From e76aafb88c04a26d22417b65ba959cc899f00be1 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Fri, 19 Aug 2022 16:00:49 +0200 Subject: Einleitung ein wenig korrigiert --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 3817dc0..c304632 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -41,29 +41,27 @@ ist die gleiche wie $w(x)$ und erfüllt die Bedingung. \subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. -Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man +Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= 0 + k_a y(-1) + h_a y'(-1) &= 0\\ k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \end{equation} -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). -Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. -Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. Somit erhält man \begin{equation} \begin{aligned} k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. -\end{aligned} + \end{aligned} \end{equation} Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. \begin{beispiel} - Die Gleichung \ref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. \] -- cgit v1.2.1