From c771727f3d404d7d79f36b3871e540a8539edfcf Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 30 Apr 2022 22:03:05 +0200 Subject: wip copying my handwritten stuff to LaTex --- buch/papers/zeta/zeta_gamma.tex | 53 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 buch/papers/zeta/zeta_gamma.tex (limited to 'buch/papers/zeta/zeta_gamma.tex') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex new file mode 100644 index 0000000..59c8744 --- /dev/null +++ b/buch/papers/zeta/zeta_gamma.tex @@ -0,0 +1,53 @@ +\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit Gammafunktion} + +Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her. + +%TODO ref Gamma +Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion +\begin{align} + \Gamma(s) + &= + \int_0^{\infty} t^{s-1} e^{-t} dt + \\ + &= + \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du + && + \text{Division durch }n^s + \\ + \frac{\Gamma(s)}{n^s} + &= + \int_0^{\infty} u^{s-1} e^{-nu}du + && + \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} + \\ + \Gamma(s) \zeta(s) + &= + \int_0^{\infty} u^{s-1} + \sum_{n=1}^{\infty}e^{-nu} + du. + \label{zeta:equation:zeta_gamma1} +\end{align} +Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten +\begin{align} + \sum_{n=1}^{\infty}e^{-u^n} + &= + \sum_{n=0}^{\infty}e^{-u^n} + - + 1 + \\ + &= + \frac{1}{1 - e^{-u}} - 1 + \\ + &= + \frac{1}{e^u - 1}. +\end{align} +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir +\begin{equation}\label{zeta:equation:zeta_gamma_final} + \zeta(s) + = + \frac{1}{\Gamma(s)} + \int_0^{\infty} + \frac{u^{s-1}}{e^u -1} + du. +\end{equation} -- cgit v1.2.1 From a28b0e8a16564e78aaecc299526fa8bb96964e0e Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 14 May 2022 18:21:13 +0200 Subject: corrections to zeta_gamma --- buch/papers/zeta/zeta_gamma.tex | 53 ++++++++++++++++++++++++----------------- 1 file changed, 31 insertions(+), 22 deletions(-) (limited to 'buch/papers/zeta/zeta_gamma.tex') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 59c8744..bed4262 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -1,38 +1,47 @@ -\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} -\rhead{Zusammenhang mit Gammafunktion} +\section{Zusammenhang mit der Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit der Gammafunktion} -Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her. +In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. %TODO ref Gamma -Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion -\begin{align} +Wir erinnern uns an die Definition der Gammafunktion in \ref{buch:rekursion:gamma:integralbeweis} +\begin{equation*} + \Gamma(s) + = + \int_0^{\infty} t^{s-1} e^{-t} \,dt, +\end{equation*} +wobei die Notation an die Zetafunktion angepasst ist. +Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus +\begin{align*} \Gamma(s) &= - \int_0^{\infty} t^{s-1} e^{-t} dt - \\ + \int_0^{\infty} n^{s-1}u^{s-1} e^{-nu} n \,du \\ &= - \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du - && - \text{Division durch }n^s - \\ + \int_0^{\infty} n^s u^{s-1} e^{-nu} \,du. +\end{align*} +Durch Division mit durch $n^s$ ergibt sich die Quotienten +\begin{equation*} \frac{\Gamma(s)}{n^s} - &= - \int_0^{\infty} u^{s-1} e^{-nu}du - && - \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} - \\ + = + \int_0^{\infty} u^{s-1} e^{-nu} \,du, +\end{equation*} +welche sich zur Zetafunktion summieren +\begin{equation} + \sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^s} + = \Gamma(s) \zeta(s) - &= + = \int_0^{\infty} u^{s-1} \sum_{n=1}^{\infty}e^{-nu} - du. + \,du. \label{zeta:equation:zeta_gamma1} -\end{align} +\end{equation} Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten \begin{align} - \sum_{n=1}^{\infty}e^{-u^n} + \sum_{n=1}^{\infty}\left(e^{-u}\right)^n &= - \sum_{n=0}^{\infty}e^{-u^n} + \sum_{n=0}^{\infty}\left(e^{-u}\right)^n - 1 \\ @@ -42,7 +51,7 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = -- cgit v1.2.1 From 8f643765aa134d48da27f161890f07038d2223f3 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 14 May 2022 22:17:18 +0200 Subject: Alle einfachen Korrekturen umgesetzt --- buch/papers/zeta/zeta_gamma.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/zeta/zeta_gamma.tex') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index bed4262..49fea74 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -5,7 +5,7 @@ In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunkt Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. %TODO ref Gamma -Wir erinnern uns an die Definition der Gammafunktion in \ref{buch:rekursion:gamma:integralbeweis} +Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} \begin{equation*} \Gamma(s) = -- cgit v1.2.1 From 14b48dfeb636fe25b0745a2ab617cc5d307c06e6 Mon Sep 17 00:00:00 2001 From: runterer Date: Thu, 26 May 2022 20:38:30 +0200 Subject: =?UTF-8?q?tikz=20und=20eulerprodukt=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/zeta/zeta_gamma.tex | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) (limited to 'buch/papers/zeta/zeta_gamma.tex') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 49fea74..db41676 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -2,9 +2,8 @@ \rhead{Zusammenhang mit der Gammafunktion} In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. -Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ ist nicht nur interessant, er wird später auch für die Herleitung der analytischen Fortsetzung gebraucht. -%TODO ref Gamma Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} \begin{equation*} \Gamma(s) @@ -51,12 +50,12 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir den gewünschten Zusammenhang \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{u^{s-1}}{e^u -1} - du. + du \qed \end{equation} -- cgit v1.2.1