From 7cdb2904f851c326a4fd72b58491f3b8199620df Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 11:46:08 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil2.tex | 29 +++++++++++++++-------------- 1 file changed, 15 insertions(+), 14 deletions(-) (limited to 'buch/papers/parzyl/teil2.tex') diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 4af6860..573432a 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -19,7 +19,7 @@ Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} -Dabei muss gelten, falls die Funktion differenzierbar ist, dass +Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} \frac{\partial U(x,y)}{\partial x} = @@ -27,8 +27,9 @@ Dabei muss gelten, falls die Funktion differenzierbar ist, dass \qquad \frac{\partial V(x,y)}{\partial x} = - -\frac{\partial U(x,y)}{\partial y}. + -\frac{\partial U(x,y)}{\partial y} \end{equation} +gelten. Aus dieser Bedingung folgt \begin{equation} \label{parzyl_e_feld_zweite_ab} @@ -53,7 +54,7 @@ Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem qu \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \ref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} \phi(x,y) = U(x,y). @@ -62,7 +63,8 @@ Orthogonal zum Potential ist das elektrische Feld \begin{equation} E(x,y) = V(x,y). \end{equation} -Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete +komplexe Funktion $F(s)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Die gesuchte Funktion in diesem Fall ist \begin{equation} @@ -81,23 +83,22 @@ Dies kann umgeformt werden zu i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} -Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt, +Die Äquipotentialflächen können nun betrachtet werden, +indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} - \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}, + \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. \end{equation} -und die Flächen mit der gleichen elektrischen Feldstärke können als +Die Flächen mit der gleichen elektrischen Feldstärke können als \begin{equation} \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} -beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann +beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +Werden diese Formeln nun nach $x$ und $y$ aufgelöst \begin{equation} x = \sigma \tau, \end{equation} \begin{equation} - y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ) + y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), \end{equation} - - - - - +so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file -- cgit v1.2.1