From 330b5694c49f16cd21ae30446aec261fe114d2b3 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 22 Jul 2022 22:54:00 +0200 Subject: aller anfang ist schwer --- buch/papers/parzyl/teil1.tex | 33 ++++++++++++++++++--------------- 1 file changed, 18 insertions(+), 15 deletions(-) (limited to 'buch/papers/parzyl/teil1.tex') diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 9ea60e2..6027f71 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -3,16 +3,10 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Parabolische Zylinderfunktion \label{parzyl:section:teil1}} \rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt +Die Parabolischen Zylinderfunktion sind spezielle funktionen \begin{equation} \int_a^b x^2\, dx = @@ -31,14 +25,23 @@ Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? -\subsection{De finibus bonorum et malorum +\subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - +Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit +\begin{align} + x & = \sigma \tau \\ + y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + z & = z. +\end{align} +Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +\begin{equation} + y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) +\end{equation} +und +\begin{equation} + y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). +\end{equation} Et harum quidem rerum facilis est et expedita distinctio \ref{parzyl:section:loesung}. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -- cgit v1.2.1