From 8664c5cb874029c45314c18d1d1b0d2be4bb5a9c Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Sat, 13 Aug 2022 14:22:36 +0200 Subject: Added Part 3 --- buch/papers/parzyl/teil3.tex | 78 ++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 76 insertions(+), 2 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 4e44bd6..12b7519 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -3,6 +3,80 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{parzyl:section:teil3}} +\section{Eigenschaften +\label{parzyl:section:Eigenschaften}} \rhead{Teil 3} +\subsection{Potenzreihenentwicklung + \label{parzyl:potenz}} +Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +\begin{align} + w_1(k,z) + &= + e^{-z^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{4}} + - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + = + e^{-\frac{z^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + &= + e^{-\frac{z^2}{4}} + \left ( + 1 + + + \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + + + \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + + + \dots + \right ) +\end{align} +und +\begin{align} + w_2(k,z) + &= + ze^{-z^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{3}{4}} + - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + = + ze^{-\frac{z^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + &= + e^{-\frac{z^2}{4}} + \left ( + z + + + \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + + + \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + + + \dots + \right ). +\end{align} +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +\begin{equation} + k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 +\end{equation} +und bei $w_2(k,z)$ falls +\begin{equation} + k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. +\end{equation} + +\subsection{Ableitung} +Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als +\begin{equation} + \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k), +\end{equation} +und die Ableitung von $w_2(z,k)$ als +\begin{equation} + \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +\end{equation} +Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden. + -- cgit v1.2.1 From 37be038856d46324ca0f036f486c73b48bc22e4c Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Tue, 16 Aug 2022 22:24:51 +0200 Subject: Updated stuff --- buch/papers/parzyl/teil3.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 12b7519..972fd33 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -5,7 +5,8 @@ % \section{Eigenschaften \label{parzyl:section:Eigenschaften}} -\rhead{Teil 3} +\rhead{Eigenschaften} + \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden -- cgit v1.2.1 From a8b82aafff82dbff739714d7009419a0015eebcf Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 23:41:00 +0200 Subject: =?UTF-8?q?n=C3=B6d=20ganz?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil3.tex | 39 +++++++++++++++++++++++---------------- 1 file changed, 23 insertions(+), 16 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 972fd33..78950e1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -9,41 +9,45 @@ \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} -Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ +und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe \begin{align} - w_1(k,z) + w_1(\alpha,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{1}{4}} - - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) = e^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ &= e^{-\frac{z^2}{4}} \left ( 1 + - \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{z^2}{2!} + - \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(k,z) + w_2(\alpha,z) &= ze^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) = ze^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} @@ -54,20 +58,23 @@ und \left ( z + - \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + - \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \dots \right ). \end{align} -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +sind. +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls \begin{equation} - k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 + \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(k,z)$ falls +und bei $w_2(\alpha,z)$ falls \begin{equation} - k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} \subsection{Ableitung} -- cgit v1.2.1 From a5bf03e77ac18012b8608ba6b3c46c301d66528c Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 09:47:52 +0200 Subject: ableitung --- buch/papers/parzyl/teil3.tex | 21 ++++++++++++++++----- 1 file changed, 16 insertions(+), 5 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 78950e1..b68229f 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -78,13 +78,24 @@ und bei $w_2(\alpha,z)$ falls \end{equation} \subsection{Ableitung} -Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als +Die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ +können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt +\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. +Zusammen mit der Produktregel ergeben sich die Ableitungen \begin{equation} - \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k), + \frac{\partial w_1(\alpha,z)}{\partial z} = 2\alpha w_2(\alpha + \frac{1}{2}, z) - \frac{1}{2} z w_1(\alpha, z), \end{equation} -und die Ableitung von $w_2(z,k)$ als +und +%\begin{equation} +% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +%\end{equation} \begin{equation} - \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). + \frac{\partial w_2(\alpha,z)}{\partial z} = e^{-z^2/4} \left( + z^{-1} w_2(\alpha, z) - \frac{z}{2} w_2(\alpha, z) + 2 z^2 \left(\frac{\alpha + 1}{3}\right) + {}_{1} F_{1} ( + {\textstyle \frac{3}{2}} + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}z^2) + \right) \end{equation} -Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden. +Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. -- cgit v1.2.1 From 7cdb2904f851c326a4fd72b58491f3b8199620df Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 11:46:08 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil3.tex | 61 +++++++++++++++++++++++--------------------- 1 file changed, 32 insertions(+), 29 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index b68229f..166eebf 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -13,88 +13,91 @@ %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ -und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe \begin{align} - w_1(\alpha,z) + w_1(\alpha,x) &= - e^{-z^2/4} \, + e^{-x^2/4} \, {}_{1} F_{1} ( - \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2) = - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( 1 + - \left ( 2\alpha \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{x^2}{2!} + - \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(\alpha,z) + w_2(\alpha,x) &= - ze^{-z^2/4} \, + xe^{-x^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} - + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2) = - ze^{-\frac{z^2}{4}} + xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( - z + x + - \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{x^3}{3!} + - \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!} + \dots - \right ). + \right ) \end{align} sind. -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Die Potenzreihen sind in der regel unendliche Reihen. Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden -und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls +und die Reihe somit eine endliche Anzahl $n$ Summanden hat. +Dies geschieht bei $w_1(\alpha,x)$ falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(\alpha,z)$ falls +und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} - +Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt +$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} -Die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ +Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$ können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt \ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. Zusammen mit der Produktregel ergeben sich die Ableitungen \begin{equation} - \frac{\partial w_1(\alpha,z)}{\partial z} = 2\alpha w_2(\alpha + \frac{1}{2}, z) - \frac{1}{2} z w_1(\alpha, z), + \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x), \end{equation} und %\begin{equation} % \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). %\end{equation} \begin{equation} - \frac{\partial w_2(\alpha,z)}{\partial z} = e^{-z^2/4} \left( - z^{-1} w_2(\alpha, z) - \frac{z}{2} w_2(\alpha, z) + 2 z^2 \left(\frac{\alpha + 1}{3}\right) + \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left( + x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right) {}_{1} F_{1} ( {\textstyle \frac{3}{2}} - + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2) \right) \end{equation} Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. -- cgit v1.2.1 From aea9cc922545bd617166b89edc353c2c2f180106 Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 22:14:37 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil3.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 166eebf..6432905 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -12,9 +12,9 @@ %Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. -Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +In diesem Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ -und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen \begin{align} w_1(\alpha,x) &= @@ -67,9 +67,9 @@ und \end{align} sind. Die Potenzreihen sind in der regel unendliche Reihen. -Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden und die Reihe somit eine endliche Anzahl $n$ Summanden hat. -Dies geschieht bei $w_1(\alpha,x)$ falls +Dies geschieht bei $w_1(\alpha,x)$, falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} @@ -77,7 +77,7 @@ und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} -Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt $\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} -- cgit v1.2.1 From aa2fec29136fb8eebab30b6c7bdd96917c58a298 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 19 Aug 2022 08:47:28 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil3.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 6432905..1b59ed9 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -12,8 +12,8 @@ %Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. -In diesem Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ +Parabolische Zylinderfunktionen sind Linearkombinationen +$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$ und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen \begin{align} w_1(\alpha,x) @@ -51,7 +51,7 @@ und = xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= e^{-\frac{x^2}{4}} @@ -77,7 +77,7 @@ und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} -Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet. Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt $\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} -- cgit v1.2.1