From e27b521c00cdde53f0cbc0f0051881b5242adadc Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 11 Aug 2022 18:47:14 +0200 Subject: Beispiel & einleitung beispiel angefangen und einleitung korrigiert --- .../sturmliouville/tschebyscheff_beispiel.tex | 51 +++++++++++++++++++++- 1 file changed, 50 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 54f13d4..391841a 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,4 +4,53 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Tschebyscheff} \ No newline at end of file +\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit +\begin{align*} + w(x) &= \frac{1}{\sqrt{1-x^2}} \\ + p(x) &= \sqrt{1-x^2} \\ + q(x) &= 0 +\end{align*}. +Da die Sturm-Liouville-Gleichung +\begin{equation} + \label{eq:sturm-liouville-equation} + \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 +\end{equation} +nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. +Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. +Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen +\begin{equation} + T_n(x) = \cos n (\arccos x) +\end{equation}. +Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: +\begin{equation} + T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ + (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. +\end{equation}, +jedoch ist die Orthogonalität nur auf dem Intervall $\[ -1, 1\]$ sichergestellt. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. +Die Funktion +\begin{equation*} + p(x)^-1 = \frac{1}{\sqrt{1-x^2}} +\end{equation*} +ist die gleiche wie $w(x)$. + +Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. +Da sich die Polynome nur auf dem Intervall $\[ -1,1 \]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man +\begin{equation} +\begin{aligned} + k_a y(-1) + h_a y'(-1) &= h_a +\end{aligned} +\end{equation} + + + + + + + + + + + -- cgit v1.2.1