From a1a9823fa9396d39d77b11d0c77b62df09a3bac8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Thu, 25 Aug 2022 21:38:04 +0200 Subject: Some corrections in intro and chebyshev example. --- buch/papers/sturmliouville/einleitung.tex | 26 +++++++--------------- .../sturmliouville/tschebyscheff_beispiel.tex | 13 ++++++----- 2 files changed, 15 insertions(+), 24 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index b2d01f0..2299c3c 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -5,16 +5,6 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -% TODO: -% order: -% 1. State goal of showing examples in intro -% 2. Show Sturm-Liouville form -% 3. Explain boundary conditions as necessary in regards to examples -% (make singular property brief) -% -% Remove Eigenvaluedecomposition -> is discussed in properties of solutions -% Check for readability - \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Was ist das Sturm-Liouville-Problem} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen @@ -22,10 +12,9 @@ Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt. -Dieses gilt für die Lösung von gewöhnlichen Differentialgleichungen oder -partielle Differentialgleichung. -Wenn es sich um eine partielle -Differentialgleichung handelt, kann man sie mittels Separation in +Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen. +Handelt es sich um eine partielle +Differentialgleichung, kann man sie mittels Separation in mehrere gewöhnliche Differentialgleichungen umwandeln. \begin{definition} @@ -42,8 +31,9 @@ als = 0 \end{equation} -geschrieben werden kann, dann wird die Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung -bezeichnet. +geschrieben werden kann, dann wird die +Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als +Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} @@ -102,8 +92,8 @@ Bedingungen beachtet werden. $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres -Sturm-Liouville-Problem. +Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um +ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 5ede99d..5fb3a0c 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -9,9 +9,10 @@ \label{sturmliouville:sub:tschebyscheff-polynome}} \rhead{Tschebyscheff-Polynome} In diesem Unterkapitel wird anhand der -Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind. +Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} +gezeigt, dass die Tschebyscheff-Polynome orthogonal zueinander sind. Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass -überprüft werden kann, ob die Randbedingungen erfüllt werden können. +überprüft werden kann, ob die Randbedingungen erfüllt werden. Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine kleine Rechnung, dass die Lösungen orthogonal sind. @@ -43,7 +44,7 @@ erhält man \begin{equation} \begin{aligned} k_a y(-1) + h_a p(-1) y'(-1) &= 0\\ - k_b y(1) + h_b p(1) y'(-1) &= 0. + k_b y(1) + h_b p(1) y'(1) &= 0. \end{aligned} \end{equation} Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome @@ -62,7 +63,7 @@ damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind. -\subsubsection*{Handelt es sich um ein reguläres oder Singuläres Problem?} +\subsubsection*{Handelt es sich um ein reguläres oder singuläres Problem?} Für das reguläre Problem muss laut der Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und @@ -92,8 +93,8 @@ Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Stu \[ \int_{a}^{b} w(x) y_m y_n = 0. \] - Eigesetzt ergibt dies $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$ - ergibt + mit $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$. + Eigesetzt ergibt dies \[ \begin{aligned} \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &= -- cgit v1.2.1