From 796f2b607d90c7d2aed4ac38b39830bb2a93cfea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Tue, 26 Jul 2022 16:04:10 +0200 Subject: Added comments on what to work on. --- buch/papers/sturmliouville/beispiele.tex | 2 +- buch/papers/sturmliouville/eigenschaften.tex | 3 +-- 2 files changed, 2 insertions(+), 3 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex index d5ec3f9..49703c9 100644 --- a/buch/papers/sturmliouville/beispiele.tex +++ b/buch/papers/sturmliouville/beispiele.tex @@ -6,4 +6,4 @@ \section{Beispiele \label{sturmliouville:section:teil2}} \rhead{Beispiele} - +% Fourier: Erik work diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 6d37612..a397dcc 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -6,5 +6,4 @@ \section{Eigenschaften von Lösungen \label{sturmliouville:section:teil1}} \rhead{Eigenschaften von Lösungen} - - +% Erik work -- cgit v1.2.1 From 250488bcb7e08beeb0d2a8b8b50c917aa12fd2a4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 14:08:52 +0200 Subject: Added comment to main.tex pointing to buch.tex in order to compile from sturmlouville folder directly. --- buch/papers/sturmliouville/main.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index dfd2c38..4956664 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -1,3 +1,4 @@ +% !TeX root = ../../buch.tex % % main.tex -- Paper zum Thema % -- cgit v1.2.1 From c97459b91cd980d3db65c3ca1944d8998ccf7006 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 14:46:02 +0200 Subject: Added file for fourier example. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 buch/papers/sturmliouville/waermeleitung_beispiel.tex (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex new file mode 100644 index 0000000..6cfb50f --- /dev/null +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -0,0 +1,8 @@ +% +% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +\subsubsection{Wärmeleitung in einem Homogenen Stab} + -- cgit v1.2.1 From d9bbd9cc6541847425f1fced501b5865e2ba282e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 14:48:48 +0200 Subject: Adjusted labels and included new file. --- buch/papers/sturmliouville/beispiele.tex | 4 +++- buch/papers/sturmliouville/eigenschaften.tex | 2 +- buch/papers/sturmliouville/main.tex | 4 +--- 3 files changed, 5 insertions(+), 5 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex index 49703c9..b23593e 100644 --- a/buch/papers/sturmliouville/beispiele.tex +++ b/buch/papers/sturmliouville/beispiele.tex @@ -4,6 +4,8 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Beispiele -\label{sturmliouville:section:teil2}} +\label{sturmliouville:section:examples}} \rhead{Beispiele} + % Fourier: Erik work +\input{papers/sturmliouville/waermeleitung_beispiel.tex} \ No newline at end of file diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index a397dcc..9f20070 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -4,6 +4,6 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Eigenschaften von Lösungen -\label{sturmliouville:section:teil1}} +\label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} % Erik work diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index 4956664..d21b013 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -9,11 +9,9 @@ \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} - - \input{papers/sturmliouville/einleitung.tex} %einleitung "was ist das sturm-liouville-problem" -ng\input{papers/sturmliouville/eigenschaften.tex} +\input{papers/sturmliouville/eigenschaften.tex} %Eigenschaften von Lösungen eines solchen Problems \input{papers/sturmliouville/beispiele.tex} %Beispiele sind: Wärmeleitung in einem Stab, Tschebyscheff-Polynome -- cgit v1.2.1 From 6b0cb2b62e6d5da19dffc90c49d11dea48f5cdbb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 15:12:50 +0200 Subject: Added intro and differential equation to fourier example. --- buch/papers/sturmliouville/main.tex | 2 +- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 12 ++++++++++++ 2 files changed, 13 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index d21b013..4b5b8af 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -5,7 +5,7 @@ % (c) 2020 Hochschule Rapperswil % \chapter{Sturm-Liouville-Problem\label{chapter:sturmliouville}} -\lhead{Thema} +\lhead{Sturm-Liouville-Problem} \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 6cfb50f..64bf974 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -6,3 +6,15 @@ \subsubsection{Wärmeleitung in einem Homogenen Stab} +In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem +homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses +physikalischen Phänomenes auftritt. + +Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und +Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem +die partielle Differentialgleichung + +\[ + \frac{\partial u}{\partial t} = + \kappa \frac{\partial^{2}u}{{\partial x}^{2}}. +\] \ No newline at end of file -- cgit v1.2.1 From 3e57ab690350ad4ab447cdd0d263d87c414c96b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 15:53:20 +0200 Subject: Added boundary condiutions for fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 54 ++++++++++++++++++++-- 1 file changed, 49 insertions(+), 5 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 64bf974..243d0e1 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,10 +1,11 @@ % % waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. +%%%%%%%%%%%%%%%%%%%%%%%%%%% Erster Entwurf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsubsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Wärmeleitung in einem Homogenen Stab} In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses @@ -12,9 +13,52 @@ physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem -die partielle Differentialgleichung - +die partielle Differentialgleichung \[ \frac{\partial u}{\partial t} = - \kappa \frac{\partial^{2}u}{{\partial x}^{2}}. -\] \ No newline at end of file + \kappa \frac{\partial^{2}u}{{\partial x}^{2}} +\] +wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. + +Da diese Differentialgleichung das Problem allgemein für einen homogenen +Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise +die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter +Tempreatur gehalten werden. + +%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% + +\subsubsection{Stab mit Enden auf konstanter Temperatur} + +Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die +Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene +Temperatur zurückgeben darf. Es folgen nun +\[ + u(t,0) + = + u(t,l) + = + 0 +\] +als Randbedingungen. + +%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% + +\subsubsection{Stab mit isolierten Enden} + +Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +an die Umgebung oder von der Umgebung an den Stab abgegeben wird. + +Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen +Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt +werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder +indem die partielle Ableitung von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +verschwinden. Somit folgen +\[ + \frac{\partial}{\partial x} u(t, 0) + = + \frac{\partial}{\partial x} u(t, l) + = + 0 +\] +als Randbedingungen. \ No newline at end of file -- cgit v1.2.1 From d71e2db54a66ac9233757253b85eb678cc3e5f78 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 27 Jul 2022 16:19:37 +0200 Subject: Added separation for diff. eq. in fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 48 +++++++++++++++++++++- 1 file changed, 46 insertions(+), 2 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 243d0e1..cd7a620 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -52,7 +52,7 @@ an die Umgebung oder von der Umgebung an den Stab abgegeben wird. Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder -indem die partielle Ableitung von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ +dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ verschwinden. Somit folgen \[ \frac{\partial}{\partial x} u(t, 0) @@ -61,4 +61,48 @@ verschwinden. Somit folgen = 0 \] -als Randbedingungen. \ No newline at end of file +als Randbedingungen. + +%%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\subsubsection{Lösung der Differenzialgleichung} + +% TODO: Referenz Separationsmethode +% TODO: Formeln sauber in Text einbinden. + +Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz +die Separationsmethode verwendet. + +\[ + u(t,x) + = + T(t)X(x) +\] +Dieser Ausdruck wird in die ursprüngliche Differenzialgleichung eingesetzt: +\[ + T^{\prime}(t)X(x) + = + \kappa T(t)X^{\prime \prime}(x) +\] +Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle +von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels +der neuen Variablen $\mu$ gekoppelt werden: +\[ + \frac{T^{\prime}(t)}{\kappa T(t)} + = + \frac{X^{\prime \prime}(x)}{X(x)} + = + \mu +\] +Durch die Einführung von $\mu$ kann das Problem nun in zwei separate +Differenzialgleichungen aufgeteilt werden: +\[ + T^{\prime}(t) - \kappa \mu T(t) + = + 0 +\] +\[ + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\] -- cgit v1.2.1 From 29fd344738894593ae434a271613815d1aa563ac Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 28 Jul 2022 12:56:49 +0200 Subject: Added solutions for heat conduction. --- .../sturmliouville/waermeleitung_beispiel.tex | 32 ++++++++++++++++++++++ 1 file changed, 32 insertions(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index cd7a620..a493749 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -106,3 +106,35 @@ Differenzialgleichungen aufgeteilt werden: = 0 \] + +% TODO: Rechenweg +TODO: Rechenweg... Enden auf konstanter Temperatur: +\[ + u(t,x) + = + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \sin\left(\frac{n\pi}{l}x\right) +\] +\[ + a_{n} + = + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\] + +TODO: Rechenweg... Enden isoliert: +\[ + u(t,x) + = + a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \cos\left(\frac{n\pi}{l}x\right) +\] +\[ + a_{0} + = + \frac{1}{l}\int_{0}^{l}u(0,x) dx +\] +\[ + a_{n} + = + \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\] -- cgit v1.2.1 From 2fa5e32a5bbb88cb0f676ac080f0bef54623599e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 28 Jul 2022 16:22:07 +0200 Subject: Added solution for T(t) in fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 31 +++++++++++++++++++--- 1 file changed, 28 insertions(+), 3 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index a493749..b25fc89 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -71,19 +71,20 @@ als Randbedingungen. % TODO: Formeln sauber in Text einbinden. Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz -die Separationsmethode verwendet. - +die Separationsmethode verwendet. Dazu wird \[ u(t,x) = T(t)X(x) \] -Dieser Ausdruck wird in die ursprüngliche Differenzialgleichung eingesetzt: +in die ursprüngliche Differenzialgleichung eingesetzt. Daraus ergibt sich \[ T^{\prime}(t)X(x) = \kappa T(t)X^{\prime \prime}(x) \] +als neue Form. + Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels der neuen Variablen $\mu$ gekoppelt werden: @@ -107,6 +108,30 @@ Differenzialgleichungen aufgeteilt werden: 0 \] +Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in +Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch +die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage +getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein +werden. + +Widmen wir uns zunächst der ersten Gleichung. Diese Lösen wir über das +charakteristische Polynom +\[ + \lambda - \kappa \mu + = + 0. +\] +Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur +Lösung +\[ + T(t) + = + e^{\kappa \mu t} +\] +führt. + +Etwas aufwändiger wird es, die zweite Gleichung zu lösen. + % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: \[ -- cgit v1.2.1 From 02ad63db71adf381e21c0230c502c3ead7e11ecc Mon Sep 17 00:00:00 2001 From: haddoucher Date: Fri, 29 Jul 2022 16:49:36 +0200 Subject: erste Variante Einleitung Kapitel "Was ist das Sturm-Liouville-Problem" --- buch/papers/sturmliouville/einleitung.tex | 58 ++++++++++++++++++++++++++++++- buch/papers/sturmliouville/main.tex | 1 + 2 files changed, 58 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 384a642..ec37a3f 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -3,7 +3,63 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Was ist Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} +\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Angenommen man hat die lineare homogene Differentialgleichung + +\begin{equation} + \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 +\end{equation} + +und schreibt die Gleichung um in: + +\begin{equation} + \label{eq:sturm-liouville-equation} + \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 +\end{equation}, + +diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. +Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. +Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen + +\begin{equation} +\begin{aligned} + \label{ali:randbedingungen} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0 +\end{aligned} +\end{equation} + +kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. +Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; +der Parameter $\lambda$ wird als Eigenwert bezeichnet. +Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. +Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. +Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar + +\begin{equation} + \lambda \overset{Korrespondenz}\leftrightarrow y +\end{equation}. + +Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - +dies gilt für das Intervall (a,b). +Somit ergibt die Gleichung + +\begin{equation} + \int_{a}^{b} w(x)y_m y_n = 0 +\end{equation}. + +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. + + + + + + + diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index dfd2c38..4c25843 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -10,6 +10,7 @@ + \input{papers/sturmliouville/einleitung.tex} %einleitung "was ist das sturm-liouville-problem" ng\input{papers/sturmliouville/eigenschaften.tex} -- cgit v1.2.1 From de76ac03caa4e7a09a99fe1271fb6a22a809ade2 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 2 Aug 2022 17:38:32 +0200 Subject: Was ist das Sturm-Liouville-Problem erste Version --- buch/papers/sturmliouville/einleitung.tex | 48 ++++++++++++++++++++++++++++--- 1 file changed, 44 insertions(+), 4 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index ec37a3f..7d39cf4 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -23,17 +23,30 @@ und schreibt die Gleichung um in: diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. -Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen +Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} - \label{ali:randbedingungen} + \label{eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} - + kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind,also + +\begin{equation} + y(a) = y(b) = 0 +\end{equation} + +, so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn + +\begin{equation} + y'(a) = y'(b) = 0 +\end{equation} + +ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. @@ -53,10 +66,37 @@ Somit ergibt die Gleichung \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. -Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. +Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. +Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. +Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. +Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben. + +\subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} +Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. + +\begin{itemize} + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. + \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. + \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. +\end{itemize} + +Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. + +\subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die oben genannten Bedingungen nicht erfüllt sind, d.h: +\begin{itemize} + \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder + \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. +\end{itemize} +Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. +Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen. +Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From 796815b4b22a3cae2db58125be8045a72fe30471 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 2 Aug 2022 21:17:50 +0200 Subject: Update einleitung.tex Korrektur der Einleitung --- buch/papers/sturmliouville/einleitung.tex | 84 ++++++++++++++++++++----------- 1 file changed, 54 insertions(+), 30 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 7d39cf4..44c3192 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -8,23 +8,23 @@ Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. -Angenommen man hat die lineare homogene Differentialgleichung +\begin{definition} + \index{Sturm-Liouville-Gleichung} +Angenommen man hat die lineare homogene Differentialgleichung \begin{equation} \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \end{equation} - und schreibt die Gleichung um in: - \begin{equation} \label{eq:sturm-liouville-equation} \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 -\end{equation}, +\end{equation} +, diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. +\end{definition} -diese Gleichung wird dann Sturm-liouville-Gleichung bezeichnet. Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} - \begin{equation} \begin{aligned} \label{eq:randbedingungen} @@ -32,28 +32,22 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} - kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. -Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind,also - +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also \begin{equation} y(a) = y(b) = 0 \end{equation} - , so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn - \begin{equation} y'(a) = y'(b) = 0 \end{equation} - -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden -Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{ali:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. +Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar - \begin{equation} \lambda \overset{Korrespondenz}\leftrightarrow y \end{equation}. @@ -61,7 +55,6 @@ Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung - \begin{equation} \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. @@ -71,28 +64,60 @@ Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion ode Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben. +% +%Kapitel mit "Das reguläre Sturm-Liouville-Problem" +% + \subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. +\begin{definition} + \index{regläres Sturm-Liouville-Problem} + Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: + \begin{itemize} + \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. + \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. + \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. + \end{itemize} +\end{definition} +Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. -\begin{itemize} - \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. - \item $p(x)^{-1}$ und $w(x)$ sind $>0$. - \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. -\end{itemize} -Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. +% +%Kapitel mit "Das singuläre Sturm-Liouville-Problem" +% \subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}} -Von einem singulären Sturm-Liouville-Problem spricht man, wenn die oben genannten Bedingungen nicht erfüllt sind, d.h: +Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulärem Problem nicht erfüllt sind. +\begin{definition} + \index{singuläres Sturm-Liouville-Problem} +Es handelt sich um ein singuläres Sturm-Liouville-Problem, wenn: + \begin{itemize} + \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder + \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. + \end{itemize} +\end{definition} +Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt. -\begin{itemize} - \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder - \item wenn die Koeffizienten an den Randpunkten Singularitäten haben. -\end{itemize} +\begin{beispiel} + Das Randwertproblem + \begin{equation} + \begin{aligned} + x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0 Date: Fri, 5 Aug 2022 11:27:41 +0200 Subject: Resolved issue in main.tex --- buch/papers/sturmliouville/main.tex | 1 - 1 file changed, 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex index 559a448..4b5b8af 100644 --- a/buch/papers/sturmliouville/main.tex +++ b/buch/papers/sturmliouville/main.tex @@ -9,7 +9,6 @@ \begin{refsection} \chapterauthor{Réda Haddouche und Erik Löffler} -<<<<<<< HEAD \input{papers/sturmliouville/einleitung.tex} %einleitung "was ist das sturm-liouville-problem" \input{papers/sturmliouville/eigenschaften.tex} -- cgit v1.2.1 From 6ec66a72b31ad7a47eb54d373d24f494318d35fb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 5 Aug 2022 12:05:26 +0200 Subject: Added partial solution to X equation. --- .../sturmliouville/waermeleitung_beispiel.tex | 60 +++++++++++++++++++++- 1 file changed, 59 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index b25fc89..cc88f6a 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -130,7 +130,65 @@ Lösung \] führt. -Etwas aufwändiger wird es, die zweite Gleichung zu lösen. +Etwas aufwändiger wird es, die zweite Gleichung zu lösen. Aufgrund der Struktur +der Gleichung +\[ + X^{\prime \prime}(x) - \mu X(x) + = + 0 +\] +wird ein trigonometrischer Ansatz gewählt. Die Lösungen für $X(x)$ sind also +von der Form +\[ + X(x) + = + A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). +\] + +Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung (TODO: ref) +enthaltenen Ableitungen vorhanden sind. Man erhält also +\[ + X^{\prime}(x) + = + A \alpha \cos \left( \alpha x \right) - + B \beta \sin \left( \beta x \right) +\] +und +\[ + X^{\prime \prime}(x) + = + -A \alpha^{2} \sin \left( \alpha x \right) - + B \beta^{2} \cos \left( \beta x \right). +\] + +Eingesetzt in Gleichung (TDOD: ref) ergibt dies +\[ + -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) - + \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) + = + 0 +\] +und durch umformen somit +\[ + \mu A\sin(\alpha x) + \mu B\cos(\beta x) + = + A\alpha^{2}\sin(\alpha x) + B\beta^{2}\cos(\beta x). +\] + +Durch Koeffizientenvergleich von +\[ + \mu A\sin(\alpha x) + = + A\alpha^{2}\sin(\alpha x) +\] +\[ + \mu B\cos(\beta x) + = + B\beta^{2}\cos(\beta x) +\] +ist schnell ersichtlich, dass $ \mu = \alpha^{2} = \beta^{2} $ gelten muss für +$ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch +$ \alpha $ und $ \beta $ zu bestimmen. % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: -- cgit v1.2.1 From ebbf6e36246d36a2ec842b8c89a1f09a5dbec9de Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 8 Aug 2022 10:27:50 +0200 Subject: Corrected sign error in coefficient comparison. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index cc88f6a..7310186 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -170,23 +170,23 @@ Eingesetzt in Gleichung (TDOD: ref) ergibt dies \] und durch umformen somit \[ - \mu A\sin(\alpha x) + \mu B\cos(\beta x) + -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) = - A\alpha^{2}\sin(\alpha x) + B\beta^{2}\cos(\beta x). + \mu A\sin(\alpha x) + \mu B\cos(\beta x). \] Durch Koeffizientenvergleich von \[ - \mu A\sin(\alpha x) + -A\alpha^{2}\sin(\alpha x) = - A\alpha^{2}\sin(\alpha x) + \mu A\sin(\alpha x) \] \[ - \mu B\cos(\beta x) + -B\beta^{2}\cos(\beta x) = - B\beta^{2}\cos(\beta x) + \mu B\cos(\beta x) \] -ist schnell ersichtlich, dass $ \mu = \alpha^{2} = \beta^{2} $ gelten muss für +ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für $ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. -- cgit v1.2.1 From 2b1eb4b5979f4e0e7f2eee7414a8e0b3d9eae402 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 8 Aug 2022 13:04:13 +0200 Subject: Changed equation syntax to match rest of the Sturm-Liouville chapter. --- .../sturmliouville/waermeleitung_beispiel.tex | 106 ++++++++++----------- 1 file changed, 50 insertions(+), 56 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 7310186..0c9dd8e 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -1,6 +1,5 @@ % % waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab. -%%%%%%%%%%%%%%%%%%%%%%%%%%% Erster Entwurf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % @@ -14,10 +13,10 @@ physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung -\[ +\begin{equation} \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}} -\] +\end{equation} wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen @@ -32,13 +31,13 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Es folgen nun -\[ +\begin{equation} u(t,0) = u(t,l) = 0 -\] +\end{equation} als Randbedingungen. %%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% @@ -54,13 +53,13 @@ Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ verschwinden. Somit folgen -\[ +\begin{equation} \frac{\partial}{\partial x} u(t, 0) = \frac{\partial}{\partial x} u(t, l) = 0 -\] +\end{equation} als Randbedingungen. %%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -72,41 +71,40 @@ als Randbedingungen. Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz die Separationsmethode verwendet. Dazu wird -\[ +\begin{equation} u(t,x) = T(t)X(x) -\] +\end{equation} in die ursprüngliche Differenzialgleichung eingesetzt. Daraus ergibt sich -\[ +\begin{equation} T^{\prime}(t)X(x) = \kappa T(t)X^{\prime \prime}(x) -\] +\end{equation} als neue Form. Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels der neuen Variablen $\mu$ gekoppelt werden: -\[ +\begin{equation} \frac{T^{\prime}(t)}{\kappa T(t)} = \frac{X^{\prime \prime}(x)}{X(x)} = \mu -\] +\end{equation} Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: -\[ +\begin{equation} T^{\prime}(t) - \kappa \mu T(t) - = + &= 0 -\] -\[ + \\ X^{\prime \prime}(x) - \mu X(x) - = + &= 0 -\] +\end{equation} Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch @@ -116,108 +114,104 @@ werden. Widmen wir uns zunächst der ersten Gleichung. Diese Lösen wir über das charakteristische Polynom -\[ +\begin{equation} \lambda - \kappa \mu = 0. -\] +\end{equation} Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur Lösung -\[ +\begin{equation} T(t) = e^{\kappa \mu t} -\] +\end{equation} führt. Etwas aufwändiger wird es, die zweite Gleichung zu lösen. Aufgrund der Struktur der Gleichung -\[ +\begin{equation} X^{\prime \prime}(x) - \mu X(x) = 0 -\] +\end{equation} wird ein trigonometrischer Ansatz gewählt. Die Lösungen für $X(x)$ sind also von der Form -\[ +\begin{equation} X(x) = A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). -\] +\end{equation} Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung (TODO: ref) enthaltenen Ableitungen vorhanden sind. Man erhält also -\[ +\begin{equation} X^{\prime}(x) = A \alpha \cos \left( \alpha x \right) - B \beta \sin \left( \beta x \right) -\] +\end{equation} und -\[ +\begin{equation} X^{\prime \prime}(x) = -A \alpha^{2} \sin \left( \alpha x \right) - B \beta^{2} \cos \left( \beta x \right). -\] +\end{equation} Eingesetzt in Gleichung (TDOD: ref) ergibt dies -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) - \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) = 0 -\] +\end{equation} und durch umformen somit -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) = \mu A\sin(\alpha x) + \mu B\cos(\beta x). -\] +\end{equation} Durch Koeffizientenvergleich von -\[ +\begin{equation} -A\alpha^{2}\sin(\alpha x) - = + &= \mu A\sin(\alpha x) -\] -\[ + \\ -B\beta^{2}\cos(\beta x) - = + &= \mu B\cos(\beta x) -\] +\end{equation} ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für $ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: -\[ +\begin{equation} u(t,x) - = + &= \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \sin\left(\frac{n\pi}{l}x\right) -\] -\[ + \\ a_{n} - = + &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx -\] +\end{equation} TODO: Rechenweg... Enden isoliert: -\[ +\begin{equation} u(t,x) - = + &= a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \cos\left(\frac{n\pi}{l}x\right) -\] -\[ + \\ a_{0} - = + &= \frac{1}{l}\int_{0}^{l}u(0,x) dx -\] -\[ + \\ a_{n} - = + &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx -\] +\end{equation} -- cgit v1.2.1 From 95ce389d41871e3e1a7dba350bf3dcdc1d67f80c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 8 Aug 2022 13:12:23 +0200 Subject: Fixed alignment issue in fourier example. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 0c9dd8e..27a7574 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -97,6 +97,7 @@ der neuen Variablen $\mu$ gekoppelt werden: Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: \begin{equation} +\begin{aligned} T^{\prime}(t) - \kappa \mu T(t) &= 0 @@ -104,6 +105,7 @@ Differenzialgleichungen aufgeteilt werden: X^{\prime \prime}(x) - \mu X(x) &= 0 +\end{aligned} \end{equation} Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in @@ -175,6 +177,7 @@ und durch umformen somit Durch Koeffizientenvergleich von \begin{equation} +\begin{aligned} -A\alpha^{2}\sin(\alpha x) &= \mu A\sin(\alpha x) @@ -182,6 +185,7 @@ Durch Koeffizientenvergleich von -B\beta^{2}\cos(\beta x) &= \mu B\cos(\beta x) +\end{aligned} \end{equation} ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für $ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch @@ -190,6 +194,7 @@ $ \alpha $ und $ \beta $ zu bestimmen. % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: \begin{equation} +\begin{aligned} u(t,x) &= \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} @@ -198,10 +203,12 @@ TODO: Rechenweg... Enden auf konstanter Temperatur: a_{n} &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} \end{equation} TODO: Rechenweg... Enden isoliert: \begin{equation} +\begin{aligned} u(t,x) &= a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} @@ -214,4 +221,5 @@ TODO: Rechenweg... Enden isoliert: a_{n} &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx +\end{aligned} \end{equation} -- cgit v1.2.1 From 2cb7c0466bdaaa3eff6757382a913b3c955a0751 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 8 Aug 2022 16:57:13 +0200 Subject: Reordered fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 160 ++++++++++++--------- 1 file changed, 90 insertions(+), 70 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 27a7574..da25b36 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -11,9 +11,11 @@ homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und -Wärmeleitkoeffizient $\kappa$. Somit ergibt sich für das Wärmeleitungsproblem +Wärmeleitkoeffizient $\kappa$. +Somit ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung \begin{equation} + \label{eq:slp-example-fourier-heat-equation} \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}} \end{equation} @@ -30,7 +32,8 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene -Temperatur zurückgeben darf. Es folgen nun +Temperatur zurückgeben darf. +Es folgen nun \begin{equation} u(t,0) = @@ -52,7 +55,8 @@ Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ -verschwinden. Somit folgen +verschwinden. +Somit folgen \begin{equation} \frac{\partial}{\partial x} u(t, 0) = @@ -70,18 +74,20 @@ als Randbedingungen. % TODO: Formeln sauber in Text einbinden. Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz -die Separationsmethode verwendet. Dazu wird -\begin{equation} +die Separationsmethode verwendet. +Dazu wird +\[ u(t,x) = T(t)X(x) -\end{equation} -in die ursprüngliche Differenzialgleichung eingesetzt. Daraus ergibt sich -\begin{equation} +\] +in die ursprüngliche Differenzialgleichung eingesetzt. +Daraus ergibt sich +\[ T^{\prime}(t)X(x) = \kappa T(t)X^{\prime \prime}(x) -\end{equation} +\] als neue Form. Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle @@ -97,103 +103,117 @@ der neuen Variablen $\mu$ gekoppelt werden: Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: \begin{equation} -\begin{aligned} - T^{\prime}(t) - \kappa \mu T(t) - &= - 0 - \\ + \label{eq:slp-example-fourier-separated-x} X^{\prime \prime}(x) - \mu X(x) - &= - 0 -\end{aligned} -\end{equation} - -Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in -Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch -die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage -getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein -werden. - -Widmen wir uns zunächst der ersten Gleichung. Diese Lösen wir über das -charakteristische Polynom -\begin{equation} - \lambda - \kappa \mu = - 0. + 0 \end{equation} -Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur -Lösung \begin{equation} - T(t) + \label{eq:slp-example-fourier-separated-t} + T^{\prime}(t) - \kappa \mu T(t) = - e^{\kappa \mu t} + 0 \end{equation} -führt. -Etwas aufwändiger wird es, die zweite Gleichung zu lösen. Aufgrund der Struktur -der Gleichung -\begin{equation} +Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in +Sturm-Liouville-Form ist. +Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des +Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle +Lösungen für die Gleichung in $x$ orthogonal sein werden. + +Widmen wir uns zunächst der ersten Gleichung. +Aufgrund der Struktur der Gleichung +\[ X^{\prime \prime}(x) - \mu X(x) = 0 -\end{equation} -wird ein trigonometrischer Ansatz gewählt. Die Lösungen für $X(x)$ sind also -von der Form -\begin{equation} +\] +wird ein trigonometrischer Ansatz gewählt. +Die Lösungen für $X(x)$ sind also von der Form +\[ X(x) = A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). -\end{equation} +\] -Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung (TODO: ref) -enthaltenen Ableitungen vorhanden sind. Man erhält also -\begin{equation} +Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung +\eqref{eq:slp-example-fourier-separated-x} enthaltenen Ableitungen vorhanden +sind. +Man erhält also +\[ X^{\prime}(x) = - A \alpha \cos \left( \alpha x \right) - - B \beta \sin \left( \beta x \right) -\end{equation} + \alpha A \cos \left( \alpha x \right) - + \beta B \sin \left( \beta x \right) +\] und -\begin{equation} +\[ X^{\prime \prime}(x) = - -A \alpha^{2} \sin \left( \alpha x \right) - - B \beta^{2} \cos \left( \beta x \right). -\end{equation} + -\alpha^{2} A \sin \left( \alpha x \right) - + \beta^{2} B \cos \left( \beta x \right). +\] -Eingesetzt in Gleichung (TDOD: ref) ergibt dies -\begin{equation} - -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) - +Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies +\[ + -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) - \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) = 0 -\end{equation} +\] und durch umformen somit -\begin{equation} - -A\alpha^{2}\sin(\alpha x) - B\beta^{2}\cos(\beta x) +\[ + -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) = \mu A\sin(\alpha x) + \mu B\cos(\beta x). -\end{equation} +\] Durch Koeffizientenvergleich von -\begin{equation} +\[ \begin{aligned} - -A\alpha^{2}\sin(\alpha x) + -\alpha^{2}A\sin(\alpha x) &= \mu A\sin(\alpha x) \\ - -B\beta^{2}\cos(\beta x) + -\beta^{2}B\cos(\beta x) &= \mu B\cos(\beta x) \end{aligned} -\end{equation} +\] ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für -$ A \neq 0 $ und $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch -$ \alpha $ und $ \beta $ zu bestimmen. +$ A \neq 0 $ und $ B \neq 0 $. +Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu +bestimmen. + +TODO: randbedingungen!!---- + +Betrachten wir nun die zweite Gleichung +\eqref{eq:slp-example-fourier-separated-t}. +Diese Lösen wir über das charakteristische Polynom +\[ + \lambda - \kappa \mu + = + 0. +\] +Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur +Lösung +\[ + T(t) + = + e^{-\kappa \mu t} +\] +führt. +Und mit mit dem Resultat von zuvor die Lösung +\[ + T(t) + = + e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} +\] +ergibt. % TODO: Rechenweg TODO: Rechenweg... Enden auf konstanter Temperatur: -\begin{equation} +\[ \begin{aligned} u(t,x) &= @@ -204,10 +224,10 @@ TODO: Rechenweg... Enden auf konstanter Temperatur: &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx \end{aligned} -\end{equation} +\] TODO: Rechenweg... Enden isoliert: -\begin{equation} +\[ \begin{aligned} u(t,x) &= @@ -222,4 +242,4 @@ TODO: Rechenweg... Enden isoliert: &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx \end{aligned} -\end{equation} +\] -- cgit v1.2.1 From 4fadfb233a3b7fdc3de486dd85d64fa62408b2a4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Tue, 9 Aug 2022 18:34:54 +0200 Subject: Added some text, corrected a few errors and added two file extensions to gitignore. --- buch/papers/sturmliouville/.gitignore | 2 ++ .../papers/sturmliouville/waermeleitung_beispiel.tex | 20 +++++++++++++++++--- 2 files changed, 19 insertions(+), 3 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/.gitignore b/buch/papers/sturmliouville/.gitignore index a136337..47f7228 100644 --- a/buch/papers/sturmliouville/.gitignore +++ b/buch/papers/sturmliouville/.gitignore @@ -1 +1,3 @@ *.pdf +*.fls +*.fdb_latexmk \ No newline at end of file diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index da25b36..4885694 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -35,6 +35,7 @@ Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Es folgen nun \begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-constant} u(t,0) = u(t,l) @@ -58,6 +59,7 @@ dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ verschwinden. Somit folgen \begin{equation} + \label{eq:slp-example-fourier-boundary-condition-ends-isolated} \frac{\partial}{\partial x} u(t, 0) = \frac{\partial}{\partial x} u(t, l) @@ -120,6 +122,7 @@ Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden. +Mehr dazu später. Widmen wir uns zunächst der ersten Gleichung. Aufgrund der Struktur der Gleichung @@ -181,11 +184,22 @@ Durch Koeffizientenvergleich von \end{aligned} \] ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für -$ A \neq 0 $ und $ B \neq 0 $. +$ A \neq 0 $ oder $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. +Dazu werden die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. +Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und +somit direkt für $X(x)$ übernomen werden können. -TODO: randbedingungen!!---- +Daraus ergibt sich für einen Stab mit Enden auf konstanter Temperatur + +\begin{equation} + \mu + = + -\frac{n^{2}\pi^{2}}{l^{2}} +\end{equation} Betrachten wir nun die zweite Gleichung \eqref{eq:slp-example-fourier-separated-t}. @@ -203,7 +217,7 @@ Lösung e^{-\kappa \mu t} \] führt. -Und mit mit dem Resultat von zuvor die Lösung +Und mit dem Resultat (TODO) die Lösung \[ T(t) = -- cgit v1.2.1 From 2e6fd0152fc9c135ced14ea186ac7e2fc1b15f7e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Tue, 9 Aug 2022 18:38:54 +0200 Subject: Removed file extensions from gitignore. --- buch/papers/sturmliouville/.gitignore | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/.gitignore b/buch/papers/sturmliouville/.gitignore index 47f7228..f08278d 100644 --- a/buch/papers/sturmliouville/.gitignore +++ b/buch/papers/sturmliouville/.gitignore @@ -1,3 +1 @@ -*.pdf -*.fls -*.fdb_latexmk \ No newline at end of file +*.pdf \ No newline at end of file -- cgit v1.2.1 From 67dc3b04c3926f0c7beb5cd6781cc58a4c38e667 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Tue, 9 Aug 2022 21:12:25 +0200 Subject: Added section to show orthogonality with boundary conditions to fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 54 ++++++++++++++++++++-- 1 file changed, 50 insertions(+), 4 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 4885694..92ecc49 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -122,7 +122,52 @@ Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden. -Mehr dazu später. + +Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-randbedingungen} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0 +\end{aligned} +\end{equation} +erfüllt sein und es muss ausserdem +\begin{equation} +\begin{aligned} + \label{eq:slp-example-fourier-coefficient-constraints} + |k_a|^2 + |h_a|^2 &\neq 0\\ + |k_b|^2 + |h_b|^2 &\neq 0\\ +\end{aligned} +\end{equation} +gelten. + +Um zu verifizieren, ob die Randbedingungen erfüllt sind, benötigen wir zunächst +$p(x)$. +Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der +Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu +$p(x) = 1$ führt. + +Werden nun $p(x)$ und die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} in +\eqref{eq:slp-example-fourier-randbedingungen} eigesetzt, erhält man +\[ +\begin{aligned} + k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\ + k_b y(l) + h_b y'(l) &= h_b y'(l) = 0. +\end{aligned} +\] +Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein. +Zusätzlich müssen aber die Bedingungen +\eqref{eq:slp-example-fourier-coefficient-constraints} erfüllt sein und +da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$ und $k_b \neq 0$ +gewählt werden. + +Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf +konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und +alle daraus reultierenden Lösungen orthogonal sind. +Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit +isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und +somit auch zu orthogonalen Lösungen führen. Widmen wir uns zunächst der ersten Gleichung. Aufgrund der Struktur der Gleichung @@ -187,7 +232,7 @@ ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss fü $ A \neq 0 $ oder $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. -Dazu werden die Randbedingungen +Dazu werden nochmals die Randbedingungen \eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und \eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und @@ -196,12 +241,13 @@ somit direkt für $X(x)$ übernomen werden können. Daraus ergibt sich für einen Stab mit Enden auf konstanter Temperatur \begin{equation} + \label{eq:slp-example-fourier-mu-solution} \mu = -\frac{n^{2}\pi^{2}}{l^{2}} \end{equation} -Betrachten wir nun die zweite Gleichung +Betrachten wir nun die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. Diese Lösen wir über das charakteristische Polynom \[ @@ -217,7 +263,7 @@ Lösung e^{-\kappa \mu t} \] führt. -Und mit dem Resultat (TODO) die Lösung +Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} die Lösung \[ T(t) = -- cgit v1.2.1 From 330038bafaaf6ed6462a3efdcf9869b6ecf645ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 14:34:39 +0200 Subject: Added mu calculation to both fourier examples. --- buch/papers/sturmliouville/standalone.tex | 31 ------- .../sturmliouville/waermeleitung_beispiel.tex | 99 ++++++++++++++++++++-- 2 files changed, 94 insertions(+), 36 deletions(-) delete mode 100644 buch/papers/sturmliouville/standalone.tex (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/standalone.tex b/buch/papers/sturmliouville/standalone.tex deleted file mode 100644 index cd0e8dc..0000000 --- a/buch/papers/sturmliouville/standalone.tex +++ /dev/null @@ -1,31 +0,0 @@ -\documentclass{book} - -\def\IncludeBookCover{0} -\input{common/packages.tex} - -% additional packages used by the individual papers, add a line for -% each paper -\input{papers/common/addpackages.tex} - -% workaround for biblatex bug -\makeatletter -\def\blx@maxline{77} -\makeatother -\addbibresource{chapters/references.bib} - -% Bibresources for each article -\input{papers/common/addbibresources.tex} - -% make sure the last index starts on an odd page -\AtEndDocument{\clearpage\ifodd\value{page}\else\null\clearpage\fi} -\makeindex - -%\pgfplotsset{compat=1.12} -\setlength{\headheight}{15pt} % fix headheight warning -\DeclareGraphicsRule{*}{mps}{*}{} - -\begin{document} - \input{common/macros.tex} - \def\chapterauthor#1{{\large #1}\bigskip\bigskip} - \input{papers/sturmliouville/main.tex} -\end{document} diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 92ecc49..89d158c 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -216,7 +216,7 @@ und durch umformen somit \mu A\sin(\alpha x) + \mu B\cos(\beta x). \] -Durch Koeffizientenvergleich von +Mittels Koeffizientenvergleich von \[ \begin{aligned} -\alpha^{2}A\sin(\alpha x) @@ -238,16 +238,105 @@ Dazu werden nochmals die Randbedingungen Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und somit direkt für $X(x)$ übernomen werden können. -Daraus ergibt sich für einen Stab mit Enden auf konstanter Temperatur +Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im +allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die +trigonometrischen Funktionen erfüllt werden. +Es werden nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} für einen Stab +mit Enden auf konstanter Temperatur in die Gleichung +\eqref{eq:slp-example-fourier-separated-x} eingesetzt. +Betrachten wir zunächst die Bedingung für $x = 0$. +Dies fürht zu +\[ + X(0) + = + A \sin(0 \alpha) + B \cos(0 \beta) + = + 0. +\] +Da $\cos(0) \neq 0$ ist, muss in diesem Fall $B = 0$ gelten. +Für den ersten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. + +Wird nun die zweite Randbedingung für $x = l$ mit $B = 0$ eingesetzt, ergibt +sich +\[ + X(l) + = + A \sin(\alpha l) + 0 \cos(\beta l) + = + A \sin(\alpha l) + = 0. +\] + +$\alpha$ muss also so gewählt werden, dass $\sin(\alpha l) = 0$ gilt. +Es gilt nun nach $\alpha$ aufzulösen: +\[ +\begin{aligned} + \sin(\alpha l) &= 0 \\ + \alpha l &= n \pi \qquad n \in \mathbb{N} \\ + \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] + +Es folgt nun wegen $\mu = -\alpha^{2}$, dass +\begin{equation} + \mu_1 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} +\end{equation} +sein muss. +Ausserdem ist zu bemerken, dass dies auch gleich $-\beta^{2}$ ist. +Da aber $B = 0$ gilt und der Summand mit $\beta$ verschwindet, ist dies keine +Verletzung der Randbedingungen. + +Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst +werden. +Setzen wir nun die Randbedingungen +\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ +ein, beginnend für $x = 0$. Es ergibt sich +\[ + X^{\prime}(0) + = + \alpha A \cos(\alpha 0) - \beta B \sin(\beta 0) + = 0. +\] +In diesem Fall muss $A = 0$ gelten. +Zusammen mit der Bedignung für $x = l$ +folgt nun +\[ + X^{\prime}(l) + = + \alpha A \cos(\alpha l) - \beta B \sin(\beta l) + = + -\beta B \sin(\beta l) + = 0. +\] + +Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der Ausdruck +den Randbedingungen entspricht. Es folgt nun +\[ +\begin{aligned} + \sin(\beta l) &= 0 \\ + \beta l &= n \pi \qquad n \in \mathbb{N} \\ + \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} +\end{aligned} +\] +und somit +\[ + \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. +\] + +Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur +wie auch mit isolierten Enden \begin{equation} \label{eq:slp-example-fourier-mu-solution} \mu = - -\frac{n^{2}\pi^{2}}{l^{2}} + -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} -Betrachten wir nun die zweite Gleichung der Separation + + +Betrachten wir zuletzt die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. Diese Lösen wir über das charakteristische Polynom \[ @@ -263,7 +352,7 @@ Lösung e^{-\kappa \mu t} \] führt. -Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} die Lösung +Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} \[ T(t) = -- cgit v1.2.1 From cc1f753efdfe46d546b1769e2f61d9765380373d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 14:47:19 +0200 Subject: Corrected some grammar. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 89d158c..1b267cb 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -270,7 +270,7 @@ sich \] $\alpha$ muss also so gewählt werden, dass $\sin(\alpha l) = 0$ gilt. -Es gilt nun nach $\alpha$ aufzulösen: +Es bleibt noch nach $\alpha$ aufzulösen: \[ \begin{aligned} \sin(\alpha l) &= 0 \\ @@ -296,7 +296,7 @@ ein, beginnend für $x = 0$. Es ergibt sich \[ X^{\prime}(0) = - \alpha A \cos(\alpha 0) - \beta B \sin(\beta 0) + \alpha A \cos(0 \alpha) - \beta B \sin(0 \beta) = 0. \] In diesem Fall muss $A = 0$ gelten. @@ -305,14 +305,15 @@ folgt nun \[ X^{\prime}(l) = - \alpha A \cos(\alpha l) - \beta B \sin(\beta l) + 0 \alpha \cos(\alpha l) - \beta B \sin(\beta l) = -\beta B \sin(\beta l) = 0. \] -Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der Ausdruck -den Randbedingungen entspricht. Es folgt nun +Wiedrum muss über die $ \sin $-Funktion sicher gestellt werden, dass der +Ausdruck den Randbedingungen entspricht. +Es folgt nun \[ \begin{aligned} \sin(\beta l) &= 0 \\ @@ -322,7 +323,7 @@ den Randbedingungen entspricht. Es folgt nun \] und somit \[ - \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. + \mu_2 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. \] Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur @@ -334,6 +335,7 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} +%%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% Betrachten wir zuletzt die zweite Gleichung der Separation -- cgit v1.2.1 From d8b0e6f27ac13c684bf829f4f73c11f4408945a5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 15:29:32 +0200 Subject: Added Tschebyscheff file. --- buch/papers/sturmliouville/beispiele.tex | 5 ++++- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 7 +++++++ buch/papers/sturmliouville/waermeleitung_beispiel.tex | 15 +++++++++++++++ 3 files changed, 26 insertions(+), 1 deletion(-) create mode 100644 buch/papers/sturmliouville/tschebyscheff_beispiel.tex (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex index b23593e..94082cf 100644 --- a/buch/papers/sturmliouville/beispiele.tex +++ b/buch/papers/sturmliouville/beispiele.tex @@ -8,4 +8,7 @@ \rhead{Beispiele} % Fourier: Erik work -\input{papers/sturmliouville/waermeleitung_beispiel.tex} \ No newline at end of file +\input{papers/sturmliouville/waermeleitung_beispiel.tex} + +% Tschebyscheff +\input{papers/sturmliouville/tschebyscheff_beispiel.tex} \ No newline at end of file diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex new file mode 100644 index 0000000..54f13d4 --- /dev/null +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -0,0 +1,7 @@ +% +% tschebyscheff_beispiel.tex +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +\subsection{Tschebyscheff} \ No newline at end of file diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 1b267cb..14fca40 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -337,6 +337,21 @@ wie auch mit isolierten Enden %%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% +Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. +Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei +$A$ und $B$ nicht um einzelne Koeffizienten handelt. +Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$ +unterschiedlich sein. +Schreiben wir also die Lösung $X(x)$ um zu +\[ + X(x) + = + a_n\sin\left(\frac{n\pi}{l}x\right) + + + b_n\cos\left(\frac{n\pi}{l}x\right) +\] +was für jedes $n$ wiederum eine Linearkombination aus orthogonalen Funktionen +ist. Betrachten wir zuletzt die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. -- cgit v1.2.1 From c2d2d48156ab7cfb0d69541e58f54c3a55b2daf9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 19:23:32 +0200 Subject: Added start to coefficient calculation. --- .../sturmliouville/waermeleitung_beispiel.tex | 75 ++++++++++++++++++++-- 1 file changed, 71 insertions(+), 4 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 14fca40..58569e9 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -346,12 +346,79 @@ Schreiben wir also die Lösung $X(x)$ um zu \[ X(x) = - a_n\sin\left(\frac{n\pi}{l}x\right) + a_0 + - b_n\cos\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right). +\] + +Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere +Bedingungen benötigt. +Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$. +Es gilt also nun die Gleichung +\begin{equation} + \label{eq:slp-example-fourier-initial-conditions} + u(0, x) + = + a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right) +\end{equation} +nach allen $a_n$ und $b_n$ aufzulösen. +Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion +gehört, von der wir wissen, dass sie orthogonal zu allen anderen +trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt +verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen. +Es wird also die Tatsache ausgenutzt, dass die Gleichheit in +\eqref{eq:slp-example-fourier-initial-conditions} nach Anwendung des +Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer +Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. + +Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das +Skalarprodukt mit der Basisfunktion $ sin\left(\frac{m \pi}{l}x\right)$ +gebildet: +\[ + \langle u(0, x), sin\left(\frac{m \pi}{l}x\right) \rangle + = + \langle a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), + sin\left(\frac{m \pi}{l}x\right)\rangle +\] + +Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt +sein, welche Integralgrenzen zu verwenden sind. +In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze +Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. +Um die + +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}(0, x)sin\left(\frac{m \pi}{l}x\right)dx + =& + \int_{-l}^{l} \left[a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right)\right] + sin\left(\frac{m \pi}{l}x\right) dx + \\ + =& + a_0 \int_{-l}^{l}sin\left(\frac{m \pi}{l}x\right) dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] + \\ + &+ + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \cos\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] +\end{aligned} \] -was für jedes $n$ wiederum eine Linearkombination aus orthogonalen Funktionen -ist. Betrachten wir zuletzt die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. -- cgit v1.2.1 From fc17a8247db60871ce49b23f1bbbb9b5523d8473 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 20:05:16 +0200 Subject: Corrected Coefficient names. --- .../sturmliouville/waermeleitung_beispiel.tex | 104 ++++++++++----------- 1 file changed, 52 insertions(+), 52 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 58569e9..fb5f331 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -181,7 +181,7 @@ Die Lösungen für $X(x)$ sind also von der Form \[ X(x) = - A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). + A \cos \left( \alpha x\right) + B \sin \left( \beta x\right). \] Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung @@ -191,41 +191,41 @@ Man erhält also \[ X^{\prime}(x) = - \alpha A \cos \left( \alpha x \right) - - \beta B \sin \left( \beta x \right) + - \alpha A \sin \left( \alpha x \right) + + \beta B \cos \left( \beta x \right) \] und \[ X^{\prime \prime}(x) = - -\alpha^{2} A \sin \left( \alpha x \right) - - \beta^{2} B \cos \left( \beta x \right). + -\alpha^{2} A \cos \left( \alpha x \right) - + \beta^{2} B \sin \left( \beta x \right). \] Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies \[ - -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) - - \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) - + \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right) = 0 \] und durch umformen somit \[ - -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) = - \mu A\sin(\alpha x) + \mu B\cos(\beta x). + \mu A\cos(\alpha x) + \mu B\sin(\beta x). \] Mittels Koeffizientenvergleich von \[ \begin{aligned} - -\alpha^{2}A\sin(\alpha x) + -\alpha^{2}A\cos(\alpha x) &= - \mu A\sin(\alpha x) + \mu A\cos(\alpha x) \\ - -\beta^{2}B\cos(\beta x) + -\beta^{2}B\sin(\beta x) &= - \mu B\cos(\beta x) + \mu B\sin(\beta x) \end{aligned} \] ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für @@ -251,41 +251,41 @@ Dies fürht zu \[ X(0) = - A \sin(0 \alpha) + B \cos(0 \beta) + A \cos(0 \alpha) + B \sin(0 \beta) = 0. \] -Da $\cos(0) \neq 0$ ist, muss in diesem Fall $B = 0$ gelten. -Für den ersten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. +Da $\cos(0) \neq 0$ ist, muss in diesem Fall $A = 0$ gelten. +Für den zweiten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. -Wird nun die zweite Randbedingung für $x = l$ mit $B = 0$ eingesetzt, ergibt +Wird nun die zweite Randbedingung für $x = l$ mit $A = 0$ eingesetzt, ergibt sich \[ X(l) = - A \sin(\alpha l) + 0 \cos(\beta l) + 0 \cos(\alpha l) + B \sin(\beta l) = - A \sin(\alpha l) + B \sin(\beta l) = 0. \] -$\alpha$ muss also so gewählt werden, dass $\sin(\alpha l) = 0$ gilt. -Es bleibt noch nach $\alpha$ aufzulösen: +$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt. +Es bleibt noch nach $\beta$ aufzulösen: \[ \begin{aligned} - \sin(\alpha l) &= 0 \\ - \alpha l &= n \pi \qquad n \in \mathbb{N} \\ - \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} + \sin(\beta l) &= 0 \\ + \beta l &= n \pi \qquad n \in \mathbb{N} \\ + \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} \end{aligned} \] -Es folgt nun wegen $\mu = -\alpha^{2}$, dass +Es folgt nun wegen $\mu = -\beta^{2}$, dass \begin{equation} - \mu_1 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} + \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} \end{equation} sein muss. -Ausserdem ist zu bemerken, dass dies auch gleich $-\beta^{2}$ ist. -Da aber $B = 0$ gilt und der Summand mit $\beta$ verschwindet, ist dies keine +Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. +Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine Verletzung der Randbedingungen. Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst @@ -296,18 +296,18 @@ ein, beginnend für $x = 0$. Es ergibt sich \[ X^{\prime}(0) = - \alpha A \cos(0 \alpha) - \beta B \sin(0 \beta) + -\alpha A \sin(0 \alpha) + \beta B \cos(0 \beta) = 0. \] -In diesem Fall muss $A = 0$ gelten. +In diesem Fall muss $B = 0$ gelten. Zusammen mit der Bedignung für $x = l$ folgt nun \[ X^{\prime}(l) = - 0 \alpha \cos(\alpha l) - \beta B \sin(\beta l) + - \alpha A \sin(\alpha l) + 0 \beta \cos(\beta l) = - -\beta B \sin(\beta l) + - \alpha A \sin(\alpha l) = 0. \] @@ -316,14 +316,14 @@ Ausdruck den Randbedingungen entspricht. Es folgt nun \[ \begin{aligned} - \sin(\beta l) &= 0 \\ - \beta l &= n \pi \qquad n \in \mathbb{N} \\ - \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} + \sin(\alpha l) &= 0 \\ + \alpha l &= n \pi \qquad n \in \mathbb{N} \\ + \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} \end{aligned} \] und somit \[ - \mu_2 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. + \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. \] Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur @@ -348,9 +348,9 @@ Schreiben wir also die Lösung $X(x)$ um zu = a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right). + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right). \] Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere @@ -363,9 +363,9 @@ Es gilt also nun die Gleichung = a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right) \end{equation} nach allen $a_n$ und $b_n$ aufzulösen. Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion @@ -378,17 +378,17 @@ Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das -Skalarprodukt mit der Basisfunktion $ sin\left(\frac{m \pi}{l}x\right)$ +Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ gebildet: \[ - \langle u(0, x), sin\left(\frac{m \pi}{l}x\right) \rangle + \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle = \langle a_0 + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), - sin\left(\frac{m \pi}{l}x\right)\rangle + \cos\left(\frac{m \pi}{l}x\right)\rangle \] Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt @@ -399,24 +399,24 @@ Um die \[ \begin{aligned} - \int_{-l}^{l}\hat{u}(0, x)sin\left(\frac{m \pi}{l}x\right)dx + \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& \int_{-l}^{l} \left[a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right)\right] - sin\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right] + \cos\left(\frac{m \pi}{l}x\right) dx \\ =& - a_0 \int_{-l}^{l}sin\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + - \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) - sin\left(\frac{m \pi}{l}x\right)dx\right] + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right] \\ &+ - \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \cos\left(\frac{n\pi}{l}x\right) - sin\left(\frac{m \pi}{l}x\right)dx\right] + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right] \end{aligned} \] -- cgit v1.2.1 From 37861bde4183d5134147df65dc06236d6878b36b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 21:19:44 +0200 Subject: Added periodically continued function u-hat. --- .../sturmliouville/waermeleitung_beispiel.tex | 23 +++++++++++++++++----- 1 file changed, 18 insertions(+), 5 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index fb5f331..fa96eff 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -385,9 +385,9 @@ gebildet: = \langle a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right), \cos\left(\frac{m \pi}{l}x\right)\rangle \] @@ -395,8 +395,21 @@ Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. -Um die - +Um die skalarprodukte aber korrekt zu berechnen, muss über die ganze Periode +integriert werden. +Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es wird ausserdem +eine neue Funktion +\[ + \hat{u}(0, x) + = + \begin{cases} + u(0, x + l) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases} +\] +angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. +Es kann nun das Skalarodukt geschrieben werden als \[ \begin{aligned} \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -416,7 +429,7 @@ Um die \\ &+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) - \cos\left(\frac{m \pi}{l}x\right)dx\right] + \cos\left(\frac{m \pi}{l}x\right)dx\right]. \end{aligned} \] -- cgit v1.2.1 From 6887191ba574292b6a9009867c0e16e66831ca17 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 22:01:25 +0200 Subject: Added titles to specific solutions. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index fa96eff..1bfdaef 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -409,7 +409,7 @@ eine neue Funktion \end{cases} \] angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. -Es kann nun das Skalarodukt geschrieben werden als +Das Skalarodukt kann nun geschrieben werden als \[ \begin{aligned} \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -428,7 +428,7 @@ Es kann nun das Skalarodukt geschrieben werden als \cos\left(\frac{m \pi}{l}x\right)dx\right] \\ &+ - \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right]. \end{aligned} \] @@ -457,22 +457,21 @@ Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} \] ergibt. -% TODO: Rechenweg -TODO: Rechenweg... Enden auf konstanter Temperatur: +\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} u(t,x) &= - \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \sum_{n=1}^{\infty}b_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \sin\left(\frac{n\pi}{l}x\right) \\ - a_{n} + b_{n} &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx \end{aligned} \] -TODO: Rechenweg... Enden isoliert: +\subsubsection{Lösung für einen Stab mit isolierten Enden} \[ \begin{aligned} u(t,x) -- cgit v1.2.1 From 964db187eaf5512601a04c6326094d6a1975d941 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 22:11:59 +0200 Subject: Rewrote everything in passive form. --- .../sturmliouville/waermeleitung_beispiel.tex | 25 ++++++++++++---------- 1 file changed, 14 insertions(+), 11 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 1bfdaef..868f241 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -6,8 +6,8 @@ \subsection{Wärmeleitung in einem Homogenen Stab} -In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem -homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses +In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab +betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und @@ -141,8 +141,9 @@ erfüllt sein und es muss ausserdem \end{equation} gelten. -Um zu verifizieren, ob die Randbedingungen erfüllt sind, benötigen wir zunächst -$p(x)$. +Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst +$p(x)$ +benötigt. Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu $p(x) = 1$ führt. @@ -169,7 +170,7 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. -Widmen wir uns zunächst der ersten Gleichung. +Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung \[ X^{\prime \prime}(x) - \mu X(x) @@ -290,7 +291,7 @@ Verletzung der Randbedingungen. Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst werden. -Setzen wir nun die Randbedingungen +Setzt man nun die Randbedingungen \eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich \[ @@ -342,7 +343,7 @@ Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei $A$ und $B$ nicht um einzelne Koeffizienten handelt. Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$ unterschiedlich sein. -Schreiben wir also die Lösung $X(x)$ um zu +Die Lösung $X(x)$ wird nun umgeschrieben zu \[ X(x) = @@ -433,14 +434,16 @@ Das Skalarodukt kann nun geschrieben werden als \end{aligned} \] -Betrachten wir zuletzt die zweite Gleichung der Separation -\eqref{eq:slp-example-fourier-separated-t}. -Diese Lösen wir über das charakteristische Polynom +Zuletzt wird die zweite Gleichung der Separation +\eqref{eq:slp-example-fourier-separated-t} betrachtet. +Diese wird über das charakteristische Polynom \[ \lambda - \kappa \mu = - 0. + 0 \] +gelöst. + Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur Lösung \[ -- cgit v1.2.1 From ff04ad95214c0ecdf8343fa8cd0aaa74dda45715 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 12 Aug 2022 14:22:03 +0200 Subject: Corrected error with continuation of u hat. --- .../sturmliouville/waermeleitung_beispiel.tex | 52 +++++++++++++++++----- 1 file changed, 40 insertions(+), 12 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 868f241..cfa7386 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -381,7 +381,8 @@ Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ gebildet: -\[ +\begin{equation} + \label{eq:slp-dot-product-cosine} \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle = \langle a_0 @@ -390,30 +391,56 @@ gebildet: + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right), \cos\left(\frac{m \pi}{l}x\right)\rangle -\] +\end{equation} Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. -Um die skalarprodukte aber korrekt zu berechnen, muss über die ganze Periode -integriert werden. -Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es wird ausserdem -eine neue Funktion +Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges +Vielfaches der Periode der triginimetrischen Funktionen integriert werden. +Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem +neue Funktionen $ \hat{u}_c(0, x) $ für die Berechnung mit Cosinus und +$ \hat{u}_s(0, x) $ für die Berechnung mit Sinus angenomen, welche $ u(0, t) $ +gerade, respektive ungerade auf $[-l, l]$ fortsetzen: \[ - \hat{u}(0, x) - = +\begin{aligned} + \hat{u}_c(0, x) + &= \begin{cases} - u(0, x + l) & -l \leq x < 0 + u(0, -x) & -l \leq x < 0 \\ u(0, x) & 0 \leq x \leq l \end{cases} + \\ + \hat{u}_s(0, x) + &= + \begin{cases} + -u(0, -x) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases}. +\end{aligned} \] -angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. -Das Skalarodukt kann nun geschrieben werden als + +Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei +skalliert wurde, also gilt nun +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \\ + \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx. +\end{aligned} +\] + +Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \[ \begin{aligned} - \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& \int_{-l}^{l} \left[a_0 + @@ -422,6 +449,7 @@ Das Skalarodukt kann nun geschrieben werden als \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right] \cos\left(\frac{m \pi}{l}x\right) dx \\ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + -- cgit v1.2.1 From d9c6ead18aae68a14ce72b893d9c671156a1d6b3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 12 Aug 2022 18:03:55 +0200 Subject: Full calculation for a_m explained. --- .../sturmliouville/waermeleitung_beispiel.tex | 58 ++++++++++++++++++++++ 1 file changed, 58 insertions(+) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index cfa7386..5c246f2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -462,6 +462,64 @@ Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \end{aligned} \] +Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass +nahezu alle Terme verschinden, denn +\[ + \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + = + 0 +\] +da hier über ein ganzzahliges Vielfaches der Periode integriert wird, +\[ + \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen +orthogonal zueinander stehen und +\[ + \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sin. + +Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu +\[ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + = + a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx +\] +vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite +berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst +mit $u = \frac{m \pi}{l}x$ substituiert wird: +\[ + \begin{aligned} + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du + \\ + &= + a_m\frac{l}{m\pi}\left[\frac{u}{2} + + \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} + \\ + &= + a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - + \frac{-m\pi}{2} - + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \\ + &= + a_m l + \\ + a_m + &= + \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \end{aligned} +\] + Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom -- cgit v1.2.1 From b1f2ce6c7f7b277558e7fd18cedae9a0a06aefde Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Sat, 13 Aug 2022 12:33:04 +0200 Subject: Finished first draft of fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 74 +++++++++++++++++++++- 1 file changed, 73 insertions(+), 1 deletion(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5c246f2..5bd5ce2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -170,6 +170,7 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. +\subsubsection{Lösund der Differentialgleichung in x} Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung \[ @@ -463,7 +464,7 @@ Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \] Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass -nahezu alle Terme verschinden, denn +nahezu alle Terme verschwinden, denn \[ \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx = @@ -520,6 +521,74 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \end{aligned} \] +Analog dazu kann durch das Bilden des Skalarproduktes mit +$ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass +\[ + b_m + = + \frac{2}{l} \int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx +\] +gilt. + +Etwas anders ist es allerdings bei $a_0$. +Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten +zur Basisfunktion $ \cos\left(\frac{0 \pi}{l}x\right) $ beziehungsweise der +konstanten Funktion $1$. +Um einen Ausdruck für $ a_0 $ zu erhalten, wird wiederum auf beiden Seiten +der Gleichung \eqref{eq:slp-example-fourier-initial-conditions} das +Skalarprodukt mit der konstanten Basisfunktion $ 1 $ gebildet: +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)dx + &= + \int_{-l}^{l} a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)dx + \\ + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + dx\right] + + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + dx\right]. +\end{aligned} +\] + +Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils +über ein Vielfaches der Periode integriert wird. +Es bleibt also noch +\[ + 2\int_{0}^{l}u(0, x)dx + = + a_0 \int_{-l}^{l}dx +\] +, was sich wie folgt nach $a_0$ auflösen lässt: +\[ +\begin{aligned} + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + \\ + &= + a_0 \left[x\right]_{x=-l}^{l} + \\ + &= + a_0(l - (-l)) + \\ + &= + a_0 \cdot 2l + \\ + a_0 + &= + \frac{1}{l} \int_{0}^{l}u(0, x)dx +\end{aligned} +\] + +\subsubsection{Lösund der Differentialgleichung in t} Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom @@ -546,6 +615,9 @@ Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} \] ergibt. +Dieses Resultat kann nun mit allen vorhergehenden Resultaten zudammengesetzt +werden um die vollständige Lösung für das Stab-Problem zu erhalten. + \subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} -- cgit v1.2.1 From 1b634d9be2a8536dbc55b3ac3b60efda6a5a16c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 09:46:33 +0200 Subject: Corrected some errors. --- .../sturmliouville/waermeleitung_beispiel.tex | 45 +++++++++++----------- 1 file changed, 23 insertions(+), 22 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5bd5ce2..5d178c2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -11,8 +11,8 @@ betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und -Wärmeleitkoeffizient $\kappa$. -Somit ergibt sich für das Wärmeleitungsproblem +Wärmeleitkoeffizient $\kappa$ betrachtet. +Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung \begin{equation} \label{eq:slp-example-fourier-heat-equation} @@ -26,13 +26,14 @@ Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter Tempreatur gehalten werden. -%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% - -\subsubsection{Stab mit Enden auf konstanter Temperatur} +% +% Randbedingungen für Stab mit konstanten Endtemperaturen +% +\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene -Temperatur zurückgeben darf. +Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. Es folgen nun \begin{equation} \label{eq:slp-example-fourier-boundary-condition-ends-constant} @@ -44,12 +45,14 @@ Es folgen nun \end{equation} als Randbedingungen. -%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% +% +% Randbedingungen für Stab mit isolierten Enden +% -\subsubsection{Stab mit isolierten Enden} +\subsubsection{Randbedingungen für Stab mit isolierten Enden} Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und -$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen @@ -72,9 +75,6 @@ als Randbedingungen. \subsubsection{Lösung der Differenzialgleichung} -% TODO: Referenz Separationsmethode -% TODO: Formeln sauber in Text einbinden. - Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz die Separationsmethode verwendet. Dazu wird @@ -83,7 +83,8 @@ Dazu wird = T(t)X(x) \] -in die ursprüngliche Differenzialgleichung eingesetzt. +in die partielle Differenzialgleichung +\eqref{eq:slp-example-fourier-heat-equation} eingesetzt. Daraus ergibt sich \[ T^{\prime}(t)X(x) @@ -95,13 +96,13 @@ als neue Form. Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels der neuen Variablen $\mu$ gekoppelt werden: -\begin{equation} +\[ \frac{T^{\prime}(t)}{\kappa T(t)} = \frac{X^{\prime \prime}(x)}{X(x)} = \mu -\end{equation} +\] Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: \begin{equation} @@ -123,12 +124,14 @@ Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden. +Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können +diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$. Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen \begin{equation} \begin{aligned} \label{eq:slp-example-fourier-randbedingungen} - k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0 + k_a X(a) + h_a p(a) X'(a) &= 0 \\ + k_b X(b) + h_b p(b) X'(b) &= 0 \end{aligned} \end{equation} erfüllt sein und es muss ausserdem @@ -237,8 +240,6 @@ bestimmen. Dazu werden nochmals die Randbedingungen \eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und \eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. -Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und -somit direkt für $X(x)$ übernomen werden können. Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die @@ -282,9 +283,9 @@ Es bleibt noch nach $\beta$ aufzulösen: \] Es folgt nun wegen $\mu = -\beta^{2}$, dass -\begin{equation} +\[ \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} -\end{equation} +\] sein muss. Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine @@ -485,7 +486,7 @@ orthogonal zueinander stehen und = 0 \] -da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sin. +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind. Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu \[ -- cgit v1.2.1 From d80f928a8c5248d4fb92d04ed81cdaeec61bc10a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 09:51:21 +0200 Subject: Added comments to source. --- .../papers/sturmliouville/waermeleitung_beispiel.tex | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) (limited to 'buch/papers/sturmliouville') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5d178c2..14c0d9a 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -71,7 +71,9 @@ Somit folgen \end{equation} als Randbedingungen. -%%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung der Differenzialgleichung mittels Separation +% \subsubsection{Lösung der Differenzialgleichung} @@ -118,6 +120,10 @@ Differenzialgleichungen aufgeteilt werden: 0 \end{equation} +% +% Überprüfung Orthogonalität der Lösungen +% + Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des @@ -173,6 +179,10 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. +% +% Lösung von X(x), Teil mu +% + \subsubsection{Lösund der Differentialgleichung in x} Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung @@ -338,7 +348,9 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} -%%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. +% Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei @@ -589,6 +601,10 @@ Es bleibt also noch \end{aligned} \] +% +% Lösung von T(t) +% + \subsubsection{Lösund der Differentialgleichung in t} Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. -- cgit v1.2.1