From 50f65a2a67b3574d5fbf162ee5951fc189f52319 Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 13:43:08 +0200 Subject: Let the pain begin --- buch/papers/parzyl/teil3.tex | 101 ++++++++++++++++++++++++++++++------------- 1 file changed, 70 insertions(+), 31 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 72c23ca..a143aa1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -6,35 +6,74 @@ \section{Teil 3 \label{parzyl:section:teil3}} \rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum +\subsection{Helmholtz Gleichung im parabolischen Zylinderkoordinatensystem \label{parzyl:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +\begin{equation} + \Delta f(x,y,z) = \lambda f(x,y,z) +\end{equation} +im parabolischen Zylinderkoordinatensystem +\begin{equation} + \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) +\end{equation} +gelöst wird. +Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +\begin{equation} + \nabla + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2}{\partial \sigma^2} + + + \frac{\partial^2}{\partial \tau^2} + \right ) + + + \frac{\partial^2}{\partial z^2}. +\end{equation} +Die Helmholtz Gleichung würde also wie folgt lauten +\begin{equation} + \nabla f(\sigma, \tau, z) + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} + \right ) + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} + = + \lambda f(\sigma,\tau,z) +\end{equation} +Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird +\begin{equation} + f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) +\end{equation} +gesetzt. +Was dann schlussendlich zu den Differentialgleichungen +\begin{equation} + h''(\tau) + - + \left ( + \lambda\tau^2 + - + \mu + \right ) + h(\tau) + = + 0 +\end{equation} +und +\begin{equation} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0 +\end{equation} +führt. -- cgit v1.2.1 From 200d9ac2dd1173bb8e6d4e8389de7c6863b9d76d Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 14:41:08 +0200 Subject: Made stuff --- buch/papers/parzyl/teil3.tex | 41 ++++++++++++++++++++++++++++++++++------- 1 file changed, 34 insertions(+), 7 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index a143aa1..0364056 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -51,7 +51,19 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \end{equation} gesetzt. Was dann schlussendlich zu den Differentialgleichungen -\begin{equation} +\begin{equation}\label{parzyl_sep_dgl_1} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0, +\end{equation} +\begin{equation}\label{parzyl_sep_dgl_2} h''(\tau) - \left ( @@ -63,17 +75,32 @@ Was dann schlussendlich zu den Differentialgleichungen = 0 \end{equation} -und -\begin{equation} - g''(\sigma) - - +und +\begin{equation}\label{parzyl_sep_dgl_3} + i''(z) + + \left ( - \lambda\sigma^2 + \lambda + \mu \right ) - g(\sigma) + i(\tau) = 0 \end{equation} führt. +Wobei die Lösung von \ref{parzyl_sep_dgl_3} +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )} +\end{equation} +ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1 From 3db5682b70a73baec580d839e5f9e1cc909bd5fb Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 16:39:19 +0200 Subject: Stuff added --- buch/papers/parzyl/teil3.tex | 98 -------------------------------------------- 1 file changed, 98 deletions(-) (limited to 'buch/papers/parzyl/teil3.tex') diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 0364056..4e44bd6 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -6,101 +6,3 @@ \section{Teil 3 \label{parzyl:section:teil3}} \rhead{Teil 3} -\subsection{Helmholtz Gleichung im parabolischen Zylinderkoordinatensystem -\label{parzyl:subsection:malorum}} -Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung -\begin{equation} - \Delta f(x,y,z) = \lambda f(x,y,z) -\end{equation} -im parabolischen Zylinderkoordinatensystem -\begin{equation} - \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) -\end{equation} -gelöst wird. -Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als -\begin{equation} - \nabla - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2}{\partial \sigma^2} - + - \frac{\partial^2}{\partial \tau^2} - \right ) - + - \frac{\partial^2}{\partial z^2}. -\end{equation} -Die Helmholtz Gleichung würde also wie folgt lauten -\begin{equation} - \nabla f(\sigma, \tau, z) - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} - \right ) - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} - = - \lambda f(\sigma,\tau,z) -\end{equation} -Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird -\begin{equation} - f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) -\end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen -\begin{equation}\label{parzyl_sep_dgl_1} - g''(\sigma) - - - \left ( - \lambda\sigma^2 - + - \mu - \right ) - g(\sigma) - = - 0, -\end{equation} -\begin{equation}\label{parzyl_sep_dgl_2} - h''(\tau) - - - \left ( - \lambda\tau^2 - - - \mu - \right ) - h(\tau) - = - 0 -\end{equation} -und -\begin{equation}\label{parzyl_sep_dgl_3} - i''(z) - + - \left ( - \lambda - + - \mu - \right ) - i(\tau) - = - 0 -\end{equation} -führt. -Wobei die Lösung von \ref{parzyl_sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1