From 7cdb2904f851c326a4fd72b58491f3b8199620df Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 11:46:08 +0200 Subject: verbesserungen --- buch/papers/parzyl/teil3.tex | 61 +++++++++++++++++++++++--------------------- 1 file changed, 32 insertions(+), 29 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index b68229f..166eebf 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -13,88 +13,91 @@ %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ -und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe \begin{align} - w_1(\alpha,z) + w_1(\alpha,x) &= - e^{-z^2/4} \, + e^{-x^2/4} \, {}_{1} F_{1} ( - \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2) = - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( 1 + - \left ( 2\alpha \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{x^2}{2!} + - \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(\alpha,z) + w_2(\alpha,x) &= - ze^{-z^2/4} \, + xe^{-x^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} - + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2) = - ze^{-\frac{z^2}{4}} + xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( - z + x + - \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{x^3}{3!} + - \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!} + \dots - \right ). + \right ) \end{align} sind. -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Die Potenzreihen sind in der regel unendliche Reihen. Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden -und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls +und die Reihe somit eine endliche Anzahl $n$ Summanden hat. +Dies geschieht bei $w_1(\alpha,x)$ falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(\alpha,z)$ falls +und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} - +Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt +$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} -Die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ +Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$ können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt \ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. Zusammen mit der Produktregel ergeben sich die Ableitungen \begin{equation} - \frac{\partial w_1(\alpha,z)}{\partial z} = 2\alpha w_2(\alpha + \frac{1}{2}, z) - \frac{1}{2} z w_1(\alpha, z), + \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x), \end{equation} und %\begin{equation} % \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). %\end{equation} \begin{equation} - \frac{\partial w_2(\alpha,z)}{\partial z} = e^{-z^2/4} \left( - z^{-1} w_2(\alpha, z) - \frac{z}{2} w_2(\alpha, z) + 2 z^2 \left(\frac{\alpha + 1}{3}\right) + \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left( + x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right) {}_{1} F_{1} ( {\textstyle \frac{3}{2}} - + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2) \right) \end{equation} Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. -- cgit v1.2.1