From 77dfbc3727334b88dcf19c673d9ef9812df1806a Mon Sep 17 00:00:00 2001 From: runterer Date: Sun, 7 Aug 2022 17:30:30 +0200 Subject: wip conlcusion not finished --- buch/papers/zeta/analytic_continuation.tex | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index a45791e..4046bb7 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -4,7 +4,7 @@ Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = \frac{1}{2}$. -Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. +Wie bereits erwähnt sind diese Gegenstand der Riemannschen Vermutung. Es werden zwei verschiedene Fortsetzungen benötigt. Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. @@ -12,7 +12,7 @@ Die zweite verwendet eine Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden und e Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. \begin{figure} \centering - \input{papers/zeta/continuation_overview.tikz.tex} + \input{papers/zeta/images/continuation_overview.tikz.tex} \caption{ Die verschiedenen Abschnitte der Riemannschen Zetafunktion. Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. @@ -237,7 +237,7 @@ Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:fu Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. -Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. +Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir den gesuchten Beweis für die poissonsche Summenformel + Wenn wir dies einsetzen und erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -348,8 +348,9 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \, dx = \sum_{k=-\infty}^{\infty} - f(k). + f(k), \end{equation} + was der gesuchte Beweis für die poissonsche Summenformel ist. \end{proof} Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} -- cgit v1.2.1