From 14b48dfeb636fe25b0745a2ab617cc5d307c06e6 Mon Sep 17 00:00:00 2001 From: runterer Date: Thu, 26 May 2022 20:38:30 +0200 Subject: =?UTF-8?q?tikz=20und=20eulerprodukt=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/zeta/zeta_gamma.tex | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) (limited to 'buch/papers/zeta/zeta_gamma.tex') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 49fea74..db41676 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -2,9 +2,8 @@ \rhead{Zusammenhang mit der Gammafunktion} In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. -Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ ist nicht nur interessant, er wird später auch für die Herleitung der analytischen Fortsetzung gebraucht. -%TODO ref Gamma Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} \begin{equation*} \Gamma(s) @@ -51,12 +50,12 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir den gewünschten Zusammenhang \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{u^{s-1}}{e^u -1} - du. + du \qed \end{equation} -- cgit v1.2.1