From 96ac18247b4b63c31f36971b7b4afeb189fafe85 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 6 Aug 2022 16:02:56 +0200 Subject: simple corrections --- buch/papers/zeta/analytic_continuation.tex | 69 +++++++++++++++++++----------- 1 file changed, 43 insertions(+), 26 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 0ccc116..8484b28 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -3,12 +3,12 @@ Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. -So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = 0.5$. +So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = \frac{1}{2}$. Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. Es werden zwei verschiedene Fortsetzungen benötigt. Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. -Die zweite verwendet eine Spiegelung an der $\Re(s) = 0.5$ Linie und erschliesst damit die ganze komplexe Ebene. +Die zweite verwendet eine Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden und erschliesst damit die ganze komplexe Ebene. Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. \begin{figure} \centering @@ -23,7 +23,7 @@ Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuat \end{figure} \subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0} -Zuerst definieren die Dirichletsche Etafunktion als +Zuerst definieren wir die Dirichletsche Etafunktion als \begin{equation}\label{zeta:equation:eta} \eta(s) = @@ -36,26 +36,40 @@ Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion durch die Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. Zuerst wiederholen wir zweimal die Definition der Zetafunktion \eqref{zeta:equation1}, wobei wir sie einmal durch $2^{s-1}$ teilen \begin{align} - \zeta(s) + \color{red} + \zeta(s) &= \sum_{n=1}^{\infty} - \frac{1}{n^s} \label{zeta:align1} + \color{red} + \frac{1}{n^s} \label{zeta:align1} \\ - \frac{1}{2^{s-1}} - \zeta(s) + \color{blue} + \frac{1}{2^{s-1}} + \zeta(s) &= \sum_{n=1}^{\infty} - \frac{2}{(2n)^s}. \label{zeta:align2} + \color{blue} + \frac{2}{(2n)^s}. \label{zeta:align2} \end{align} Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:align2}, ergibt sich \begin{align} - \left(1 - \frac{1}{2^{s-1}} \right) + \left({\color{red}1} - {\color{blue}\frac{1}{2^{s-1}}} \right) \zeta(s) &= - \frac{1}{1^s} - \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} - + \frac{1}{3^s} - \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + {\color{red}\frac{1}{1^s}} + \underbrace{ + - + {\color{blue}\frac{2}{2^s}} + + + {\color{red}\frac{1}{2^s}} + }_{-\frac{1}{2^s}} + + + {\color{red}\frac{1}{3^s}} + \underbrace{- + {\color{blue}\frac{2}{4^s}} + + + {\color{red}\frac{1}{4^s}} + }_{-\frac{1}{4^s}} \ldots \\ &= \eta(s). @@ -87,14 +101,15 @@ Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \end{equation} Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wir durch $(\pi n^2)^{\frac{s}{2}}$ \begin{equation} - \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \frac{1}{n^s} = \int_0^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^2 x} \,dx, \end{equation} -und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$ +und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ \begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -137,13 +152,13 @@ wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir 1 &= \frac{1}{\sqrt{x}} - \left( + \Biggl( 2 \sum_{n=1}^{\infty} e^{\frac{-n^2 \pi}{x}} + 1 - \right) + \Biggr) \\ 2 \psi(x) @@ -189,7 +204,7 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al = I_1 + I_2, \end{equation} -wobei wir uns nun auf den ersten Teil $I_1$ konzentrieren werden. +wobei wir uns zunächst auf den ersten Teil $I_1$ konzentrieren werden. Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten \begin{align} I_1 @@ -201,11 +216,11 @@ Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein &= \int_0^{1} x^{\frac{s}{2}-1} - \left( + \Biggl( - \frac{1}{2} + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + \frac{1}{2 \sqrt{x}} - \right) + \Biggr) \,dx \\ &= @@ -237,7 +252,7 @@ Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein \,dx }_{I_4}. \label{zeta:equation:integral3} \end{align} -Dabei kann das zweite Integral $I_4$ gelöst werden als +Darin kann das zweite Integral $I_4$ gelöst werden als \begin{equation} I_4 = @@ -278,8 +293,8 @@ Dies ergibt \,dx, \end{align} wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. -Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals von \eqref{zeta:equation:integral2} sind. -Wir setzen beide Lösungen ein in Gleichung \eqref{zeta:equation:integral3} und erhalten +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten \begin{equation} I_1 = @@ -356,17 +371,19 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(s) = \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} - \zeta(1-s). + \zeta(1-s), \end{equation} +was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. +Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. %TODO Definitionen und Gleichungen klarer unterscheiden \subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} -Der Beweis für Gleichung \ref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. +Der Beweis für Gleichung \eqref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. \begin{lemma} - Die Fourierreihe der periodischen Dirac Delta Funktion $\sum \delta(x - 2\pi k)$ ist + Die Fourierreihe der periodischen Dirac $\delta$ Funktion $\sum \delta(x - 2\pi k)$ ist \begin{equation} \label{zeta:equation:fourier_dirac} \sum_{k=-\infty}^{\infty} \delta(x - 2\pi k) -- cgit v1.2.1 From 79c0198f5082851ce28945e8278ab01b82496901 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 6 Aug 2022 19:21:47 +0200 Subject: restructured 19.4.2 --- buch/papers/zeta/analytic_continuation.tex | 364 ++++++++++++++++------------- 1 file changed, 203 insertions(+), 161 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 8484b28..a45791e 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -110,78 +110,24 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi \,dx, \end{equation} und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ -\begin{equation} +\begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) - = + &= \int_0^{\infty} x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} - \,dx. \label{zeta:equation:integral1} -\end{equation} -Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. -Im Abschnitt \ref{zeta:subsec:poisson_summation} wird die poissonsche Summenformel $\sum f(n) = \sum F(n)$ bewiesen. -In unserem Problem ist $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist -\begin{equation} - F(n) - = - \mathcal{F} - ( - e^{-\pi n^2 x} - ) - = - \frac{1}{\sqrt{x}} - e^{\frac{-n^2 \pi}{x}}. -\end{equation} -Dadurch ergibt sich -\begin{equation}\label{zeta:equation:psi} - \sum_{n=-\infty}^{\infty} - e^{-\pi n^2 x} - = - \frac{1}{\sqrt{x}} - \sum_{n=-\infty}^{\infty} - e^{\frac{-n^2 \pi}{x}}, -\end{equation} -wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als -\begin{align} - 2 - \sum_{n=1}^{\infty} - e^{-\pi n^2 x} - + - 1 - &= - \frac{1}{\sqrt{x}} - \Biggl( - 2 - \sum_{n=1}^{\infty} - e^{\frac{-n^2 \pi}{x}} - + - 1 - \Biggr) + \,dx\label{zeta:equation:integral1} \\ - 2 - \psi(x) - + - 1 &= - \frac{1}{\sqrt{x}} - \left( - 2 - \psi\left(\frac{1}{x}\right) - + - 1 - \right) - \\ + \int_0^{\infty} + x^{\frac{s}{2}-1} \psi(x) - &= - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} + \,dx, \end{align} -Diese Gleichung wird später wichtig werden. - -Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als +wobei die Summe $\sum_{n=1}^{\infty} e^{-\pi n^2 x}$ als $\psi(x)$ abgekürzt wird. +Zunächst teilen wir nun das Integral auf in zwei Teile \begin{equation}\label{zeta:equation:integral2} \int_0^{\infty} x^{\frac{s}{2}-1} @@ -202,100 +148,11 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al \,dx }_{I_2} = - I_1 + I_2, -\end{equation} -wobei wir uns zunächst auf den ersten Teil $I_1$ konzentrieren werden. -Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten -\begin{align} - I_1 - = - \int_0^{1} - x^{\frac{s}{2}-1} - \psi(x) - \,dx - &= - \int_0^{1} - x^{\frac{s}{2}-1} - \Biggl( - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}} - \Biggr) - \,dx - \\ - &= - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - + \frac{1}{2} - \biggl( - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \biggl) - \,dx - \\ - &= - \underbrace{ - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - \,dx - }_{I_3} - + - \underbrace{ - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - }_{I_4}. \label{zeta:equation:integral3} -\end{align} -Darin kann das zweite Integral $I_4$ gelöst werden als -\begin{equation} - I_4 - = - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - = - \frac{1}{s(s-1)}. + I_1 + I_2. \end{equation} -Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. -Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. -Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. -Dies ergibt -\begin{align} - I_3 - = - \int_{\infty}^{1} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{-du}{u^2} - &= - \int_{1}^{\infty} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{du}{u^2} - \\ - &= - \int_{1}^{\infty} - x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} - \psi(x) - \,dx, -\end{align} -wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. -Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. -Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten -\begin{equation} +Abschnitt \ref{zeta:subsubsec:intcal} beschreibt wie das Integral $I_1$ umgestellt werden kann um ebenfalls die Integrationsgrenzen $1$ und $\infty$ zu bekommen. +Die Lösung, beschrieben in Gleichung \eqref{zeta:equation:intcal_res}, lautet +\begin{equation*} I_1 = \int_0^{1} @@ -309,8 +166,8 @@ Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und \,dx + \frac{1}{s(s-1)}. -\end{equation} -Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um schlussendlich +\end{equation*} +Dieses Resultat setzen wir nun ein in \eqref{zeta:equation:integral2}, um schlussendlich \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -375,12 +232,14 @@ Somit haben wir die analytische Fortsetzung gefunden als \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. -%TODO Definitionen und Gleichungen klarer unterscheiden -\subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} +\subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Der Beweis für Gleichung \eqref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. -Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. +Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. +Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. + +Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. \begin{lemma} Die Fourierreihe der periodischen Dirac $\delta$ Funktion $\sum \delta(x - 2\pi k)$ ist @@ -492,3 +351,186 @@ Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta F f(k). \end{equation} \end{proof} + +Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} +\begin{align*} + I_1 + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + . +\end{align*} + +Wir wenden nun diese poissonsche Summenformel $\sum f(n) = \sum F(n)$ an auf $\psi(x)$. +In unserem Problem ist also $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist +\begin{equation} + F(n) + = + \mathcal{F} + ( + e^{-\pi n^2 x} + ) + = + \frac{1}{\sqrt{x}} + e^{\frac{-n^2 \pi}{x}}. +\end{equation} +Dadurch ergibt sich +\begin{equation}\label{zeta:equation:psi} + \sum_{n=-\infty}^{\infty} + e^{-\pi n^2 x} + = + \frac{1}{\sqrt{x}} + \sum_{n=-\infty}^{\infty} + e^{\frac{-n^2 \pi}{x}}, +\end{equation} +wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als +\begin{align} + 2 + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + + + 1 + &= + \frac{1}{\sqrt{x}} + \Biggl( + 2 + \sum_{n=1}^{\infty} + e^{\frac{-n^2 \pi}{x}} + + + 1 + \Biggr) + \\ + 2 + \psi(x) + + + 1 + &= + \frac{1}{\sqrt{x}} + \left( + 2 + \psi\left(\frac{1}{x}\right) + + + 1 + \right) + \\ + \psi(x) + &= + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} +\end{align} +Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt +\begin{align} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \Biggl( + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}} + \Biggr) + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + + \frac{1}{2} + \biggl( + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \biggl) + \,dx + \\ + &= + \underbrace{ + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + \,dx + }_{I_3} + + + \underbrace{ + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + }_{I_4}. \label{zeta:equation:integral3} +\end{align} +Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als +\begin{equation} + I_4 + = + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + = + \frac{1}{s(s-1)}. +\end{equation} +Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist hingegen nicht lösbar in dieser Form. +Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. +Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. +Dies ergibt +\begin{align} + I_3 + = + \int_{\infty}^{1} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{-du}{u^2} + &= + \int_{1}^{\infty} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{du}{u^2} + \\ + &= + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx, +\end{align} +wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten +\begin{equation} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + = + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx + + + \frac{1}{s(s-1)}. \label{zeta:equation:intcal_res} +\end{equation} +Diese Form des Integrals $I_1$ hat die gewünschten Integrationsgrenzen und ein essentieller Bestandteil des Beweises der Funktionalgleichung in Abschnitt \ref{zeta:subsection:auf_ganz}. -- cgit v1.2.1 From 77dfbc3727334b88dcf19c673d9ef9812df1806a Mon Sep 17 00:00:00 2001 From: runterer Date: Sun, 7 Aug 2022 17:30:30 +0200 Subject: wip conlcusion not finished --- buch/papers/zeta/analytic_continuation.tex | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index a45791e..4046bb7 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -4,7 +4,7 @@ Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = \frac{1}{2}$. -Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. +Wie bereits erwähnt sind diese Gegenstand der Riemannschen Vermutung. Es werden zwei verschiedene Fortsetzungen benötigt. Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. @@ -12,7 +12,7 @@ Die zweite verwendet eine Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden und e Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. \begin{figure} \centering - \input{papers/zeta/continuation_overview.tikz.tex} + \input{papers/zeta/images/continuation_overview.tikz.tex} \caption{ Die verschiedenen Abschnitte der Riemannschen Zetafunktion. Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. @@ -237,7 +237,7 @@ Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:fu Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. -Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. +Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir den gesuchten Beweis für die poissonsche Summenformel + Wenn wir dies einsetzen und erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -348,8 +348,9 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \, dx = \sum_{k=-\infty}^{\infty} - f(k). + f(k), \end{equation} + was der gesuchte Beweis für die poissonsche Summenformel ist. \end{proof} Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} -- cgit v1.2.1 From 970e6a8a2b2371834e8a4ff42123da59e3990fe4 Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 21:59:31 +0200 Subject: Finished --- buch/papers/zeta/analytic_continuation.tex | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 4046bb7..ed07e04 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -62,14 +62,14 @@ Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:a {\color{blue}\frac{2}{2^s}} + {\color{red}\frac{1}{2^s}} - }_{-\frac{1}{2^s}} + }_{\displaystyle{-\frac{1}{2^s}}} + {\color{red}\frac{1}{3^s}} \underbrace{- {\color{blue}\frac{2}{4^s}} + {\color{red}\frac{1}{4^s}} - }_{-\frac{1}{4^s}} + }_{\displaystyle{-\frac{1}{4^s}}} \ldots \\ &= \eta(s). @@ -89,7 +89,7 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen = \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. \end{equation} -Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten +Nun substituieren wir $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \begin{equation} \Gamma \left( \frac{s}{2} \right) = @@ -109,7 +109,7 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi e^{-\pi n^2 x} \,dx, \end{equation} -und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ +und finden $\zeta(s)$ durch die Summenbildung über alle $n$ \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -139,14 +139,14 @@ Zunächst teilen wir nun das Integral auf in zwei Teile x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_1} + }_{\displaystyle{I_1}} + \underbrace{ \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_2} + }_{\displaystyle{I_2}} = I_1 + I_2. \end{equation} @@ -231,11 +231,11 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(1-s), \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. -Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. +Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Abschnitt \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. \subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Ziel dieses Abschnittes ist, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. @@ -313,8 +313,8 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \underbrace{ \sum_{k=-\infty}^{\infty} e^{-i 2\pi x k} - }_{\text{\eqref{zeta:equation:fourier_dirac}}} - \, dx, + }_{\displaystyle{\text{\eqref{zeta:equation:fourier_dirac}}}} + \, dx, \label{zeta:equation:1934} \end{align} und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac} \begin{align} @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir + Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -465,7 +465,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt x^{\frac{s}{2}-\frac{3}{2}} \psi \left( \frac{1}{x} \right) \,dx - }_{I_3} + }_{\displaystyle{I_3}} + \underbrace{ \frac{1}{2} @@ -474,7 +474,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt - x^{\frac{s}{2}-1} \,dx - }_{I_4}. \label{zeta:equation:integral3} + }_{\displaystyle{I_4}}. \label{zeta:equation:integral3} \end{align} Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als \begin{equation} -- cgit v1.2.1 From 7d2e4ff7b1b50b382af659fcfbbc38adb6dd7ace Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 22:05:19 +0200 Subject: minor changes --- buch/papers/zeta/analytic_continuation.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index ed07e04..d45a6ae 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir + Wenn wir dies einsetzen in Gleichung \eqref{zeta:equation:1934} erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) -- cgit v1.2.1