From 8d3f5416af1f8a5ce30db4eb275be3cdae67c8eb Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 26 Jul 2022 13:53:12 +0200 Subject: makefile makefile --- buch/papers/sturmliouville/einleitung.tex | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100644 buch/papers/sturmliouville/einleitung.tex (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex new file mode 100644 index 0000000..ffcb8f3 --- /dev/null +++ b/buch/papers/sturmliouville/einleitung.tex @@ -0,0 +1,22 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Teil 0\label{sturmliouville:section:teil0}} +\rhead{Teil 0} +Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam +nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam +erat, sed diam voluptua \cite{sturmliouville:bibtex}. +At vero eos et accusam et justo duo dolores et ea rebum. +Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum +dolor sit amet. + +Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam +nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam +erat, sed diam voluptua. +At vero eos et accusam et justo duo dolores et ea rebum. Stet clita +kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit +amet. + + -- cgit v1.2.1 From 08931fd248fc0c14173b5ee9bb34e545d7d4bf03 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 26 Jul 2022 15:05:25 +0200 Subject: struktur verbessert --- buch/papers/sturmliouville/einleitung.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index ffcb8f3..073ba6e 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{sturmliouville:section:teil0}} +\section{Was ist Sturm-Liouville-Problem\label{sturmliouville:section:wa}} \rhead{Teil 0} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -- cgit v1.2.1 From 355193f2047a9c34e6a96281c73ed04cc8287c1e Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 26 Jul 2022 15:36:01 +0200 Subject: =?UTF-8?q?=C3=A4nderungen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/sturmliouville/einleitung.tex | 17 ++--------------- 1 file changed, 2 insertions(+), 15 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 073ba6e..384a642 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,20 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Was ist Sturm-Liouville-Problem\label{sturmliouville:section:wa}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{sturmliouville:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. +\section{Was ist Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} +\rhead{Einleitung} -- cgit v1.2.1 From 02ad63db71adf381e21c0230c502c3ead7e11ecc Mon Sep 17 00:00:00 2001 From: haddoucher Date: Fri, 29 Jul 2022 16:49:36 +0200 Subject: erste Variante Einleitung Kapitel "Was ist das Sturm-Liouville-Problem" --- buch/papers/sturmliouville/einleitung.tex | 58 ++++++++++++++++++++++++++++++- 1 file changed, 57 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 384a642..ec37a3f 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,7 +3,63 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Was ist Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} +\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Angenommen man hat die lineare homogene Differentialgleichung + +\begin{equation} + \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 +\end{equation} + +und schreibt die Gleichung um in: + +\begin{equation} + \label{eq:sturm-liouville-equation} + \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 +\end{equation}, + +diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. +Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. +Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen + +\begin{equation} +\begin{aligned} + \label{ali:randbedingungen} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0 +\end{aligned} +\end{equation} + +kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. +Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +der Parameter $\lambda$ wird als Eigenwert bezeichnet. +Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. +Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. +Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar + +\begin{equation} + \lambda \overset{Korrespondenz}\leftrightarrow y +\end{equation}. + +Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - +dies gilt für das Intervall (a,b). +Somit ergibt die Gleichung + +\begin{equation} + \int_{a}^{b} w(x)y_m y_n = 0 +\end{equation}. + +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. + + + + + + + -- cgit v1.2.1 From de76ac03caa4e7a09a99fe1271fb6a22a809ade2 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 2 Aug 2022 17:38:32 +0200 Subject: Was ist das Sturm-Liouville-Problem erste Version --- buch/papers/sturmliouville/einleitung.tex | 48 ++++++++++++++++++++++++++++--- 1 file changed, 44 insertions(+), 4 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index ec37a3f..7d39cf4 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -23,17 +23,30 @@ und schreibt die Gleichung um in: diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. -Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen +Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} - \label{ali:randbedingungen} + \label{eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} - + kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind,also + +\begin{equation} + y(a) = y(b) = 0 +\end{equation} + +, so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn + +\begin{equation} + y'(a) = y'(b) = 0 +\end{equation} + +ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. @@ -53,10 +66,37 @@ Somit ergibt die Gleichung \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. +Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. +Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. +Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben. + +\subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} +Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. + +\begin{itemize} + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. + \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. + \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. +\end{itemize} + +Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. + +\subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die oben genannten Bedingungen nicht erfüllt sind, d.h: +\begin{itemize} + \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder + \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. +\end{itemize} +Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. +Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen. +Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From 796815b4b22a3cae2db58125be8045a72fe30471 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 2 Aug 2022 21:17:50 +0200 Subject: Update einleitung.tex Korrektur der Einleitung --- buch/papers/sturmliouville/einleitung.tex | 84 ++++++++++++++++++++----------- 1 file changed, 54 insertions(+), 30 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 7d39cf4..44c3192 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -8,23 +8,23 @@ Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. -Angenommen man hat die lineare homogene Differentialgleichung +\begin{definition} + \index{Sturm-Liouville-Gleichung} +Angenommen man hat die lineare homogene Differentialgleichung \begin{equation} \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \end{equation} - und schreibt die Gleichung um in: - \begin{equation} \label{eq:sturm-liouville-equation} \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 -\end{equation}, +\end{equation} +, diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. +\end{definition} -diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} - \begin{equation} \begin{aligned} \label{eq:randbedingungen} @@ -32,28 +32,22 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} - kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. -Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind,also - +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also \begin{equation} y(a) = y(b) = 0 \end{equation} - , so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn - \begin{equation} y'(a) = y'(b) = 0 \end{equation} - -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden -Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. +Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar - \begin{equation} \lambda \overset{Korrespondenz}\leftrightarrow y \end{equation}. @@ -61,7 +55,6 @@ Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung - \begin{equation} \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. @@ -71,28 +64,60 @@ Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion ode Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben. +% +%Kapitel mit "Das reguläre Sturm-Liouville-Problem" +% + \subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. +\begin{definition} + \index{regläres Sturm-Liouville-Problem} + Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: + \begin{itemize} + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. + \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. + \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \end{itemize} +\end{definition} +Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. -\begin{itemize} - \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. - \item $p(x)^{-1}$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. -\end{itemize} -Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. +% +%Kapitel mit "Das singuläre Sturm-Liouville-Problem" +% \subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} -Von einem singulären Sturm-Liouville-Problem spricht man, wenn die oben genannten Bedingungen nicht erfüllt sind, d.h: +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. +\begin{definition} + \index{singuläres Sturm-Liouville-Problem} +Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: + \begin{itemize} + \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder + \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. + \end{itemize} +\end{definition} +Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. -\begin{itemize} - \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder - \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. -\end{itemize} +\begin{beispiel} + Das Randwertproblem + \begin{equation} + \begin{aligned} + x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0 Date: Thu, 11 Aug 2022 18:47:14 +0200 Subject: Beispiel & einleitung beispiel angefangen und einleitung korrigiert --- buch/papers/sturmliouville/einleitung.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 44c3192..78c1800 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -10,7 +10,7 @@ Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie ent Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. \begin{definition} - \index{Sturm-Liouville-Gleichung} + \index{Sturm-Liouville-Gleichung}% Angenommen man hat die lineare homogene Differentialgleichung \begin{equation} \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 @@ -20,7 +20,7 @@ und schreibt die Gleichung um in: \label{eq:sturm-liouville-equation} \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 \end{equation} -, diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. +, diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. @@ -71,6 +71,7 @@ Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sin \subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} + \label{def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} @@ -91,6 +92,7 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis \subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. \begin{definition} + \label{def:singulär_sturm-liouville-problem} \index{singuläres Sturm-Liouville-Problem} Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: \begin{itemize} -- cgit v1.2.1 From 9e6c6ea3f67b7bf5c0e90dec1c6dc23303b41167 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Tue, 16 Aug 2022 15:32:01 +0200 Subject: Removed unnecessary equation indices. --- buch/papers/sturmliouville/einleitung.tex | 53 ++++++++++++++----------------- 1 file changed, 24 insertions(+), 29 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 78c1800..31256eb 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -6,15 +6,15 @@ \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt, welche für die Lösung von gewohnlichen Differentialgleichungen gilt, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie zum Beispiel mit dem Separationsansatz. \begin{definition} \index{Sturm-Liouville-Gleichung}% Angenommen man hat die lineare homogene Differentialgleichung -\begin{equation} +\[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 -\end{equation} +\] und schreibt die Gleichung um in: \begin{equation} \label{eq:sturm-liouville-equation} @@ -23,7 +23,7 @@ und schreibt die Gleichung um in: , diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet. \end{definition} -Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. +Alle homogenen, linearen, gewöhnlichen, Differentialgleichungen 2.Ordnung können in die Form der Gleichung~\eqref{eq:sturm-liouville-equation} gebracht werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} @@ -34,30 +34,30 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung \end{equation} kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also -\begin{equation} +\[ y(a) = y(b) = 0 -\end{equation} +\] , so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn -\begin{equation} +\[ y'(a) = y'(b) = 0 -\end{equation} -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. +\] +ist. Die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar -\begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y -\end{equation}. +\[ + \lambda \overset{Korrespondenz}\leftrightarrow y. +\] Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung -\begin{equation} - \int_{a}^{b} w(x)y_m y_n = 0 -\end{equation}. +\[ + \int_{a}^{b} w(x)y_m y_n = 0. +\] Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. @@ -90,29 +90,29 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis \subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} -Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulären Problems nicht erfüllt sind. \begin{definition} \label{def:singulär_sturm-liouville-problem} \index{singuläres Sturm-Liouville-Problem} -Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: +Es handelt sich um ein singuläres Sturm-Liouville-Problem, \begin{itemize} \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. \end{itemize} \end{definition} -Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. +Allerdings kann auch nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. \begin{beispiel} Das Randwertproblem - \begin{equation} + \[ \begin{aligned} x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0 Date: Tue, 16 Aug 2022 16:11:37 +0200 Subject: Corrected some smaller mistakes in fourier example and added authors to files. --- buch/papers/sturmliouville/einleitung.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 31256eb..babc06d 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -1,5 +1,6 @@ % % einleitung.tex -- Beispiel-File für die Einleitung +% Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -- cgit v1.2.1