From a8b82aafff82dbff739714d7009419a0015eebcf Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 23:41:00 +0200 Subject: =?UTF-8?q?n=C3=B6d=20ganz?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil3.tex | 39 +++++++++++++++++++++++---------------- 1 file changed, 23 insertions(+), 16 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 972fd33..78950e1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -9,41 +9,45 @@ \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} -Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ +und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe \begin{align} - w_1(k,z) + w_1(\alpha,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{1}{4}} - - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) = e^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ &= e^{-\frac{z^2}{4}} \left ( 1 + - \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{z^2}{2!} + - \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(k,z) + w_2(\alpha,z) &= ze^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) = ze^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} @@ -54,20 +58,23 @@ und \left ( z + - \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + - \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \dots \right ). \end{align} -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +sind. +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls \begin{equation} - k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 + \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(k,z)$ falls +und bei $w_2(\alpha,z)$ falls \begin{equation} - k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} \subsection{Ableitung} -- cgit v1.2.1