From 08f2fa49aebb5880f5b510196f693f4cb68d439d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Thu, 25 Aug 2022 22:36:30 +0200 Subject: Final corrections before pull request. --- buch/papers/sturmliouville/eigenschaften.tex | 87 +--------------------------- 1 file changed, 1 insertion(+), 86 deletions(-) (limited to 'buch/papers/sturmliouville/eigenschaften.tex') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index cef276b..8616172 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -116,90 +116,5 @@ Bei einem regulären Sturm-Liouville-Problem ist diese Eigenschaft für $L$ gegeben und wird im Weiteren nicht näher diskutiert. Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die -Lösungsfunktion $y$ eises regulären Sturm-Liouville-Problems eine +Lösungsfunktion $y$ eines regulären Sturm-Liouville-Problems eine Linearkombination aus orthogonalen Basisfunktionen sein muss. - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\iffalse - -\section{OLD: Eigenschaften von Lösungen -%\label{sturmliouville:section:solution-properties} -} -\rhead{Eigenschaften von Lösungen} - -Im weiteren werden nun die Eigenschaften der Lösungen eines -Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften -zustande kommen. - -Dazu wird der Operator $L_0$ welcher bereits in -Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet -wurde, noch etwas genauer angeschaut. -Es wird also im Folgenden -\[ - L_0 - = - -\frac{d}{dx}p(x)\frac{d}{dx} -\] -zusammen mit den Randbedingungen -\[ - \begin{aligned} - k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0 - \end{aligned} -\] -verwendet. -Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits -gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ -selbsadjungiert zu machen. -Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies -für die Lösungen des Sturm-Liouville-Problems zur Folge hat. - -\subsubsection{Exkurs zum Spektralsatz} - -Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in -den Lösungen hervorbringt, wird der Spektralsatz benötigt. - -Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix -diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. - -Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu -zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass -\[ - \langle Av, w \rangle - = - \langle v, Aw \rangle -\] -für $ v, w \in \mathbb{R}^n$ gilt. -Ist dies der Fall, kann die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended werden. -Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, -wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. - -Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}, welcher für das -Sturm-Liouville-Problem von Bedeutung ist. -Welche Voraussetzungen erfüllt sein müssen, um diese Version des -Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den -Beispielen in diesem Kapitel als gegeben betrachtet werden. -Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, -also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, -falls er selbstadjungiert ist. - -\subsubsection{Anwendung des Spektralsatzes auf $L_0$} - -Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine -Orthonormalbasis aus Eigenvektoren existiert. -Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen -des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des -Skalarprodukts, in dem $L_0$ selbstadjungiert ist. - -Erfüllt also eine Differenzialgleichung die in -Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und -erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen -des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die -Lösungsfunktion des Problems eine Linearkombination aus orthogonalen -Basisfunktionen ist. - -\fi -- cgit v1.2.1