From 970e6a8a2b2371834e8a4ff42123da59e3990fe4 Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 21:59:31 +0200 Subject: Finished --- buch/papers/zeta/analytic_continuation.tex | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 4046bb7..ed07e04 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -62,14 +62,14 @@ Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:a {\color{blue}\frac{2}{2^s}} + {\color{red}\frac{1}{2^s}} - }_{-\frac{1}{2^s}} + }_{\displaystyle{-\frac{1}{2^s}}} + {\color{red}\frac{1}{3^s}} \underbrace{- {\color{blue}\frac{2}{4^s}} + {\color{red}\frac{1}{4^s}} - }_{-\frac{1}{4^s}} + }_{\displaystyle{-\frac{1}{4^s}}} \ldots \\ &= \eta(s). @@ -89,7 +89,7 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen = \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. \end{equation} -Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten +Nun substituieren wir $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \begin{equation} \Gamma \left( \frac{s}{2} \right) = @@ -109,7 +109,7 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi e^{-\pi n^2 x} \,dx, \end{equation} -und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ +und finden $\zeta(s)$ durch die Summenbildung über alle $n$ \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -139,14 +139,14 @@ Zunächst teilen wir nun das Integral auf in zwei Teile x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_1} + }_{\displaystyle{I_1}} + \underbrace{ \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_2} + }_{\displaystyle{I_2}} = I_1 + I_2. \end{equation} @@ -231,11 +231,11 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(1-s), \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. -Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. +Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Abschnitt \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. \subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Ziel dieses Abschnittes ist, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. @@ -313,8 +313,8 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \underbrace{ \sum_{k=-\infty}^{\infty} e^{-i 2\pi x k} - }_{\text{\eqref{zeta:equation:fourier_dirac}}} - \, dx, + }_{\displaystyle{\text{\eqref{zeta:equation:fourier_dirac}}}} + \, dx, \label{zeta:equation:1934} \end{align} und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac} \begin{align} @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir + Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -465,7 +465,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt x^{\frac{s}{2}-\frac{3}{2}} \psi \left( \frac{1}{x} \right) \,dx - }_{I_3} + }_{\displaystyle{I_3}} + \underbrace{ \frac{1}{2} @@ -474,7 +474,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt - x^{\frac{s}{2}-1} \,dx - }_{I_4}. \label{zeta:equation:integral3} + }_{\displaystyle{I_4}}. \label{zeta:equation:integral3} \end{align} Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als \begin{equation} -- cgit v1.2.1