From 7741ac8b2c6ab763085df9602bf9af4cefa1ff43 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 18 Aug 2022 11:35:51 +0200 Subject: Added revision remarks to source of fourier example. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index a72c562..fd1659f 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -5,12 +5,16 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Fourierreihe als Lösung des Sturm-Liouville-Problems +(Wärmeleitung)} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. +% TODO: u is dependent on 2 variables (t, x) +% TODO: mention initial conditions u(0, x) + Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$ betrachtet. Es ergibt sich für das Wärmeleitungsproblem @@ -355,6 +359,9 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} +% TODO: infinite base vectors and fourier series +\subsubsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} + % % Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. % @@ -642,6 +649,8 @@ ergibt. Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt werden um die vollständige Lösung für das Stab-Problem zu erhalten. +% TODO: elaborate + \subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} -- cgit v1.2.1 From d65bf90a7e01a26407f7891cea3831bf43029a40 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 18 Aug 2022 11:48:45 +0200 Subject: Added some structure hints and subsections. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 5 +++++ 1 file changed, 5 insertions(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index fd1659f..ea84d46 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -362,6 +362,11 @@ wie auch mit isolierten Enden % TODO: infinite base vectors and fourier series \subsubsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} +% TODO: check ease of reading +\subsubsection{Berechnung der Koeffizienten} + +% TODO: move explanation A/B -> a_n/b_n to fourier subsection + % % Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. % -- cgit v1.2.1 From 6045f3002a4dd4f214a8b4c66786a0d9916084ac Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 19 Aug 2022 13:40:41 +0200 Subject: Minor correction. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index ea84d46..4992150 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -24,7 +24,7 @@ die partielle Differentialgleichung \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}}, \end{equation} -wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt. +wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise -- cgit v1.2.1 From 89713bfdec5519956942a81e52ba11ed742730e0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 19 Aug 2022 16:10:08 +0200 Subject: Commit before merging and revising all work. --- buch/papers/sturmliouville/eigenschaften.tex | 9 +++++++++ 1 file changed, 9 insertions(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index bef8a39..7ac2d92 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -4,10 +4,19 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % + + \section{Eigenschaften von Lösungen \label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% \section{OLD: Eigenschaften von Lösungen} +% \label{sturmliouville:section:solution-properties}} +% \rhead{Eigenschaften von Lösungen} + Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften zustande kommen. -- cgit v1.2.1 From ceb14483a272c5e78f43baf858312d0f6d45d39b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 19 Aug 2022 16:13:05 +0200 Subject: Commiting again. (Some changes weren't captured.) --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 3817dc0..f0e6860 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -48,7 +48,7 @@ Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \end{equation} -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:tschebyscheff-polynome}). Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. -- cgit v1.2.1 From 122c15094eb58f62ff8fac3e97d85dcdd5fcddc1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Fri, 19 Aug 2022 16:59:11 +0200 Subject: Reformatted code to comply with guidelines. --- buch/papers/sturmliouville/einleitung.tex | 99 ++++++++++++++-------- .../sturmliouville/tschebyscheff_beispiel.tex | 61 +++++++------ 2 files changed, 101 insertions(+), 59 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index f58baf9..324fa8f 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -5,9 +5,18 @@ % \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} -Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen +Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem +französischen Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie +entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, +jedoch verwendet man die Theorie öfters bei der Lösung von partiellen +Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche +Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle +Differentialgleichung handelt, kann man sie in mehrere gewöhnliche +Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die +partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% @@ -18,14 +27,21 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 + \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + + \lambda w(x) \rbrack y + = + 0 \end{equation} -geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. +geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung +bezeichnet. \end{definition} -Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. +Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können +in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt +werden. \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} -Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. +Geeignete Randbedingungen sind erforderlich, um die Lösungen einer +Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} @@ -38,17 +54,24 @@ ist das klassische Sturm-Liouville-Problem. \subsection{Eigenwertproblem} -Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems. -Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines +Eigenwertproblems. +Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles +konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere +Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. -Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. +Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben +andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar \begin{equation} \lambda \overset{Korrespondenz}\leftrightarrow y. \end{equation} -Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - +Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des +Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, +$\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ +orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung \begin{equation} @@ -57,31 +80,38 @@ Somit ergibt die Gleichung \end{equation} \subsection{Koeffizientenfunktionen} -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. -Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit +ihren freien Variablen $x$ bezeichnet. +Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion +oder Dichtefunktion bezeichnet. +Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf +die Lösbarkeit des Sturm-Liouville-Problems. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % -\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} -Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. +\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem +\label{sub:reguläre_sturm_liouville_problem}} +Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige +Bedingungen beachtet werden. \begin{definition} \label{def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} - \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und + reell sein. + \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar + sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei + $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. - - - +Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige +Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu +kennen. \begin{beispiel} Das Randwertproblem @@ -92,8 +122,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{aligned} \end{equation} ist kein reguläres Sturm-Liouville-Problem. - Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. - Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben + die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Schaut man jetzt die Bedingungen im + Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese + unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. @@ -101,11 +134,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat. -Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. -Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. - - - - - +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide +Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung +eindeutige Ergebnisse hat. +Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der +Lösungsfunktion liegen. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es +immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die +Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index c304632..cad71d7 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,9 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}} +\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander? +\label{sub:tschebyscheff-polynome}} \subsubsection*{Definition der Koeffizientenfunktion} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die +Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ @@ -15,15 +17,25 @@ Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfun Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} - \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0 + \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y + = + 0 \end{equation} -nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. +nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, +ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. \subsubsection*{regulär oder singulär?} -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen +Für das reguläre Problem laut der +Definition~\ref{def:reguläres_sturm-liouville-problem} muss die funktion +$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und +$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. +Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe +von Hyperbelfunktionen \begin{equation} - T_n(x) = \cos n (\arccos x) + T_n(x) + = + \cos n (\arccos x) \end{equation}. Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: \begin{equation} @@ -31,7 +43,8 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein +müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} @@ -40,7 +53,8 @@ ist die gleiche wie $w(x)$ und erfüllt die Bedingung. \subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, +sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} @@ -48,8 +62,10 @@ Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \end{equation} -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). -Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome +(siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die +Verifizierung der Randbedingung wählt man $n=2$. Somit erhält man \begin{equation} \begin{aligned} @@ -57,24 +73,17 @@ Somit erhält man k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} \end{equation} -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, +damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige +$h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome +auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden +Lösungen orthogonal sind. \begin{beispiel} - Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und + $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. \] \end{beispiel} - - - - - - - - - - - - -- cgit v1.2.1 From 578b2428f3e2a1be020de0254c6e1e679aca1957 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Sat, 20 Aug 2022 15:00:08 +0200 Subject: Added hints for revised structure. --- buch/papers/sturmliouville/eigenschaften.tex | 17 +++++++++++++++-- buch/papers/sturmliouville/einleitung.tex | 11 +++++++++++ 2 files changed, 26 insertions(+), 2 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 7ac2d92..6085e75 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -10,6 +10,19 @@ \label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} +% TODO: +% state goal +% use only what is necessary +% make sure it is easy enough to understand (sentences as shot as possible) +% -> Eigenvalue problem with matrices only +% -> prepare reader for following examples +% +% order: +% 1. Eigenvalue problems with matrices +% 2. Sturm-Liouville is an Eigenvalue prolem +% 3. Sturm-Liouville operator (selfadjacent) +% 4. Spektralsatz (brief) +% 5. Base of orthonormal functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -21,7 +34,7 @@ Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften zustande kommen. -Dazu wird der Operator $L_0$ welcher bereits in +Dazu wird der Operator $L_0$ welcher bereits in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, noch etwas genauer angeschaut. Es wird also im Folgenden @@ -85,7 +98,7 @@ des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des Skalarprodukts, in dem $L_0$ selbstadjungiert ist. Erfüllt also eine Differenzialgleichung die in -Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und +Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die Lösungsfunktion des Problems eine Linearkombination aus orthogonalen diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 324fa8f..62d9509 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,6 +3,17 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % + +% TODO: +% order: +% 1. State goal of showing examples in intro +% 2. Show Sturm-Liouville form +% 3. Explain boundary conditions as necessary in regards to examples +% (make singular property brief) +% +% Remove Eigenvaluedecomposition -> is discussed in properties of solutions +% Check for readability + \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen -- cgit v1.2.1 From 59c0b79063b76b84f64203685bfdb2768a69b984 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Sun, 21 Aug 2022 23:48:29 +0200 Subject: Started revised draft of solution properties. --- buch/papers/sturmliouville/eigenschaften.tex | 64 ++++++++++++++++++++++------ 1 file changed, 52 insertions(+), 12 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 6085e75..4ab5e62 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -5,11 +5,6 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % - -\section{Eigenschaften von Lösungen -\label{sturmliouville:section:solution-properties}} -\rhead{Eigenschaften von Lösungen} - % TODO: % state goal % use only what is necessary @@ -19,16 +14,59 @@ % % order: % 1. Eigenvalue problems with matrices -% 2. Sturm-Liouville is an Eigenvalue prolem -% 3. Sturm-Liouville operator (selfadjacent) -% 4. Spektralsatz (brief) +% 2. Sturm-Liouville is an Eigenvalue problem +% 3. Sturm-Liouville operator (self-adjacent) +% 4. Spectral theorem (brief) % 5. Base of orthonormal functions +\section{Eigenschaften von Lösungen +\label{sturmliouville:section:solution-properties}} +\rhead{Eigenschaften von Lösungen} + +Im weiteren werden nun die Eigenschaften der Lösungen eines +Sturm-Liouville-Problems diskutiert. +Im wesendlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen +zustande kommt. +Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut +unter welchen Voraussetzungen die Lösungen orthogonal sind. +Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem +dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion +geschlossen. + +\subsection{Eigenwertprobleme mit Matrizen} + +Das Eigenwertprobelm +\[ + A v + = + \lambda v +\] +für die $n \times n$-Matrix $A$, dem Eigenwert $\lambda$ und dem Eigenvektor $v$ +in der linearen Algebra wird häufig im Zusammenhang mit +Matrixzerlegungen diskutiert. + +Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn +\[ + + = + +\] +gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und somit eine +Orthonormalbasis aus Eigenvektoren besitzt. +In aneren Worten: durch diese Eigenschaft ist gegeben, dass A diagonalisierbar +ist und alle Eigenvektoren orthogonal zueinander sind. + +\subsection{} + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% \section{OLD: Eigenschaften von Lösungen} -% \label{sturmliouville:section:solution-properties}} -% \rhead{Eigenschaften von Lösungen} +\iffalse + +\section{OLD: Eigenschaften von Lösungen +%\label{sturmliouville:section:solution-properties} +} +\rhead{Eigenschaften von Lösungen} Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften @@ -102,4 +140,6 @@ Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die Lösungsfunktion des Problems eine Linearkombination aus orthogonalen -Basisfunktionen ist. \ No newline at end of file +Basisfunktionen ist. + +\fi -- cgit v1.2.1 From d80e30b37d3b51fc4d47229fb3e88610fbc7a476 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Mon, 22 Aug 2022 14:43:20 +0200 Subject: neuste Version --- buch/papers/sturmliouville/eigenschaften.tex | 105 ++++++++++++++++---- buch/papers/sturmliouville/einleitung.tex | 110 ++++++++++++++------- .../sturmliouville/tschebyscheff_beispiel.tex | 61 +++++++----- .../sturmliouville/waermeleitung_beispiel.tex | 50 ++++++---- 4 files changed, 231 insertions(+), 95 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index fda8be6..4ab5e62 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -1,17 +1,78 @@ % % eigenschaften.tex -- Eigenschaften der Lösungen +% Author: Erik Löffler % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % + +% TODO: +% state goal +% use only what is necessary +% make sure it is easy enough to understand (sentences as shot as possible) +% -> Eigenvalue problem with matrices only +% -> prepare reader for following examples +% +% order: +% 1. Eigenvalue problems with matrices +% 2. Sturm-Liouville is an Eigenvalue problem +% 3. Sturm-Liouville operator (self-adjacent) +% 4. Spectral theorem (brief) +% 5. Base of orthonormal functions + \section{Eigenschaften von Lösungen \label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} +Im weiteren werden nun die Eigenschaften der Lösungen eines +Sturm-Liouville-Problems diskutiert. +Im wesendlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen +zustande kommt. +Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut +unter welchen Voraussetzungen die Lösungen orthogonal sind. +Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem +dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion +geschlossen. + +\subsection{Eigenwertprobleme mit Matrizen} + +Das Eigenwertprobelm +\[ + A v + = + \lambda v +\] +für die $n \times n$-Matrix $A$, dem Eigenwert $\lambda$ und dem Eigenvektor $v$ +in der linearen Algebra wird häufig im Zusammenhang mit +Matrixzerlegungen diskutiert. + +Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn +\[ + + = + +\] +gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und somit eine +Orthonormalbasis aus Eigenvektoren besitzt. +In aneren Worten: durch diese Eigenschaft ist gegeben, dass A diagonalisierbar +ist und alle Eigenvektoren orthogonal zueinander sind. + +\subsection{} + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\iffalse + +\section{OLD: Eigenschaften von Lösungen +%\label{sturmliouville:section:solution-properties} +} +\rhead{Eigenschaften von Lösungen} + Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften zustande kommen. -Dazu wird der Operator $L_0$ welcher bereits in +Dazu wird der Operator $L_0$ welcher bereits in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, noch etwas genauer angeschaut. Es wird also im Folgenden @@ -36,43 +97,49 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. -Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem -endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadungiert ist, also dass + +Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu +zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass \[ \langle Av, w \rangle = \langle v, Aw \rangle \] -für $ v, w \in \mathbb{K}^n$ gilt. -Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für -Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, -wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. +für $ v, w \in \mathbb{R}^n$ gilt. +Ist dies der Fall, kann die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended werden. +Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, +wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}. -Dieser besagt, dass wenn ein linearer kompakter Operator in -$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) -Orthonormalsystem existiert. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}, welcher für das +Sturm-Liouville-Problem von Bedeutung ist. +Welche Voraussetzungen erfüllt sein müssen, um diese Version des +Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den +Beispielen in diesem Kapitel als gegeben betrachtet werden. +Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, +also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, +falls er selbstadjungiert ist. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine Orthonormalbasis aus Eigenvektoren existiert. Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen -des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich dem -Skalarprodukt, in dem $L_0$ selbstadjungiert ist. +des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des +Skalarprodukts, in dem $L_0$ selbstadjungiert ist. Erfüllt also eine Differenzialgleichung die in -Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und +Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die Lösungsfunktion des Problems eine Linearkombination aus orthogonalen -Basisfunktionen ist. \ No newline at end of file +Basisfunktionen ist. + +\fi diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index f58baf9..62d9509 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,11 +3,31 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % + +% TODO: +% order: +% 1. State goal of showing examples in intro +% 2. Show Sturm-Liouville form +% 3. Explain boundary conditions as necessary in regards to examples +% (make singular property brief) +% +% Remove Eigenvaluedecomposition -> is discussed in properties of solutions +% Check for readability + \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} -Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen +Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem +französischen Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie +entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, +jedoch verwendet man die Theorie öfters bei der Lösung von partiellen +Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche +Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle +Differentialgleichung handelt, kann man sie in mehrere gewöhnliche +Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die +partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% @@ -18,14 +38,21 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 + \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + + \lambda w(x) \rbrack y + = + 0 \end{equation} -geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. +geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung +bezeichnet. \end{definition} -Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. +Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können +in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt +werden. \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} -Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. +Geeignete Randbedingungen sind erforderlich, um die Lösungen einer +Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} @@ -38,17 +65,24 @@ ist das klassische Sturm-Liouville-Problem. \subsection{Eigenwertproblem} -Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems. -Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines +Eigenwertproblems. +Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles +konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere +Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. -Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. +Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben +andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar \begin{equation} \lambda \overset{Korrespondenz}\leftrightarrow y. \end{equation} -Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - +Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des +Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, +$\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ +orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung \begin{equation} @@ -57,31 +91,38 @@ Somit ergibt die Gleichung \end{equation} \subsection{Koeffizientenfunktionen} -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. -Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit +ihren freien Variablen $x$ bezeichnet. +Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion +oder Dichtefunktion bezeichnet. +Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf +die Lösbarkeit des Sturm-Liouville-Problems. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % -\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} -Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. +\subsection{Das reguläre oder singuläre Sturm-Liouville-Problem +\label{sub:reguläre_sturm_liouville_problem}} +Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige +Bedingungen beachtet werden. \begin{definition} \label{def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} - \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und + reell sein. + \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar + sein. \item $p(x)$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \item Es gelten die Randbedingungen \eqref{eq:randbedingungen}, wobei + $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. - - - +Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige +Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu +kennen. \begin{beispiel} Das Randwertproblem @@ -92,8 +133,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{aligned} \end{equation} ist kein reguläres Sturm-Liouville-Problem. - Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. - Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: + Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben + die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Schaut man jetzt die Bedingungen im + Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese + unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist. @@ -101,11 +145,11 @@ Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaft \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat. -Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. -Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. - - - - - +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide +Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung +eindeutige Ergebnisse hat. +Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der +Lösungsfunktion liegen. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es +immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die +Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index c304632..cad71d7 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,9 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}} +\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander? +\label{sub:tschebyscheff-polynome}} \subsubsection*{Definition der Koeffizientenfunktion} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die +Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ @@ -15,15 +17,25 @@ Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfun Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} - \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0 + \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y + = + 0 \end{equation} -nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. +nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, +ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. \subsubsection*{regulär oder singulär?} -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen +Für das reguläre Problem laut der +Definition~\ref{def:reguläres_sturm-liouville-problem} muss die funktion +$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und +$w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. +Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe +von Hyperbelfunktionen \begin{equation} - T_n(x) = \cos n (\arccos x) + T_n(x) + = + \cos n (\arccos x) \end{equation}. Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: \begin{equation} @@ -31,7 +43,8 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein +müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} @@ -40,7 +53,8 @@ ist die gleiche wie $w(x)$ und erfüllt die Bedingung. \subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, +sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} @@ -48,8 +62,10 @@ Beim einsetzen in die Randbedingung \eqref{eq:randbedingungen}, erhält man k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \end{equation} -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). -Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome +(siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die +Verifizierung der Randbedingung wählt man $n=2$. Somit erhält man \begin{equation} \begin{aligned} @@ -57,24 +73,17 @@ Somit erhält man k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} \end{equation} -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, +damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige +$h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome +auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden +Lösungen orthogonal sind. \begin{beispiel} - Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + Die Gleichung \eqref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und + $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt \[ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. \] \end{beispiel} - - - - - - - - - - - - diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index b22d5f5..4992150 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,15 +1,20 @@ % -% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +% Author: Erik Löffler % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Fourierreihe als Lösung des Sturm-Liouville-Problems +(Wärmeleitung)} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. +% TODO: u is dependent on 2 variables (t, x) +% TODO: mention initial conditions u(0, x) + Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$ betrachtet. Es ergibt sich für das Wärmeleitungsproblem @@ -17,9 +22,9 @@ die partielle Differentialgleichung \begin{equation} \label{sturmliouville:eq:example-fourier-heat-equation} \frac{\partial u}{\partial t} = - \kappa \frac{\partial^{2}u}{{\partial x}^{2}} + \kappa \frac{\partial^{2}u}{{\partial x}^{2}}, \end{equation} -wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. +wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise @@ -34,7 +39,7 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. -Es folgen nun +Es folgt nun \begin{equation} \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} u(t,0) @@ -51,7 +56,7 @@ als Randbedingungen. \subsubsection{Randbedingungen für Stab mit isolierten Enden} -Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. @@ -186,8 +191,9 @@ somit auch zu orthogonalen Lösungen führen. % Lösung von X(x), Teil mu % -\subsubsection{Lösund der Differentialgleichung in x} -Als erstes wird auf die erste erste Gleichung eingegangen. +\subsubsection{Lösund der Differentialgleichung in $x$} +Als erstes wird auf die +Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen. Aufgrund der Struktur der Gleichung \[ X^{\prime \prime}(x) - \mu X(x) @@ -353,6 +359,14 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} +% TODO: infinite base vectors and fourier series +\subsubsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} + +% TODO: check ease of reading +\subsubsection{Berechnung der Koeffizienten} + +% TODO: move explanation A/B -> a_n/b_n to fourier subsection + % % Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. % @@ -417,7 +431,7 @@ sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$. Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges -Vielfaches der Periode der triginimetrischen Funktionen integriert werden. +Vielfaches der Periode der trigonometrischen Funktionen integriert werden. Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und $\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$ @@ -471,7 +485,7 @@ berechnet: \\ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& - a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right] @@ -485,9 +499,9 @@ berechnet: Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass nahezu alle Terme verschwinden, denn \[ - \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx = - 0 + 0, \] da hier über ein ganzzahliges Vielfaches der Periode integriert wird, \[ @@ -526,10 +540,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} \\ &= - a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - \frac{-m\pi}{2} - - \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr) \\ &= a_m l @@ -611,7 +625,7 @@ Es bleibt also noch % Lösung von T(t) % -\subsubsection{Lösund der Differentialgleichung in t} +\subsubsection{Lösung der Differentialgleichung in $t$} Zuletzt wird die zweite Gleichung der Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom @@ -627,7 +641,7 @@ Lösung \[ T(t) = - e^{-\kappa \mu t} + e^{\kappa \mu t} \] führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} \[ @@ -637,9 +651,11 @@ führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution \] ergibt. -Dieses Resultat kann nun mit allen vorhergehenden Resultaten zudammengesetzt +Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt werden um die vollständige Lösung für das Stab-Problem zu erhalten. +% TODO: elaborate + \subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} -- cgit v1.2.1 From db90beb875d89142f7a54dea1d0b78ac0ec573db Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 22 Aug 2022 16:11:36 +0200 Subject: Added some changes to TODOs. --- buch/papers/sturmliouville/eigenschaften.tex | 4 ++-- buch/papers/sturmliouville/main.tex | 5 +++++ 2 files changed, 7 insertions(+), 2 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 4ab5e62..882b938 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -47,9 +47,9 @@ Matrixzerlegungen diskutiert. Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn \[ - + \langle Av, w \rangle = - + \langle v, Aw \rangle \] gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und somit eine Orthonormalbasis aus Eigenvektoren besitzt. diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index 4b5b8af..3b12905 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -9,6 +9,11 @@ \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} +% TODO: leser Übersicht geben +% -> Repetition: Was ist Sturm-Liouville-Problem +% -> Eigenschaften der Lösungen +% -> Beispiele erwähnen + \input{papers/sturmliouville/einleitung.tex} %einleitung "was ist das sturm-liouville-problem" \input{papers/sturmliouville/eigenschaften.tex} -- cgit v1.2.1 From c9b4b7146d216cea89daa380260be9d29718ea05 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 22 Aug 2022 17:07:24 +0200 Subject: Added new text to solution properties. --- buch/papers/sturmliouville/eigenschaften.tex | 44 ++++++++++++++++++++++++---- buch/papers/sturmliouville/main.tex | 2 +- 2 files changed, 40 insertions(+), 6 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 882b938..5cb7a29 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -26,7 +26,7 @@ Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert. Im wesendlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen -zustande kommt. +zustande kommt, damit diese später bei den Beispielen verwendet werden kann. Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut unter welchen Voraussetzungen die Lösungen orthogonal sind. Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem @@ -34,8 +34,8 @@ dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion geschlossen. \subsection{Eigenwertprobleme mit Matrizen} - -Das Eigenwertprobelm +% TODO +Das Eigenwertproblem \[ A v = @@ -51,13 +51,47 @@ Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn = \langle v, Aw \rangle \] -gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und somit eine +gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und deshalb eine Orthonormalbasis aus Eigenvektoren besitzt. In aneren Worten: durch diese Eigenschaft ist gegeben, dass A diagonalisierbar ist und alle Eigenvektoren orthogonal zueinander sind. -\subsection{} +\subsection{Das Sturm-Liouville-Problem als Eigenwertproblem} +Wie in Kapitel (??) bereits eingeführt, kann das Sturm-Liouville-Problem als +Eigenwertproblem geschrieben werden, indem der Operator +\[ + L + = + \frac{1}{w(x)}\left( -\frac{d}{dx}p(x) \frac{d}{dx} + q(x)\right) +\] +eingeführt wird. +Mit diesem Operator kann nun +\[ + (p(x)y'(x))' + q(x)y(x) + = + \lambda w(x) y(x) +\] +umgeschrieben werden zu +\[ + L y + = + \lambda y. +\] + +\subsection{Orthogonalität der Lösungsfunktionen} + +Nun wird das Eigenwertproblem weiter angeschaut. +Um auf die Orthogonalität der Lösungsfunktion zu schliessen, wird dafür der +Operator $L$ genauer betrachtet. +Analog zur Matrix $A$ aus Abschnitt (??) kann auch für $L$ gezeigt werden, +dass dieser Operator selbstadjungiert ist, also dass +\[ + \langle L v, w\rangle + = + \langle v, L w\rangle +\] +gilt. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index 3b12905..d77e068 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -9,7 +9,7 @@ \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} -% TODO: leser Übersicht geben +% TODO: Leser Übersicht geben % -> Repetition: Was ist Sturm-Liouville-Problem % -> Eigenschaften der Lösungen % -> Beispiele erwähnen -- cgit v1.2.1 From de0167a088a0b0a449dd47b0ab289b054605c115 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Mon, 22 Aug 2022 17:14:06 +0200 Subject: Update einleitung.tex --- buch/papers/sturmliouville/einleitung.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 62d9509..4582c95 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -38,7 +38,7 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + + \frac{d}{dx} (p(x) \frac{dy}{dx}) + \lbrack q(x) + \lambda w(x) \rbrack y = 0 -- cgit v1.2.1 From d2a613407668270cc0a57e2f979ed849ad5ad0ec Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 22 Aug 2022 17:54:39 +0200 Subject: Minor changes. --- buch/papers/sturmliouville/eigenschaften.tex | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 5cb7a29..19fda59 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -35,7 +35,7 @@ geschlossen. \subsection{Eigenwertprobleme mit Matrizen} % TODO -Das Eigenwertproblem +Das Eigenwertproblem \[ A v = @@ -58,6 +58,8 @@ ist und alle Eigenvektoren orthogonal zueinander sind. \subsection{Das Sturm-Liouville-Problem als Eigenwertproblem} +% TODO: check L for errors (- sign) + Wie in Kapitel (??) bereits eingeführt, kann das Sturm-Liouville-Problem als Eigenwertproblem geschrieben werden, indem der Operator \[ @@ -92,6 +94,7 @@ dass dieser Operator selbstadjungiert ist, also dass \langle v, L w\rangle \] gilt. +Wie in Kapitel (??) bereits gezeigt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- cgit v1.2.1 From bff57008758a94a9ee104773e8faed9c6ab806b8 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 23 Aug 2022 14:08:06 +0200 Subject: Update einleitung.tex --- buch/papers/sturmliouville/einleitung.tex | 46 ++++++++----------------------- 1 file changed, 11 insertions(+), 35 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 4582c95..4ed3752 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -38,8 +38,8 @@ Wenn die lineare homogene Differentialgleichung als \begin{equation} \label{eq:sturm-liouville-equation} - \frac{d}{dx} (p(x) \frac{dy}{dx}) + \lbrack q(x) + - \lambda w(x) \rbrack y + \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) + + \lambda w(x)) y = 0 \end{equation} @@ -50,6 +50,8 @@ Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{eq:sturm-liouville-equation} umgewandelt werden. +Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingung, die im nächsten Unterkapitel behandelt wird. + \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. @@ -64,39 +66,15 @@ Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs ist das klassische Sturm-Liouville-Problem. -\subsection{Eigenwertproblem} -Die Gleichungen \eqref{eq:sturm-liouville-equation} hat die Form eines -Eigenwertproblems. -Wenn bei der Sturm-Liouville-Gleichung \eqref{eq:sturm-liouville-equation} alles -konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere -Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; -der Parameter $\lambda$ wird als Eigenwert bezeichnet. -Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben -andere Eigenvektoren. -Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. -Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar -\begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y. -\end{equation} - -Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des -Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, -$\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ -orthogonal zu y - -dies gilt für das Intervall (a,b). -Somit ergibt die Gleichung -\begin{equation} - \label{eq:skalar-sturm-liouville} - \int_{a}^{b} w(x)y_m y_n = 0. -\end{equation} - -\subsection{Koeffizientenfunktionen} +\subsection{Koeffizientenfunktionen\label{sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. +Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. -Die Eigenschaften der Koeffizientenfunktionen haben einen grossen Einfluss auf -die Lösbarkeit des Sturm-Liouville-Problems. +Die Eigenschaften der Koeffizientenfunktionen sowie andere Bedingungen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Kapitel diskutiert. + + % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" @@ -120,9 +98,7 @@ Bedingungen beachtet werden. $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige -Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu -kennen. +Werden diese Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem @@ -136,7 +112,7 @@ kennen. Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im - Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese + Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. -- cgit v1.2.1 From 4185d85a5f36bb2f8e67c1342c12d45cf9fd67d5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Tue, 23 Aug 2022 14:16:24 +0200 Subject: Eigenvalueproblem for matrices explained. --- buch/papers/sturmliouville/eigenschaften.tex | 38 ++++++++++++++++------------ 1 file changed, 22 insertions(+), 16 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 19fda59..b143b6e 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -28,33 +28,39 @@ Sturm-Liouville-Problems diskutiert. Im wesendlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen zustande kommt, damit diese später bei den Beispielen verwendet werden kann. Dazu wird zunächst das Eigenwertproblem für Matrizen wiederholt und angeschaut -unter welchen Voraussetzungen die Lösungen orthogonal sind. +unter welchen Voraussetzungen die Lösungen dieses Problems orthogonal sind. Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion geschlossen. -\subsection{Eigenwertprobleme mit Matrizen} -% TODO -Das Eigenwertproblem +\subsection{Eigenwertprobleme mit symmetrischen Matrizen} + +% TODO: intro + +Angenomen es sei eine reelle, symmetrische $n \times n$-Matrix $A$ gegeben. +Dass $A$ symmetrisch ist, bedeutet, dass \[ - A v + \langle Av, w \rangle = - \lambda v + \langle v, Aw \rangle \] -für die $n \times n$-Matrix $A$, dem Eigenwert $\lambda$ und dem Eigenvektor $v$ -in der linearen Algebra wird häufig im Zusammenhang mit -Matrixzerlegungen diskutiert. +für $v, w \in \mathbb{R}^n$ erfüllt ist. -Mittels Spektralsatzes kann zum Beispiel geschlossen werden, dass wenn +Für reelle, symmetrische Matrizen zeigt dies auch direkt, dass die Matrix +selbstadjungiert ist. +Das ist wichtig, da der Spektralsatz~\cite{sturmliouville:spektralsatz-wiki} +für selbstadjungierte Matrizen formuliert ist. + +Dieser sagt nun aus, dass die Matrix $A$ diagonalisierbar ist. +In anderen Worten bilden die Eigenvektoren $v_i \in \mathbb{R}^n$ des +Eigenwertproblems \[ - \langle Av, w \rangle + A v_i = - \langle v, Aw \rangle + \lambda_i v_i + \qquad \lambda_i \in \mathbb{R} \] -gilt, die Matrix A symmetrisch (und somit selbstadjungiert) ist und deshalb eine -Orthonormalbasis aus Eigenvektoren besitzt. -In aneren Worten: durch diese Eigenschaft ist gegeben, dass A diagonalisierbar -ist und alle Eigenvektoren orthogonal zueinander sind. +eine Orthogonalbasis. \subsection{Das Sturm-Liouville-Problem als Eigenwertproblem} -- cgit v1.2.1 From a2b36b7f9a4e4324ef827a6fdeb3e598e2b6fa6f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Tue, 23 Aug 2022 14:59:24 +0200 Subject: Finished revised draft of solution properties. --- buch/papers/sturmliouville/eigenschaften.tex | 42 ++++++++++++++++++---------- 1 file changed, 28 insertions(+), 14 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index b143b6e..948217a 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -33,7 +33,8 @@ Dann wird gezeigt, dass das Sturm-Liouville-Problem auch ein Eigenwertproblem dieser Art ist und es wird auf au die Orthogononalität der Lösungsfunktion geschlossen. -\subsection{Eigenwertprobleme mit symmetrischen Matrizen} +\subsection{Eigenwertprobleme mit symmetrischen Matrizen +\label{sturmliouville:section:eigenvalue-problem-matrix}} % TODO: intro @@ -64,43 +65,56 @@ eine Orthogonalbasis. \subsection{Das Sturm-Liouville-Problem als Eigenwertproblem} -% TODO: check L for errors (- sign) - -Wie in Kapitel (??) bereits eingeführt, kann das Sturm-Liouville-Problem als -Eigenwertproblem geschrieben werden, indem der Operator +In Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} wurde bereits +der Operator \[ L = \frac{1}{w(x)}\left( -\frac{d}{dx}p(x) \frac{d}{dx} + q(x)\right) \] -eingeführt wird. -Mit diesem Operator kann nun +eingeführt. +Dieser wird nun verwendet um die Differenzialgleichung \[ (p(x)y'(x))' + q(x)y(x) = \lambda w(x) y(x) \] -umgeschrieben werden zu -\[ +in das Eigenwertproblem +\begin{equation} + \label{sturmliouville:eigenvalue-problem} L y = \lambda y. -\] +\end{equation} +umzuschreiben. \subsection{Orthogonalität der Lösungsfunktionen} -Nun wird das Eigenwertproblem weiter angeschaut. +Nun wird das Eigenwertproblem~\eqref{sturmliouville:eigenvalue-problem} näher +angeschaut. Um auf die Orthogonalität der Lösungsfunktion zu schliessen, wird dafür der Operator $L$ genauer betrachtet. -Analog zur Matrix $A$ aus Abschnitt (??) kann auch für $L$ gezeigt werden, -dass dieser Operator selbstadjungiert ist, also dass +Analog zur Matrix $A$ aus +Abschnitt~\ref{sturmliouville:section:eigenvalue-problem-matrix} kann auch für +$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist, also dass \[ \langle L v, w\rangle = \langle v, L w\rangle \] gilt. -Wie in Kapitel (??) bereits gezeigt +Wie in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits +gezeigt, ist dies durch die Randbedingungen des Sturm-Liouville-Problems +sicher gestellt. + +Um nun über den Spektralsatz auf die Orthogonalität der Lösungsfunktion $y$ zu +schliessen, muss der Operator $L$ ein sogenannter \"kompakter Operator\" sein. +Bei einem regulären Sturm-Liouville-Problem ist diese für $L$ gegeben und wird +im Weiteren nicht näher diskutiert. + +Es kann nun also dank dem Spektralsatz darauf geschlossen werden, dass die +Lösungsfunktion $y$ eises regulären Sturm-Liouville-Problems eine +Linearkombination aus orthogonalen Basisfunktionen sein muss. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OLD section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- cgit v1.2.1