From 330b5694c49f16cd21ae30446aec261fe114d2b3 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 22 Jul 2022 22:54:00 +0200 Subject: aller anfang ist schwer --- buch/papers/parzyl/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 09b4024..5f5b22f 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{parzyl:section:teil0}} +\section{Elektrisches feld\label{parzyl:section:teil0}} \rhead{Teil 0} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -- cgit v1.2.1 From 585150092dfc7fe9f3043a2dd0966e1a597e9258 Mon Sep 17 00:00:00 2001 From: Alain Date: Sat, 23 Jul 2022 12:09:19 +0200 Subject: umstelung struktur --- buch/papers/parzyl/teil0.tex | 24 +++++++++++++++++++++++- 1 file changed, 23 insertions(+), 1 deletion(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 5f5b22f..ff927b7 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,8 +3,30 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Elektrisches feld\label{parzyl:section:teil0}} +\section{Problem\label{parzyl:section:teil0}} \rhead{Teil 0} + +\subsection{Laplace Gleichung} + +\subsection{Parabolische Zylinderkoordinaten +\label{parzyl:subsection:finibus}} +Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit +\begin{align} + x & = \sigma \tau \\ + y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + z & = z. +\end{align} +Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +\begin{equation} + y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) +\end{equation} +und +\begin{equation} + y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). +\end{equation} + +\subsection{Differnetialgleichung} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua \cite{parzyl:bibtex}. -- cgit v1.2.1 From 68df1dfae4ea68c42fd97860280fac5ef3d672fb Mon Sep 17 00:00:00 2001 From: Alain Date: Sun, 24 Jul 2022 22:11:37 +0200 Subject: =?UTF-8?q?wenig=20isch=20besser=20als=20n=C3=BCt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil0.tex | 31 ++++++++++++++++++++++++++++++- 1 file changed, 30 insertions(+), 1 deletion(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ff927b7..2fc8737 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -7,7 +7,36 @@ \rhead{Teil 0} \subsection{Laplace Gleichung} - +Die partielle Differentialgleichung +\begin{equation} + \Delta f = 0 +\end{equation} +ist als Laplace Gleichung bekannt. +Sie ist eine spezielle Form der poisson Gleichung +\begin{equation} + \Delta f = g +\end{equation} +mit g als beliebige Funktion. +In der Physik hat die Laplace Gleichung in verschieden Gebieten +verwendet, zum Beispiel im Elektromagnetismus. +Das Gaussche Gesetz in den Maxwellgleichungen +\begin{equation} + \nabla \cdot E = \frac{\varrho}{\epsilon_0} +\label{parzyl:eq:max1} +\end{equation} +besagt das die Divergenz eines Elektrischen Feldes an einem +Punkt gleich der Ladung an diesem Punkt ist. +Das elektrische Feld ist hierbei der Gradient des elektrischen +Potentials +\begin{equation} + \nabla \phi = E. +\end{equation} +Eingesetzt in \eqref{parzyl:eq:max1} resultiert +\begin{equation} + \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, +\end{equation} +was eine Possion gleichung ist. +An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. -- cgit v1.2.1 From 3b98c68ff4e00bd55fd95b4affcaed3b521c32e4 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 13:49:54 +0200 Subject: ein bild --- buch/papers/parzyl/teil0.tex | 12 ++++++++++++ 1 file changed, 12 insertions(+) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 2fc8737..ab3056b 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -55,6 +55,18 @@ und y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). \end{equation} +\begin{figure} + \centering + \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} + \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein + konstantes $\sigma$ und die grünen ein konstantes $\tau$.} + \label{fig:cordinates} +\end{figure} + +Abbildung \ref{fig:cordinates} zeigt das Parabolische Koordinatensystem. +Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der +Ebene gezogen werden. + \subsection{Differnetialgleichung} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -- cgit v1.2.1 From 0c3ae18ee42f7b3154642175faea29e957d8bba0 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 15:53:20 +0200 Subject: skalierungsfaktoren --- buch/papers/parzyl/teil0.tex | 77 +++++++++++++++++++++++++++++++++----------- 1 file changed, 59 insertions(+), 18 deletions(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ab3056b..f6e63d4 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -43,8 +43,10 @@ Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koor Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ + \label{parzyl:coordRelationsa} y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ z & = z. + \label{parzyl:coordRelationse} \end{align} Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln \begin{equation} @@ -60,26 +62,65 @@ und \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein konstantes $\sigma$ und die grünen ein konstantes $\tau$.} - \label{fig:cordinates} + \label{parzyl:fig:cordinates} \end{figure} -Abbildung \ref{fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. -\subsection{Differnetialgleichung} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{parzyl:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - +Um in diesem Koordinatensystem integrieren und differenzieren zu +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +Der Skalierungsfaktor braucht es, damit die Distanzen zwischen zwei +Punkten unabhängig vom Koordinatensystem sind. +Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet +kann dies im kartesischen Koordinatensystem mit +\begin{equation} + \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + + \left(dz\right)^2 + \label{parzyl:eq:ds} +\end{equation} +ausgedrückt werden. +Das Skalierungsfaktoren werden so bestimmt, dass +\begin{equation} + \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 +\label{parzyl:eq:dspara} +\end{equation} +gilt. +Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen +von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als +\begin{align} + dx &= \frac{\delta x }{\delta \sigma} d\sigma + + \frac{\delta x }{\delta \tau} d\tau + + \frac{\delta x }{\delta \tilde{z}} d \tilde{z} + = \tau d\sigma + \sigma d \tau \\ + dy &= \frac{\delta y }{\delta \sigma} d\sigma + + \frac{\delta y }{\delta \tau} d\tau + + \frac{\delta y }{\delta \tilde{z}} d \tilde{z} + = \tau d\tau - \sigma d \sigma \\ + dz &= \frac{\delta \tilde{z} }{\delta \sigma} d\sigma + + \frac{\delta \tilde{z} }{\delta \tau} d\tau + + \frac{\delta \tilde{z} }{\delta \tilde{z}} d \tilde{z} + = d \tilde{z} \\ +\end{align} +substituiert. +Wird diese gleichung in der Form von \eqref{parzyl:eq:dspara} +geschrieben, resultiert +\begin{equation} + \left(d s\right)^2 = + \left(\sigma^2 + \tau^2\right)\left(d\sigma\right)^2 + + \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + + \left(d \tilde{z}\right)^2. +\end{equation} +Daraus resultieren die Skalierungsfaktoren +\begin{align} + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{z} &= 1. +\end{align} +\subsection{Differentialgleichung} +Möchte man eine Differentialgleichung im parabolischen +Zylinderkoordinatensystem lösen müssen die Skalierungsfaktoren +mitgerechnet werden. +\dots -- cgit v1.2.1 From 3db5682b70a73baec580d839e5f9e1cc909bd5fb Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 16:39:19 +0200 Subject: Stuff added --- buch/papers/parzyl/teil0.tex | 108 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 96 insertions(+), 12 deletions(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ab3056b..f4e8726 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -68,18 +68,102 @@ Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. \subsection{Differnetialgleichung} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{parzyl:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +\begin{equation} + \Delta f(x,y,z) = \lambda f(x,y,z) +\end{equation} +im parabolischen Zylinderkoordinatensystem +\begin{equation} + \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) +\end{equation} +gelöst wird. +Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +\begin{equation} + \nabla + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2}{\partial \sigma^2} + + + \frac{\partial^2}{\partial \tau^2} + \right ) + + + \frac{\partial^2}{\partial z^2}. +\end{equation} +Die Helmholtz Gleichung würde also wie folgt lauten +\begin{equation} + \nabla f(\sigma, \tau, z) + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} + \right ) + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} + = + \lambda f(\sigma,\tau,z) +\end{equation} +Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird +\begin{equation} + f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) +\end{equation} +gesetzt. +Was dann schlussendlich zu den Differentialgleichungen +\begin{equation}\label{parzyl_sep_dgl_1} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0, +\end{equation} +\begin{equation}\label{parzyl_sep_dgl_2} + h''(\tau) + - + \left ( + \lambda\tau^2 + - + \mu + \right ) + h(\tau) + = + 0 +\end{equation} +und +\begin{equation}\label{parzyl_sep_dgl_3} + i''(z) + + + \left ( + \lambda + + + \mu + \right ) + i(\tau) + = + 0 +\end{equation} +führt. +Wobei die Lösung von \ref{parzyl_sep_dgl_3} +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )} +\end{equation} +ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. -- cgit v1.2.1 From 81b33c456132ec906ca12f48c78cca83fe1c6437 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 16:44:28 +0200 Subject: mehr sachen --- buch/papers/parzyl/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index f6e63d4..650428f 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -113,7 +113,7 @@ geschrieben, resultiert \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + \left(d \tilde{z}\right)^2. \end{equation} -Daraus resultieren die Skalierungsfaktoren +Daraus ergeben sich die Skalierungsfaktoren \begin{align} h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ -- cgit v1.2.1 From 8c6b72db5c5f9bc5aa59526cb033f22b1dc25627 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 18:20:55 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil0.tex | 110 +++++++++++++++++++++++++------------------ 1 file changed, 63 insertions(+), 47 deletions(-) (limited to 'buch/papers/parzyl/teil0.tex') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index a77398d..4b251db 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,21 +3,24 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Problem\label{parzyl:section:teil0}} +\section{Einleitung\label{parzyl:section:teil0}} \rhead{Teil 0} - +Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +In diesem Kapitel wird die Lösung der Laplace-Gleichung im +parabolischen Zylinderkoordinatensystem genauer untersucht. \subsection{Laplace Gleichung} Die partielle Differentialgleichung \begin{equation} \Delta f = 0 \end{equation} -ist als Laplace Gleichung bekannt. -Sie ist eine spezielle Form der poisson Gleichung +ist als Laplace-Gleichung bekannt. +Sie ist eine spezielle Form der Poisson-Gleichung \begin{equation} \Delta f = g \end{equation} mit g als beliebige Funktion. -In der Physik hat die Laplace Gleichung in verschieden Gebieten +In der Physik hat die Laplace-Gleichung in verschieden Gebieten verwendet, zum Beispiel im Elektromagnetismus. Das Gaussche Gesetz in den Maxwellgleichungen \begin{equation} @@ -35,11 +38,11 @@ Eingesetzt in \eqref{parzyl:eq:max1} resultiert \begin{equation} \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, \end{equation} -was eine Possion gleichung ist. +was eine Possion-Gleichung ist. An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ @@ -48,7 +51,7 @@ Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt z & = z. \label{parzyl:coordRelationse} \end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +Wird $\tau$ oder $\sigma$ konstant gesetzt resultieren die Parabeln \begin{equation} y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) \end{equation} @@ -68,10 +71,12 @@ und Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. + Um in diesem Koordinatensystem integrieren und differenzieren zu können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. -Der Skalierungsfaktor braucht es, damit die Distanzen zwischen zwei -Punkten unabhängig vom Koordinatensystem sind. + +\dots + Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet kann dies im kartesischen Koordinatensystem mit \begin{equation} @@ -90,21 +95,21 @@ gilt. Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als \begin{align} - dx &= \frac{\delta x }{\delta \sigma} d\sigma + - \frac{\delta x }{\delta \tau} d\tau + - \frac{\delta x }{\delta \tilde{z}} d \tilde{z} + dx &= \frac{\partial x }{\partial \sigma} d\sigma + + \frac{\partial x }{\partial \tau} d\tau + + \frac{\partial x }{\partial \tilde{z}} d \tilde{z} = \tau d\sigma + \sigma d \tau \\ - dy &= \frac{\delta y }{\delta \sigma} d\sigma + - \frac{\delta y }{\delta \tau} d\tau + - \frac{\delta y }{\delta \tilde{z}} d \tilde{z} + dy &= \frac{\partial y }{\partial \sigma} d\sigma + + \frac{\partial y }{\partial \tau} d\tau + + \frac{\partial y }{\partial \tilde{z}} d \tilde{z} = \tau d\tau - \sigma d \sigma \\ - dz &= \frac{\delta \tilde{z} }{\delta \sigma} d\sigma + - \frac{\delta \tilde{z} }{\delta \tau} d\tau + - \frac{\delta \tilde{z} }{\delta \tilde{z}} d \tilde{z} + dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + + \frac{\partial \tilde{z} }{\partial \tau} d\tau + + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} = d \tilde{z} \\ \end{align} substituiert. -Wird diese gleichung in der Form von \eqref{parzyl:eq:dspara} +Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara} geschrieben, resultiert \begin{equation} \left(d s\right)^2 = @@ -120,11 +125,22 @@ Daraus ergeben sich die Skalierungsfaktoren \end{align} \subsection{Differentialgleichung} Möchte man eine Differentialgleichung im parabolischen -Zylinderkoordinatensystem lösen müssen die Skalierungsfaktoren -mitgerechnet werden. -\dots -\subsection{Lösung der Helmholtz Gleichung im parabolischen Zylinderfunktion} -Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +Zylinderkoordinatensystem aufstellen müssen die Skalierungsfaktoren +mitgerechnet werden. +Der Laplace Operator ist dadurch gegeben als +\begin{equation} + \Delta f = \frac{1}{\sigma^2 + \tau^2} + \left( + \frac{\partial^2 f}{\partial \sigma ^2} + + \frac{\partial^2 f}{\partial \tau ^2} + \right) + + \frac{\partial^2 f}{\partial z}. + \label{parzyl:eq:laplaceInParZylCor} +\end{equation} +\subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen, tauchen +%, wie bereits erwähnt, +dann auf, wenn die Helmholtz-Gleichung \begin{equation} \Delta f(x,y,z) = \lambda f(x,y,z) \end{equation} @@ -133,22 +149,22 @@ im parabolischen Zylinderkoordinatensystem \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) \end{equation} gelöst wird. -Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als -\begin{equation} - \nabla - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2}{\partial \sigma^2} - + - \frac{\partial^2}{\partial \tau^2} - \right ) - + - \frac{\partial^2}{\partial z^2}. -\end{equation} -Die Helmholtz Gleichung würde also wie folgt lauten -\begin{equation} - \nabla f(\sigma, \tau, z) +%Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +%\begin{equation} +% \Delta +% = +% \frac{1}{\sigma^2 + \tau^2} +% \left ( +% \frac{\partial^2}{\partial \sigma^2} +% + +% \frac{\partial^2}{\partial \tau^2} +% \right ) +% + +% \frac{\partial^2}{\partial z^2}. +%\end{equation} +Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz Gleichung +\begin{equation} + \Delta f(\sigma, \tau, z) = \frac{1}{\sigma^2 + \tau^2} \left ( @@ -159,7 +175,7 @@ Die Helmholtz Gleichung würde also wie folgt lauten + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} = - \lambda f(\sigma,\tau,z) + \lambda f(\sigma,\tau,z). \end{equation} Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird \begin{equation} @@ -167,7 +183,7 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \end{equation} gesetzt. Was dann schlussendlich zu den Differentialgleichungen -\begin{equation}\label{parzyl_sep_dgl_1} +\begin{equation}\label{parzyl:sep_dgl_1} g''(\sigma) - \left ( @@ -179,7 +195,7 @@ Was dann schlussendlich zu den Differentialgleichungen = 0, \end{equation} -\begin{equation}\label{parzyl_sep_dgl_2} +\begin{equation}\label{parzyl:sep_dgl_2} h''(\tau) - \left ( @@ -192,7 +208,7 @@ Was dann schlussendlich zu den Differentialgleichungen 0 \end{equation} und -\begin{equation}\label{parzyl_sep_dgl_3} +\begin{equation}\label{parzyl:sep_dgl_3} i''(z) + \left ( @@ -205,7 +221,7 @@ und 0 \end{equation} führt. -Wobei die Lösung von \ref{parzyl_sep_dgl_3} +Wobei die Lösung von \eqref{parzyl:sep_dgl_3} \begin{equation} i(z) = @@ -219,7 +235,7 @@ Wobei die Lösung von \ref{parzyl_sep_dgl_3} \sqrt{\lambda + \mu}z \right )} \end{equation} -ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. +ist und \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1