From e76aafb88c04a26d22417b65ba959cc899f00be1 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Fri, 19 Aug 2022 16:00:49 +0200 Subject: Einleitung ein wenig korrigiert --- buch/papers/sturmliouville/einleitung.tex | 53 ++++++++----------------------- 1 file changed, 14 insertions(+), 39 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index d497622..f58baf9 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -22,32 +22,24 @@ als \end{equation} geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. \end{definition} -Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. +Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} -Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also +Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. +Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} - y(a) = y(b) = 0, + \begin{aligned} + \label{eq:randbedingungen} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0. + \end{aligned} \end{equation} -so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn -\begin{equation} - y'(a) = y'(b) = 0 -\end{equation} -ergibt. +ist das klassische Sturm-Liouville-Problem. -Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} -\begin{equation} -\begin{aligned} - \label{eq:randbedingungen} - k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0 -\end{aligned} -\end{equation} -kombiniert, dann bekommt man das klassische Sturm-Liouville-Problem. \subsection{Eigenwertproblem} -Die Gleichungen \ref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems -Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems. +Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. @@ -67,14 +59,13 @@ Somit ergibt die Gleichung \subsection{Koeffizientenfunktionen} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. -Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben. +Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % -\subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} +\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} \label{def:reguläres_sturm-liouville-problem} @@ -84,30 +75,14 @@ Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. -% -%Kapitel mit "Das singuläre Sturm-Liouville-Problem" -% -\subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} -Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. -\begin{definition} - \label{def:singulär_sturm-liouville-problem} - \index{singuläres Sturm-Liouville-Problem} -Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: - \begin{itemize} - \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder - \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. - \end{itemize} -\end{definition} -Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. - \begin{beispiel} Das Randwertproblem \begin{equation} -- cgit v1.2.1 From d80e30b37d3b51fc4d47229fb3e88610fbc7a476 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Mon, 22 Aug 2022 14:43:20 +0200 Subject: neuste Version --- buch/papers/sturmliouville/einleitung.tex | 110 +++++++++++++++++++++--------- 1 file changed, 77 insertions(+), 33 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index f58baf9..62d9509 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,11 +3,31 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % + +% TODO: +% order: +% 1. State goal of showing examples in intro +% 2. Show Sturm-Liouville form +% 3. Explain boundary conditions as necessary in regards to examples +% (make singular property brief) +% +% Remove Eigenvaluedecomposition -> is discussed in properties of solutions +% Check for readability + \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} -Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen +Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem +französischen Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie +entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, +jedoch verwendet man die Theorie öfters bei der Lösung von partiellen +Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche +Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle +Differentialgleichung handelt, kann man sie in mehrere gewöhnliche +Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die +partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% @@ -18,14 +38,21 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 + \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + + \lambda w(x) \rbrack y + = + 0 \end{equation} -geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. +geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung +bezeichnet. \end{definition} -Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. +Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können +in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt +werden. \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} -Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. +Geeignete Randbedingungen sind erforderlich, um die Lösungen einer +Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} @@ -38,17 +65,24 @@ ist das klassische Sturm-Liouville-Problem. \subsection{Eigenwertproblem} -Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems. -Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines +Eigenwertproblems. +Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles +konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere +Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. -Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. +Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben +andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar \begin{equation} \lambda \overset{Korrespondenz}\leftrightarrow y. \end{equation} -Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - +Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des +Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, +$\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ +orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung \begin{equation} @@ -57,31 +91,38 @@ Somit ergibt die Gleichung \end{equation} \subsection{Koeffizientenfunktionen} -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. -Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit +ihren freien Variablen $x$ bezeichnet. +Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion +oder Dichtefunktion bezeichnet. +Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf +die Lösbarkeit des Sturm-Liouville-Problems. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % -\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} -Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. +\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem +\label{sub:reguläre_sturm_liouville_problem}} +Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige +Bedingungen beachtet werden. \begin{definition} \label{def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} - \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und + reell sein. + \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar + sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei + $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. - - - +Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige +Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu +kennen. \begin{beispiel} Das Randwertproblem @@ -92,8 +133,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{aligned} \end{equation} ist kein reguläres Sturm-Liouville-Problem. - Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. - Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben + die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Schaut man jetzt die Bedingungen im + Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese + unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. @@ -101,11 +145,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat. -Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. -Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. - - - - - +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide +Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung +eindeutige Ergebnisse hat. +Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der +Lösungsfunktion liegen. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es +immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die +Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From de0167a088a0b0a449dd47b0ab289b054605c115 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Mon, 22 Aug 2022 17:14:06 +0200 Subject: Update einleitung.tex --- buch/papers/sturmliouville/einleitung.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 62d9509..4582c95 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -38,7 +38,7 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + + \frac{d}{dx} (p(x) \frac{dy}{dx}) + \lbrack q(x) + \lambda w(x) \rbrack y = 0 -- cgit v1.2.1 From bff57008758a94a9ee104773e8faed9c6ab806b8 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 23 Aug 2022 14:08:06 +0200 Subject: Update einleitung.tex --- buch/papers/sturmliouville/einleitung.tex | 46 ++++++++----------------------- 1 file changed, 11 insertions(+), 35 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 4582c95..4ed3752 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -38,8 +38,8 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx} (p(x) \frac{dy}{dx}) + \lbrack q(x) + - \lambda w(x) \rbrack y + \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) + + \lambda w(x)) y = 0 \end{equation} @@ -50,6 +50,8 @@ Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. +Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingung, die im nächsten Unterkapitel behandelt wird. + \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. @@ -64,39 +66,15 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs ist das klassische Sturm-Liouville-Problem. -\subsection{Eigenwertproblem} -Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines -Eigenwertproblems. -Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles -konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere -Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; -der Parameter $\lambda$ wird als Eigenwert bezeichnet. -Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben -andere Eigenvektoren. -Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. -Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar -\begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y. -\end{equation} - -Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des -Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, -$\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ -orthogonal zu y - -dies gilt für das Intervall (a,b). -Somit ergibt die Gleichung -\begin{equation} - \label{eq:skalar-sturm-liouville} - \int_{a}^{b} w(x)y_m y_n = 0. -\end{equation} - -\subsection{Koeffizientenfunktionen} +\subsection{Koeffizientenfunktionen\label{sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. +Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf -die Lösbarkeit des Sturm-Liouville-Problems. +Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Kapitel diskutiert. + + % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" @@ -120,9 +98,7 @@ Bedingungen beachtet werden. $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige -Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu -kennen. +Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem @@ -136,7 +112,7 @@ kennen. Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im - Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese + Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. -- cgit v1.2.1 From 905073fc0febc0af8aa43e58868b98f4f33b98fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Tue, 23 Aug 2022 15:46:42 +0200 Subject: Corrected all labels to comply with guidelines. --- buch/papers/sturmliouville/einleitung.tex | 45 ++++++++++++++++++------------- 1 file changed, 26 insertions(+), 19 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 4ed3752..2552574 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -32,12 +32,12 @@ partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% Wenn die lineare homogene Differentialgleichung -\begin{equation} +\[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 -\end{equation} +\] als \begin{equation} - \label{eq:sturm-liouville-equation} + \label{sturmliouville:eq:sturm-liouville-equation} \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) + \lambda w(x)) y = @@ -47,18 +47,20 @@ geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können -in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt -werden. +in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} +umgewandelt werden. -Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingung, die im nächsten Unterkapitel behandelt wird. +Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die +Randbedingung, die im nächsten Unterkapitel behandelt wird. -\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} +\subsection{Randbedingungen +\label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} - \label{eq:randbedingungen} + \label{sturmliouville:eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0. \end{aligned} @@ -66,26 +68,28 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs ist das klassische Sturm-Liouville-Problem. -\subsection{Koeffizientenfunktionen\label{sub:koeffizientenfunktionen}} +\subsection{Koeffizientenfunktionen +\label{sturmliouville:sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. -Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt. +Diese Funktionen erhält man, indem man eine Differentialgleichung in die +Sturm-Liouville-Form bringt. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Kapitel diskutiert. - - +Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben +einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden +im nächsten Kapitel diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % \subsection{Das reguläre oder singuläre Sturm-Liouville-Problem -\label{sub:reguläre_sturm_liouville_problem}} +\label{sturmliouville:sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} - \label{def:reguläres_sturm-liouville-problem} + \label{sturmliouville:def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} @@ -94,11 +98,13 @@ Bedingungen beachtet werden. \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei + \item Es gelten die Randbedingungen + \eqref{sturmliouville:eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. +Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres +Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem @@ -112,8 +118,9 @@ Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres S Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im - Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit - unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Kapitel~\ref{sturmliouville:sub:reguläre_sturm_liouville_problem} an und + vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige + Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. -- cgit v1.2.1 From a966f864bde5198499f4066d2c1c97d44e51cb02 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Wed, 24 Aug 2022 12:55:52 +0200 Subject: Korrekturen Wurde einiges korrigiert. Heute abend wirds noch einmal durchgelesen. --- buch/papers/sturmliouville/einleitung.tex | 59 +++++++++++++++---------------- 1 file changed, 28 insertions(+), 31 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 2552574..08e25f2 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -15,19 +15,20 @@ % Check for readability \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} -\rhead{Einleitung} +\rhead{Was ist das Sturm-Liouville-Problem} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie -entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, -jedoch verwendet man die Theorie öfters bei der Lösung von partiellen +entwickelt. +Dies gilt für die Lösung von gewöhnlichen Differentialgleichungen, +jedoch verwendet man die Theorie beim lösen von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche -Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle -Differentialgleichung handelt, kann man sie in mehrere gewöhnliche -Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die -partielle Differentialgleichung mit mehreren Variablen. +Man betrachtet für das Strum-Liouville-Problem eine gewöhnliche +Differentialgleichung 2. Ordnung. +Wenn es sich um eine partielle +Differentialgleichung handelt, kann man sie mittels Separation in mehrere gewöhnliche +Differentialgleichungen umwandeln. \begin{definition} \index{Sturm-Liouville-Gleichung}% @@ -43,7 +44,7 @@ als = 0 \end{equation} -geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung +geschrieben werden kann, dann wird die Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können @@ -51,7 +52,7 @@ in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} umgewandelt werden. Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die -Randbedingung, die im nächsten Unterkapitel behandelt wird. +Randbedingung, die im nächsten Unterkapitel behandelt wird. \subsection{Randbedingungen \label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} @@ -62,7 +63,7 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{aligned} \label{sturmliouville:eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0. + k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} ist das klassische Sturm-Liouville-Problem. @@ -70,21 +71,21 @@ ist das klassische Sturm-Liouville-Problem. \subsection{Koeffizientenfunktionen \label{sturmliouville:sub:koeffizientenfunktionen}} -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit -ihren freien Variablen $x$ bezeichnet. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen +bezeichnet. Diese Funktionen erhält man, indem man eine Differentialgleichung in die -Sturm-Liouville-Form bringt. +Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden -im nächsten Kapitel diskutiert. +im nächsten Kapitel diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % -\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem +\subsection{Das reguläre und singuläre Sturm-Liouville-Problem \label{sturmliouville:sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. @@ -94,8 +95,8 @@ Bedingungen beachtet werden. Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und - reell sein. - \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar + reell sein + \item sowie in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. \item Es gelten die Randbedingungen @@ -103,36 +104,32 @@ Bedingungen beachtet werden. $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres +Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem \begin{equation} \begin{aligned} - x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0 Date: Thu, 25 Aug 2022 13:38:43 +0200 Subject: Minor changes. --- buch/papers/sturmliouville/einleitung.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 08e25f2..4701b8a 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -1,5 +1,6 @@ % % einleitung.tex -- Beispiel-File für die Einleitung +% Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % @@ -7,7 +8,7 @@ % TODO: % order: % 1. State goal of showing examples in intro -% 2. Show Sturm-Liouville form +% 2. Show Sturm-Liouville form % 3. Explain boundary conditions as necessary in regards to examples % (make singular property brief) % -- cgit v1.2.1 From 4241483d86a2803e284f734af690d88c0d1f6dfe Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 25 Aug 2022 16:59:37 +0200 Subject: korrigiert Tschebyscheff-Polynome und Einleitung --- buch/papers/sturmliouville/einleitung.tex | 24 +++++++++++------------- 1 file changed, 11 insertions(+), 13 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 08e25f2..6c5fb59 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -21,14 +21,11 @@ Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt. -Dies gilt für die Lösung von gewöhnlichen Differentialgleichungen, -jedoch verwendet man die Theorie beim lösen von partiellen -Differentialgleichungen. -Man betrachtet für das Strum-Liouville-Problem eine gewöhnliche -Differentialgleichung 2. Ordnung. +Dieses gilt für die Lösung von gewöhnlichen Differentialgleichungen oder +partielle Differentialgleichung. Wenn es sich um eine partielle -Differentialgleichung handelt, kann man sie mittels Separation in mehrere gewöhnliche -Differentialgleichungen umwandeln. +Differentialgleichung handelt, kann man sie mittels Separation in +mehrere gewöhnliche Differentialgleichungen umwandeln. \begin{definition} \index{Sturm-Liouville-Gleichung}% @@ -52,7 +49,7 @@ in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} umgewandelt werden. Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die -Randbedingung, die im nächsten Unterkapitel behandelt wird. +Randbedingungen, die im nächsten Unterkapitel behandelt wird. \subsection{Randbedingungen \label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} @@ -77,9 +74,9 @@ Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben +Die Eigenschaften der Koeffizientenfunktionen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden -im nächsten Kapitel diskutiert. +im nächsten Abschnitt diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" @@ -130,6 +127,7 @@ Sturm-Liouville-Problem. \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder mehrere -Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung -eindeutig ist. +Bei einem regulärem Problem, besteht die Lösung nur aus Eigenvektoren. +Handelt es sich um ein singuläres Problem, so besteht die Lösung im Allgemeinen +nicht mehr nur aus Eigenvektoren. + -- cgit v1.2.1 From a1a9823fa9396d39d77b11d0c77b62df09a3bac8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Thu, 25 Aug 2022 21:38:04 +0200 Subject: Some corrections in intro and chebyshev example. --- buch/papers/sturmliouville/einleitung.tex | 26 ++++++++------------------ 1 file changed, 8 insertions(+), 18 deletions(-) (limited to 'buch/papers/sturmliouville/einleitung.tex') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index b2d01f0..2299c3c 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -5,16 +5,6 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -% TODO: -% order: -% 1. State goal of showing examples in intro -% 2. Show Sturm-Liouville form -% 3. Explain boundary conditions as necessary in regards to examples -% (make singular property brief) -% -% Remove Eigenvaluedecomposition -> is discussed in properties of solutions -% Check for readability - \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Was ist das Sturm-Liouville-Problem} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen @@ -22,10 +12,9 @@ Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt. -Dieses gilt für die Lösung von gewöhnlichen Differentialgleichungen oder -partielle Differentialgleichung. -Wenn es sich um eine partielle -Differentialgleichung handelt, kann man sie mittels Separation in +Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen. +Handelt es sich um eine partielle +Differentialgleichung, kann man sie mittels Separation in mehrere gewöhnliche Differentialgleichungen umwandeln. \begin{definition} @@ -42,8 +31,9 @@ als = 0 \end{equation} -geschrieben werden kann, dann wird die Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung -bezeichnet. +geschrieben werden kann, dann wird die +Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als +Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} @@ -102,8 +92,8 @@ Bedingungen beachtet werden. $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres -Sturm-Liouville-Problem. +Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um +ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem -- cgit v1.2.1