav/bilder/sextant.jpg differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 8d8c5c1..aafa107 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -4,6 +4,6 @@ Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. -Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index bec242e..5bfc1b7 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -9,19 +9,20 @@ \end{center} \end{figure} -Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Es gibt heutzutage viele Beweise dafür, dass die Erde eine Kugel ist. Die Fotos von unserem Planeten oder die Berichte der Astronauten. -Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. +Aber schon vor ca. 2300 Jahren hat Aristoteles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist. +Auch der Erdschatten bei einer Mondfinsternis ist immer rund. Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + +Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. -Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 47764e8..e16dc2a 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -3,7 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Spährische Navigation\label{chapter:nav}} +\chapter{Sphärische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} \chapterauthor{Enez Erdem und Marc Kühne} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c1ad38a..c239d64 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,22 +1,14 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel. Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. - Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. -Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} -Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. + +Für die Definition gilt: \begin{center} \begin{tabular}{ c c c } Winkel && Name / Beziehung \\ @@ -31,6 +23,15 @@ Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: \end{tabular} \end{center} +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} + + \subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure} \begin{center} @@ -39,15 +40,13 @@ Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: \end{center} \end{figure} -Wie man im oberen Bild sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren und es hat dann die Ecken Standort, Bildpunkt und Nordpol. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. - +Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} -Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. -Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. - +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. +Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. +Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -60,31 +59,30 @@ Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann di \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. -\subsection{Ecke $B$ und $C$ - Bildpunkt X und Y} +\subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mond oder die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn. +Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. -Da diese Angaben in Stundenabständen gegeben sind, muss man für die minutengenaue Bestimmung zwischen den Stunden interpolieren. -Was diese Begriffe bedeuten, wird in den kommenden beiden Abschnitten erklärt. \begin{figure} \begin{center} - \includegraphics[width=18cm]{papers/nav/bilder/ephe.png} - \caption[Astrodienst - Ephemeriden Januar 2022]{Astrodienst - Ephemeriden Januar 2022} + \includegraphics[width=\textwidth]{papers/nav/bilder/ephe.png} + \caption[Nautical Almanac Mai 2002]{Nautical Almanac Mai 2002} \end{center} \end{figure} \subsubsection{Deklination} -Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. -\subsubsection{Sternzeit und Rektaszension} +\subsubsection{Rektaszension und Sternzeit} Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. @@ -98,19 +96,28 @@ Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich -$\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +\[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. Dies gilt analog auch für das zweite Gestirn. +\subsubsection{Sextant} +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. -\subsection{Bestimmung des eigenen Standortes P} +\begin{figure} + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/sextant.jpg} + \caption[Sextant]{Sextant} + \end{center} +\end{figure} + +\subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trigonometrie anwenden und benötigen lediglich ein Ephemeride zu den Gestirnen und einen Sextant. \begin{figure} \begin{center} - \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} + \includegraphics[width=8cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} @@ -128,15 +135,15 @@ Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trig \end{tabular} \end{center} -Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. +Mit unserem erlangten Wissen können wir nun alle Seiten des Dreiecks $ABC$ berechnen. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. +Die Seite vom Nordpol zum Bildpunkt $X$ sei $c$. Dann ist $c = \frac{\pi}{2} - \delta_1$. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt Y" sei $b$. +Die Seite vom Nordpol zum Bildpunkt $Y$ sei $b$. Dann ist $b = \frac{\pi}{2} - \delta_2$. -Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. +Der Innenwinkel bei der Ecke, wo der Nordpol ist sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. mit @@ -144,55 +151,49 @@ mit \begin{tabular}{ c c c } Ecke && Name \\ \hline - $\delta_1$ && Deklination Bildpunkt $X$ \\ - $\delta_2$ && Deklination Bildpunk $Y$ \\ - $\lambda_1 $&& Längengrad Bildpunkt $X$\\ - $\lambda_2$ && Längengrad Bildpunkt $Y$ + $\delta_1$ && Deklination vom Bildpunkt $X$ \\ + $\delta_2$ && Deklination vom Bildpunk $Y$ \\ + $\lambda_1 $&& Längengrad vom Bildpunkt $X$\\ + $\lambda_2$ && Längengrad vom Bildpunkt $Y$ \end{tabular} \end{center} -Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - -Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Nun haben wir die beiden Seiten $c$ und $b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes $\cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. -Diese bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta$ und\ $\gamma$. +Diese bestimmen wir mithilfe des Sinussatzes \[\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}.\] Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. -Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. +Somit ist \[\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}].\] -Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha$, $\beta$ und $\gamma$ bestimmt und somit das ganze Kugeldreieck $ABC$ berechnet. \subsubsection{Dreieck $BPC$} -Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. -Die dritte Ecke ist der eigene Standort P. +Wir bilden nun ein zweites Dreieck, welches die Ecken $B$ und $C$ des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort $P$. Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. -Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die Seite von $P$ zu $B$ sei $pb$ und die Seite von $P$ zu $C$ sei $pc$. Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ -mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +mit $h_B=$ Höhe von Gestirn in $B$ und $h_C=$ Höhe von Gestirn in $C$ mit Sextant gemessen. -Zum Schluss müssen wir noch den Winkel $\beta1$ mithilfe des Seiten-Kosinussatzes mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. +Zum Schluss müssen wir noch den Winkel $\beta_1$ mithilfe des Seiten-Kosinussatzes \[\cos(pb)=\cos(pc)\cdot\cos(a)+\sin(pc)\cdot\sin(a)\cdot\cos(\beta_1)\] mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. \subsubsection{Dreieck $ABP$} -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. - -Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta1$. - -Somit ist $\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ - +Nun muss man eine Verbindungslinie ziehen zwischen $P$ und $A$. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c$ und $pb$ und des Seiten-Kosinussatzes berechnen. +Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta_1$. +Somit ist \[\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)\] und - \[ \delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]. \] -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. - +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet. +Mithilfe des Sinussatzes \[\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}\] können wir das bestimmen. Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt $X$ +wobei $\lambda_1$ die Länge des Bildpunktes $X$ von $C$ ist. diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index bb7f1e4..d56d482 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -6,14 +6,16 @@ Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren si Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. -In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen mithilfe des Sternkataloges von Hipparchos angestellt und darauffolgend Kartenmaterial erstellt. +Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. + Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. - Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index cf2f242..ce367f6 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -2,33 +2,35 @@ \section{Sphärische Trigonometrie} In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: -\begin{center} - - -\begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ -\end{tabular} -\end{center} \subsection{Das Kugeldreieck} +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. +Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. +Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. -$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. -Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. +$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). -Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite $c$ der Winkel $AMB$. +Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ die Erdmitte ist. Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. + +Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: +\begin{center} + \begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ + \end{tabular} +\end{center} \begin{figure} \begin{center} @@ -38,9 +40,16 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \end{figure} -\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} -Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +\subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +\begin{figure} + + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/recht.jpg} + \caption[Rechtseitiges Kugeldreieck]{Rechtseitiges Kugeldreieck} + \end{center} +\end{figure} \subsection{Winkelsumme} \begin{figure} @@ -55,8 +64,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber \end{align} +wobei F der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -65,31 +75,31 @@ Der sphärische Exzess beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. \subsubsection{Flächeninnhalt} -Der Flächeninhalt $A$ lässt sich aus den Winkeln $\alpha,\ \beta, \ \gamma$ und dem Kugelradius $r$ berechnen. +Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt +\[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. - Das bedeutet, dass \begin{align} - \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} + \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} +auch beim Kugeldreieck gilt. -\subsection{Sphärischer Kosinussätze} +\subsection{Sphärische Kosinussätze} Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} - cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber + \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c \nonumber + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber \end{align} \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. - +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. Es gilt nämlich: \begin{align} \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & -- cgit v1.2.1 From 2dd23cdeef2889a5b3210e324c159ab462bb267c Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:20:10 +0200 Subject: Korrektur (noch nicht fertig) --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 + buch/papers/nav/nautischesdreieck.tex | 89 +++++++++++++++---------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 ++- buch/papers/nav/trigo.tex | 99 ++++++++++++++++++++++------------- 7 files changed, 116 insertions(+), 87 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index aafa107..8eb4481 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 5bfc1b7..3b08e8d 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,10 +17,9 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e16dc2a..4c52547 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,3 +19,4 @@ \printbibliography[heading=subbibliography] \end{refsection} + diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c239d64..36e9c99 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,49 +4,26 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. +Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -Für die Definition gilt: -\begin{center} - \begin{tabular}{ c c c } - Winkel && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} - -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} - - -\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\subsection{Das Bilddreieck} \begin{figure} \begin{center} - \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - -Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + Man kann das nautische Dreieck auf die Erdkugel projizieren. +Dieses Dreieck nennt man dann Bilddreieck. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. +Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -59,8 +36,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. +Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -69,8 +46,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. -In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Zu all diesen Gestirnen gibt es Ephemeriden. +Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. \begin{figure} \begin{center} @@ -83,25 +60,24 @@ In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. + Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. +Man benutzt ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -109,7 +85,32 @@ Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen d \caption[Sextant]{Sextant} \end{center} \end{figure} - +\subsubsection{Eingeschaften} +Für das nautische Dreieck gibt es folgende Eigenschaften: +\begin{center} + \begin{tabular}{ l c l } + Legende && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} +\begin{center} + \begin{tabular}{ l c l } + Eigenschaften \\ + \hline + Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ + Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ + Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ + \end{tabular} +\end{center} \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 5b87303..f2e6132 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,4 +8,5 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} \ No newline at end of file +\usepackage{amsmath} +\usepackage{cancel} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index d56d482..a1653e8 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,12 +7,14 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. +Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index ce367f6..aca8bd2 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,16 +1,13 @@ \section{Sphärische Trigonometrie} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. -Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: - \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. +Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. +Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -19,18 +16,6 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. - -Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: -\begin{center} - \begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ - \end{tabular} -\end{center} \begin{figure} \begin{center} @@ -41,8 +26,11 @@ Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. + Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. + \begin{figure} \begin{center} @@ -51,7 +39,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme} +\subsection{Winkelsumme und Flächeninhalt} \begin{figure} \begin{center} @@ -64,9 +52,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei F der Flächeninhalt des Kugeldreiecks ist. +wobei $F$ der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -77,32 +65,69 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass +\subsection{Seiten und Winkelberechnung} +Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. +Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. +Die Approximation folgt noch. +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & + \quad \alpha = \frac{\pi}{2} \nonumber +\end{align} + +\subsubsection{Approximation von kleinen Dreiecken} +Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. +So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. +So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: +\begin{align} + \sin(a) &\approx a \nonumber \intertext{und} + \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber +\end{align} +Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: +\begin{align} + a &\approx \sin(a) \nonumber \intertext{und} + a^2 &\approx 1-\cos(a). \nonumber +\end{align} +Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. + +\subsubsection{Sphärischer Satz des Pythagoras} +Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich + +\begin{align} + \cos(a)\cdot \cos(b) &= \cos(c) \\ + \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ + \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + -a^2-b^2 &=-c^2\\ + a^2+b^2&=c^2 +\end{align} + +\subsubsection{Sphärischer Sinussatz} +Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -auch beim Kugeldreieck gilt. +kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. -\subsection{Sphärische Kosinussätze} -Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz + +\subsubsection{Sphärische Kosinussätze} +In der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber -\end{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber +\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. -Es gilt nämlich: +Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich \begin{align} - \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \nonumber + \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ + 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ + \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} + a^2&=b^2+c^2-2bc \cdot \cos(\alpha) \end{align} + + \ No newline at end of file -- cgit v1.2.1 From 537a80724031881b7ca7e84873d8f189fe70db45 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:23:00 +0200 Subject: Revert "Korrektur (noch nicht fertig)" This reverts commit ebe0085df81f3190423e14e6a48fc9d17550e417. --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 - buch/papers/nav/nautischesdreieck.tex | 89 ++++++++++++++++--------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 +-- buch/papers/nav/trigo.tex | 99 +++++++++++++---------------------- 7 files changed, 87 insertions(+), 116 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 8eb4481..aafa107 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 3b08e8d..5bfc1b7 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,9 +17,10 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 4c52547..e16dc2a 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,4 +19,3 @@ \printbibliography[heading=subbibliography] \end{refsection} - diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 36e9c99..c239d64 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,26 +4,49 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -\subsection{Das Bilddreieck} +Für die Definition gilt: +\begin{center} + \begin{tabular}{ c c c } + Winkel && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} + +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} + + +\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure} \begin{center} - \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - Man kann das nautische Dreieck auf die Erdkugel projizieren. -Dieses Dreieck nennt man dann Bilddreieck. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. -Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + +Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -36,8 +59,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. +Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -46,8 +69,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden. -Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. +Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. +In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. \begin{figure} \begin{center} @@ -60,24 +83,25 @@ Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Z Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. - +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. +Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. -Man benutzt ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -85,32 +109,7 @@ Man benutzt ihn vor allem für die astronomische Navigation auf See. \caption[Sextant]{Sextant} \end{center} \end{figure} -\subsubsection{Eingeschaften} -Für das nautische Dreieck gibt es folgende Eigenschaften: -\begin{center} - \begin{tabular}{ l c l } - Legende && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} -\begin{center} - \begin{tabular}{ l c l } - Eigenschaften \\ - \hline - Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ - Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ - Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ - Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ - Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ - \end{tabular} -\end{center} + \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index f2e6132..5b87303 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,5 +8,4 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} -\usepackage{cancel} \ No newline at end of file +\usepackage{amsmath} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index a1653e8..d56d482 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,14 +7,12 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. -Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. -Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index aca8bd2..ce367f6 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,13 +1,16 @@ \section{Sphärische Trigonometrie} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. +Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: + \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. -Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. +Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -16,6 +19,18 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. + +Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: +\begin{center} + \begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ + \end{tabular} +\end{center} \begin{figure} \begin{center} @@ -26,11 +41,8 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. - Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. - +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. \begin{figure} \begin{center} @@ -39,7 +51,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme und Flächeninhalt} +\subsection{Winkelsumme} \begin{figure} \begin{center} @@ -52,9 +64,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei $F$ der Flächeninhalt des Kugeldreiecks ist. +wobei F der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -65,69 +77,32 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass -\subsection{Seiten und Winkelberechnung} -Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. -Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. -Die Approximation folgt noch. -Es gilt nämlich: -\begin{align} - \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & - \quad \alpha = \frac{\pi}{2} \nonumber -\end{align} - -\subsubsection{Approximation von kleinen Dreiecken} -Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. -So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. -So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: -\begin{align} - \sin(a) &\approx a \nonumber \intertext{und} - \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber -\end{align} -Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: -\begin{align} - a &\approx \sin(a) \nonumber \intertext{und} - a^2 &\approx 1-\cos(a). \nonumber -\end{align} -Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. - -\subsubsection{Sphärischer Satz des Pythagoras} -Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich - -\begin{align} - \cos(a)\cdot \cos(b) &= \cos(c) \\ - \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ - \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} - -a^2-b^2 &=-c^2\\ - a^2+b^2&=c^2 -\end{align} - -\subsubsection{Sphärischer Sinussatz} -Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. +auch beim Kugeldreieck gilt. - -\subsubsection{Sphärische Kosinussätze} -In der sphärischen Trigonometrie gibt es den Seitenkosinussatz +\subsection{Sphärische Kosinussätze} +Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber -\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber +\end{align} -Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. +Es gilt nämlich: \begin{align} - \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ - 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ - \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} - a^2&=b^2+c^2-2bc \cdot \cos(\alpha) + \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & + \alpha = \frac{\pi}{2} \nonumber \end{align} - - \ No newline at end of file -- cgit v1.2.1 From 7776e5829bf5da82b6b3fc5478ed05c6c9a66d29 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:23:21 +0200 Subject: Revert "Revert "Korrektur (noch nicht fertig)"" This reverts commit 2fd00f1b2f0d123fdb1fb1a93b5e4d361587329c. --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 + buch/papers/nav/nautischesdreieck.tex | 89 +++++++++++++++---------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 ++- buch/papers/nav/trigo.tex | 99 ++++++++++++++++++++++------------- 7 files changed, 116 insertions(+), 87 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index aafa107..8eb4481 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 5bfc1b7..3b08e8d 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,10 +17,9 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e16dc2a..4c52547 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,3 +19,4 @@ \printbibliography[heading=subbibliography] \end{refsection} + diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c239d64..36e9c99 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,49 +4,26 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. +Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -Für die Definition gilt: -\begin{center} - \begin{tabular}{ c c c } - Winkel && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} - -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} - - -\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\subsection{Das Bilddreieck} \begin{figure} \begin{center} - \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - -Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + Man kann das nautische Dreieck auf die Erdkugel projizieren. +Dieses Dreieck nennt man dann Bilddreieck. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. +Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -59,8 +36,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. +Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -69,8 +46,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. -In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Zu all diesen Gestirnen gibt es Ephemeriden. +Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. \begin{figure} \begin{center} @@ -83,25 +60,24 @@ In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. + Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. +Man benutzt ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -109,7 +85,32 @@ Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen d \caption[Sextant]{Sextant} \end{center} \end{figure} - +\subsubsection{Eingeschaften} +Für das nautische Dreieck gibt es folgende Eigenschaften: +\begin{center} + \begin{tabular}{ l c l } + Legende && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} +\begin{center} + \begin{tabular}{ l c l } + Eigenschaften \\ + \hline + Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ + Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ + Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ + \end{tabular} +\end{center} \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 5b87303..f2e6132 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,4 +8,5 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} \ No newline at end of file +\usepackage{amsmath} +\usepackage{cancel} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index d56d482..a1653e8 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,12 +7,14 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. +Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index ce367f6..aca8bd2 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,16 +1,13 @@ \section{Sphärische Trigonometrie} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. -Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: - \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. +Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. +Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -19,18 +16,6 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. - -Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: -\begin{center} - \begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ - \end{tabular} -\end{center} \begin{figure} \begin{center} @@ -41,8 +26,11 @@ Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. + Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. + \begin{figure} \begin{center} @@ -51,7 +39,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme} +\subsection{Winkelsumme und Flächeninhalt} \begin{figure} \begin{center} @@ -64,9 +52,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei F der Flächeninhalt des Kugeldreiecks ist. +wobei $F$ der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -77,32 +65,69 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass +\subsection{Seiten und Winkelberechnung} +Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. +Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. +Die Approximation folgt noch. +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & + \quad \alpha = \frac{\pi}{2} \nonumber +\end{align} + +\subsubsection{Approximation von kleinen Dreiecken} +Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. +So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. +So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: +\begin{align} + \sin(a) &\approx a \nonumber \intertext{und} + \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber +\end{align} +Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: +\begin{align} + a &\approx \sin(a) \nonumber \intertext{und} + a^2 &\approx 1-\cos(a). \nonumber +\end{align} +Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. + +\subsubsection{Sphärischer Satz des Pythagoras} +Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich + +\begin{align} + \cos(a)\cdot \cos(b) &= \cos(c) \\ + \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ + \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + -a^2-b^2 &=-c^2\\ + a^2+b^2&=c^2 +\end{align} + +\subsubsection{Sphärischer Sinussatz} +Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -auch beim Kugeldreieck gilt. +kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. -\subsection{Sphärische Kosinussätze} -Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz + +\subsubsection{Sphärische Kosinussätze} +In der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber -\end{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber +\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. -Es gilt nämlich: +Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich \begin{align} - \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \nonumber + \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ + 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ + \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} + a^2&=b^2+c^2-2bc \cdot \cos(\alpha) \end{align} + + \ No newline at end of file -- cgit v1.2.1 From 2fad6877aa1883714a060e1204e6d4d3566541d9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 19:02:25 +0200 Subject: add example --- buch/papers/nav/beispiel.txt | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100644 buch/papers/nav/beispiel.txt (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/beispiel.txt b/buch/papers/nav/beispiel.txt new file mode 100644 index 0000000..c63525b --- /dev/null +++ b/buch/papers/nav/beispiel.txt @@ -0,0 +1,24 @@ +Datum: 28. 5. 2022 +Zeit: 15:29:49 UTC +Sternzeit: 7h 54m 26.593s + +Deneb + +RA 20h 42m 12.14s 10.703372h +DEC 45 21' 40.3" 45.361194 + +H 50g 15' 17.1" 50.254750h +Azi 59g 36' 02.0" 59.600555 + +Spica + +RA 13h 26m 23.44s 13.439844h +DEC -11g 16' 46.8" 11.279666 + +H 18g 27' 30.0" 18.458333 +Azi 240g 23' 52.5" 240.397916 + +Position: + +l = 140.228920 E +b = 35.734946 N -- cgit v1.2.1 From 082afe0e8250519008c73b947922be22afda3fd5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 19:14:50 +0200 Subject: beispiel korrektur --- buch/papers/nav/beispiel.txt | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/nav') diff --git a/buch/papers/nav/beispiel.txt b/buch/papers/nav/beispiel.txt index c63525b..853ae4e 100644 --- a/buch/papers/nav/beispiel.txt +++ b/buch/papers/nav/beispiel.txt @@ -20,5 +20,5 @@ Azi 240g 23' 52.5" 240.397916 Position: -l = 140.228920 E -b = 35.734946 N +l = 140 14' 00.01" E 140.233336 E +b = 35 43' 00.02" N 35.716672 N -- cgit v1.2.1