From a5d4cd12216d17c62b6493675aecf453f82c9ea4 Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 08:10:05 +0200 Subject: =?UTF-8?q?l=C3=B6sungssachen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil1.tex | 49 +++++++++++++++++++++++++++++++++++--------- 1 file changed, 39 insertions(+), 10 deletions(-) (limited to 'buch/papers/parzyl/teil1.tex') diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index b02a1bf..edc6db0 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -62,7 +62,7 @@ Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). \end{align} In der Literatur gibt es verschiedene Standartlösungen für $w(k,z)$ präsentiert. -Whittaker und Whatson zeigen in \dots eine Lösung +Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung \begin{equation} D_n(z) = \frac{ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} @@ -76,7 +76,7 @@ Whittaker und Whatson zeigen in \dots eine Lösung }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } - M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right). + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) \end{equation} welche die Differenzialgleichung \begin{equation} @@ -84,18 +84,40 @@ welche die Differenzialgleichung \end{equation} löst. -Blablubla beschreibt zwei Lösungen $U(a, z)$ und $V(a,z)$ der Differenzialgleichung +In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ +\begin{align} + U(a,z) &= + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} +\end{align} +mit +\begin{align} + Y_1 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{1}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ + Y_2 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{3}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 +\end{align} +der Differenzialgleichung \begin{equation} - \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0. + \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} +beschrieben. \begin{align} U(a,z) &= - \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 - - \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 \\ - V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left( - \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 - + \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 - \right) + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} \end{align} mit \begin{align} @@ -109,3 +131,10 @@ mit {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} +Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +ausgedrückt werden +\begin{align} + U(a,z) &= D_{-a-1/2}(z) \\ + V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} + \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. +\end{align} -- cgit v1.2.1