From 905073fc0febc0af8aa43e58868b98f4f33b98fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Tue, 23 Aug 2022 15:46:42 +0200 Subject: Corrected all labels to comply with guidelines. --- buch/papers/sturmliouville/einleitung.tex | 45 ++++++++++++++++++------------- 1 file changed, 26 insertions(+), 19 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 4ed3752..2552574 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -32,12 +32,12 @@ partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% Wenn die lineare homogene Differentialgleichung -\begin{equation} +\[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 -\end{equation} +\] als \begin{equation} - \label{eq:sturm-liouville-equation} + \label{sturmliouville:eq:sturm-liouville-equation} \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) + \lambda w(x)) y = @@ -47,18 +47,20 @@ geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können -in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt -werden. +in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} +umgewandelt werden. -Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingung, die im nächsten Unterkapitel behandelt wird. +Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die +Randbedingung, die im nächsten Unterkapitel behandelt wird. -\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} +\subsection{Randbedingungen +\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} - \label{eq:randbedingungen} + \label{sturmliouville:eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0. \end{aligned} @@ -66,26 +68,28 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs ist das klassische Sturm-Liouville-Problem. -\subsection{Koeffizientenfunktionen\label{sub:koeffizientenfunktionen}} +\subsection{Koeffizientenfunktionen +\label{sturmliouville:sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. -Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt. +Diese Funktionen erhält man, indem man eine Differentialgleichung in die +Sturm-Liouville-Form bringt. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Kapitel diskutiert. - - +Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben +einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden +im nächsten Kapitel diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % \subsection{Das reguläre oder singuläre Sturm-Liouville-Problem -\label{sub:reguläre_sturm_liouville_problem}} +\label{sturmliouville:sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} - \label{def:reguläres_sturm-liouville-problem} + \label{sturmliouville:def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} @@ -94,11 +98,13 @@ Bedingungen beachtet werden. \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei + \item Es gelten die Randbedingungen + \eqref{sturmliouville:eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. +Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres +Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem @@ -112,8 +118,9 @@ Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres S Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im - Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit - unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Kapitel~\ref{sturmliouville:sub:reguläre_sturm_liouville_problem} an und + vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige + Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. -- cgit v1.2.1