From 905073fc0febc0af8aa43e58868b98f4f33b98fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Tue, 23 Aug 2022 15:46:42 +0200 Subject: Corrected all labels to comply with guidelines. --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index cad71d7..18e6198 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -5,15 +5,15 @@ % \subsection{Sind Tschebyscheff-Polynome orthogonal zueinander? -\label{sub:tschebyscheff-polynome}} +\label{sturmliouville:sub:tschebyscheff-polynome}} \subsubsection*{Definition der Koeffizientenfunktion} Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ - q(x) &= 0 -\end{align*}. + q(x) &= 0. +\end{align*} Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} @@ -27,7 +27,7 @@ ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. \subsubsection*{regulär oder singulär?} Für das reguläre Problem laut der -Definition~\ref{def:reguläres_sturm-liouville-problem} muss die funktion +Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe @@ -55,7 +55,8 @@ ist die gleiche wie $w(x)$ und erfüllt die Bedingung. Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. -Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man +Beim einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen}, +erhält man \begin{equation} \begin{aligned} k_a y(-1) + h_a y'(-1) &= 0\\ @@ -81,8 +82,9 @@ auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. \begin{beispiel} - Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und - $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + Die Gleichung \eqref{eq:skalar-sturm-liouville} mit + $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ + ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. \] -- cgit v1.2.1 From a966f864bde5198499f4066d2c1c97d44e51cb02 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Wed, 24 Aug 2022 12:55:52 +0200 Subject: Korrekturen Wurde einiges korrigiert. Heute abend wirds noch einmal durchgelesen. --- .../sturmliouville/tschebyscheff_beispiel.tex | 92 +++++++++++----------- 1 file changed, 46 insertions(+), 46 deletions(-) (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 18e6198..8f673a5 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,14 +4,15 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander? +\subsection{Tschebyscheff-Polynome \label{sturmliouville:sub:tschebyscheff-polynome}} +\rhead{Tschebyscheff-Polynome} \subsubsection*{Definition der Koeffizientenfunktion} Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die -Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit +Koeffizientenfunktionen, die man braucht, schon aufgelistet: \begin{align*} - w(x) &= \frac{1}{\sqrt{1-x^2}} \\ - p(x) &= \sqrt{1-x^2} \\ + w(x) &= \frac{1}{\sqrt{1-x^2}}, \\ + p(x) &= \sqrt{1-x^2}, \\ q(x) &= 0. \end{align*} Da die Sturm-Liouville-Gleichung @@ -24,66 +25,65 @@ Da die Sturm-Liouville-Gleichung \end{equation} nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. - -\subsubsection*{regulär oder singulär?} -Für das reguläre Problem laut der -Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} muss die funktion -$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und -$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe -von Hyperbelfunktionen -\begin{equation} - T_n(x) - = - \cos n (\arccos x) -\end{equation}. -Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: -\begin{equation} - T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ - (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. -\end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein -müssen. -Die Funktion -\begin{equation*} - p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} -\end{equation*} -ist die gleiche wie $w(x)$ und erfüllt die Bedingung. +Zunächst werden jedoch die Randbedingungen betrachtet. \subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, -sind $a = -1$ und $b = 1$ gesetzt. -Beim einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen}, +Die Randwerte setzt man $a = -1$ und $b = 1$. +Beim Einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen}, erhält man \begin{equation} -\begin{aligned} - k_a y(-1) + h_a y'(-1) &= 0\\ - k_b y(-1) + h_b y'(-1) &= 0. -\end{aligned} + \begin{aligned} + k_a y(-1) + h_a y'(-1) &= 0\\ + k_b y(-1) + h_b y'(-1) &= 0. + \end{aligned} \end{equation} Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die -Verifizierung der Randbedingung wählt man $n=2$. +Verifizierung der Randbedingung wählt man $n=0$. Somit erhält man \begin{equation} \begin{aligned} - k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ - k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. + k_a T_0(-1) + h_a T_{0}'(-1) &= k_a = 0\\ + k_b T_0(1) + h_b T_{0}'(1) &= k_b = 0. \end{aligned} \end{equation} Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, -damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige +damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome -auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden -Lösungen orthogonal sind. +Es wird also erneut gezeigt, dass die Randbedingungen $[-1,1]$, +die Sturm-Liouville-Randbedingungen erfüllen. + +\subsubsection*{regulär oder singulär?} +Für das reguläre Problem muss laut der +Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion +$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und +$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein. +Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art +\begin{equation} + T_n(x) + = + \cos n (\arccos x). +\end{equation} +Die nächste Bedingung, laut der Definition \ref{sturmliouville:def:reguläres_sturm-liouville-problem}, beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein +müssen. +Die Funktion +\begin{equation*} + p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} +\end{equation*} +ist die gleiche wie $w(x)$ und erfüllt die Bedingung. + + \begin{beispiel} - Die Gleichung \eqref{eq:skalar-sturm-liouville} mit - $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ + Die Gleichung + \[ + \int_{a}^{b} w(x) y_m y_n = 0 + \] + + mit + $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. -- cgit v1.2.1 From a2a2826f4def7a43570e521e9ad9b5b653f34456 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Thu, 25 Aug 2022 13:40:26 +0200 Subject: Recommiting, something went wrong last time. --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 8f673a5..b247441 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -1,5 +1,6 @@ % % tschebyscheff_beispiel.tex +% Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -- cgit v1.2.1