From c771727f3d404d7d79f36b3871e540a8539edfcf Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 30 Apr 2022 22:03:05 +0200 Subject: wip copying my handwritten stuff to LaTex --- buch/papers/zeta/analytic_continuation.tex | 165 +++++++++++++++++++++++++++++ 1 file changed, 165 insertions(+) create mode 100644 buch/papers/zeta/analytic_continuation.tex (limited to 'buch/papers/zeta/analytic_continuation.tex') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex new file mode 100644 index 0000000..943647a --- /dev/null +++ b/buch/papers/zeta/analytic_continuation.tex @@ -0,0 +1,165 @@ +\section{Analytische Fortsetzung} \label{zeta:section:analytische_fortsetzung} +\rhead{Analytische Fortsetzung} + +%TODO missing Text + +\subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0} +Zuerst definieren die Dirichletsche Etafunktion als +\begin{equation}\label{zeta:equation:eta} + \eta(s) + = + \sum_{n=1}^{\infty} + \frac{(-1)^{n-1}}{n^s}, +\end{equation} +wobei die Reihe bis auf die alternierenden Vorzeichen die selbe wie in der Zetafunktion ist. +Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) > 0$, da dann die einzelnen Glieder monoton fallend sind. + +Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion mit der Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. +Die folgenden Schritte zeigen, wie man dazu kommt: +\begin{align} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{1}{n^s} \label{zeta:align1} + \\ + \frac{1}{2^{s-1}} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{2}{(2n)^s} \label{zeta:align2} + \\ + \left(1 - \frac{1}{2^{s-1}} \right) + \zeta(s) + &= + \frac{1}{1^s} + \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} + + \frac{1}{3^s} + \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + \ldots + && \text{\eqref{zeta:align1}} - \text{\eqref{zeta:align2}} + \\ + &= \eta(s) + \\ + \zeta(s) + &= + \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). +\end{align} + +\subsection{Fortsetzung auf ganz $\mathbb{C}$} \label{zeta:subsection:auf_ganz} +Für die Fortsetzung auf den Rest von $\mathbb{C}$, verwenden wir den Zusammenhang von Gamma- und Zetafunktion aus \ref{zeta:section:zusammenhang_mit_gammafunktion}. +Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen als +\begin{equation} + \Gamma \left( \frac{s}{2} \right) + = + \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. +\end{equation} +Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten +\begin{align} + \Gamma \left( \frac{s}{2} \right) + &= + \int_0^{\infty} + (\pi n^2)^{\frac{s}{2}} + x^{\frac{s}{2}-1} + e^{-\pi n^2 x} + dx + && \text{Division durch } (\pi n^2)^{\frac{s}{2}} + \\ + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} + &= + \int_0^{\infty} + x^{\frac{s}{2}-1} + e^{-\pi n^2 x} + dx + && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} + \\ + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \zeta(s) + &= + \int_0^{\infty} + x^{\frac{s}{2}-1} + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + dx. \label{zeta:equation:integral1} +\end{align} +Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. +%TODO Wieso folgendes -> aus Fourier Signal +Es gilt +\begin{equation}\label{zeta:equation:psi} + \psi(x) + = + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}. +\end{equation} + +Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als +\begin{equation}\label{zeta:equation:integral2} + \int_0^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + + + \int_1^{\infty} + x^{\frac{s}{2}-1} + \psi(x) + dx, +\end{equation} +wobei wir uns nun auf den ersten Teil konzentrieren werden. +Dabei setzen wir das Wissen aus \eqref{zeta:equation:integral2} ein und erhalten +\begin{align} + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + dx + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \left( + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}. + \right) + dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + + \frac{1}{2} + \left( + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \right) + dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + dx + + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + dx. +\end{align} +Dabei kann das zweite integral gelöst werden als +\begin{equation} + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + dx + = + \frac{1}{s(s-1)}. +\end{equation} + + -- cgit v1.2.1