From 7cdb2904f851c326a4fd72b58491f3b8199620df Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 11:46:08 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil0.tex | 32 ++++++++++++++++++-------------- 1 file changed, 18 insertions(+), 14 deletions(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index f24a5c1..8be936d 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -9,15 +9,18 @@ %Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. %In diesem Kapitel wird die Lösung der Laplace-Gleichung im %parabolischen Zylinderkoordinatensystem genauer untersucht. -Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. -In diesem Kapitel wird die Lösung der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, die parabolischen Zylinderfunktionen, genauer untersucht. +Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. +In diesem Kapitel werden die Lösungen der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, +die parabolischen Zylinderfunktionen, genauer untersucht. \subsection{Helmholtz-Gleichung} Die partielle Differentialgleichung \begin{equation} - \nabla f = \lambda f + \Delta f = \lambda f \end{equation} -ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. +Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung \begin{equation} \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) = @@ -27,7 +30,8 @@ mit Hilfe von Separation \begin{equation} u(\textbf{r},t) = A(\textbf{r})T(t) \end{equation} -in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, welcher Zeit unabhängig ist +in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, +welcher zeitunabhängig ist \begin{equation} \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}). \end{equation} @@ -65,7 +69,8 @@ in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der %An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} bilden parabolische Zylinder die Koordinatenflächen. +Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem, +bei dem parabolische Zylinder die Koordinatenflächen bilden. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ @@ -97,15 +102,15 @@ Ebene gezogen werden. Um in diesem Koordinatensystem integrieren und differenzieren zu können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. -Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet -kann dies im kartesischen Koordinatensystem mit +Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten +kann im kartesischen Koordinatensystem mit \begin{equation} \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + \left(dz\right)^2 \label{parzyl:eq:ds} \end{equation} ausgedrückt werden. -Die Skalierungsfaktoren werden so bestimmt, dass +Die Skalierungsfaktoren werden in einem orthogonalen Koordinatensystem so bestimmt, dass \begin{equation} \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 @@ -145,16 +150,16 @@ Daraus ergeben sich die Skalierungsfaktoren \end{align} \subsection{Differentialgleichung} Möchte man eine Differentialgleichung im parabolischen -Zylinderkoordinatensystem aufstellen müssen die Skalierungsfaktoren +Zylinderkoordinatensystem aufstellen, müssen die Skalierungsfaktoren mitgerechnet werden. -Der Laplace Operator ist dadurch gegeben als +Der Laplace Operator wird dadurch zu \begin{equation} \Delta f = \frac{1}{\sigma^2 + \tau^2} \left( \frac{\partial^2 f}{\partial \sigma ^2} + \frac{\partial^2 f}{\partial \tau ^2} \right) - + \frac{\partial^2 f}{\partial z}. + + \frac{\partial^2 f}{\partial z^2}. \label{parzyl:eq:laplaceInParZylCor} \end{equation} \subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} @@ -201,8 +206,7 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \begin{equation} f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) \end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen +gesetzt, was dann schlussendlich zu den Differentialgleichungen \begin{equation}\label{parzyl:sep_dgl_1} g''(\sigma) - -- cgit v1.2.1