From fa538f49a637003203016fa0ea3ba03938a5d8e4 Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Mon, 22 Aug 2022 15:19:53 +0200 Subject: Fixed --- buch/papers/parzyl/teil1.tex | 112 +++++++++++++++++++++++++++++-------------- 1 file changed, 77 insertions(+), 35 deletions(-) (limited to 'buch/papers/parzyl/teil1.tex') diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 0e1ad1b..30f33e4 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,7 +6,7 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Lösung} - +\subsection{Lösung harmonischer Oszillator} \eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator. Die Lösung ist somit \begin{equation} @@ -22,43 +22,83 @@ Die Lösung ist somit \sqrt{\lambda + \mu} \right )}. \end{equation} +\subsection{Lösung ???} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} mit Hilfe der Whittaker Gleichung gelöst. +\begin{satz} + Die Funktionen + \begin{equation} + M_{k,m}(x) = + e^{-x/2} x^{m+1/2} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} + \label{parzyl:eq:sol_diffEq_1} + \end{equation} + und damit auch die Linearkombinationen + \begin{equation} + W_{k,m}(x) = \frac{ + \Gamma \left( -2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) + } + M_{-k, m} \left(x\right) + + + \frac{ + \Gamma \left( 2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) + } + M_{k, -m} \left(x\right) + \label{parzyl:eq:sol_diffEq_2} + \end{equation} + sind Lösungen der Differentialgleichung + \begin{equation} + \frac{d^2W}{d x^2} + + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. + \label{parzyl:eq:whitDiffEq} + \end{equation} + +\end{satz} \begin{definition} - Die Funktionen - \begin{equation*} - M_{k,m}(x) = - e^{-x/2} x^{m+1/2} \, - {}_{1} F_{1} - ( - {\textstyle \frac{1}{2}} - + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} - \end{equation*} - und - \begin{equation*} - W_{k,m}(x) = \frac{ - \Gamma \left( -2m\right) - }{ - \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) - } - M_{-k, m} \left(x\right) - + - \frac{ - \Gamma \left( 2m\right) - }{ - \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) - } - M_{k, -m} \left(x\right) - \end{equation*} - gehören zu den Whittaker Funktionen und sind Lösungen - der Whittaker Differentialgleichung - \begin{equation} - \frac{d^2W}{d x^2} + - \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. - \label{parzyl:eq:whitDiffEq} - \end{equation} - + Die Differentialgleichung \ref{parzyl:eq:whitDiffEq} heisst Whittaker-Differentialgleichung. Die Funktionen \ref{parzyl:eq:sol_diffEq_1} und \ref{parzyl:eq:sol_diffEq_2} sind Teil der Familie der Whittaker-Funktionen. \end{definition} +%\begin{definition} +% Die Funktionen +% \begin{equation*} +% M_{k,m}(x) = +% e^{-x/2} x^{m+1/2} \, +% {}_{1} F_{1} +% ( +% {\textstyle \frac{1}{2}} +% + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} +% \end{equation*} +% und +% \begin{equation*} +% W_{k,m}(x) = \frac{ +% \Gamma \left( -2m\right) +% }{ +% \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) +% } +% M_{-k, m} \left(x\right) +% + +% \frac{ +% \Gamma \left( 2m\right) +% }{ +% \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) +% } +% M_{k, -m} \left(x\right) +% \end{equation*} +% gehören zu den Whittaker Funktionen und sind Lösungen +% der Whittaker Differentialgleichung +% \begin{equation} +% \frac{d^2W}{d x^2} + +% \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. +% \label{parzyl:eq:whitDiffEq} +% \end{equation} +% +%\end{definition} Es wird nun die Differentialgleichung bestimmt, welche \begin{equation} w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right) @@ -123,6 +163,8 @@ Mit $M_{k,m}(x)$ geschrieben resultiert } M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right). \end{equation} + + In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$ \begin{align} U(a,x) &= @@ -161,7 +203,7 @@ der Differentialgleichung \begin{equation} \frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0 \end{equation} -beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch durch $D_n(z)$ ausgedrückt werden \begin{align} U(a,x) &= D_{-a-1/2}(x) \\ -- cgit v1.2.1