From 3e57ab690350ad4ab447cdd0d263d87c414c96b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 15:53:20 +0200 Subject: Added boundary condiutions for fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 54 ++++++++++++++++++++-- 1 file changed, 49 insertions(+), 5 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 64bf974..243d0e1 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,10 +1,11 @@ % % waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +%%%%%%%%%%%%%%%%%%%%%%%%%%% Erster Entwurf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsubsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Wärmeleitung in einem Homogenen Stab} In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses @@ -12,9 +13,52 @@ physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem -die partielle Differentialgleichung - +die partielle Differentialgleichung \[ \frac{\partial u}{\partial t} = - \kappa \frac{\partial^{2}u}{{\partial x}^{2}}. -\] \ No newline at end of file + \kappa \frac{\partial^{2}u}{{\partial x}^{2}} +\] +wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. + +Da diese Differentialgleichung das Problem allgemein für einen homogenen +Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise +die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter +Tempreatur gehalten werden. + +%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% + +\subsubsection{Stab mit Enden auf konstanter Temperatur} + +Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die +Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene +Temperatur zurückgeben darf. Es folgen nun +\[ + u(t,0) + = + u(t,l) + = + 0 +\] +als Randbedingungen. + +%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% + +\subsubsection{Stab mit isolierten Enden} + +Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +an die Umgebung oder von der Umgebung an den Stab abgegeben wird. + +Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen +Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt +werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder +indem die partielle Ableitung von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +verschwinden. Somit folgen +\[ + \frac{\partial}{\partial x} u(t, 0) + = + \frac{\partial}{\partial x} u(t, l) + = + 0 +\] +als Randbedingungen. \ No newline at end of file -- cgit v1.2.1