From 3db5682b70a73baec580d839e5f9e1cc909bd5fb Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 16:39:19 +0200 Subject: Stuff added --- buch/papers/parzyl/teil3.tex | 98 -------------------------------------------- 1 file changed, 98 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 0364056..4e44bd6 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -6,101 +6,3 @@ \section{Teil 3 \label{parzyl:section:teil3}} \rhead{Teil 3} -\subsection{Helmholtz Gleichung im parabolischen Zylinderkoordinatensystem -\label{parzyl:subsection:malorum}} -Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung -\begin{equation} - \Delta f(x,y,z) = \lambda f(x,y,z) -\end{equation} -im parabolischen Zylinderkoordinatensystem -\begin{equation} - \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) -\end{equation} -gelöst wird. -Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als -\begin{equation} - \nabla - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2}{\partial \sigma^2} - + - \frac{\partial^2}{\partial \tau^2} - \right ) - + - \frac{\partial^2}{\partial z^2}. -\end{equation} -Die Helmholtz Gleichung würde also wie folgt lauten -\begin{equation} - \nabla f(\sigma, \tau, z) - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} - \right ) - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} - = - \lambda f(\sigma,\tau,z) -\end{equation} -Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird -\begin{equation} - f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) -\end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen -\begin{equation}\label{parzyl_sep_dgl_1} - g''(\sigma) - - - \left ( - \lambda\sigma^2 - + - \mu - \right ) - g(\sigma) - = - 0, -\end{equation} -\begin{equation}\label{parzyl_sep_dgl_2} - h''(\tau) - - - \left ( - \lambda\tau^2 - - - \mu - \right ) - h(\tau) - = - 0 -\end{equation} -und -\begin{equation}\label{parzyl_sep_dgl_3} - i''(z) - + - \left ( - \lambda - + - \mu - \right ) - i(\tau) - = - 0 -\end{equation} -führt. -Wobei die Lösung von \ref{parzyl_sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1