From 4fd4422b52f6377a82696ea67da9beb13d93e581 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sun, 15 May 2022 23:15:36 +0200 Subject: draft --- buch/papers/ellfilter/main.tex | 370 ++++++++++++++++++++++++++-- buch/papers/ellfilter/packages.tex | 3 + buch/papers/ellfilter/python/chebychef.py | 65 +++++ buch/papers/ellfilter/python/elliptic.py | 316 ++++++++++++++++++++++++ buch/papers/ellfilter/python/elliptic2.py | 78 ++++++ buch/papers/ellfilter/references.bib | 32 +-- buch/papers/ellfilter/teil0.tex | 28 +-- buch/papers/ellfilter/teil1.tex | 90 +++---- buch/papers/ellfilter/teil2.tex | 64 ++--- buch/papers/ellfilter/teil3.tex | 64 ++--- buch/papers/ellfilter/tikz/arccos.tikz.tex | 97 ++++++++ buch/papers/ellfilter/tikz/arccos2.tikz.tex | 46 ++++ 12 files changed, 1084 insertions(+), 169 deletions(-) create mode 100644 buch/papers/ellfilter/python/chebychef.py create mode 100644 buch/papers/ellfilter/python/elliptic.py create mode 100644 buch/papers/ellfilter/python/elliptic2.py create mode 100644 buch/papers/ellfilter/tikz/arccos.tikz.tex create mode 100644 buch/papers/ellfilter/tikz/arccos2.tikz.tex (limited to 'buch/papers') diff --git a/buch/papers/ellfilter/main.tex b/buch/papers/ellfilter/main.tex index 26aaec1..29ebf7a 100644 --- a/buch/papers/ellfilter/main.tex +++ b/buch/papers/ellfilter/main.tex @@ -8,29 +8,361 @@ \begin{refsection} \chapterauthor{Nicolas Tobler} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} + +\section{Einleitung} + +Lineare filter + +Filter, Signalverarbeitung + + +Der womöglich wichtigste Filtertyp ist das Tiefpassfilter. +Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen. + +Bei der Implementierung von Filtern + + +In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}). +Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen. +Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen. + + +\begin{equation} \label{ellfilter:eq:h_omega} + | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} +\end{equation} + +$\Omega = 2 \pi f$ ist die analoge Frequenz + + +% Linear filter +Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen. + +$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen. + +% In \eqref{ellfilter:eq:h_omega} wird $F_N(w)$ so verzogen, dass $F_N(w) \forall |w| < 1$ + + +Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren. +Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$. +Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich. +\begin{figure} + \centering + \includegraphics[scale=1]{papers/ellfilter/python/F_N_butterworth.pdf} + \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.} + \label{ellfilter:fig:butterworth} +\end{figure} + +wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof? + +\begin{align} + F_N(w) & = + \begin{cases} + w^N & \text{Butterworth} \\ + T_N(w) & \text{Tschebyscheff, Typ 1} \\ + [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ + R_N(w) & \text{Elliptisch (Cauer)} \\ + \end{cases} +\end{align} + +Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt. +Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete. +Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich. +Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist. +Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter. + +\section{Tschebyscheff-Filter} + +Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter. +Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Fitler ein Spezialfall davon. + +Der Name des Filters deutet schon an, dass die Tschebyschff-Polynome $T_N$ relevant sind für das Filter: +\begin{align} + T_{0}(x)&=1\\ + T_{1}(x)&=x\\ + T_{2}(x)&=2x^{2}-1\\ + T_{3}(x)&=4x^{3}-3x\\ + T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x). +\end{align} +Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der Trigonometrischen Funktion +\begin{equation} \label{ellfilter:eq:chebychef_polynomials} + T_N(w) = \cos \left( N \cos^{-1}(w) \right) +\end{equation} +übereinstimmt. +Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome. +\begin{figure} + \centering + \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev2.pdf} + \caption{Die Tschebyscheff-Polynome $C_N$.} + \label{ellfilter:fig:chebychef_polynomials} +\end{figure} +Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt. +Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$. +Diese Eigenschaft ist sehr nützlich für ein Filter. +Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. +\begin{figure} + \centering + \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev.pdf} + \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.} + \label{ellfiter:fig:chebychef} +\end{figure} + + +Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist. +Die genauere Betrachtung wird uns dann helfen die elliptischen Filter zu verstehen. + +\begin{equation} + \cos^{-1}(x) + = + \int_{0}^{x} + \frac{ + dz + }{ + \sqrt{ + 1-z^2 + } + } +\end{equation} %TOdO is it minus dz? + +\begin{equation} + \frac{ + 1 + }{ + \sqrt{ + 1-z^2 + } + } + \in \mathbb{R} + \quad + \forall + \quad + -1 \leq z \leq 1 +\end{equation} +Wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. +Durch die Quadratwurzel entstehen zwei Reinkomplexe Lösungen +\begin{equation} + \frac{ + 1 + }{ + \sqrt{ + 1-z^2 + } + } + = i \xi \quad | \quad \xi \in \mathbb{R} + \quad + \forall + \quad + z \leq -1 \cup z \geq 1 +\end{equation} + +\begin{figure} + \centering + \input{papers/ellfilter/tikz/arccos.tikz.tex} + \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.} + \label{ellfilter:fig:arccos} +\end{figure} + + + +\begin{figure} + \centering + \input{papers/ellfilter/tikz/arccos2.tikz.tex} + \caption{ + $z$-Ebene der Tschebyscheff-Funktion. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden hat das Tschebyscheff-Polynom. + } + % \label{ellfilter:fig:arccos} +\end{figure} + + + + + +% Analytische Fortsetzung + + + +\section{Jacobische elliptische Funktionen} + + +Für das elliptische Filter, wird statt der für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht. +Der begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht. + +Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen. + +%TODO $z$ or $u$ for parameter? + +neu zwei parameter +$sn(z, k)$ +$z$ ist das winkelargument +Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das. +Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft. +Darum kann hier nicht der gewohnte Winkel verwendet werden. +An deren stelle kommt der parameter $k$ zum Einsatz, welcher durch das elliptische Integral erster Art +\begin{equation} + z + = + F(\phi, k) + = + \int_{0}^{\phi} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } +\end{equation} +mit dem Winkel $\phi$ in Verbindung liegt. + + + + +Dabei wird das vollständige und unvollständige Elliptische integral unterschieden. +Beim vollständigen Integral +\begin{equation} + K(k) + = + \int_{0}^{\pi / 2} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } +\end{equation} +wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$. + +Die Jacobischen elliptischen Funktionen können mit der inversen Funktion +\begin{equation} + \phi = F^{-1}(z, k) +\end{equation} +definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird also +\begin{equation} + z = F(\phi, k) + \Leftrightarrow + \phi = F^{-1}(z, k). +\end{equation} +Mithilfe von $F^{-1}$ kann $sn^{-1}$ mit dem Elliptischen integral dargestellt werden: +\begin{equation} + \sin(\phi) + = + \sin \left( F^{-1}(z, k) \right) + = + \sn(u, k) +\end{equation} + +\begin{align} + \sn^{-1}(w, k) + & = + \int_{0}^{\phi} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + }, + \quad + \phi = \sin^{-1}(w) + \\ + & = + \int_{0}^{w} + \frac{ + dt + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } +\end{align} + +Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert. +Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen. +Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$. +Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$. +\begin{equation} + \frac{ + 1 + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } + \in \mathbb{R} + \quad \forall \quad + -1 \leq t \leq 1 +\end{equation} +Die zweite stelle passiert wenn beide Faktoren unter der Wurzel negativ werden, was bei $t = 1/k$ der Fall ist. + + + + +Funktion in relle und komplexe Richtung periodisch + +In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtung $4K^\prime(k)$-periodisch. + + + +%TODO sn^{-1} grafik + + +\section{Elliptische rationale Funktionen} + + +\begin{equation} + R_N(\xi, w) = \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) +\end{equation} +\begin{equation} + R_N(\xi, w) = \cd (N~u K_1, k_1), \quad w= \cd(uK, k) +\end{equation} + + +sieht ähnlich aus wie die trigonometrische darstellung der Tschebyschef-Polynome + +der Ordnungszahl $N$ kommt auch als Faktor for + +%TODO cd^{-1} grafik mit + + +\subsection{Degree Equation} + +Der $cd^{-1}$ Term muss so verzogen werden, dass die umgebene $cd$ funktion die nullstellen und pole trifft. +Dies trifft ein wenn die Degree Equation erfüllt ist. + +\begin{equation} + N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} +\end{equation} + + +Leider ist das lösen dieser Gleichung nicht trivial. +Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. + + +\subsection{Polynome?} + +Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. +Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. +Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. + + + + +\begin{figure} + \centering + \includegraphics[scale=1]{papers/ellfilter/python/F_N_elliptic.pdf} + \caption{$F_N$ für ein elliptischs filter.} + \label{ellfilter:fig:elliptic} +\end{figure} + + + + \input{papers/ellfilter/teil0.tex} \input{papers/ellfilter/teil1.tex} \input{papers/ellfilter/teil2.tex} \input{papers/ellfilter/teil3.tex} -\printbibliography[heading=subbibliography] +% \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/ellfilter/packages.tex b/buch/papers/ellfilter/packages.tex index c94db34..8045a1a 100644 --- a/buch/papers/ellfilter/packages.tex +++ b/buch/papers/ellfilter/packages.tex @@ -8,3 +8,6 @@ % following example %\usepackage{packagename} + +\DeclareMathOperator{\sn}{\text{sn}} +\DeclareMathOperator{\cd}{\text{cd}} diff --git a/buch/papers/ellfilter/python/chebychef.py b/buch/papers/ellfilter/python/chebychef.py new file mode 100644 index 0000000..a278989 --- /dev/null +++ b/buch/papers/ellfilter/python/chebychef.py @@ -0,0 +1,65 @@ +# %% + +import matplotlib.pyplot as plt +import scipy.signal +import numpy as np + + +order = 5 +passband_ripple_db = 1 +omega_c = 1000 + +a, b = scipy.signal.cheby1( + order, + passband_ripple_db, + omega_c, + btype='low', + analog=True, + output='ba', + fs=None, +) + +w, mag, phase = scipy.signal.bode((a, b), w=np.linspace(0,2000,256)) +f, axs = plt.subplots(2,1, sharex=True) +axs[0].plot(w, 10**(mag/20)) +axs[0].set_ylabel("$|H(\omega)| /$ db") +axs[0].grid(True, "both") +axs[1].plot(w, phase) +axs[1].set_ylabel(r"$arg H (\omega) / $ deg") +axs[1].grid(True, "both") +axs[1].set_xlim([0, 2000]) +axs[1].set_xlabel("$\omega$") +plt.show() + + +# %% Cheychev filter F_N plot + +w = np.linspace(-1.1,1.1, 1000) +plt.figure(figsize=(5.5,2)) +for N in [3,6,11]: + # F_N = np.cos(N * np.arccos(w)) + F_N = scipy.special.eval_chebyt(N, w) + plt.plot(w, F_N, label=f"$N={N}$") +plt.xlim([-1.2,1.2]) +plt.ylim([-2,2]) +plt.grid() +plt.xlabel("$w$") +plt.ylabel("$C_N(w)$") +plt.legend() +plt.savefig("F_N_chebychev2.pdf") +plt.show() + +# %% Build Chebychev polynomials + +N = 11 + +zeros = (np.arange(N)+0.5) * np.pi +zeros = np.cos(zeros/N) + +x = np.linspace(-1.2,1.2,1000) +y = np.prod(x[:, None] - zeros[None, :], axis=-1)*2**(N-1) + +plt.plot(x, y) +plt.ylim([-1,1]) +plt.grid() +plt.show() diff --git a/buch/papers/ellfilter/python/elliptic.py b/buch/papers/ellfilter/python/elliptic.py new file mode 100644 index 0000000..9f209e9 --- /dev/null +++ b/buch/papers/ellfilter/python/elliptic.py @@ -0,0 +1,316 @@ + +# %% + +import scipy.special +import scipyx as spx +import numpy as np +import matplotlib.pyplot as plt +import matplotlib +from matplotlib.patches import Rectangle + +matplotlib.rcParams.update({ + "pgf.texsystem": "pdflatex", + 'font.family': 'serif', + 'font.size': 9, + 'text.usetex': True, + 'pgf.rcfonts': False, +}) + +def last_color(): + plt.gca().lines[-1].get_color() + +# %% Buttwerworth filter F_N plot + +w = np.linspace(0,1.5, 100) +plt.figure(figsize=(4,2.5)) + +for N in range(1,5): + F_N = w**N + plt.plot(w, F_N**2, label=f"$N={N}$") +plt.gca().add_patch(Rectangle( + (0, 0), + 1, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.gca().add_patch(Rectangle( + (1, 1), + 0.5, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.xlim([0,1.5]) +plt.ylim([0,2]) +plt.grid() +plt.xlabel("$w$") +plt.ylabel("$F^2_N(w)$") +plt.legend() +plt.savefig("F_N_butterworth.pdf") +plt.show() + +# %% Cheychev filter F_N plot + +w = np.linspace(0,1.5, 100) + +plt.figure(figsize=(4,2.5)) +for N in range(1,5): + # F_N = np.cos(N * np.arccos(w)) + F_N = scipy.special.eval_chebyt(N, w) + plt.plot(w, F_N**2, label=f"$N={N}$") +plt.gca().add_patch(Rectangle( + (0, 0), + 1, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.gca().add_patch(Rectangle( + (1, 1), + 0.5, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.xlim([0,1.5]) +plt.ylim([0,2]) +plt.grid() +plt.xlabel("$w$") +plt.ylabel("$F^2_N(w)$") +plt.legend() +plt.savefig("F_N_chebychev.pdf") +plt.show() + +# %% define elliptic functions + +def ell_int(k): + """ Calculate K(k) """ + m = k**2 + return scipy.special.ellipk(m) + +def sn(z, k): + return spx.ellipj(z, k**2)[0] + +def cn(z, k): + return spx.ellipj(z, k**2)[1] + +def dn(z, k): + return spx.ellipj(z, k**2)[2] + +def cd(z, k): + sn, cn, dn, ph = spx.ellipj(z, k**2) + return cn / dn + +# https://mathworld.wolfram.com/JacobiEllipticFunctions.html eq 3-8 + +def sn_inv(z, k): + m = k**2 + return scipy.special.ellipkinc(np.arcsin(z), m) + +def cn_inv(z, k): + m = k**2 + return scipy.special.ellipkinc(np.arccos(z), m) + +def dn_inv(z, k): + m = k**2 + x = np.sqrt((1-z**2) / k**2) + return scipy.special.ellipkinc(np.arcsin(x), m) + +def cd_inv(z, k): + m = k**2 + x = np.sqrt(((m - 1) * z**2) / (m*z**2 - 1)) + return scipy.special.ellipkinc(np.arccos(x), m) + + +k = 0.8 +z = 0.5 + +assert np.allclose(sn_inv(sn(z ,k), k), z) +assert np.allclose(cn_inv(cn(z ,k), k), z) +assert np.allclose(dn_inv(dn(z ,k), k), z) +assert np.allclose(cd_inv(cd(z ,k), k), z) + +# %% plot arcsin + +def lattice(a1, b1, c1, a2, b2, c2): + r1 = np.logspace(a1, b1, c1) + x1 = np.concatenate((-np.flip(r1), [0], r1), axis=0) + x1 = x1.astype(np.complex128) + r2 = np.logspace(a2, b2, c2) + x2 = np.concatenate((-np.flip(r2), [0], r2), axis=0) + x2 = x2.astype(np.complex128) + x = (x1[:, None] + (x2[None, :] * 1j)) + return x + +plt.figure(figsize=(12,12)) +y = np.arcsin(lattice(-1,6,1000, -1,5,10)) +plt.plot(np.real(y), np.imag(y), "-", color="red", lw=0.5) +y = np.arcsin(lattice(-1,6,10, -1,5,100)).T +plt.plot(np.real(y), np.imag(y), "-", color="red", lw=0.5) +y = np.arcsin(lattice(-1,6,10, -1,5,10)) +plt.plot(np.real(y), np.imag(y), ".", color="red", lw=0.5) +plt.show() + +# %% plot cd^-1 TODO complex cd^-1 missing + + +r = np.logspace(-1,8, 50) + + + +x = np.concatenate((-np.flip(r), [0], r), axis=0) +y = cd_inv(x, 0.99) + +plt.figure(figsize=(12,12)) +plt.plot(np.real(y), np.imag(y), "-") +plt.show() + +# %%plot cd +plt.figure(figsize=(10,6)) +z = np.linspace(-4,4, 500) +for k in [0, 0.9, 0.99, 0.999, 0.99999]: + w = cd(z*ell_int(k), k) + plt.plot(z, w, label=f"$k={k}$") +plt.grid() +plt.legend() +# plt.xlim([-4,4]) +plt.xlabel("$u$") +plt.ylabel("$cd(uK, k)$") +plt.show() + +# %% Test ???? + +N = 5 +k = 0.9 +k1 = k**N + +assert np.allclose(k**(-N), k1**(-1)) + +K = ell_int(k) +Kp = ell_int(np.sqrt(1-k**2)) + +K1 = ell_int(k1) +Kp1 = ell_int(np.sqrt(1-k1**2)) + +print(Kp * (K1 / K) * N, Kp1) + + +# %% + + +k = 0.9 +k_prim = np.sqrt(1 - k**2) +K = ell_int(k) +Kp = ell_int(k_prim) + +print(K, Kp) + +zs = [ + 0 + (K + 0j) * np.linspace(0,1,25), + K + (Kp*1j) * np.linspace(0,1,25), + (K + Kp*1j) + (-K) * np.linspace(0,1,25), +] + + +for z in zs: + plt.plot(np.real(z), np.imag(z)) +plt.show() + + + +for z in zs: + w = cd(z, k) + plt.plot(np.real(w), np.imag(w)) +plt.show() + + + + + +# %% + +for i in range(10): + x = np.linspace(i*1,i*1+1,10, dtype=np.complex64) + w = np.arccos(x) + + x2 = np.cos(w) + x4 = np.cos(w+ 2*np.pi) + x3 = np.cos(np.conj(w)) + + assert np.allclose(x2, x4, rtol=0.001, atol=1e-5) + + assert np.allclose(x2, x3) + assert np.allclose(x2, x, rtol=0.001, atol=1e-5) + + plt.plot(np.real(w), np.imag(w), ".-") + +for i in range(10): + x = -np.linspace(i*1,i*1+1,100, dtype=np.complex64) + w = np.arccos(x) + plt.plot(np.real(w), np.imag(w), ".-") + +plt.grid() +plt.show() + + + + +# %% + +plt.plot(omega, np.abs(G)) +plt.show() + + +def cd_inv(u, m): + return K(1/2) - F(np.arcsin()) + +def K(m): + return scipy.special.ellipk(m) + +def L(n, xi): + return 1 #TODO + +def R(n, xi, x): + cn(n*K(1/L(n, xi))/K(1/xi) * cd_inv(x, 1/xi, 1/L(n, xi))) + +epsilon = 0.1 +n = 3 +omega = np.linspace(0, np.pi, 1000) +omega_0 = 1 +xi = 1.1 + +G = 1 / np.sqrt(1 + epsilon**2 * R(n, xi, omega/omega_0)**2) + + +plt.plot(omega, np.abs(G)) +plt.show() + + + +# %% Chebychef + +epsilon = 0.5 +omega = np.linspace(0, np.pi, 1000) +omega_0 = 1 +n = 4 + +def chebychef_poly(n, x): + x = x.astype(np.complex64) + y = np.cos(n* np.arccos(x)) + return np.real(y) + +F_omega = chebychef_poly + +for n in (1,2,3,4): + plt.plot(omega, F_omega(n, omega/omega_0)**2) +plt.ylim([0,5]) +plt.xlim([0,1.5]) +plt.grid() +plt.show() + +for n in (1,2,3,4): + G = 1 / np.sqrt(1 + epsilon**2 * F_omega(n, omega/omega_0)**2) + plt.plot(omega, np.abs(G)) +plt.grid() +plt.show() diff --git a/buch/papers/ellfilter/python/elliptic2.py b/buch/papers/ellfilter/python/elliptic2.py new file mode 100644 index 0000000..92fefd9 --- /dev/null +++ b/buch/papers/ellfilter/python/elliptic2.py @@ -0,0 +1,78 @@ +# %% + +import matplotlib.pyplot as plt +import scipy.signal +import numpy as np +import matplotlib +from matplotlib.patches import Rectangle + + +def ellip_filter(N): + + order = N + passband_ripple_db = 3 + stopband_attenuation_db = 20 + omega_c = 1000 + + a, b = scipy.signal.ellip( + order, + passband_ripple_db, + stopband_attenuation_db, + omega_c, + btype='low', + analog=True, + output='ba', + fs=None + ) + + w, mag_db, phase = scipy.signal.bode((a, b), w=np.linspace(0*omega_c,2*omega_c, 4000)) + + mag = 10**(mag_db/20) + + passband_ripple = 10**(-passband_ripple_db/20) + epsilon2 = (1/passband_ripple)**2 - 1 + + FN2 = ((1/mag**2) - 1) + + return w/omega_c, FN2 / epsilon2 + + +plt.figure(figsize=(4,2.5)) + +for N in [5]: + w, FN2 = ellip_filter(N) + plt.semilogy(w, FN2, label=f"$N={N}$") + +plt.gca().add_patch(Rectangle( + (0, 0), + 1, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.gca().add_patch(Rectangle( + (1, 1), + 0.01, 1e2-1, + fc ='green', + alpha=0.2, + lw = 10, +)) + +plt.gca().add_patch(Rectangle( + (1.01, 100), + 1, 1e6, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.xlim([0,2]) +plt.ylim([1e-4,1e6]) +plt.grid() +plt.xlabel("$w$") +plt.ylabel("$F^2_N(w)$") +plt.legend() +plt.savefig("F_N_elliptic.pdf") +plt.show() + + + diff --git a/buch/papers/ellfilter/references.bib b/buch/papers/ellfilter/references.bib index 81b3577..2b873af 100644 --- a/buch/papers/ellfilter/references.bib +++ b/buch/papers/ellfilter/references.bib @@ -4,32 +4,10 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{ellfilter:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} -} - -@book{ellfilter:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{ellfilter:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} +@online{ellfilter:bib:orfanidis, + author = { Sophocles J. Orfanidis}, + title = { LECTURE NOTES ON ELLIPTIC FILTER DESIGN }, + year = 2006, + url = {https://www.ece.rutgers.edu/~orfanidi/ece521/notes.pdf} } diff --git a/buch/papers/ellfilter/teil0.tex b/buch/papers/ellfilter/teil0.tex index fd04ba9..6204bc0 100644 --- a/buch/papers/ellfilter/teil0.tex +++ b/buch/papers/ellfilter/teil0.tex @@ -3,20 +3,20 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{ellfilter:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{ellfilter:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +% \section{Teil 0\label{ellfilter:section:teil0}} +% \rhead{Teil 0} +% Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam +% nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam +% erat, sed diam voluptua \cite{ellfilter:bibtex}. +% At vero eos et accusam et justo duo dolores et ea rebum. +% Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum +% dolor sit amet. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. +% Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam +% nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam +% erat, sed diam voluptua. +% At vero eos et accusam et justo duo dolores et ea rebum. Stet clita +% kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit +% amet. diff --git a/buch/papers/ellfilter/teil1.tex b/buch/papers/ellfilter/teil1.tex index 7e62a2f..4760473 100644 --- a/buch/papers/ellfilter/teil1.tex +++ b/buch/papers/ellfilter/teil1.tex @@ -3,53 +3,53 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 -\label{ellfilter:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{ellfilter:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. +% \section{Teil 1 +% \label{ellfilter:section:teil1}} +% \rhead{Problemstellung} +% Sed ut perspiciatis unde omnis iste natus error sit voluptatem +% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +% quae ab illo inventore veritatis et quasi architecto beatae vitae +% dicta sunt explicabo. +% Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit +% aut fugit, sed quia consequuntur magni dolores eos qui ratione +% voluptatem sequi nesciunt +% \begin{equation} +% \int_a^b x^2\, dx +% = +% \left[ \frac13 x^3 \right]_a^b +% = +% \frac{b^3-a^3}3. +% \label{ellfilter:equation1} +% \end{equation} +% Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, +% consectetur, adipisci velit, sed quia non numquam eius modi tempora +% incidunt ut labore et dolore magnam aliquam quaerat voluptatem. -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? +% Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis +% suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? +% Quis autem vel eum iure reprehenderit qui in ea voluptate velit +% esse quam nihil molestiae consequatur, vel illum qui dolorem eum +% fugiat quo voluptas nulla pariatur? -\subsection{De finibus bonorum et malorum -\label{ellfilter:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. +% \subsection{De finibus bonorum et malorum +% \label{ellfilter:subsection:finibus}} +% At vero eos et accusamus et iusto odio dignissimos ducimus qui +% blanditiis praesentium voluptatum deleniti atque corrupti quos +% dolores et quas molestias excepturi sint occaecati cupiditate non +% provident, similique sunt in culpa qui officia deserunt mollitia +% animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. -Et harum quidem rerum facilis est et expedita distinctio -\ref{ellfilter:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{ellfilter:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +% Et harum quidem rerum facilis est et expedita distinctio +% \ref{ellfilter:section:loesung}. +% Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil +% impedit quo minus id quod maxime placeat facere possimus, omnis +% voluptas assumenda est, omnis dolor repellendus +% \ref{ellfilter:section:folgerung}. +% Temporibus autem quibusdam et aut officiis debitis aut rerum +% necessitatibus saepe eveniet ut et voluptates repudiandae sint et +% molestiae non recusandae. +% Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis +% voluptatibus maiores alias consequatur aut perferendis doloribus +% asperiores repellat. diff --git a/buch/papers/ellfilter/teil2.tex b/buch/papers/ellfilter/teil2.tex index 71fdc6d..39dd5d7 100644 --- a/buch/papers/ellfilter/teil2.tex +++ b/buch/papers/ellfilter/teil2.tex @@ -3,38 +3,38 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 -\label{ellfilter:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +% \section{Teil 2 +% \label{ellfilter:section:teil2}} +% \rhead{Teil 2} +% Sed ut perspiciatis unde omnis iste natus error sit voluptatem +% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +% quae ab illo inventore veritatis et quasi architecto beatae vitae +% dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit +% aspernatur aut odit aut fugit, sed quia consequuntur magni dolores +% eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam +% est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci +% velit, sed quia non numquam eius modi tempora incidunt ut labore +% et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima +% veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, +% nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure +% reprehenderit qui in ea voluptate velit esse quam nihil molestiae +% consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla +% pariatur? -\subsection{De finibus bonorum et malorum -\label{ellfilter:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +% \subsection{De finibus bonorum et malorum +% \label{ellfilter:subsection:bonorum}} +% At vero eos et accusamus et iusto odio dignissimos ducimus qui +% blanditiis praesentium voluptatum deleniti atque corrupti quos +% dolores et quas molestias excepturi sint occaecati cupiditate non +% provident, similique sunt in culpa qui officia deserunt mollitia +% animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis +% est et expedita distinctio. Nam libero tempore, cum soluta nobis +% est eligendi optio cumque nihil impedit quo minus id quod maxime +% placeat facere possimus, omnis voluptas assumenda est, omnis dolor +% repellendus. Temporibus autem quibusdam et aut officiis debitis aut +% rerum necessitatibus saepe eveniet ut et voluptates repudiandae +% sint et molestiae non recusandae. Itaque earum rerum hic tenetur a +% sapiente delectus, ut aut reiciendis voluptatibus maiores alias +% consequatur aut perferendis doloribus asperiores repellat. diff --git a/buch/papers/ellfilter/teil3.tex b/buch/papers/ellfilter/teil3.tex index 79a5f3d..dad96ad 100644 --- a/buch/papers/ellfilter/teil3.tex +++ b/buch/papers/ellfilter/teil3.tex @@ -3,38 +3,38 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{ellfilter:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +% \section{Teil 3 +% \label{ellfilter:section:teil3}} +% \rhead{Teil 3} +% Sed ut perspiciatis unde omnis iste natus error sit voluptatem +% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +% quae ab illo inventore veritatis et quasi architecto beatae vitae +% dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit +% aspernatur aut odit aut fugit, sed quia consequuntur magni dolores +% eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam +% est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci +% velit, sed quia non numquam eius modi tempora incidunt ut labore +% et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima +% veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, +% nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure +% reprehenderit qui in ea voluptate velit esse quam nihil molestiae +% consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla +% pariatur? -\subsection{De finibus bonorum et malorum -\label{ellfilter:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +% \subsection{De finibus bonorum et malorum +% \label{ellfilter:subsection:malorum}} +% At vero eos et accusamus et iusto odio dignissimos ducimus qui +% blanditiis praesentium voluptatum deleniti atque corrupti quos +% dolores et quas molestias excepturi sint occaecati cupiditate non +% provident, similique sunt in culpa qui officia deserunt mollitia +% animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis +% est et expedita distinctio. Nam libero tempore, cum soluta nobis +% est eligendi optio cumque nihil impedit quo minus id quod maxime +% placeat facere possimus, omnis voluptas assumenda est, omnis dolor +% repellendus. Temporibus autem quibusdam et aut officiis debitis aut +% rerum necessitatibus saepe eveniet ut et voluptates repudiandae +% sint et molestiae non recusandae. Itaque earum rerum hic tenetur a +% sapiente delectus, ut aut reiciendis voluptatibus maiores alias +% consequatur aut perferendis doloribus asperiores repellat. diff --git a/buch/papers/ellfilter/tikz/arccos.tikz.tex b/buch/papers/ellfilter/tikz/arccos.tikz.tex new file mode 100644 index 0000000..2bdcc2d --- /dev/null +++ b/buch/papers/ellfilter/tikz/arccos.tikz.tex @@ -0,0 +1,97 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + + \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{Im $z$}; + \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{Re $z$}; + + \begin{scope} + \draw[thick, ->, orange] (-1, 0) -- (0,0); + \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); + \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); + \draw[thick, ->, orange] (1, 0) -- (0,0); + \draw[thick, ->, red] (2, 0) -- (1,0); + \draw[thick, ->, blue] (2,1.5) -- (2, 0); + \draw[thick, ->, blue] (2,-1.5) -- (2, 0); + \draw[thick, ->, red] (2, 0) -- (3,0); + + \node[anchor=south west] at (0,1.5) {$\infty$}; + \node[anchor=south west] at (0,-1.5) {$\infty$}; + \node[anchor=south west] at (0,0) {$1$}; + \node[anchor=south] at (1,0) {$0$}; + \node[anchor=south west] at (2,0) {$-1$}; + \node[anchor=south west] at (2,1.5) {$-\infty$}; + \node[anchor=south west] at (2,-1.5) {$-\infty$}; + \node[anchor=south west] at (3,0) {$0$}; + \end{scope} + + \begin{scope}[xshift=4cm] + \draw[thick, ->, orange] (-1, 0) -- (0,0); + \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); + \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); + % \draw[thick, ->, orange] (1, 0) -- (0,0); + % \draw[thick, ->, red] (2, 0) -- (1,0); + % \draw[thick, ->, blue] (2,1.5) -- (2, 0); + % \draw[thick, ->, blue] (2,-1.5) -- (2, 0); + % \draw[thick, ->, red] (2, 0) -- (3,0); + + \node[anchor=south west] at (0,1.5) {$\infty$}; + \node[anchor=south west] at (0,-1.5) {$\infty$}; + \node[anchor=south west] at (0,0) {$1$}; + % \node[anchor=south] at (1,0) {$0$}; + % \node[anchor=south west] at (2,0) {$-1$}; + % \node[anchor=south west] at (2,1.5) {$-\infty$}; + % \node[anchor=south west] at (2,-1.5) {$-\infty$}; + % \node[anchor=south west] at (3,0) {$0$}; + \end{scope} + + \begin{scope}[xshift=-4cm] + % \draw[thick, ->, orange] (-1, 0) -- (0,0); + \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); + \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); + \draw[thick, ->, orange] (1, 0) -- (0,0); + \draw[thick, ->, red] (2, 0) -- (1,0); + \draw[thick, ->, blue] (2,1.5) -- (2, 0); + \draw[thick, ->, blue] (2,-1.5) -- (2, 0); + \draw[thick, ->, red] (2, 0) -- (3,0); + + \node[anchor=south west] at (0,1.5) {$\infty$}; + \node[anchor=south west] at (0,-1.5) {$\infty$}; + \node[anchor=south west] at (0,0) {$1$}; + \node[anchor=south] at (1,0) {$0$}; + \node[anchor=south west] at (2,0) {$-1$}; + \node[anchor=south west] at (2,1.5) {$-\infty$}; + \node[anchor=south west] at (2,-1.5) {$-\infty$}; + \node[anchor=south west] at (3,0) {$0$}; + \end{scope} + + \node[gray, anchor=north west] at (-4,0) {$-2\pi$}; + \node[gray, anchor=north west] at (-2,0) {$-\pi$}; + \node[gray, anchor=north west] at (0,0) {$0$}; + \node[gray, anchor=north west] at (2,0) {$\pi$}; + \node[gray, anchor=north west] at (4,0) {$2\pi$}; + + + \node[gray, anchor=south east] at (0,-1.5) {$-\infty$}; + \node[gray, anchor=south east] at (0, 0) {$0$}; + \node[gray, anchor=south east] at (0, 1.5) {$\infty$}; + + + + \begin{scope}[yshift=-2.5cm] + + \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{$w$}; + + \draw[thick, ->, blue] (-4, 0) -- (-2, 0); + \draw[thick, ->, red] (-2, 0) -- (0, 0); + \draw[thick, ->, orange] (0, 0) -- (2, 0); + \draw[thick, ->, darkgreen] (2, 0) -- (4, 0); + + \node[anchor=south] at (-4,0) {$-\infty$}; + \node[anchor=south] at (-2,0) {$-1$}; + \node[anchor=south] at (0,0) {$0$}; + \node[anchor=south] at (2,0) {$1$}; + \node[anchor=south] at (4,0) {$\infty$}; + + \end{scope} + +\end{tikzpicture} \ No newline at end of file diff --git a/buch/papers/ellfilter/tikz/arccos2.tikz.tex b/buch/papers/ellfilter/tikz/arccos2.tikz.tex new file mode 100644 index 0000000..dcf02fd --- /dev/null +++ b/buch/papers/ellfilter/tikz/arccos2.tikz.tex @@ -0,0 +1,46 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} + + \begin{scope}[xscale=0.5] + + \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{Im $z$}; + \draw[gray, ->] (-10,0) -- (10,0) node[anchor=west]{Re $z$}; + + \begin{scope} + + \draw[>->, line width=0.05, thick, blue] (2, 1.5) -- (2,0.05) -- node[anchor=south, pos=0.5]{$N=1$} (0.1,0.05) -- (0.1,1.5); + \draw[>->, line width=0.05, thick, orange] (4, 1.5) -- (4,0) -- node[anchor=south, pos=0.25]{$N=2$} (0,0) -- (0,1.5); + \draw[>->, line width=0.05, thick, red] (6, 1.5) -- (6,-0.05) -- node[anchor=south, pos=0.1666]{$N=3$} (-0.1,-0.05) -- (-0.1,1.5); + + + \node[zero] at (-7,0) {}; + \node[zero] at (-5,0) {}; + \node[zero] at (-3,0) {}; + \node[zero] at (-1,0) {}; + \node[zero] at (1,0) {}; + \node[zero] at (3,0) {}; + \node[zero] at (5,0) {}; + \node[zero] at (7,0) {}; + + + \end{scope} + + \node[gray, anchor=north] at (-8,0) {$-4\pi$}; + \node[gray, anchor=north] at (-6,0) {$-3\pi$}; + \node[gray, anchor=north] at (-4,0) {$-2\pi$}; + \node[gray, anchor=north] at (-2,0) {$-\pi$}; + \node[gray, anchor=north] at (2,0) {$\pi$}; + \node[gray, anchor=north] at (4,0) {$2\pi$}; + \node[gray, anchor=north] at (6,0) {$3\pi$}; + \node[gray, anchor=north] at (8,0) {$4\pi$}; + + + \node[gray, anchor=east] at (0,-1.5) {$-\infty$}; + \node[gray, anchor=east] at (0, 1.5) {$\infty$}; + + \end{scope} + +\end{tikzpicture} \ No newline at end of file -- cgit v1.2.1 From f4e1f6e84837c77dd49e6ec055efb1b110f7d573 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Mon, 30 May 2022 00:05:03 +0200 Subject: Added content, presentation --- buch/papers/ellfilter/main.tex | 316 ++++-- buch/papers/ellfilter/packages.tex | 18 +- .../papers/ellfilter/presentation/presentation.tex | 413 +++++++ buch/papers/ellfilter/python/F_N_butterworth.pgf | 1083 ++++++++++++++++++ buch/papers/ellfilter/python/F_N_chebychev.pgf | 1066 ++++++++++++++++++ buch/papers/ellfilter/python/F_N_chebychev2.pgf | 1023 +++++++++++++++++ buch/papers/ellfilter/python/F_N_elliptic.pgf | 847 ++++++++++++++ buch/papers/ellfilter/python/chebychef.py | 7 +- buch/papers/ellfilter/python/elliptic.pgf | 709 ++++++++++++ buch/papers/ellfilter/python/elliptic.py | 162 +-- buch/papers/ellfilter/python/elliptic2.py | 85 +- buch/papers/ellfilter/python/k.pgf | 1157 ++++++++++++++++++++ buch/papers/ellfilter/python/plot_params.py | 9 + buch/papers/ellfilter/references.bib | 9 + buch/papers/ellfilter/tikz/arccos.tikz.tex | 101 +- buch/papers/ellfilter/tikz/arccos2.tikz.tex | 7 +- buch/papers/ellfilter/tikz/cd.tikz.tex | 87 ++ buch/papers/ellfilter/tikz/cd2.tikz.tex | 84 ++ .../ellfilter/tikz/fundamental_rectangle.tikz.tex | 26 + buch/papers/ellfilter/tikz/sn.tikz.tex | 86 ++ 20 files changed, 7056 insertions(+), 239 deletions(-) create mode 100644 buch/papers/ellfilter/presentation/presentation.tex create mode 100644 buch/papers/ellfilter/python/F_N_butterworth.pgf create mode 100644 buch/papers/ellfilter/python/F_N_chebychev.pgf create mode 100644 buch/papers/ellfilter/python/F_N_chebychev2.pgf create mode 100644 buch/papers/ellfilter/python/F_N_elliptic.pgf create mode 100644 buch/papers/ellfilter/python/elliptic.pgf create mode 100644 buch/papers/ellfilter/python/k.pgf create mode 100644 buch/papers/ellfilter/python/plot_params.py create mode 100644 buch/papers/ellfilter/tikz/cd.tikz.tex create mode 100644 buch/papers/ellfilter/tikz/cd2.tikz.tex create mode 100644 buch/papers/ellfilter/tikz/fundamental_rectangle.tikz.tex create mode 100644 buch/papers/ellfilter/tikz/sn.tikz.tex (limited to 'buch/papers') diff --git a/buch/papers/ellfilter/main.tex b/buch/papers/ellfilter/main.tex index 29ebf7a..e9d6aba 100644 --- a/buch/papers/ellfilter/main.tex +++ b/buch/papers/ellfilter/main.tex @@ -11,16 +11,15 @@ \section{Einleitung} -Lineare filter +% Lineare filter -Filter, Signalverarbeitung +% Filter, Signalverarbeitung Der womöglich wichtigste Filtertyp ist das Tiefpassfilter. Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen. -Bei der Implementierung von Filtern - +% Bei der Implementierung von Filtern In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}). Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen. @@ -39,15 +38,12 @@ Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationa $N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen. -% In \eqref{ellfilter:eq:h_omega} wird $F_N(w)$ so verzogen, dass $F_N(w) \forall |w| < 1$ - - Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren. Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$. Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich. \begin{figure} \centering - \includegraphics[scale=1]{papers/ellfilter/python/F_N_butterworth.pdf} + \input{papers/ellfilter/python/F_N_butterworth.pgf} \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.} \label{ellfilter:fig:butterworth} \end{figure} @@ -60,7 +56,7 @@ wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale F w^N & \text{Butterworth} \\ T_N(w) & \text{Tschebyscheff, Typ 1} \\ [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ - R_N(w) & \text{Elliptisch (Cauer)} \\ + R_N(w, \xi) & \text{Elliptisch (Cauer)} \\ \end{cases} \end{align} @@ -73,9 +69,9 @@ Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verant \section{Tschebyscheff-Filter} Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter. -Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Fitler ein Spezialfall davon. +Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon. -Der Name des Filters deutet schon an, dass die Tschebyschff-Polynome $T_N$ relevant sind für das Filter: +Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind: \begin{align} T_{0}(x)&=1\\ T_{1}(x)&=x\\ @@ -83,15 +79,17 @@ Der Name des Filters deutet schon an, dass die Tschebyschff-Polynome $T_N$ relev T_{3}(x)&=4x^{3}-3x\\ T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x). \end{align} -Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der Trigonometrischen Funktion -\begin{equation} \label{ellfilter:eq:chebychef_polynomials} - T_N(w) = \cos \left( N \cos^{-1}(w) \right) -\end{equation} +Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometrischen Funktion +\begin{align} \label{ellfilter:eq:chebychef_polynomials} + T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\ + &= \cos \left(N~z \right), \quad w= \cos(z) +\end{align} übereinstimmt. +Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären. Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome. \begin{figure} \centering - \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev2.pdf} + \input{papers/ellfilter/python/F_N_chebychev2.pgf} \caption{Die Tschebyscheff-Polynome $C_N$.} \label{ellfilter:fig:chebychef_polynomials} \end{figure} @@ -101,103 +99,123 @@ Diese Eigenschaft ist sehr nützlich für ein Filter. Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. \begin{figure} \centering - \includegraphics[scale=1]{papers/ellfilter/python/F_N_chebychev.pdf} + \input{papers/ellfilter/python/F_N_chebychev.pgf} \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.} \label{ellfiter:fig:chebychef} \end{figure} Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist. -Die genauere Betrachtung wird uns dann helfen die elliptischen Filter zu verstehen. +Die genauere Betrachtung wird uns dann helfen die elliptischen Filter besser zu verstehen. -\begin{equation} +Starten wir mit der Funktion, die als erstes auf $w$ angewendet wird, dem Arcuscosinus. +Die invertierte Funktion des Kosinus kann als definites Integral dargestellt werden: +\begin{align} \cos^{-1}(x) - = - \int_{0}^{x} + &= + \int_{x}^{1} \frac{ dz }{ \sqrt{ 1-z^2 } - } -\end{equation} %TOdO is it minus dz? - -\begin{equation} + }\\ + &= + \int_{0}^{x} \frac{ - 1 + -1 }{ \sqrt{ 1-z^2 } } - \in \mathbb{R} - \quad - \forall - \quad - -1 \leq z \leq 1 -\end{equation} -Wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. -Durch die Quadratwurzel entstehen zwei Reinkomplexe Lösungen + ~dz + + \frac{\pi}{2} +\end{align} +Der Integrand oder auch die Ableitung \begin{equation} \frac{ - 1 + -1 }{ \sqrt{ 1-z^2 } } - = i \xi \quad | \quad \xi \in \mathbb{R} - \quad - \forall - \quad - z \leq -1 \cup z \geq 1 \end{equation} - +bestimmt dabei die Richtung, in der die Funktion verläuft. +Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert. +Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte. +Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. +Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen. +Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab. +Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene. \begin{figure} \centering \input{papers/ellfilter/tikz/arccos.tikz.tex} \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.} \label{ellfilter:fig:arccos} \end{figure} - - - +Wegen der Periodizität des Kosinus ist auch der Arcuscosinus $2\pi$-periodisch und es entstehen periodische Nullstellen. +% \begin{equation} +% \frac{ +% 1 +% }{ +% \sqrt{ +% 1-z^2 +% } +% } +% \in \mathbb{R} +% \quad +% \forall +% \quad +% -1 \leq z \leq 1 +% \end{equation} +% \begin{equation} +% \frac{ +% 1 +% }{ +% \sqrt{ +% 1-z^2 +% } +% } +% = i \xi \quad | \quad \xi \in \mathbb{R} +% \quad +% \forall +% \quad +% z \leq -1 \cup z \geq 1 +% \end{equation} + +Die Tschebyscheff-Polynome skalieren diese Nullstellen mit dem Ordnungsfaktor $N$, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}. \begin{figure} \centering \input{papers/ellfilter/tikz/arccos2.tikz.tex} \caption{ - $z$-Ebene der Tschebyscheff-Funktion. - Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden hat das Tschebyscheff-Polynom. + $z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion. + Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für verschiedene Ordnungen $N$. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. } - % \label{ellfilter:fig:arccos} + \label{ellfilter:fig:arccos2} \end{figure} - - - - - -% Analytische Fortsetzung - - +Somit passert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen. +Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. \section{Jacobische elliptische Funktionen} +%TODO $z$ or $u$ for parameter? -Für das elliptische Filter, wird statt der für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht. -Der begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht. +Für das elliptische Filter wird statt der, für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht. +Der Begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht. Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen. - -%TODO $z$ or $u$ for parameter? - -neu zwei parameter -$sn(z, k)$ -$z$ ist das winkelargument +Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$. +Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter. +Zum einen gibt es den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert. +Zum andern das Winkelargument $z$. Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das. Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft. Darum kann hier nicht der gewohnte Winkel verwendet werden. -An deren stelle kommt der parameter $k$ zum Einsatz, welcher durch das elliptische Integral erster Art +Das Winkelargument $z$ kann durch das elliptische Integral erster Art \begin{equation} z = @@ -211,12 +229,18 @@ An deren stelle kommt der parameter $k$ zum Einsatz, welcher durch das elliptisc 1-k^2 \sin^2 \theta } } + = + \int_{0}^{\phi} + \frac{ + dt + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } %TODO which is right? are both functions from phi? \end{equation} mit dem Winkel $\phi$ in Verbindung liegt. - - - Dabei wird das vollständige und unvollständige Elliptische integral unterschieden. Beim vollständigen Integral \begin{equation} @@ -231,25 +255,75 @@ Beim vollständigen Integral } } \end{equation} -wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$. - -Die Jacobischen elliptischen Funktionen können mit der inversen Funktion +wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung. +Die Zahl wird oft auch abgekürzt mit $K = K(k)$ und ist für das elliptische Filter sehr relevant. +Alle elliptishen Funktionen sind somit $4K$-periodisch. + +Neben dem $\sn$ gibt es zwei weitere basis-elliptische Funktionen $\cn$ und $\dn$. +Dazu kommen noch weitere abgeleitete Funktionen, die durch Quotienten und Kehrwerte dieser Funktionen zustande kommen. +Insgesamt sind es die zwölf Funktionen +\begin{equation*} + \sn \quad + \ns \quad + \scelliptic \quad + \sd \quad + \cn \quad + \nc \quad + \cs \quad + \cd \quad + \dn \quad + \nd \quad + \ds \quad + \dc. +\end{equation*} + +Die Jacobischen elliptischen Funktionen können mit der inversen Funktion des kompletten elliptischen Integrals erster Art \begin{equation} \phi = F^{-1}(z, k) \end{equation} -definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird also +definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird, also \begin{equation} z = F(\phi, k) \Leftrightarrow \phi = F^{-1}(z, k). \end{equation} -Mithilfe von $F^{-1}$ kann $sn^{-1}$ mit dem Elliptischen integral dargestellt werden: +Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral dargestellt werden: \begin{equation} \sin(\phi) = \sin \left( F^{-1}(z, k) \right) = - \sn(u, k) + \sn(z, k) + = + w +\end{equation} + +\begin{equation} + \phi + = + F^{-1}(z, k) + = + \sin^{-1} \big( \sn (z, k ) \big) + = + \sin^{-1} ( w ) +\end{equation} + +\begin{equation} + F(\phi, k) + = + z + = + F( \sin^{-1} \big( \sn (z, k ) \big) , k) + = + F( \sin^{-1} ( w ), k) +\end{equation} + +\begin{equation} + \sn^{-1}(w, k) + = + F(\phi, k), + \quad + \phi = \sin^{-1}(w) \end{equation} \begin{align} @@ -306,28 +380,90 @@ In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtu %TODO sn^{-1} grafik +\begin{figure} + \centering + \input{papers/ellfilter/tikz/sn.tikz.tex} + \caption{ + $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. + Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. + } + % \label{ellfilter:fig:cd2} +\end{figure} \section{Elliptische rationale Funktionen} +Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen +\begin{align} + R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \\ + &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ + &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) +\end{align} + -\begin{equation} - R_N(\xi, w) = \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) -\end{equation} -\begin{equation} - R_N(\xi, w) = \cd (N~u K_1, k_1), \quad w= \cd(uK, k) -\end{equation} +sieht ähnlich aus wie die trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} +Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. +Die Ordnungszahl $N$ kommt auch als Faktor for. +Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht. + + + +Sinus entspricht $\sn$ + +Damit die Nullstellen an ähnlichen Positionen zu liegen kommen wie bei den Tschebyscheff-Polynomen, muss die $\cd$-Funktion gewählt werden. + +Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/cd.tikz.tex} + \caption{ + $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. + Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. + } + \label{ellfilter:fig:cd} +\end{figure} +Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben. +Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jaccobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. +Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex} + \caption{ + Fundamentales Rechteck der inversen Jaccobi elliptischen Funktionen. + } + \label{ellfilter:fig:fundamental_rectangle} +\end{figure} -sieht ähnlich aus wie die trigonometrische darstellung der Tschebyschef-Polynome +Auffallend an der $w = \sn(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. +Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. +Falls es möglich ist diese Werte abzufahren im Sti der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. -der Ordnungszahl $N$ kommt auch als Faktor for -%TODO cd^{-1} grafik mit +Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/cd2.tikz.tex} + \caption{ + $z_1$-Ebene der elliptischen rationalen Funktionen. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen passiert. + } + \label{ellfilter:fig:cd2} +\end{figure} +% Da die $\cd^{-1}$-Funktion + + + +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_elliptic.pgf} + \caption{$F_N$ für ein elliptischs filter.} + \label{ellfilter:fig:elliptic} +\end{figure} \subsection{Degree Equation} -Der $cd^{-1}$ Term muss so verzogen werden, dass die umgebene $cd$ funktion die nullstellen und pole trifft. +Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. Dies trifft ein wenn die Degree Equation erfüllt ist. \begin{equation} @@ -345,19 +481,7 @@ Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische For Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. - - - -\begin{figure} - \centering - \includegraphics[scale=1]{papers/ellfilter/python/F_N_elliptic.pdf} - \caption{$F_N$ für ein elliptischs filter.} - \label{ellfilter:fig:elliptic} -\end{figure} - - - - +Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. \input{papers/ellfilter/teil0.tex} \input{papers/ellfilter/teil1.tex} diff --git a/buch/papers/ellfilter/packages.tex b/buch/papers/ellfilter/packages.tex index 8045a1a..9a550e2 100644 --- a/buch/papers/ellfilter/packages.tex +++ b/buch/papers/ellfilter/packages.tex @@ -8,6 +8,20 @@ % following example %\usepackage{packagename} +% \usepackage[dvipsnames]{xcolor} + +\usetikzlibrary{trees,shapes,decorations} + +\DeclareMathOperator{\sn}{\mathrm{sn}} +\DeclareMathOperator{\ns}{\mathrm{ns}} +\DeclareMathOperator{\scelliptic}{\mathrm{sc}} +\DeclareMathOperator{\sd}{\mathrm{sd}} +\DeclareMathOperator{\cn}{\mathrm{cn}} +\DeclareMathOperator{\nc}{\mathrm{nc}} +\DeclareMathOperator{\cs}{\mathrm{cs}} +\DeclareMathOperator{\cd}{\mathrm{cd}} +\DeclareMathOperator{\dn}{\mathrm{dn}} +\DeclareMathOperator{\nd}{\mathrm{nd}} +\DeclareMathOperator{\ds}{\mathrm{ds}} +\DeclareMathOperator{\dc}{\mathrm{dc}} -\DeclareMathOperator{\sn}{\text{sn}} -\DeclareMathOperator{\cd}{\text{cd}} diff --git a/buch/papers/ellfilter/presentation/presentation.tex b/buch/papers/ellfilter/presentation/presentation.tex new file mode 100644 index 0000000..7fdb864 --- /dev/null +++ b/buch/papers/ellfilter/presentation/presentation.tex @@ -0,0 +1,413 @@ +\documentclass[ngerman, aspectratio=169, xcolor={rgb}]{beamer} + +% style +\mode{ + \usetheme{Frankfurt} +} +%packages +\usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +\usepackage[english]{babel} +\usepackage{graphicx} +\usepackage{array} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\usepackage{ragged2e} + +\usepackage{bm} % bold math +\usepackage{amsfonts} +\usepackage{amssymb} +\usepackage{mathtools} +\usepackage{amsmath} +\usepackage{multirow} % multi row in tables +\usepackage{booktabs} %toprule midrule bottomrue in tables +\usepackage{scrextend} +\usepackage{textgreek} +\usepackage[rgb]{xcolor} + +\usepackage{ marvosym } % \Lightning + +\usepackage{multimedia} % embedded videos + +\usepackage{tikz} +\usepackage{pgf} +\usepackage{pgfplots} + +\usepackage{algorithmic} + +%citations +\usepackage[style=verbose,backend=biber]{biblatex} +\addbibresource{references.bib} + + +%math font +\usefonttheme[onlymath]{serif} + +%Beamer Template modifications +%\definecolor{mainColor}{HTML}{0065A3} % HSR blue +\definecolor{mainColor}{HTML}{D72864} % OST pink +\definecolor{invColor}{HTML}{28d79b} % OST pink +\definecolor{dgreen}{HTML}{38ad36} % Dark green + +%\definecolor{mainColor}{HTML}{000000} % HSR blue +\setbeamercolor{palette primary}{bg=white,fg=mainColor} +\setbeamercolor{palette secondary}{bg=orange,fg=mainColor} +\setbeamercolor{palette tertiary}{bg=yellow,fg=red} +\setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic +\setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) +\setbeamercolor{section in toc}{fg=black} % TOC sections +\setbeamertemplate{section in toc}[sections numbered] +\setbeamertemplate{subsection in toc}{% + \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} + +\setbeamertemplate{itemize items}[circle] +\setbeamertemplate{description item}[circle] +\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] +\beamertemplatenavigationsymbolsempty + +\setbeamercolor{footline}{fg=gray} +\setbeamertemplate{footline}{% + \hfill\usebeamertemplate***{navigation symbols} + \hspace{0.5cm} + \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} +} + +\usepackage{caption} +\captionsetup{labelformat=empty} + +%Title Page +\title{Elliptische Filter} +\subtitle{Eine Anwendung der Jaccobi elliptischen Funktionen} +\author{Nicolas Tobler} +% \institute{OST Ostschweizer Fachhochschule} +% \institute{\includegraphics[scale=0.3]{../img/ost_logo.png}} +\date{\today} + +\input{../packages.tex} + +\newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}% + +\newcommand*{\HL}{\textcolor{mainColor}} +\newcommand*{\RD}{\textcolor{red}} +\newcommand*{\BL}{\textcolor{blue}} +\newcommand*{\GN}{\textcolor{dgreen}} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + + +\makeatletter +\newcount\my@repeat@count +\newcommand{\myrepeat}[2]{% + \begingroup + \my@repeat@count=\z@ + \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% + \endgroup +} +\makeatother + +\usetikzlibrary{automata,arrows,positioning,calc,shapes.geometric, fadings} + +\begin{document} + + \begin{frame} + \titlepage + \end{frame} + + \begin{frame} + \frametitle{Content} + \tableofcontents + \end{frame} + + \section{Linear Filter} + + \begin{frame} + \frametitle{Lineare Filter} + + + \begin{equation} + | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} + \end{equation} + + \pause + + \begin{equation} + F_N(w) = w^N + \end{equation} + + \end{frame} + + \begin{frame} + \frametitle{Beispiel: Butterworth Filter} + + \begin{equation} + F_N(w) = w^N + \end{equation} + + \begin{center} + \input{../python/F_N_butterworth.pgf} + \end{center} + + \end{frame} + + + \begin{frame} + \frametitle{Arten von linearen filtern} + + \begin{align*} + F_N(w) & = + \begin{cases} + w^N & \text{Butterworth} \\ + T_N(w) & \text{Tschebyscheff, Typ 1} \\ + [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ + R_N(w,\xi) & \text{Elliptisch (Cauer)} \\ + \end{cases} + \end{align*} + + \end{frame} + + \section{Tschebycheff Filter} + + \begin{frame} + \frametitle{Tschebyscheff-Polynome} + + + \begin{columns} + \begin{column}[T]{0.35\textwidth} + + \begin{align*} + T_{0}(x)&=1\\ + T_{1}(x)&=x\\ + T_{2}(x)&=2x^{2}-1\\ + T_{3}(x)&=4x^{3}-3x\\ + T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x) + \end{align*} + + \end{column} + \begin{column}[T]{0.65\textwidth} + + \begin{center} + \resizebox{\textwidth}{!}{ + \input{../python/F_N_chebychev2.pgf} + } + \end{center} + + \end{column} + \end{columns} + + + + \end{frame} + + \begin{frame} + \frametitle{Tschebyscheff-Filter} + + \begin{equation*} + | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 T_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} + \end{equation*} + + \begin{center} + \scalebox{0.9}{ + \input{../python/F_N_chebychev.pgf} + } + \end{center} + + \end{frame} + + + \begin{frame} + \frametitle{Tschebyscheff-Filter} + + Darstellung mit trigonometrischen Funktionen: + + \begin{align} \label{ellfilter:eq:chebychef_polynomials} + T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\ + &= \cos \left(N~z \right), \quad w= \cos(z) + \end{align} + + + \end{frame} + + \begin{frame} + \frametitle{Tschebyscheff-Filter} + + \begin{equation*} + z = \cos^{-1}(w) + \end{equation*} + + \begin{center} + \scalebox{0.85}{ + \input{../tikz/arccos.tikz.tex} + } + \end{center} + + \end{frame} + + \begin{frame} + \frametitle{Tschebyscheff-Filter} + + \begin{equation*} + z_1 = N~\cos^{-1}(w) + \end{equation*} + + \begin{center} + \scalebox{0.85}{ + \input{../tikz/arccos2.tikz.tex} + } + \end{center} + + \end{frame} + + + \section{Jaccobi elliptische Funktionen} + + \begin{frame} + \frametitle{Jaccobi elliptische Funktionen} + + + \begin{equation} + z + = + F(\phi, k) + = + \int_{0}^{\phi} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } + = + \int_{0}^{\phi} + \frac{ + dt + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } + \end{equation} + + \begin{equation} + K(k) + = + \int_{0}^{\pi / 2} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } + \end{equation} + + + + \end{frame} + + \begin{frame} + \frametitle{Jaccobi elliptische Funktionen} + + \begin{equation*} + z = \sn^{-1}(w, k) + \end{equation*} + + \begin{center} + \scalebox{0.7}{ + \input{../tikz/sn.tikz.tex} + } + \end{center} + + \end{frame} + + \begin{frame} + \frametitle{Fundamentales Rechteck} + + Nullstelle beim ersten Buchstabe, Polstelle beim zweiten Buchstabe + + \begin{center} + \scalebox{0.8}{ + \input{../tikz/fundamental_rectangle.tikz.tex} + } + \end{center} + + \end{frame} + + + \begin{frame} + \frametitle{Jaccobi elliptische Funktionen} + + \begin{equation*} + z = \cd^{-1}(w, k) + \end{equation*} + + \begin{center} + \scalebox{0.7}{ + \input{../tikz/cd.tikz.tex} + + } + \end{center} + + \end{frame} + + \begin{frame} + \frametitle{Periodizität in realer und imaginärer Richtung} + + \begin{center} + \input{../python/k.pgf} + \end{center} + + + \end{frame} + + \begin{frame} + \frametitle{Elliptisches Filter} + + \begin{equation*} + z_1 = N~\frac{K_1}{K}~\cd^{-1}(w, k) + \end{equation*} + + \begin{center} + \scalebox{0.8}{ + \input{../tikz/cd2.tikz.tex} + } + \end{center} + + \end{frame} + + \begin{frame} + \frametitle{Elliptisches Filter} + + \begin{columns} + + \begin{column}[T]{0.5\textwidth} + + \begin{center} + \resizebox{\textwidth}{!}{ + \input{../python/F_N_elliptic.pgf} + } + \end{center} + + \end{column} + \begin{column}[T]{0.5\textwidth} + + \begin{center} + \resizebox{\textwidth}{!}{ + \input{../python/elliptic.pgf} + } + \end{center} + + \end{column} + \end{columns} + + \end{frame} + + \begin{frame} + \frametitle{Gradgleichung} + + \begin{equation} + N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} + \end{equation} + + \end{frame} + + \end{document} diff --git a/buch/papers/ellfilter/python/F_N_butterworth.pgf b/buch/papers/ellfilter/python/F_N_butterworth.pgf new file mode 100644 index 0000000..857e363 --- /dev/null +++ b/buch/papers/ellfilter/python/F_N_butterworth.pgf @@ -0,0 +1,1083 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.501961,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.647059,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.630330in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.146442in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.146442in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.146442in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.146442in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.662555in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.662555in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.662555in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.178667in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.178667in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.178667in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.178667in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.694779in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.694779in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.694779in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.210892in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.210892in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.210892in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.210892in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.727004in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.727004in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.178667in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle w\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.987065in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.987065in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.987065in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=0.938840in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.425362in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{1.425362in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=1.377137in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.863658in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.863658in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{1.863658in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=1.815433in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.300082in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle F^2_N(w)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.548970in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.549574in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.550580in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.551989in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.553800in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.556013in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.558629in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.561648in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.565069in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.568893in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.573119in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.577747in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.582778in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.588211in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.594047in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.600286in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.606927in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.613970in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.621416in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.629264in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.637515in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.646168in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.655224in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.664682in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.674543in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.684806in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.695471in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.706539in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.718010in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.729883in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.742159in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.754837in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.767917in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.781400in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.795285in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.809573in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.824264in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.839357in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.854852in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.870750in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.887050in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.903753in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.920858in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.938366in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.956276in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.974589in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.993304in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{1.012421in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{1.031941in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{1.051864in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{1.072189in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{1.092917in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{1.114047in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{1.135579in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{1.157514in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{1.179851in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{1.202591in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{1.225734in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{1.249279in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{1.273226in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{1.297576in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.322328in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.347483in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.373040in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.399000in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.452126in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.479294in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.506863in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.534835in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{1.563210in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{1.591987in}}% +\pgfpathlineto{\pgfqpoint{2.913736in}{1.621166in}}% +\pgfpathlineto{\pgfqpoint{2.945016in}{1.650748in}}% +\pgfpathlineto{\pgfqpoint{2.976295in}{1.680733in}}% +\pgfpathlineto{\pgfqpoint{3.007575in}{1.711120in}}% +\pgfpathlineto{\pgfqpoint{3.038854in}{1.741909in}}% +\pgfpathlineto{\pgfqpoint{3.070134in}{1.773101in}}% +\pgfpathlineto{\pgfqpoint{3.101413in}{1.804696in}}% +\pgfpathlineto{\pgfqpoint{3.132693in}{1.836692in}}% +\pgfpathlineto{\pgfqpoint{3.163972in}{1.869092in}}% +\pgfpathlineto{\pgfqpoint{3.195252in}{1.901894in}}% +\pgfpathlineto{\pgfqpoint{3.226531in}{1.935098in}}% +\pgfpathlineto{\pgfqpoint{3.257811in}{1.968705in}}% +\pgfpathlineto{\pgfqpoint{3.289091in}{2.002714in}}% +\pgfpathlineto{\pgfqpoint{3.320370in}{2.037126in}}% +\pgfpathlineto{\pgfqpoint{3.351650in}{2.071940in}}% +\pgfpathlineto{\pgfqpoint{3.382929in}{2.107156in}}% +\pgfpathlineto{\pgfqpoint{3.414209in}{2.142776in}}% +\pgfpathlineto{\pgfqpoint{3.445488in}{2.178797in}}% +\pgfpathlineto{\pgfqpoint{3.476768in}{2.215221in}}% +\pgfpathlineto{\pgfqpoint{3.508047in}{2.252048in}}% +\pgfpathlineto{\pgfqpoint{3.539327in}{2.289277in}}% +\pgfpathlineto{\pgfqpoint{3.561409in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.548770in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.548773in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.548781in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.548798in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.548829in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.548880in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.548958in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.549072in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.549231in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.549445in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.549727in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.550088in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.550544in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.551108in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.551796in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.552627in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.553618in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.554789in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.556160in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.557753in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.559591in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.561697in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.564096in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.566815in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.569880in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.573320in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.577165in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.581444in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.586189in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.591434in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.597211in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.603556in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.610505in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.618095in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.626364in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.635351in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.645098in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.655645in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.667035in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.679313in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.692523in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.706710in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.721923in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.738209in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.755618in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.774200in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{0.794006in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{0.815091in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{0.837506in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{0.861307in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{0.886550in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{0.913292in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{0.941592in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.971508in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{1.003102in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{1.036434in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{1.071567in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{1.108565in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{1.147494in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{1.188418in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.231405in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.276523in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.323841in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.373430in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.479708in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.536544in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.595942in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.657980in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{1.722735in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{1.790285in}}% +\pgfpathlineto{\pgfqpoint{2.913736in}{1.860708in}}% +\pgfpathlineto{\pgfqpoint{2.945016in}{1.934086in}}% +\pgfpathlineto{\pgfqpoint{2.976295in}{2.010499in}}% +\pgfpathlineto{\pgfqpoint{3.007575in}{2.090031in}}% +\pgfpathlineto{\pgfqpoint{3.038854in}{2.172766in}}% +\pgfpathlineto{\pgfqpoint{3.070134in}{2.258787in}}% +\pgfpathlineto{\pgfqpoint{3.090098in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.548770in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.548772in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.548774in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.548779in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.548788in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.548800in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.548820in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.548849in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.548890in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.548947in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.549025in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.549130in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.549268in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.549448in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.549678in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.549971in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.550339in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.550796in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.551358in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.552045in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.552878in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.553880in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.555077in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.556500in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.558181in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.560156in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.562466in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.565152in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.568265in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.571855in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.575980in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.580702in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.586087in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.592209in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.599146in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.606983in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.615811in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.625726in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.636835in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.649249in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.663089in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{0.678481in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{0.695564in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{0.714481in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{0.735388in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{0.758448in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{0.783835in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{0.811733in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.842338in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{0.875855in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{0.912502in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{0.952509in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{0.996118in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{1.043583in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{1.095172in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.151168in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.211867in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.277579in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.348630in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.508132in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.597316in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.693303in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.796505in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{1.907347in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{2.026275in}}% +\pgfpathlineto{\pgfqpoint{2.913736in}{2.153756in}}% +\pgfpathlineto{\pgfqpoint{2.945016in}{2.290274in}}% +\pgfpathlineto{\pgfqpoint{2.950492in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.548770in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.548771in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.548772in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.548775in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.548779in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.548786in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.548796in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.548810in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.548831in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.548861in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.548902in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.548959in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.549037in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.549140in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.549277in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.549456in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.549689in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.549987in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.550366in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.550845in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.551446in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.552193in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.553117in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.554251in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.555637in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.557321in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.559354in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.561799in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.564725in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.568210in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.572343in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.577226in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.582972in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.589709in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.597579in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.606742in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{0.617377in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{0.629681in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{0.643875in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{0.660200in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{0.678928in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{0.700353in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{0.724803in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.752636in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{0.784247in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{0.820066in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{0.860565in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{0.906258in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{0.957706in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{1.015520in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.080363in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.152955in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.234078in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.324575in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.537424in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.661827in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.799717in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.952328in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{2.120989in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{2.307124in}}% +\pgfpathlineto{\pgfqpoint{2.883786in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.727552in}{1.416153in}}% +\pgfpathlineto{\pgfqpoint{1.553360in}{1.416153in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.581138in}{1.416153in}}{\pgfqpoint{1.581138in}{1.443930in}}% +\pgfpathlineto{\pgfqpoint{1.581138in}{2.204733in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.581138in}{2.232510in}}{\pgfqpoint{1.553360in}{2.232510in}}% +\pgfpathlineto{\pgfqpoint{0.727552in}{2.232510in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.699774in}{2.232510in}}{\pgfqpoint{0.699774in}{2.204733in}}% +\pgfpathlineto{\pgfqpoint{0.699774in}{1.443930in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.699774in}{1.416153in}}{\pgfqpoint{0.727552in}{1.416153in}}% +\pgfpathlineto{\pgfqpoint{0.727552in}{1.416153in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.755330in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{0.894219in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{1.033108in}{2.128344in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.144219in,y=2.079733in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=1\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.755330in}{1.934671in}}% +\pgfpathlineto{\pgfqpoint{0.894219in}{1.934671in}}% +\pgfpathlineto{\pgfqpoint{1.033108in}{1.934671in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.144219in,y=1.886060in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.755330in}{1.740998in}}% +\pgfpathlineto{\pgfqpoint{0.894219in}{1.740998in}}% +\pgfpathlineto{\pgfqpoint{1.033108in}{1.740998in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.144219in,y=1.692387in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=3\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.755330in}{1.547325in}}% +\pgfpathlineto{\pgfqpoint{0.894219in}{1.547325in}}% +\pgfpathlineto{\pgfqpoint{1.033108in}{1.547325in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.144219in,y=1.498714in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=4\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/F_N_chebychev.pgf b/buch/papers/ellfilter/python/F_N_chebychev.pgf new file mode 100644 index 0000000..72d5834 --- /dev/null +++ b/buch/papers/ellfilter/python/F_N_chebychev.pgf @@ -0,0 +1,1066 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.501961,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.647059,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.630330in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.146442in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.146442in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.146442in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.146442in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.662555in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.662555in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.662555in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.178667in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.178667in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.178667in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.178667in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.694779in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.694779in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.694779in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.210892in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.210892in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.210892in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.210892in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.727004in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.727004in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.178667in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle w\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.987065in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.987065in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{0.987065in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=0.938840in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.425362in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{1.425362in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=1.377137in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.863658in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{1.863658in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{1.863658in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=1.815433in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.630330in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.355638in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.300082in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle F^2_N(w)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.548970in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.549574in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.550580in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.551989in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.553800in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.556013in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.558629in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.561648in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.565069in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.568893in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.573119in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.577747in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.582778in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.588211in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.594047in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.600286in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.606927in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.613970in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.621416in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.629264in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.637515in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.646168in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.655224in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.664682in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.674543in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.684806in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.695471in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.706539in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.718010in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.729883in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.742159in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.754837in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.767917in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.781400in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.795285in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.809573in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.824264in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.839357in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.854852in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.870750in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.887050in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.903753in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.920858in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.938366in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.956276in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.974589in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.993304in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{1.012421in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{1.031941in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{1.051864in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{1.072189in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{1.092917in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{1.114047in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{1.135579in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{1.157514in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{1.179851in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{1.202591in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{1.225734in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{1.249279in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{1.273226in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{1.297576in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.322328in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.347483in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.373040in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.399000in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.452126in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.479294in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.506863in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.534835in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{1.563210in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{1.591987in}}% +\pgfpathlineto{\pgfqpoint{2.913736in}{1.621166in}}% +\pgfpathlineto{\pgfqpoint{2.945016in}{1.650748in}}% +\pgfpathlineto{\pgfqpoint{2.976295in}{1.680733in}}% +\pgfpathlineto{\pgfqpoint{3.007575in}{1.711120in}}% +\pgfpathlineto{\pgfqpoint{3.038854in}{1.741909in}}% +\pgfpathlineto{\pgfqpoint{3.070134in}{1.773101in}}% +\pgfpathlineto{\pgfqpoint{3.101413in}{1.804696in}}% +\pgfpathlineto{\pgfqpoint{3.132693in}{1.836692in}}% +\pgfpathlineto{\pgfqpoint{3.163972in}{1.869092in}}% +\pgfpathlineto{\pgfqpoint{3.195252in}{1.901894in}}% +\pgfpathlineto{\pgfqpoint{3.226531in}{1.935098in}}% +\pgfpathlineto{\pgfqpoint{3.257811in}{1.968705in}}% +\pgfpathlineto{\pgfqpoint{3.289091in}{2.002714in}}% +\pgfpathlineto{\pgfqpoint{3.320370in}{2.037126in}}% +\pgfpathlineto{\pgfqpoint{3.351650in}{2.071940in}}% +\pgfpathlineto{\pgfqpoint{3.382929in}{2.107156in}}% +\pgfpathlineto{\pgfqpoint{3.414209in}{2.142776in}}% +\pgfpathlineto{\pgfqpoint{3.445488in}{2.178797in}}% +\pgfpathlineto{\pgfqpoint{3.476768in}{2.215221in}}% +\pgfpathlineto{\pgfqpoint{3.508047in}{2.252048in}}% +\pgfpathlineto{\pgfqpoint{3.539327in}{2.289277in}}% +\pgfpathlineto{\pgfqpoint{3.561409in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{1.424557in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{1.422145in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{1.418132in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{1.412530in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{1.405354in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{1.396623in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{1.386363in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{1.374602in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{1.361373in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{1.346715in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{1.330668in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{1.313281in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{1.294603in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{1.274690in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{1.253603in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{1.231405in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{1.208165in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{1.183956in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{1.158856in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{1.132948in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{1.106316in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{1.079053in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{1.051254in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{1.023019in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.994451in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.965659in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.936757in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.907863in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.879097in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.850586in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.822462in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.794859in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.767917in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.741781in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.716598in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.692523in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{0.669711in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{0.648326in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{0.628534in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{0.610505in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{0.594414in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{0.580441in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{0.568771in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{0.559591in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{0.553095in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{0.549479in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.548946in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{0.551703in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{0.557958in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{0.567929in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{0.581833in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{0.599896in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{0.622346in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{0.649414in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.681340in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{0.718364in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{0.760732in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{0.808696in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{0.862510in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{0.922433in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{0.988730in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{1.061668in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{1.141521in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.228566in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.323084in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.535689in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.654362in}}% +\pgfpathlineto{\pgfqpoint{2.788618in}{1.781678in}}% +\pgfpathlineto{\pgfqpoint{2.819897in}{1.917942in}}% +\pgfpathlineto{\pgfqpoint{2.851177in}{2.063463in}}% +\pgfpathlineto{\pgfqpoint{2.882457in}{2.218553in}}% +\pgfpathlineto{\pgfqpoint{2.900903in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{0.550579in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{0.555996in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{0.564979in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{0.577464in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{0.593357in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{0.612541in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{0.634873in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{0.660185in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{0.688287in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{0.718965in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{0.751984in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{0.787089in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.824004in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.862437in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.902078in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.942605in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.983681in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{1.024958in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{1.066081in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{1.106686in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{1.146406in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{1.184870in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{1.221710in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{1.256559in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{1.289056in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{1.318849in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{1.345598in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{1.368977in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{1.388677in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{1.404413in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{1.415923in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{1.422973in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{1.422924in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{1.415535in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{1.403113in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{1.385624in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{1.363088in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{1.335583in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{1.303245in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{1.266280in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{1.224962in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{1.179644in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{1.130759in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{1.078826in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{1.024455in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{0.968355in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{0.911337in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{0.854319in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{0.798335in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{0.744537in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{0.694207in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{0.648754in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{0.609730in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.578830in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{0.557901in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{0.548947in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{0.554140in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{0.575820in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{0.616509in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{0.678913in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{0.765934in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{0.880671in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{1.026434in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.206748in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.686256in}}% +\pgfpathlineto{\pgfqpoint{2.757338in}{1.993649in}}% +\pgfpathlineto{\pgfqpoint{2.785461in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.630330in}{0.548769in}}{\pgfqpoint{3.096674in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{0.661609in}{1.422146in}}% +\pgfpathlineto{\pgfqpoint{0.692889in}{1.412542in}}% +\pgfpathlineto{\pgfqpoint{0.724168in}{1.396682in}}% +\pgfpathlineto{\pgfqpoint{0.755448in}{1.374785in}}% +\pgfpathlineto{\pgfqpoint{0.786727in}{1.347155in}}% +\pgfpathlineto{\pgfqpoint{0.818007in}{1.314175in}}% +\pgfpathlineto{\pgfqpoint{0.849287in}{1.276306in}}% +\pgfpathlineto{\pgfqpoint{0.880566in}{1.234079in}}% +\pgfpathlineto{\pgfqpoint{0.911846in}{1.188091in}}% +\pgfpathlineto{\pgfqpoint{0.943125in}{1.138997in}}% +\pgfpathlineto{\pgfqpoint{0.974405in}{1.087504in}}% +\pgfpathlineto{\pgfqpoint{1.005684in}{1.034360in}}% +\pgfpathlineto{\pgfqpoint{1.036964in}{0.980345in}}% +\pgfpathlineto{\pgfqpoint{1.068243in}{0.926267in}}% +\pgfpathlineto{\pgfqpoint{1.099523in}{0.872943in}}% +\pgfpathlineto{\pgfqpoint{1.130802in}{0.821195in}}% +\pgfpathlineto{\pgfqpoint{1.162082in}{0.771836in}}% +\pgfpathlineto{\pgfqpoint{1.193361in}{0.725662in}}% +\pgfpathlineto{\pgfqpoint{1.224641in}{0.683436in}}% +\pgfpathlineto{\pgfqpoint{1.255921in}{0.645879in}}% +\pgfpathlineto{\pgfqpoint{1.287200in}{0.613660in}}% +\pgfpathlineto{\pgfqpoint{1.318480in}{0.587381in}}% +\pgfpathlineto{\pgfqpoint{1.349759in}{0.567570in}}% +\pgfpathlineto{\pgfqpoint{1.381039in}{0.554667in}}% +\pgfpathlineto{\pgfqpoint{1.412318in}{0.549018in}}% +\pgfpathlineto{\pgfqpoint{1.443598in}{0.550860in}}% +\pgfpathlineto{\pgfqpoint{1.474877in}{0.560318in}}% +\pgfpathlineto{\pgfqpoint{1.506157in}{0.577394in}}% +\pgfpathlineto{\pgfqpoint{1.537436in}{0.601962in}}% +\pgfpathlineto{\pgfqpoint{1.568716in}{0.633764in}}% +\pgfpathlineto{\pgfqpoint{1.599995in}{0.672404in}}% +\pgfpathlineto{\pgfqpoint{1.631275in}{0.717346in}}% +\pgfpathlineto{\pgfqpoint{1.662555in}{0.767917in}}% +\pgfpathlineto{\pgfqpoint{1.693834in}{0.823307in}}% +\pgfpathlineto{\pgfqpoint{1.725114in}{0.882572in}}% +\pgfpathlineto{\pgfqpoint{1.756393in}{0.944644in}}% +\pgfpathlineto{\pgfqpoint{1.787673in}{1.008337in}}% +\pgfpathlineto{\pgfqpoint{1.818952in}{1.072360in}}% +\pgfpathlineto{\pgfqpoint{1.850232in}{1.135334in}}% +\pgfpathlineto{\pgfqpoint{1.881511in}{1.195810in}}% +\pgfpathlineto{\pgfqpoint{1.912791in}{1.252288in}}% +\pgfpathlineto{\pgfqpoint{1.944070in}{1.303249in}}% +\pgfpathlineto{\pgfqpoint{1.975350in}{1.347179in}}% +\pgfpathlineto{\pgfqpoint{2.006629in}{1.382608in}}% +\pgfpathlineto{\pgfqpoint{2.037909in}{1.408144in}}% +\pgfpathlineto{\pgfqpoint{2.069189in}{1.422523in}}% +\pgfpathlineto{\pgfqpoint{2.100468in}{1.424652in}}% +\pgfpathlineto{\pgfqpoint{2.131748in}{1.413666in}}% +\pgfpathlineto{\pgfqpoint{2.163027in}{1.388989in}}% +\pgfpathlineto{\pgfqpoint{2.194307in}{1.350397in}}% +\pgfpathlineto{\pgfqpoint{2.225586in}{1.298092in}}% +\pgfpathlineto{\pgfqpoint{2.256866in}{1.232780in}}% +\pgfpathlineto{\pgfqpoint{2.288145in}{1.155757in}}% +\pgfpathlineto{\pgfqpoint{2.319425in}{1.069002in}}% +\pgfpathlineto{\pgfqpoint{2.350704in}{0.975275in}}% +\pgfpathlineto{\pgfqpoint{2.381984in}{0.878228in}}% +\pgfpathlineto{\pgfqpoint{2.413263in}{0.782522in}}% +\pgfpathlineto{\pgfqpoint{2.444543in}{0.693947in}}% +\pgfpathlineto{\pgfqpoint{2.475823in}{0.619562in}}% +\pgfpathlineto{\pgfqpoint{2.507102in}{0.567831in}}% +\pgfpathlineto{\pgfqpoint{2.538382in}{0.548781in}}% +\pgfpathlineto{\pgfqpoint{2.569661in}{0.574165in}}% +\pgfpathlineto{\pgfqpoint{2.600941in}{0.657630in}}% +\pgfpathlineto{\pgfqpoint{2.632220in}{0.814902in}}% +\pgfpathlineto{\pgfqpoint{2.663500in}{1.063985in}}% +\pgfpathlineto{\pgfqpoint{2.694779in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{2.726059in}{1.922215in}}% +\pgfpathlineto{\pgfqpoint{2.744758in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630330in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.727004in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.803974in}{0.618213in}}% +\pgfpathlineto{\pgfqpoint{3.629782in}{0.618213in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.657560in}{0.618213in}}{\pgfqpoint{3.657560in}{0.645991in}}% +\pgfpathlineto{\pgfqpoint{3.657560in}{1.406793in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.657560in}{1.434571in}}{\pgfqpoint{3.629782in}{1.434571in}}% +\pgfpathlineto{\pgfqpoint{2.803974in}{1.434571in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.776196in}{1.434571in}}{\pgfqpoint{2.776196in}{1.406793in}}% +\pgfpathlineto{\pgfqpoint{2.776196in}{0.645991in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.776196in}{0.618213in}}{\pgfqpoint{2.803974in}{0.618213in}}% +\pgfpathlineto{\pgfqpoint{2.803974in}{0.618213in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.831751in}{1.330404in}}% +\pgfpathlineto{\pgfqpoint{2.970640in}{1.330404in}}% +\pgfpathlineto{\pgfqpoint{3.109529in}{1.330404in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.220640in,y=1.281793in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=1\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.831751in}{1.136732in}}% +\pgfpathlineto{\pgfqpoint{2.970640in}{1.136732in}}% +\pgfpathlineto{\pgfqpoint{3.109529in}{1.136732in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.220640in,y=1.088120in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.831751in}{0.943059in}}% +\pgfpathlineto{\pgfqpoint{2.970640in}{0.943059in}}% +\pgfpathlineto{\pgfqpoint{3.109529in}{0.943059in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.220640in,y=0.894448in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=3\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.831751in}{0.749386in}}% +\pgfpathlineto{\pgfqpoint{2.970640in}{0.749386in}}% +\pgfpathlineto{\pgfqpoint{3.109529in}{0.749386in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.220640in,y=0.700775in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=4\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/F_N_chebychev2.pgf b/buch/papers/ellfilter/python/F_N_chebychev2.pgf new file mode 100644 index 0000000..43ebb91 --- /dev/null +++ b/buch/papers/ellfilter/python/F_N_chebychev2.pgf @@ -0,0 +1,1023 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.500000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.500000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.500000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.012292in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.012292in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.012292in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.012292in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {\ensuremath{-}1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.998134in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.998134in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.998134in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.998134in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {\ensuremath{-}0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.983977in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.983977in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.983977in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.983977in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.969820in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.969820in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.969820in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.969820in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.955663in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{4.955663in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.955663in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.955663in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.983977in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle w\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {\ensuremath{-}2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.987065in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{0.987065in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{0.987065in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=0.938840in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {\ensuremath{-}1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.425362in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{1.425362in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{1.425362in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.451287in, y=1.377137in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.863658in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{1.863658in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{1.863658in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.451287in, y=1.815433in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.451287in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287707in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle T_N(w)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.815123in}{0.538250in}}% +\pgfpathlineto{\pgfqpoint{0.867228in}{0.667673in}}% +\pgfpathlineto{\pgfqpoint{0.919332in}{0.789210in}}% +\pgfpathlineto{\pgfqpoint{0.971437in}{0.903055in}}% +\pgfpathlineto{\pgfqpoint{1.023541in}{1.009402in}}% +\pgfpathlineto{\pgfqpoint{1.075646in}{1.108444in}}% +\pgfpathlineto{\pgfqpoint{1.123409in}{1.192982in}}% +\pgfpathlineto{\pgfqpoint{1.171171in}{1.271695in}}% +\pgfpathlineto{\pgfqpoint{1.218934in}{1.344733in}}% +\pgfpathlineto{\pgfqpoint{1.266696in}{1.412244in}}% +\pgfpathlineto{\pgfqpoint{1.314459in}{1.474380in}}% +\pgfpathlineto{\pgfqpoint{1.362221in}{1.531289in}}% +\pgfpathlineto{\pgfqpoint{1.409984in}{1.583121in}}% +\pgfpathlineto{\pgfqpoint{1.453404in}{1.625960in}}% +\pgfpathlineto{\pgfqpoint{1.496825in}{1.664840in}}% +\pgfpathlineto{\pgfqpoint{1.540245in}{1.699871in}}% +\pgfpathlineto{\pgfqpoint{1.583666in}{1.731168in}}% +\pgfpathlineto{\pgfqpoint{1.627086in}{1.758841in}}% +\pgfpathlineto{\pgfqpoint{1.670507in}{1.783003in}}% +\pgfpathlineto{\pgfqpoint{1.713927in}{1.803767in}}% +\pgfpathlineto{\pgfqpoint{1.757348in}{1.821245in}}% +\pgfpathlineto{\pgfqpoint{1.800768in}{1.835549in}}% +\pgfpathlineto{\pgfqpoint{1.844189in}{1.846792in}}% +\pgfpathlineto{\pgfqpoint{1.887609in}{1.855086in}}% +\pgfpathlineto{\pgfqpoint{1.935372in}{1.860937in}}% +\pgfpathlineto{\pgfqpoint{1.983135in}{1.863505in}}% +\pgfpathlineto{\pgfqpoint{2.030897in}{1.862940in}}% +\pgfpathlineto{\pgfqpoint{2.078660in}{1.859391in}}% +\pgfpathlineto{\pgfqpoint{2.130764in}{1.852293in}}% +\pgfpathlineto{\pgfqpoint{2.182869in}{1.842015in}}% +\pgfpathlineto{\pgfqpoint{2.239316in}{1.827518in}}% +\pgfpathlineto{\pgfqpoint{2.295762in}{1.809766in}}% +\pgfpathlineto{\pgfqpoint{2.356551in}{1.787290in}}% +\pgfpathlineto{\pgfqpoint{2.421682in}{1.759685in}}% +\pgfpathlineto{\pgfqpoint{2.491154in}{1.726641in}}% +\pgfpathlineto{\pgfqpoint{2.564969in}{1.687966in}}% +\pgfpathlineto{\pgfqpoint{2.647468in}{1.641059in}}% +\pgfpathlineto{\pgfqpoint{2.738651in}{1.585589in}}% +\pgfpathlineto{\pgfqpoint{2.851545in}{1.513148in}}% +\pgfpathlineto{\pgfqpoint{3.064305in}{1.371911in}}% +\pgfpathlineto{\pgfqpoint{3.207593in}{1.278793in}}% +\pgfpathlineto{\pgfqpoint{3.307460in}{1.217378in}}% +\pgfpathlineto{\pgfqpoint{3.394301in}{1.167524in}}% +\pgfpathlineto{\pgfqpoint{3.472458in}{1.126261in}}% +\pgfpathlineto{\pgfqpoint{3.541931in}{1.093000in}}% +\pgfpathlineto{\pgfqpoint{3.607061in}{1.065165in}}% +\pgfpathlineto{\pgfqpoint{3.667850in}{1.042451in}}% +\pgfpathlineto{\pgfqpoint{3.724297in}{1.024458in}}% +\pgfpathlineto{\pgfqpoint{3.780743in}{1.009703in}}% +\pgfpathlineto{\pgfqpoint{3.832848in}{0.999169in}}% +\pgfpathlineto{\pgfqpoint{3.884953in}{0.991798in}}% +\pgfpathlineto{\pgfqpoint{3.932715in}{0.987985in}}% +\pgfpathlineto{\pgfqpoint{3.980478in}{0.987142in}}% +\pgfpathlineto{\pgfqpoint{4.028240in}{0.989420in}}% +\pgfpathlineto{\pgfqpoint{4.076003in}{0.994966in}}% +\pgfpathlineto{\pgfqpoint{4.119423in}{1.002971in}}% +\pgfpathlineto{\pgfqpoint{4.162844in}{1.013914in}}% +\pgfpathlineto{\pgfqpoint{4.206264in}{1.027907in}}% +\pgfpathlineto{\pgfqpoint{4.249685in}{1.045063in}}% +\pgfpathlineto{\pgfqpoint{4.293105in}{1.065493in}}% +\pgfpathlineto{\pgfqpoint{4.336526in}{1.089310in}}% +\pgfpathlineto{\pgfqpoint{4.379946in}{1.116627in}}% +\pgfpathlineto{\pgfqpoint{4.423367in}{1.147556in}}% +\pgfpathlineto{\pgfqpoint{4.466787in}{1.182209in}}% +\pgfpathlineto{\pgfqpoint{4.510208in}{1.220699in}}% +\pgfpathlineto{\pgfqpoint{4.553628in}{1.263138in}}% +\pgfpathlineto{\pgfqpoint{4.597049in}{1.309638in}}% +\pgfpathlineto{\pgfqpoint{4.644812in}{1.365612in}}% +\pgfpathlineto{\pgfqpoint{4.692574in}{1.426786in}}% +\pgfpathlineto{\pgfqpoint{4.740337in}{1.493310in}}% +\pgfpathlineto{\pgfqpoint{4.788099in}{1.565332in}}% +\pgfpathlineto{\pgfqpoint{4.835862in}{1.643002in}}% +\pgfpathlineto{\pgfqpoint{4.883624in}{1.726469in}}% +\pgfpathlineto{\pgfqpoint{4.931387in}{1.815884in}}% +\pgfpathlineto{\pgfqpoint{4.983491in}{1.920387in}}% +\pgfpathlineto{\pgfqpoint{5.035596in}{2.032338in}}% +\pgfpathlineto{\pgfqpoint{5.087701in}{2.151934in}}% +\pgfpathlineto{\pgfqpoint{5.139805in}{2.279368in}}% +\pgfpathlineto{\pgfqpoint{5.152831in}{2.312474in}}% +\pgfpathlineto{\pgfqpoint{5.152831in}{2.312474in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.963285in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{0.988805in}{2.065008in}}% +\pgfpathlineto{\pgfqpoint{1.014857in}{1.843281in}}% +\pgfpathlineto{\pgfqpoint{1.036568in}{1.682977in}}% +\pgfpathlineto{\pgfqpoint{1.058278in}{1.543280in}}% +\pgfpathlineto{\pgfqpoint{1.079988in}{1.422723in}}% +\pgfpathlineto{\pgfqpoint{1.101698in}{1.319903in}}% +\pgfpathlineto{\pgfqpoint{1.123409in}{1.233476in}}% +\pgfpathlineto{\pgfqpoint{1.140777in}{1.175276in}}% +\pgfpathlineto{\pgfqpoint{1.158145in}{1.126117in}}% +\pgfpathlineto{\pgfqpoint{1.175513in}{1.085395in}}% +\pgfpathlineto{\pgfqpoint{1.192881in}{1.052526in}}% +\pgfpathlineto{\pgfqpoint{1.210250in}{1.026952in}}% +\pgfpathlineto{\pgfqpoint{1.223276in}{1.012233in}}% +\pgfpathlineto{\pgfqpoint{1.236302in}{1.001095in}}% +\pgfpathlineto{\pgfqpoint{1.249328in}{0.993325in}}% +\pgfpathlineto{\pgfqpoint{1.262354in}{0.988718in}}% +\pgfpathlineto{\pgfqpoint{1.275380in}{0.987075in}}% +\pgfpathlineto{\pgfqpoint{1.288407in}{0.988202in}}% +\pgfpathlineto{\pgfqpoint{1.301433in}{0.991914in}}% +\pgfpathlineto{\pgfqpoint{1.318801in}{1.000572in}}% +\pgfpathlineto{\pgfqpoint{1.336169in}{1.013093in}}% +\pgfpathlineto{\pgfqpoint{1.353537in}{1.029086in}}% +\pgfpathlineto{\pgfqpoint{1.375248in}{1.053389in}}% +\pgfpathlineto{\pgfqpoint{1.401300in}{1.087971in}}% +\pgfpathlineto{\pgfqpoint{1.431694in}{1.134386in}}% +\pgfpathlineto{\pgfqpoint{1.466431in}{1.193454in}}% +\pgfpathlineto{\pgfqpoint{1.514193in}{1.281335in}}% +\pgfpathlineto{\pgfqpoint{1.648797in}{1.533319in}}% +\pgfpathlineto{\pgfqpoint{1.692217in}{1.606504in}}% +\pgfpathlineto{\pgfqpoint{1.731296in}{1.666194in}}% +\pgfpathlineto{\pgfqpoint{1.766032in}{1.713499in}}% +\pgfpathlineto{\pgfqpoint{1.796426in}{1.750004in}}% +\pgfpathlineto{\pgfqpoint{1.826821in}{1.781659in}}% +\pgfpathlineto{\pgfqpoint{1.852873in}{1.804782in}}% +\pgfpathlineto{\pgfqpoint{1.878925in}{1.824113in}}% +\pgfpathlineto{\pgfqpoint{1.904978in}{1.839604in}}% +\pgfpathlineto{\pgfqpoint{1.931030in}{1.851242in}}% +\pgfpathlineto{\pgfqpoint{1.957082in}{1.859041in}}% +\pgfpathlineto{\pgfqpoint{1.983135in}{1.863047in}}% +\pgfpathlineto{\pgfqpoint{2.009187in}{1.863329in}}% +\pgfpathlineto{\pgfqpoint{2.035239in}{1.859984in}}% +\pgfpathlineto{\pgfqpoint{2.061291in}{1.853128in}}% +\pgfpathlineto{\pgfqpoint{2.087344in}{1.842898in}}% +\pgfpathlineto{\pgfqpoint{2.113396in}{1.829452in}}% +\pgfpathlineto{\pgfqpoint{2.143790in}{1.809929in}}% +\pgfpathlineto{\pgfqpoint{2.174185in}{1.786560in}}% +\pgfpathlineto{\pgfqpoint{2.208921in}{1.755558in}}% +\pgfpathlineto{\pgfqpoint{2.243658in}{1.720467in}}% +\pgfpathlineto{\pgfqpoint{2.282736in}{1.676770in}}% +\pgfpathlineto{\pgfqpoint{2.330499in}{1.618420in}}% +\pgfpathlineto{\pgfqpoint{2.386945in}{1.544378in}}% +\pgfpathlineto{\pgfqpoint{2.491154in}{1.401257in}}% +\pgfpathlineto{\pgfqpoint{2.573653in}{1.290423in}}% +\pgfpathlineto{\pgfqpoint{2.630100in}{1.219842in}}% +\pgfpathlineto{\pgfqpoint{2.677863in}{1.165204in}}% +\pgfpathlineto{\pgfqpoint{2.716941in}{1.124786in}}% +\pgfpathlineto{\pgfqpoint{2.756020in}{1.088796in}}% +\pgfpathlineto{\pgfqpoint{2.790756in}{1.060903in}}% +\pgfpathlineto{\pgfqpoint{2.825492in}{1.037164in}}% +\pgfpathlineto{\pgfqpoint{2.855887in}{1.019988in}}% +\pgfpathlineto{\pgfqpoint{2.886281in}{1.006308in}}% +\pgfpathlineto{\pgfqpoint{2.916675in}{0.996229in}}% +\pgfpathlineto{\pgfqpoint{2.947070in}{0.989827in}}% +\pgfpathlineto{\pgfqpoint{2.973122in}{0.987304in}}% +\pgfpathlineto{\pgfqpoint{2.999174in}{0.987534in}}% +\pgfpathlineto{\pgfqpoint{3.025227in}{0.990514in}}% +\pgfpathlineto{\pgfqpoint{3.051279in}{0.996229in}}% +\pgfpathlineto{\pgfqpoint{3.081673in}{1.006308in}}% +\pgfpathlineto{\pgfqpoint{3.112068in}{1.019988in}}% +\pgfpathlineto{\pgfqpoint{3.142462in}{1.037164in}}% +\pgfpathlineto{\pgfqpoint{3.172856in}{1.057704in}}% +\pgfpathlineto{\pgfqpoint{3.207593in}{1.085092in}}% +\pgfpathlineto{\pgfqpoint{3.242329in}{1.116388in}}% +\pgfpathlineto{\pgfqpoint{3.281408in}{1.155866in}}% +\pgfpathlineto{\pgfqpoint{3.324828in}{1.204423in}}% +\pgfpathlineto{\pgfqpoint{3.372591in}{1.262618in}}% +\pgfpathlineto{\pgfqpoint{3.433379in}{1.342111in}}% +\pgfpathlineto{\pgfqpoint{3.533247in}{1.479174in}}% +\pgfpathlineto{\pgfqpoint{3.615746in}{1.590473in}}% +\pgfpathlineto{\pgfqpoint{3.667850in}{1.656113in}}% +\pgfpathlineto{\pgfqpoint{3.711271in}{1.706362in}}% +\pgfpathlineto{\pgfqpoint{3.750349in}{1.747148in}}% +\pgfpathlineto{\pgfqpoint{3.785086in}{1.779222in}}% +\pgfpathlineto{\pgfqpoint{3.815480in}{1.803631in}}% +\pgfpathlineto{\pgfqpoint{3.845874in}{1.824284in}}% +\pgfpathlineto{\pgfqpoint{3.876269in}{1.840876in}}% +\pgfpathlineto{\pgfqpoint{3.902321in}{1.851653in}}% +\pgfpathlineto{\pgfqpoint{3.928373in}{1.859081in}}% +\pgfpathlineto{\pgfqpoint{3.954425in}{1.863021in}}% +\pgfpathlineto{\pgfqpoint{3.980478in}{1.863350in}}% +\pgfpathlineto{\pgfqpoint{4.002188in}{1.860795in}}% +\pgfpathlineto{\pgfqpoint{4.023898in}{1.855619in}}% +\pgfpathlineto{\pgfqpoint{4.049951in}{1.845904in}}% +\pgfpathlineto{\pgfqpoint{4.076003in}{1.832340in}}% +\pgfpathlineto{\pgfqpoint{4.102055in}{1.814925in}}% +\pgfpathlineto{\pgfqpoint{4.128108in}{1.793690in}}% +\pgfpathlineto{\pgfqpoint{4.154160in}{1.768700in}}% +\pgfpathlineto{\pgfqpoint{4.184554in}{1.734938in}}% +\pgfpathlineto{\pgfqpoint{4.214949in}{1.696434in}}% +\pgfpathlineto{\pgfqpoint{4.249685in}{1.647018in}}% +\pgfpathlineto{\pgfqpoint{4.288763in}{1.585242in}}% +\pgfpathlineto{\pgfqpoint{4.332184in}{1.510192in}}% +\pgfpathlineto{\pgfqpoint{4.388631in}{1.405562in}}% +\pgfpathlineto{\pgfqpoint{4.505866in}{1.185791in}}% +\pgfpathlineto{\pgfqpoint{4.544944in}{1.120547in}}% +\pgfpathlineto{\pgfqpoint{4.575339in}{1.075851in}}% +\pgfpathlineto{\pgfqpoint{4.601391in}{1.043132in}}% +\pgfpathlineto{\pgfqpoint{4.623101in}{1.020680in}}% +\pgfpathlineto{\pgfqpoint{4.640469in}{1.006375in}}% +\pgfpathlineto{\pgfqpoint{4.657838in}{0.995735in}}% +\pgfpathlineto{\pgfqpoint{4.675206in}{0.989161in}}% +\pgfpathlineto{\pgfqpoint{4.688232in}{0.987152in}}% +\pgfpathlineto{\pgfqpoint{4.701258in}{0.987850in}}% +\pgfpathlineto{\pgfqpoint{4.714284in}{0.991448in}}% +\pgfpathlineto{\pgfqpoint{4.727310in}{0.998141in}}% +\pgfpathlineto{\pgfqpoint{4.740337in}{1.008133in}}% +\pgfpathlineto{\pgfqpoint{4.753363in}{1.021634in}}% +\pgfpathlineto{\pgfqpoint{4.766389in}{1.038861in}}% +\pgfpathlineto{\pgfqpoint{4.783757in}{1.068014in}}% +\pgfpathlineto{\pgfqpoint{4.801125in}{1.104738in}}% +\pgfpathlineto{\pgfqpoint{4.818494in}{1.149605in}}% +\pgfpathlineto{\pgfqpoint{4.835862in}{1.203207in}}% +\pgfpathlineto{\pgfqpoint{4.853230in}{1.266163in}}% +\pgfpathlineto{\pgfqpoint{4.870598in}{1.339113in}}% +\pgfpathlineto{\pgfqpoint{4.892308in}{1.445372in}}% +\pgfpathlineto{\pgfqpoint{4.914019in}{1.569642in}}% +\pgfpathlineto{\pgfqpoint{4.935729in}{1.713341in}}% +\pgfpathlineto{\pgfqpoint{4.957439in}{1.877948in}}% +\pgfpathlineto{\pgfqpoint{4.979149in}{2.065008in}}% +\pgfpathlineto{\pgfqpoint{5.004669in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{5.004669in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{4.732046in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.997762in}{0.534880in}}% +\pgfpathlineto{\pgfqpoint{1.010515in}{0.938420in}}% +\pgfpathlineto{\pgfqpoint{1.023541in}{1.256633in}}% +\pgfpathlineto{\pgfqpoint{1.036568in}{1.493946in}}% +\pgfpathlineto{\pgfqpoint{1.049594in}{1.662731in}}% +\pgfpathlineto{\pgfqpoint{1.058278in}{1.742696in}}% +\pgfpathlineto{\pgfqpoint{1.066962in}{1.800120in}}% +\pgfpathlineto{\pgfqpoint{1.075646in}{1.837754in}}% +\pgfpathlineto{\pgfqpoint{1.084330in}{1.858134in}}% +\pgfpathlineto{\pgfqpoint{1.088672in}{1.862591in}}% +\pgfpathlineto{\pgfqpoint{1.093014in}{1.863596in}}% +\pgfpathlineto{\pgfqpoint{1.097356in}{1.861410in}}% +\pgfpathlineto{\pgfqpoint{1.101698in}{1.856284in}}% +\pgfpathlineto{\pgfqpoint{1.110382in}{1.838165in}}% +\pgfpathlineto{\pgfqpoint{1.119067in}{1.811034in}}% +\pgfpathlineto{\pgfqpoint{1.132093in}{1.756980in}}% +\pgfpathlineto{\pgfqpoint{1.149461in}{1.667415in}}% +\pgfpathlineto{\pgfqpoint{1.179855in}{1.488530in}}% +\pgfpathlineto{\pgfqpoint{1.214592in}{1.289910in}}% +\pgfpathlineto{\pgfqpoint{1.236302in}{1.184400in}}% +\pgfpathlineto{\pgfqpoint{1.253670in}{1.114719in}}% +\pgfpathlineto{\pgfqpoint{1.266696in}{1.072074in}}% +\pgfpathlineto{\pgfqpoint{1.279722in}{1.038054in}}% +\pgfpathlineto{\pgfqpoint{1.292749in}{1.012779in}}% +\pgfpathlineto{\pgfqpoint{1.301433in}{1.000762in}}% +\pgfpathlineto{\pgfqpoint{1.310117in}{0.992549in}}% +\pgfpathlineto{\pgfqpoint{1.318801in}{0.988057in}}% +\pgfpathlineto{\pgfqpoint{1.327485in}{0.987177in}}% +\pgfpathlineto{\pgfqpoint{1.336169in}{0.989782in}}% +\pgfpathlineto{\pgfqpoint{1.344853in}{0.995723in}}% +\pgfpathlineto{\pgfqpoint{1.353537in}{1.004838in}}% +\pgfpathlineto{\pgfqpoint{1.366563in}{1.024074in}}% +\pgfpathlineto{\pgfqpoint{1.379590in}{1.049416in}}% +\pgfpathlineto{\pgfqpoint{1.396958in}{1.091524in}}% +\pgfpathlineto{\pgfqpoint{1.418668in}{1.155158in}}% +\pgfpathlineto{\pgfqpoint{1.444720in}{1.243239in}}% +\pgfpathlineto{\pgfqpoint{1.488141in}{1.403898in}}% +\pgfpathlineto{\pgfqpoint{1.531561in}{1.561511in}}% +\pgfpathlineto{\pgfqpoint{1.557614in}{1.646386in}}% +\pgfpathlineto{\pgfqpoint{1.579324in}{1.708574in}}% +\pgfpathlineto{\pgfqpoint{1.601034in}{1.761436in}}% +\pgfpathlineto{\pgfqpoint{1.618402in}{1.796276in}}% +\pgfpathlineto{\pgfqpoint{1.635771in}{1.824067in}}% +\pgfpathlineto{\pgfqpoint{1.648797in}{1.840132in}}% +\pgfpathlineto{\pgfqpoint{1.661823in}{1.852039in}}% +\pgfpathlineto{\pgfqpoint{1.674849in}{1.859776in}}% +\pgfpathlineto{\pgfqpoint{1.687875in}{1.863368in}}% +\pgfpathlineto{\pgfqpoint{1.700901in}{1.862878in}}% +\pgfpathlineto{\pgfqpoint{1.713927in}{1.858401in}}% +\pgfpathlineto{\pgfqpoint{1.726954in}{1.850065in}}% +\pgfpathlineto{\pgfqpoint{1.739980in}{1.838024in}}% +\pgfpathlineto{\pgfqpoint{1.757348in}{1.816524in}}% +\pgfpathlineto{\pgfqpoint{1.774716in}{1.789256in}}% +\pgfpathlineto{\pgfqpoint{1.796426in}{1.747911in}}% +\pgfpathlineto{\pgfqpoint{1.818137in}{1.699616in}}% +\pgfpathlineto{\pgfqpoint{1.844189in}{1.634299in}}% +\pgfpathlineto{\pgfqpoint{1.878925in}{1.538536in}}% +\pgfpathlineto{\pgfqpoint{1.983135in}{1.243956in}}% +\pgfpathlineto{\pgfqpoint{2.013529in}{1.169800in}}% +\pgfpathlineto{\pgfqpoint{2.039581in}{1.114392in}}% +\pgfpathlineto{\pgfqpoint{2.061291in}{1.074988in}}% +\pgfpathlineto{\pgfqpoint{2.083002in}{1.042391in}}% +\pgfpathlineto{\pgfqpoint{2.100370in}{1.021533in}}% +\pgfpathlineto{\pgfqpoint{2.117738in}{1.005506in}}% +\pgfpathlineto{\pgfqpoint{2.135106in}{0.994424in}}% +\pgfpathlineto{\pgfqpoint{2.148132in}{0.989394in}}% +\pgfpathlineto{\pgfqpoint{2.161159in}{0.987181in}}% +\pgfpathlineto{\pgfqpoint{2.174185in}{0.987773in}}% +\pgfpathlineto{\pgfqpoint{2.187211in}{0.991136in}}% +\pgfpathlineto{\pgfqpoint{2.200237in}{0.997224in}}% +\pgfpathlineto{\pgfqpoint{2.217605in}{1.009467in}}% +\pgfpathlineto{\pgfqpoint{2.234974in}{1.026248in}}% +\pgfpathlineto{\pgfqpoint{2.252342in}{1.047331in}}% +\pgfpathlineto{\pgfqpoint{2.274052in}{1.079308in}}% +\pgfpathlineto{\pgfqpoint{2.295762in}{1.116953in}}% +\pgfpathlineto{\pgfqpoint{2.321815in}{1.168623in}}% +\pgfpathlineto{\pgfqpoint{2.352209in}{1.236174in}}% +\pgfpathlineto{\pgfqpoint{2.391287in}{1.331016in}}% +\pgfpathlineto{\pgfqpoint{2.504181in}{1.611124in}}% +\pgfpathlineto{\pgfqpoint{2.534575in}{1.677221in}}% +\pgfpathlineto{\pgfqpoint{2.560627in}{1.727693in}}% +\pgfpathlineto{\pgfqpoint{2.586680in}{1.771344in}}% +\pgfpathlineto{\pgfqpoint{2.608390in}{1.801859in}}% +\pgfpathlineto{\pgfqpoint{2.630100in}{1.826589in}}% +\pgfpathlineto{\pgfqpoint{2.647468in}{1.841982in}}% +\pgfpathlineto{\pgfqpoint{2.664837in}{1.853327in}}% +\pgfpathlineto{\pgfqpoint{2.682205in}{1.860536in}}% +\pgfpathlineto{\pgfqpoint{2.699573in}{1.863558in}}% +\pgfpathlineto{\pgfqpoint{2.712599in}{1.863067in}}% +\pgfpathlineto{\pgfqpoint{2.725625in}{1.860222in}}% +\pgfpathlineto{\pgfqpoint{2.742993in}{1.852807in}}% +\pgfpathlineto{\pgfqpoint{2.760362in}{1.841331in}}% +\pgfpathlineto{\pgfqpoint{2.777730in}{1.825916in}}% +\pgfpathlineto{\pgfqpoint{2.795098in}{1.806716in}}% +\pgfpathlineto{\pgfqpoint{2.816808in}{1.777690in}}% +\pgfpathlineto{\pgfqpoint{2.838519in}{1.743493in}}% +\pgfpathlineto{\pgfqpoint{2.864571in}{1.696359in}}% +\pgfpathlineto{\pgfqpoint{2.894965in}{1.634247in}}% +\pgfpathlineto{\pgfqpoint{2.929702in}{1.556076in}}% +\pgfpathlineto{\pgfqpoint{2.986148in}{1.420053in}}% +\pgfpathlineto{\pgfqpoint{3.051279in}{1.264602in}}% +\pgfpathlineto{\pgfqpoint{3.086015in}{1.189019in}}% +\pgfpathlineto{\pgfqpoint{3.116410in}{1.130020in}}% +\pgfpathlineto{\pgfqpoint{3.142462in}{1.086119in}}% +\pgfpathlineto{\pgfqpoint{3.164172in}{1.054967in}}% +\pgfpathlineto{\pgfqpoint{3.185883in}{1.029260in}}% +\pgfpathlineto{\pgfqpoint{3.203251in}{1.012882in}}% +\pgfpathlineto{\pgfqpoint{3.220619in}{1.000409in}}% +\pgfpathlineto{\pgfqpoint{3.237987in}{0.991969in}}% +\pgfpathlineto{\pgfqpoint{3.255355in}{0.987657in}}% +\pgfpathlineto{\pgfqpoint{3.268382in}{0.987166in}}% +\pgfpathlineto{\pgfqpoint{3.281408in}{0.989038in}}% +\pgfpathlineto{\pgfqpoint{3.298776in}{0.995204in}}% +\pgfpathlineto{\pgfqpoint{3.316144in}{1.005522in}}% +\pgfpathlineto{\pgfqpoint{3.333512in}{1.019913in}}% +\pgfpathlineto{\pgfqpoint{3.350880in}{1.038258in}}% +\pgfpathlineto{\pgfqpoint{3.372591in}{1.066505in}}% +\pgfpathlineto{\pgfqpoint{3.394301in}{1.100293in}}% +\pgfpathlineto{\pgfqpoint{3.420353in}{1.147476in}}% +\pgfpathlineto{\pgfqpoint{3.446406in}{1.200975in}}% +\pgfpathlineto{\pgfqpoint{3.481142in}{1.280166in}}% +\pgfpathlineto{\pgfqpoint{3.528905in}{1.398487in}}% +\pgfpathlineto{\pgfqpoint{3.611404in}{1.604382in}}% +\pgfpathlineto{\pgfqpoint{3.646140in}{1.682101in}}% +\pgfpathlineto{\pgfqpoint{3.672192in}{1.733770in}}% +\pgfpathlineto{\pgfqpoint{3.698245in}{1.778285in}}% +\pgfpathlineto{\pgfqpoint{3.719955in}{1.809052in}}% +\pgfpathlineto{\pgfqpoint{3.737323in}{1.829084in}}% +\pgfpathlineto{\pgfqpoint{3.754691in}{1.844751in}}% +\pgfpathlineto{\pgfqpoint{3.772059in}{1.855828in}}% +\pgfpathlineto{\pgfqpoint{3.785086in}{1.861014in}}% +\pgfpathlineto{\pgfqpoint{3.798112in}{1.863458in}}% +\pgfpathlineto{\pgfqpoint{3.811138in}{1.863117in}}% +\pgfpathlineto{\pgfqpoint{3.824164in}{1.859967in}}% +\pgfpathlineto{\pgfqpoint{3.837190in}{1.853997in}}% +\pgfpathlineto{\pgfqpoint{3.850216in}{1.845218in}}% +\pgfpathlineto{\pgfqpoint{3.867584in}{1.829191in}}% +\pgfpathlineto{\pgfqpoint{3.884953in}{1.808333in}}% +\pgfpathlineto{\pgfqpoint{3.902321in}{1.782817in}}% +\pgfpathlineto{\pgfqpoint{3.924031in}{1.744730in}}% +\pgfpathlineto{\pgfqpoint{3.945741in}{1.700309in}}% +\pgfpathlineto{\pgfqpoint{3.971794in}{1.639665in}}% +\pgfpathlineto{\pgfqpoint{4.002188in}{1.560701in}}% +\pgfpathlineto{\pgfqpoint{4.045609in}{1.437971in}}% +\pgfpathlineto{\pgfqpoint{4.119423in}{1.227942in}}% +\pgfpathlineto{\pgfqpoint{4.149818in}{1.151107in}}% +\pgfpathlineto{\pgfqpoint{4.175870in}{1.093948in}}% +\pgfpathlineto{\pgfqpoint{4.197580in}{1.054139in}}% +\pgfpathlineto{\pgfqpoint{4.214949in}{1.028264in}}% +\pgfpathlineto{\pgfqpoint{4.232317in}{1.008285in}}% +\pgfpathlineto{\pgfqpoint{4.245343in}{0.997460in}}% +\pgfpathlineto{\pgfqpoint{4.258369in}{0.990394in}}% +\pgfpathlineto{\pgfqpoint{4.271395in}{0.987234in}}% +\pgfpathlineto{\pgfqpoint{4.284421in}{0.988096in}}% +\pgfpathlineto{\pgfqpoint{4.297447in}{0.993064in}}% +\pgfpathlineto{\pgfqpoint{4.310474in}{1.002190in}}% +\pgfpathlineto{\pgfqpoint{4.323500in}{1.015487in}}% +\pgfpathlineto{\pgfqpoint{4.336526in}{1.032928in}}% +\pgfpathlineto{\pgfqpoint{4.353894in}{1.062510in}}% +\pgfpathlineto{\pgfqpoint{4.371262in}{1.099057in}}% +\pgfpathlineto{\pgfqpoint{4.392973in}{1.153882in}}% +\pgfpathlineto{\pgfqpoint{4.414683in}{1.217773in}}% +\pgfpathlineto{\pgfqpoint{4.440735in}{1.304246in}}% +\pgfpathlineto{\pgfqpoint{4.479814in}{1.446826in}}% +\pgfpathlineto{\pgfqpoint{4.536260in}{1.652803in}}% +\pgfpathlineto{\pgfqpoint{4.562313in}{1.735052in}}% +\pgfpathlineto{\pgfqpoint{4.579681in}{1.781356in}}% +\pgfpathlineto{\pgfqpoint{4.597049in}{1.818848in}}% +\pgfpathlineto{\pgfqpoint{4.610075in}{1.840192in}}% +\pgfpathlineto{\pgfqpoint{4.623101in}{1.855001in}}% +\pgfpathlineto{\pgfqpoint{4.631785in}{1.860942in}}% +\pgfpathlineto{\pgfqpoint{4.640469in}{1.863546in}}% +\pgfpathlineto{\pgfqpoint{4.649154in}{1.862667in}}% +\pgfpathlineto{\pgfqpoint{4.657838in}{1.858175in}}% +\pgfpathlineto{\pgfqpoint{4.666522in}{1.849962in}}% +\pgfpathlineto{\pgfqpoint{4.675206in}{1.837945in}}% +\pgfpathlineto{\pgfqpoint{4.688232in}{1.812669in}}% +\pgfpathlineto{\pgfqpoint{4.701258in}{1.778650in}}% +\pgfpathlineto{\pgfqpoint{4.714284in}{1.736005in}}% +\pgfpathlineto{\pgfqpoint{4.731653in}{1.666324in}}% +\pgfpathlineto{\pgfqpoint{4.749021in}{1.583371in}}% +\pgfpathlineto{\pgfqpoint{4.770731in}{1.464716in}}% +\pgfpathlineto{\pgfqpoint{4.835862in}{1.093743in}}% +\pgfpathlineto{\pgfqpoint{4.848888in}{1.039690in}}% +\pgfpathlineto{\pgfqpoint{4.857572in}{1.012559in}}% +\pgfpathlineto{\pgfqpoint{4.866256in}{0.994439in}}% +\pgfpathlineto{\pgfqpoint{4.870598in}{0.989314in}}% +\pgfpathlineto{\pgfqpoint{4.874940in}{0.987128in}}% +\pgfpathlineto{\pgfqpoint{4.879282in}{0.988132in}}% +\pgfpathlineto{\pgfqpoint{4.883624in}{0.992590in}}% +\pgfpathlineto{\pgfqpoint{4.887966in}{1.000774in}}% +\pgfpathlineto{\pgfqpoint{4.896650in}{1.029477in}}% +\pgfpathlineto{\pgfqpoint{4.905335in}{1.076675in}}% +\pgfpathlineto{\pgfqpoint{4.914019in}{1.145012in}}% +\pgfpathlineto{\pgfqpoint{4.922703in}{1.237348in}}% +\pgfpathlineto{\pgfqpoint{4.931387in}{1.356777in}}% +\pgfpathlineto{\pgfqpoint{4.944413in}{1.594091in}}% +\pgfpathlineto{\pgfqpoint{4.957439in}{1.912304in}}% +\pgfpathlineto{\pgfqpoint{4.970193in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{4.970193in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.350000in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{5.350000in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.715177in}{1.609825in}}% +\pgfpathlineto{\pgfqpoint{1.610430in}{1.609825in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.638207in}{1.609825in}}{\pgfqpoint{1.638207in}{1.637603in}}% +\pgfpathlineto{\pgfqpoint{1.638207in}{2.204733in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.638207in}{2.232510in}}{\pgfqpoint{1.610430in}{2.232510in}}% +\pgfpathlineto{\pgfqpoint{0.715177in}{2.232510in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.687399in}{2.232510in}}{\pgfqpoint{0.687399in}{2.204733in}}% +\pgfpathlineto{\pgfqpoint{0.687399in}{1.637603in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.687399in}{1.609825in}}{\pgfqpoint{0.715177in}{1.609825in}}% +\pgfpathlineto{\pgfqpoint{0.715177in}{1.609825in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.742954in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{0.881843in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{1.020732in}{2.128344in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.131843in,y=2.079733in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=3\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.742954in}{1.934671in}}% +\pgfpathlineto{\pgfqpoint{0.881843in}{1.934671in}}% +\pgfpathlineto{\pgfqpoint{1.020732in}{1.934671in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.131843in,y=1.886060in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.742954in}{1.740998in}}% +\pgfpathlineto{\pgfqpoint{0.881843in}{1.740998in}}% +\pgfpathlineto{\pgfqpoint{1.020732in}{1.740998in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.131843in,y=1.692387in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=11\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/F_N_elliptic.pgf b/buch/papers/ellfilter/python/F_N_elliptic.pgf new file mode 100644 index 0000000..03084c6 --- /dev/null +++ b/buch/papers/ellfilter/python/F_N_elliptic.pgf @@ -0,0 +1,847 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.501961,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{-174.068564in}}% +\pgfpathlineto{\pgfqpoint{2.247564in}{-174.068564in}}% +\pgfpathlineto{\pgfqpoint{2.247564in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{-174.068564in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.647059,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.247564in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{2.262704in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{2.262704in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{2.247564in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{2.247564in}{1.250043in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.262704in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{3.776737in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{3.776737in}{2.301962in}}% +\pgfpathlineto{\pgfqpoint{2.262704in}{2.301962in}}% +\pgfpathlineto{\pgfqpoint{2.262704in}{1.600680in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.733531in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.490547in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.490547in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.490547in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.490547in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.247564in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.247564in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.247564in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.247564in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.004580in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.004580in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.004580in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.004580in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.761597in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.761597in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.247564in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle w\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.348306in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-4}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.899406in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.899406in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{0.899406in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.348306in, y=0.851181in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.250043in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{1.250043in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.435112in, y=1.201818in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.600680in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{1.600680in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.435112in, y=1.552455in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{1.951318in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.951318in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{1.951318in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.435112in, y=1.903092in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{4}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.435112in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{6}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.292751in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle F^2_N(w)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.739446in}{0.534880in}}% +\pgfpathlineto{\pgfqpoint{0.744132in}{0.623916in}}% +\pgfpathlineto{\pgfqpoint{0.750947in}{0.699506in}}% +\pgfpathlineto{\pgfqpoint{0.759276in}{0.759013in}}% +\pgfpathlineto{\pgfqpoint{0.769120in}{0.808295in}}% +\pgfpathlineto{\pgfqpoint{0.781235in}{0.852871in}}% +\pgfpathlineto{\pgfqpoint{0.794865in}{0.891083in}}% +\pgfpathlineto{\pgfqpoint{0.810009in}{0.924604in}}% +\pgfpathlineto{\pgfqpoint{0.827425in}{0.955729in}}% +\pgfpathlineto{\pgfqpoint{0.847112in}{0.984554in}}% +\pgfpathlineto{\pgfqpoint{0.869071in}{1.011252in}}% +\pgfpathlineto{\pgfqpoint{0.894059in}{1.036721in}}% +\pgfpathlineto{\pgfqpoint{0.922075in}{1.060823in}}% +\pgfpathlineto{\pgfqpoint{0.953878in}{1.084028in}}% +\pgfpathlineto{\pgfqpoint{0.989467in}{1.106127in}}% +\pgfpathlineto{\pgfqpoint{1.029598in}{1.127375in}}% +\pgfpathlineto{\pgfqpoint{1.075031in}{1.147865in}}% +\pgfpathlineto{\pgfqpoint{1.125764in}{1.167300in}}% +\pgfpathlineto{\pgfqpoint{1.182554in}{1.185675in}}% +\pgfpathlineto{\pgfqpoint{1.244645in}{1.202480in}}% +\pgfpathlineto{\pgfqpoint{1.312036in}{1.217494in}}% +\pgfpathlineto{\pgfqpoint{1.383214in}{1.230171in}}% +\pgfpathlineto{\pgfqpoint{1.455905in}{1.239991in}}% +\pgfpathlineto{\pgfqpoint{1.527083in}{1.246540in}}% +\pgfpathlineto{\pgfqpoint{1.594474in}{1.249707in}}% +\pgfpathlineto{\pgfqpoint{1.655808in}{1.249589in}}% +\pgfpathlineto{\pgfqpoint{1.711084in}{1.246442in}}% +\pgfpathlineto{\pgfqpoint{1.758788in}{1.240733in}}% +\pgfpathlineto{\pgfqpoint{1.800434in}{1.232740in}}% +\pgfpathlineto{\pgfqpoint{1.836780in}{1.222684in}}% +\pgfpathlineto{\pgfqpoint{1.867825in}{1.211013in}}% +\pgfpathlineto{\pgfqpoint{1.895085in}{1.197575in}}% +\pgfpathlineto{\pgfqpoint{1.919315in}{1.182199in}}% +\pgfpathlineto{\pgfqpoint{1.940517in}{1.165082in}}% +\pgfpathlineto{\pgfqpoint{1.959447in}{1.145758in}}% +\pgfpathlineto{\pgfqpoint{1.976106in}{1.124277in}}% +\pgfpathlineto{\pgfqpoint{1.991250in}{1.099472in}}% +\pgfpathlineto{\pgfqpoint{2.004122in}{1.072523in}}% +\pgfpathlineto{\pgfqpoint{2.015480in}{1.041896in}}% +\pgfpathlineto{\pgfqpoint{2.026081in}{1.004016in}}% +\pgfpathlineto{\pgfqpoint{2.035168in}{0.959254in}}% +\pgfpathlineto{\pgfqpoint{2.042740in}{0.905583in}}% +\pgfpathlineto{\pgfqpoint{2.048797in}{0.840043in}}% +\pgfpathlineto{\pgfqpoint{2.053341in}{0.758643in}}% +\pgfpathlineto{\pgfqpoint{2.056369in}{0.659102in}}% +\pgfpathlineto{\pgfqpoint{2.058129in}{0.534880in}}% +\pgfpathmoveto{\pgfqpoint{2.061041in}{0.534880in}}% +\pgfpathlineto{\pgfqpoint{2.064699in}{0.731366in}}% +\pgfpathlineto{\pgfqpoint{2.069999in}{0.841854in}}% +\pgfpathlineto{\pgfqpoint{2.076814in}{0.921040in}}% +\pgfpathlineto{\pgfqpoint{2.085143in}{0.984050in}}% +\pgfpathlineto{\pgfqpoint{2.095744in}{1.040507in}}% +\pgfpathlineto{\pgfqpoint{2.107859in}{1.088435in}}% +\pgfpathlineto{\pgfqpoint{2.121489in}{1.130355in}}% +\pgfpathlineto{\pgfqpoint{2.136633in}{1.167522in}}% +\pgfpathlineto{\pgfqpoint{2.153292in}{1.200289in}}% +\pgfpathlineto{\pgfqpoint{2.169193in}{1.224889in}}% +\pgfpathlineto{\pgfqpoint{2.182823in}{1.240496in}}% +\pgfpathlineto{\pgfqpoint{2.192666in}{1.247725in}}% +\pgfpathlineto{\pgfqpoint{2.200239in}{1.250017in}}% +\pgfpathlineto{\pgfqpoint{2.206296in}{1.248902in}}% +\pgfpathlineto{\pgfqpoint{2.211597in}{1.244804in}}% +\pgfpathlineto{\pgfqpoint{2.216897in}{1.236352in}}% +\pgfpathlineto{\pgfqpoint{2.222197in}{1.220917in}}% +\pgfpathlineto{\pgfqpoint{2.226741in}{1.197982in}}% +\pgfpathlineto{\pgfqpoint{2.231284in}{1.157051in}}% +\pgfpathlineto{\pgfqpoint{2.235070in}{1.089329in}}% +\pgfpathlineto{\pgfqpoint{2.237342in}{1.003949in}}% +\pgfpathlineto{\pgfqpoint{2.238856in}{0.869518in}}% +\pgfpathlineto{\pgfqpoint{2.239613in}{0.638914in}}% +\pgfpathlineto{\pgfqpoint{2.240370in}{0.794881in}}% +\pgfpathlineto{\pgfqpoint{2.243399in}{1.100517in}}% +\pgfpathlineto{\pgfqpoint{2.248700in}{1.280424in}}% +\pgfpathlineto{\pgfqpoint{2.266873in}{1.753784in}}% +\pgfpathlineto{\pgfqpoint{2.269144in}{1.924021in}}% +\pgfpathlineto{\pgfqpoint{2.270659in}{2.202839in}}% +\pgfpathlineto{\pgfqpoint{2.272930in}{1.848446in}}% +\pgfpathlineto{\pgfqpoint{2.276716in}{1.730165in}}% +\pgfpathlineto{\pgfqpoint{2.281260in}{1.672036in}}% +\pgfpathlineto{\pgfqpoint{2.286560in}{1.637950in}}% +\pgfpathlineto{\pgfqpoint{2.292618in}{1.617444in}}% +\pgfpathlineto{\pgfqpoint{2.298675in}{1.606779in}}% +\pgfpathlineto{\pgfqpoint{2.304733in}{1.601737in}}% +\pgfpathlineto{\pgfqpoint{2.311548in}{1.600286in}}% +\pgfpathlineto{\pgfqpoint{2.319120in}{1.602150in}}% +\pgfpathlineto{\pgfqpoint{2.328206in}{1.607676in}}% +\pgfpathlineto{\pgfqpoint{2.340322in}{1.618928in}}% +\pgfpathlineto{\pgfqpoint{2.355466in}{1.637536in}}% +\pgfpathlineto{\pgfqpoint{2.372881in}{1.664058in}}% +\pgfpathlineto{\pgfqpoint{2.391054in}{1.697587in}}% +\pgfpathlineto{\pgfqpoint{2.407713in}{1.734758in}}% +\pgfpathlineto{\pgfqpoint{2.422857in}{1.776122in}}% +\pgfpathlineto{\pgfqpoint{2.435729in}{1.820082in}}% +\pgfpathlineto{\pgfqpoint{2.447088in}{1.870149in}}% +\pgfpathlineto{\pgfqpoint{2.456174in}{1.923894in}}% +\pgfpathlineto{\pgfqpoint{2.463746in}{1.987030in}}% +\pgfpathlineto{\pgfqpoint{2.469804in}{2.064340in}}% +\pgfpathlineto{\pgfqpoint{2.474347in}{2.165039in}}% +\pgfpathlineto{\pgfqpoint{2.477435in}{2.315844in}}% +\pgfpathmoveto{\pgfqpoint{2.481180in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{2.484948in}{2.149178in}}% +\pgfpathlineto{\pgfqpoint{2.490248in}{2.050240in}}% +\pgfpathlineto{\pgfqpoint{2.497063in}{1.978983in}}% +\pgfpathlineto{\pgfqpoint{2.505392in}{1.923413in}}% +\pgfpathlineto{\pgfqpoint{2.515236in}{1.878185in}}% +\pgfpathlineto{\pgfqpoint{2.526594in}{1.840393in}}% +\pgfpathlineto{\pgfqpoint{2.539467in}{1.808260in}}% +\pgfpathlineto{\pgfqpoint{2.553854in}{1.780613in}}% +\pgfpathlineto{\pgfqpoint{2.569755in}{1.756622in}}% +\pgfpathlineto{\pgfqpoint{2.587928in}{1.734871in}}% +\pgfpathlineto{\pgfqpoint{2.608372in}{1.715370in}}% +\pgfpathlineto{\pgfqpoint{2.631089in}{1.698028in}}% +\pgfpathlineto{\pgfqpoint{2.656834in}{1.682284in}}% +\pgfpathlineto{\pgfqpoint{2.686365in}{1.667895in}}% +\pgfpathlineto{\pgfqpoint{2.720439in}{1.654789in}}% +\pgfpathlineto{\pgfqpoint{2.759814in}{1.642992in}}% +\pgfpathlineto{\pgfqpoint{2.806760in}{1.632261in}}% +\pgfpathlineto{\pgfqpoint{2.862036in}{1.622901in}}% +\pgfpathlineto{\pgfqpoint{2.928670in}{1.614877in}}% +\pgfpathlineto{\pgfqpoint{3.008934in}{1.608422in}}% +\pgfpathlineto{\pgfqpoint{3.108128in}{1.603650in}}% +\pgfpathlineto{\pgfqpoint{3.233824in}{1.600841in}}% +\pgfpathlineto{\pgfqpoint{3.396624in}{1.600449in}}% +\pgfpathlineto{\pgfqpoint{3.619242in}{1.603198in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.606074in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.606074in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.000000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{-0.041667in}}% +\pgfpathcurveto{\pgfqpoint{0.011050in}{-0.041667in}}{\pgfqpoint{0.021649in}{-0.037276in}}{\pgfqpoint{0.029463in}{-0.029463in}}% +\pgfpathcurveto{\pgfqpoint{0.037276in}{-0.021649in}}{\pgfqpoint{0.041667in}{-0.011050in}}{\pgfqpoint{0.041667in}{0.000000in}}% +\pgfpathcurveto{\pgfqpoint{0.041667in}{0.011050in}}{\pgfqpoint{0.037276in}{0.021649in}}{\pgfqpoint{0.029463in}{0.029463in}}% +\pgfpathcurveto{\pgfqpoint{0.021649in}{0.037276in}}{\pgfqpoint{0.011050in}{0.041667in}}{\pgfqpoint{0.000000in}{0.041667in}}% +\pgfpathcurveto{\pgfqpoint{-0.011050in}{0.041667in}}{\pgfqpoint{-0.021649in}{0.037276in}}{\pgfqpoint{-0.029463in}{0.029463in}}% +\pgfpathcurveto{\pgfqpoint{-0.037276in}{0.021649in}}{\pgfqpoint{-0.041667in}{0.011050in}}{\pgfqpoint{-0.041667in}{0.000000in}}% +\pgfpathcurveto{\pgfqpoint{-0.041667in}{-0.011050in}}{\pgfqpoint{-0.037276in}{-0.021649in}}{\pgfqpoint{-0.029463in}{-0.029463in}}% +\pgfpathcurveto{\pgfqpoint{-0.021649in}{-0.037276in}}{\pgfqpoint{-0.011050in}{-0.041667in}}{\pgfqpoint{0.000000in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.041667in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733531in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.050740in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.247564in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.733531in}{0.548769in}}{\pgfqpoint{3.028066in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.000000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.262704in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.482239in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.733531in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733531in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.830753in}{1.997171in}}% +\pgfpathlineto{\pgfqpoint{2.157621in}{1.997171in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.185399in}{1.997171in}}{\pgfqpoint{2.185399in}{2.024949in}}% +\pgfpathlineto{\pgfqpoint{2.185399in}{2.204733in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.185399in}{2.232510in}}{\pgfqpoint{2.157621in}{2.232510in}}% +\pgfpathlineto{\pgfqpoint{0.830753in}{2.232510in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.802975in}{2.232510in}}{\pgfqpoint{0.802975in}{2.204733in}}% +\pgfpathlineto{\pgfqpoint{0.802975in}{2.024949in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.802975in}{1.997171in}}{\pgfqpoint{0.830753in}{1.997171in}}% +\pgfpathlineto{\pgfqpoint{0.830753in}{1.997171in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.858531in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{0.997420in}{2.128344in}}% +\pgfpathlineto{\pgfqpoint{1.136309in}{2.128344in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.247420in,y=2.079733in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle N=5, k=0.1\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/chebychef.py b/buch/papers/ellfilter/python/chebychef.py index a278989..254ad4b 100644 --- a/buch/papers/ellfilter/python/chebychef.py +++ b/buch/papers/ellfilter/python/chebychef.py @@ -35,7 +35,7 @@ plt.show() # %% Cheychev filter F_N plot w = np.linspace(-1.1,1.1, 1000) -plt.figure(figsize=(5.5,2)) +plt.figure(figsize=(5.5,2.5)) for N in [3,6,11]: # F_N = np.cos(N * np.arccos(w)) F_N = scipy.special.eval_chebyt(N, w) @@ -44,9 +44,10 @@ plt.xlim([-1.2,1.2]) plt.ylim([-2,2]) plt.grid() plt.xlabel("$w$") -plt.ylabel("$C_N(w)$") +plt.ylabel("$T_N(w)$") plt.legend() -plt.savefig("F_N_chebychev2.pdf") +plt.tight_layout() +plt.savefig("F_N_chebychev2.pgf") plt.show() # %% Build Chebychev polynomials diff --git a/buch/papers/ellfilter/python/elliptic.pgf b/buch/papers/ellfilter/python/elliptic.pgf new file mode 100644 index 0000000..31b77d4 --- /dev/null +++ b/buch/papers/ellfilter/python/elliptic.pgf @@ -0,0 +1,709 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.501961,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.788459in}}% +\pgfpathlineto{\pgfqpoint{2.189776in}{1.788459in}}% +\pgfpathlineto{\pgfqpoint{2.189776in}{3.541645in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{3.541645in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{1.788459in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.647059,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.189776in}{0.724087in}}% +\pgfpathlineto{\pgfqpoint{2.205494in}{0.724087in}}% +\pgfpathlineto{\pgfqpoint{2.205494in}{1.788459in}}% +\pgfpathlineto{\pgfqpoint{2.189776in}{1.788459in}}% +\pgfpathlineto{\pgfqpoint{2.189776in}{0.724087in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.200000}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.200000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.205494in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.777315in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.777315in}{0.724087in}}% +\pgfpathlineto{\pgfqpoint{2.205494in}{0.724087in}}% +\pgfpathlineto{\pgfqpoint{2.205494in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.617954in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.403865in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{1.403865in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.403865in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.403865in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.189776in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.189776in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.189776in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.189776in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.975686in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.975686in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.975686in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.975686in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.761597in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.761597in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.189776in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle w\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.899406in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.899406in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{0.899406in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=0.851181in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.250043in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.250043in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{1.250043in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=1.201818in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.600680in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.600680in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{1.600680in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=1.552455in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.6}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{1.951318in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{1.951318in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{1.951318in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=1.903092in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.8}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.617954in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.343262in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287707in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle |H(w)|\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.617954in}{0.548769in}}{\pgfqpoint{3.143642in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.646254in}{2.300410in}}% +\pgfpathlineto{\pgfqpoint{0.674554in}{2.295805in}}% +\pgfpathlineto{\pgfqpoint{0.703640in}{2.287983in}}% +\pgfpathlineto{\pgfqpoint{0.734298in}{2.276528in}}% +\pgfpathlineto{\pgfqpoint{0.767315in}{2.260797in}}% +\pgfpathlineto{\pgfqpoint{0.802690in}{2.240472in}}% +\pgfpathlineto{\pgfqpoint{0.842781in}{2.213774in}}% +\pgfpathlineto{\pgfqpoint{0.889947in}{2.178486in}}% +\pgfpathlineto{\pgfqpoint{0.952050in}{2.127836in}}% +\pgfpathlineto{\pgfqpoint{1.147791in}{1.965399in}}% +\pgfpathlineto{\pgfqpoint{1.205963in}{1.922684in}}% +\pgfpathlineto{\pgfqpoint{1.257846in}{1.888382in}}% +\pgfpathlineto{\pgfqpoint{1.305012in}{1.860803in}}% +\pgfpathlineto{\pgfqpoint{1.349034in}{1.838524in}}% +\pgfpathlineto{\pgfqpoint{1.390698in}{1.820826in}}% +\pgfpathlineto{\pgfqpoint{1.430003in}{1.807434in}}% +\pgfpathlineto{\pgfqpoint{1.466950in}{1.798051in}}% +\pgfpathlineto{\pgfqpoint{1.501539in}{1.792361in}}% +\pgfpathlineto{\pgfqpoint{1.534555in}{1.790011in}}% +\pgfpathlineto{\pgfqpoint{1.566000in}{1.790875in}}% +\pgfpathlineto{\pgfqpoint{1.595872in}{1.794823in}}% +\pgfpathlineto{\pgfqpoint{1.624172in}{1.801709in}}% +\pgfpathlineto{\pgfqpoint{1.650899in}{1.811365in}}% +\pgfpathlineto{\pgfqpoint{1.676841in}{1.824030in}}% +\pgfpathlineto{\pgfqpoint{1.701996in}{1.839797in}}% +\pgfpathlineto{\pgfqpoint{1.726365in}{1.858757in}}% +\pgfpathlineto{\pgfqpoint{1.749949in}{1.880985in}}% +\pgfpathlineto{\pgfqpoint{1.773532in}{1.907483in}}% +\pgfpathlineto{\pgfqpoint{1.797115in}{1.938719in}}% +\pgfpathlineto{\pgfqpoint{1.820698in}{1.975139in}}% +\pgfpathlineto{\pgfqpoint{1.845068in}{2.018557in}}% +\pgfpathlineto{\pgfqpoint{1.871009in}{2.071217in}}% +\pgfpathlineto{\pgfqpoint{1.903240in}{2.144258in}}% +\pgfpathlineto{\pgfqpoint{1.949620in}{2.249449in}}% +\pgfpathlineto{\pgfqpoint{1.965342in}{2.277408in}}% +\pgfpathlineto{\pgfqpoint{1.977134in}{2.292569in}}% +\pgfpathlineto{\pgfqpoint{1.986567in}{2.299856in}}% +\pgfpathlineto{\pgfqpoint{1.993642in}{2.301922in}}% +\pgfpathlineto{\pgfqpoint{2.000717in}{2.300685in}}% +\pgfpathlineto{\pgfqpoint{2.007792in}{2.295839in}}% +\pgfpathlineto{\pgfqpoint{2.014867in}{2.287135in}}% +\pgfpathlineto{\pgfqpoint{2.023514in}{2.271025in}}% +\pgfpathlineto{\pgfqpoint{2.032947in}{2.246492in}}% +\pgfpathlineto{\pgfqpoint{2.043953in}{2.209014in}}% +\pgfpathlineto{\pgfqpoint{2.057317in}{2.152165in}}% +\pgfpathlineto{\pgfqpoint{2.076183in}{2.056775in}}% +\pgfpathlineto{\pgfqpoint{2.114702in}{1.858945in}}% +\pgfpathlineto{\pgfqpoint{2.126494in}{1.815249in}}% +\pgfpathlineto{\pgfqpoint{2.134355in}{1.796399in}}% +\pgfpathlineto{\pgfqpoint{2.139858in}{1.790308in}}% +\pgfpathlineto{\pgfqpoint{2.143002in}{1.790254in}}% +\pgfpathlineto{\pgfqpoint{2.146147in}{1.793264in}}% +\pgfpathlineto{\pgfqpoint{2.150077in}{1.802263in}}% +\pgfpathlineto{\pgfqpoint{2.154794in}{1.822852in}}% +\pgfpathlineto{\pgfqpoint{2.159510in}{1.857784in}}% +\pgfpathlineto{\pgfqpoint{2.165013in}{1.924261in}}% +\pgfpathlineto{\pgfqpoint{2.170516in}{2.030210in}}% +\pgfpathlineto{\pgfqpoint{2.181521in}{2.301670in}}% +\pgfpathlineto{\pgfqpoint{2.182308in}{2.299748in}}% +\pgfpathlineto{\pgfqpoint{2.183880in}{2.267565in}}% +\pgfpathlineto{\pgfqpoint{2.186238in}{2.135783in}}% +\pgfpathlineto{\pgfqpoint{2.192527in}{1.496420in}}% +\pgfpathlineto{\pgfqpoint{2.198816in}{1.001269in}}% +\pgfpathlineto{\pgfqpoint{2.205105in}{0.731898in}}% +\pgfpathlineto{\pgfqpoint{2.211393in}{0.583247in}}% +\pgfpathlineto{\pgfqpoint{2.213752in}{0.552138in}}% +\pgfpathlineto{\pgfqpoint{2.220827in}{0.630495in}}% +\pgfpathlineto{\pgfqpoint{2.227902in}{0.675607in}}% +\pgfpathlineto{\pgfqpoint{2.234977in}{0.701566in}}% +\pgfpathlineto{\pgfqpoint{2.241266in}{0.714626in}}% +\pgfpathlineto{\pgfqpoint{2.247554in}{0.721456in}}% +\pgfpathlineto{\pgfqpoint{2.253843in}{0.723972in}}% +\pgfpathlineto{\pgfqpoint{2.260918in}{0.723210in}}% +\pgfpathlineto{\pgfqpoint{2.269565in}{0.718770in}}% +\pgfpathlineto{\pgfqpoint{2.281357in}{0.708826in}}% +\pgfpathlineto{\pgfqpoint{2.300224in}{0.688160in}}% +\pgfpathlineto{\pgfqpoint{2.385123in}{0.590361in}}% +\pgfpathlineto{\pgfqpoint{2.417354in}{0.559882in}}% +\pgfpathlineto{\pgfqpoint{2.430717in}{0.549063in}}% +\pgfpathlineto{\pgfqpoint{2.463734in}{0.574407in}}% +\pgfpathlineto{\pgfqpoint{2.498323in}{0.597083in}}% +\pgfpathlineto{\pgfqpoint{2.535270in}{0.617584in}}% +\pgfpathlineto{\pgfqpoint{2.574575in}{0.635868in}}% +\pgfpathlineto{\pgfqpoint{2.617811in}{0.652529in}}% +\pgfpathlineto{\pgfqpoint{2.664977in}{0.667359in}}% +\pgfpathlineto{\pgfqpoint{2.717646in}{0.680619in}}% +\pgfpathlineto{\pgfqpoint{2.776604in}{0.692216in}}% +\pgfpathlineto{\pgfqpoint{2.843424in}{0.702155in}}% +\pgfpathlineto{\pgfqpoint{2.920462in}{0.710422in}}% +\pgfpathlineto{\pgfqpoint{3.010864in}{0.716921in}}% +\pgfpathlineto{\pgfqpoint{3.118561in}{0.721464in}}% +\pgfpathlineto{\pgfqpoint{3.250627in}{0.723829in}}% +\pgfpathlineto{\pgfqpoint{3.419640in}{0.723619in}}% +\pgfpathlineto{\pgfqpoint{3.651542in}{0.720038in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.717600in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.717600in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.617954in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{3.761597in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/elliptic.py b/buch/papers/ellfilter/python/elliptic.py index 9f209e9..b3336a1 100644 --- a/buch/papers/ellfilter/python/elliptic.py +++ b/buch/papers/ellfilter/python/elliptic.py @@ -5,19 +5,62 @@ import scipy.special import scipyx as spx import numpy as np import matplotlib.pyplot as plt -import matplotlib from matplotlib.patches import Rectangle -matplotlib.rcParams.update({ - "pgf.texsystem": "pdflatex", - 'font.family': 'serif', - 'font.size': 9, - 'text.usetex': True, - 'pgf.rcfonts': False, -}) +import plot_params def last_color(): - plt.gca().lines[-1].get_color() + return plt.gca().lines[-1].get_color() + +# define elliptic functions + +def ell_int(k): + """ Calculate K(k) """ + m = k**2 + return scipy.special.ellipk(m) + +def sn(z, k): + return spx.ellipj(z, k**2)[0] + +def cn(z, k): + return spx.ellipj(z, k**2)[1] + +def dn(z, k): + return spx.ellipj(z, k**2)[2] + +def cd(z, k): + sn, cn, dn, ph = spx.ellipj(z, k**2) + return cn / dn + +# https://mathworld.wolfram.com/JacobiEllipticFunctions.html eq 3-8 + +def sn_inv(z, k): + m = k**2 + return scipy.special.ellipkinc(np.arcsin(z), m) + +def cn_inv(z, k): + m = k**2 + return scipy.special.ellipkinc(np.arccos(z), m) + +def dn_inv(z, k): + m = k**2 + x = np.sqrt((1-z**2) / k**2) + return scipy.special.ellipkinc(np.arcsin(x), m) + +def cd_inv(z, k): + m = k**2 + x = np.sqrt(((m - 1) * z**2) / (m*z**2 - 1)) + return scipy.special.ellipkinc(np.arccos(x), m) + + +k = 0.8 +z = 0.5 + +assert np.allclose(sn_inv(sn(z ,k), k), z) +assert np.allclose(cn_inv(cn(z ,k), k), z) +assert np.allclose(dn_inv(dn(z ,k), k), z) +assert np.allclose(cd_inv(cd(z ,k), k), z) + # %% Buttwerworth filter F_N plot @@ -37,7 +80,7 @@ plt.gca().add_patch(Rectangle( plt.gca().add_patch(Rectangle( (1, 1), 0.5, 1, - fc ='green', + fc ='orange', alpha=0.2, lw = 10, )) @@ -47,7 +90,8 @@ plt.grid() plt.xlabel("$w$") plt.ylabel("$F^2_N(w)$") plt.legend() -plt.savefig("F_N_butterworth.pdf") +plt.tight_layout() +plt.savefig("F_N_butterworth.pgf") plt.show() # %% Cheychev filter F_N plot @@ -69,7 +113,7 @@ plt.gca().add_patch(Rectangle( plt.gca().add_patch(Rectangle( (1, 1), 0.5, 1, - fc ='green', + fc ='orange', alpha=0.2, lw = 10, )) @@ -79,57 +123,10 @@ plt.grid() plt.xlabel("$w$") plt.ylabel("$F^2_N(w)$") plt.legend() -plt.savefig("F_N_chebychev.pdf") +plt.tight_layout() +plt.savefig("F_N_chebychev.pgf") plt.show() -# %% define elliptic functions - -def ell_int(k): - """ Calculate K(k) """ - m = k**2 - return scipy.special.ellipk(m) - -def sn(z, k): - return spx.ellipj(z, k**2)[0] - -def cn(z, k): - return spx.ellipj(z, k**2)[1] - -def dn(z, k): - return spx.ellipj(z, k**2)[2] - -def cd(z, k): - sn, cn, dn, ph = spx.ellipj(z, k**2) - return cn / dn - -# https://mathworld.wolfram.com/JacobiEllipticFunctions.html eq 3-8 - -def sn_inv(z, k): - m = k**2 - return scipy.special.ellipkinc(np.arcsin(z), m) - -def cn_inv(z, k): - m = k**2 - return scipy.special.ellipkinc(np.arccos(z), m) - -def dn_inv(z, k): - m = k**2 - x = np.sqrt((1-z**2) / k**2) - return scipy.special.ellipkinc(np.arcsin(x), m) - -def cd_inv(z, k): - m = k**2 - x = np.sqrt(((m - 1) * z**2) / (m*z**2 - 1)) - return scipy.special.ellipkinc(np.arccos(x), m) - - -k = 0.8 -z = 0.5 - -assert np.allclose(sn_inv(sn(z ,k), k), z) -assert np.allclose(cn_inv(cn(z ,k), k), z) -assert np.allclose(dn_inv(dn(z ,k), k), z) -assert np.allclose(cd_inv(cd(z ,k), k), z) # %% plot arcsin @@ -314,3 +311,46 @@ for n in (1,2,3,4): plt.plot(omega, np.abs(G)) plt.grid() plt.show() + + + + +# %% + + +k = np.concatenate(([0.00001,0.0001,0.001], np.linspace(0,1,101)[1:-1], [0.999,0.9999, 0.99999]), axis=0) +K = ell_int(k) +K_prime = ell_int(np.sqrt(1-k**2)) + + +f, axs = plt.subplots(1,2, figsize=(5,2.5)) +axs[0].plot(k, K, linewidth=0.1) +axs[0].text(k[30], K[30]+0.1, f"$K$") +axs[0].plot(k, K_prime, linewidth=0.1) +axs[0].text(k[30], K_prime[30]+0.1, f"$K^\prime$") +axs[0].set_xlim([0,1]) +axs[0].set_ylim([0,4]) +axs[0].set_xlabel("$k$") + +axs[1].axvline(x=np.pi/2, color="gray", linewidth=0.5) +axs[1].axhline(y=np.pi/2, color="gray", linewidth=0.5) +axs[1].text(0.1, np.pi/2 + 0.1, "$\pi/2$") +axs[1].text(np.pi/2+0.1, 0.1, "$\pi/2$") +axs[1].plot(K, K_prime, linewidth=1) + +k = np.array([0.1,0.2,0.4,0.6,0.9,0.99]) +K = ell_int(k) +K_prime = ell_int(np.sqrt(1-k**2)) + +axs[1].plot(K, K_prime, '.', color=last_color(), markersize=2) +for x, y, n in zip(K, K_prime, k): + axs[1].text(x+0.1, y+0.1, f"$k={n:.2f}$", rotation_mode="anchor") +axs[1].set_ylabel("$K^\prime$") +axs[1].set_xlabel("$K$") +axs[1].set_xlim([0,6]) +axs[1].set_ylim([0,5]) +plt.tight_layout() +plt.savefig("k.pgf") +plt.show() + +print(K[0], K[-1]) diff --git a/buch/papers/ellfilter/python/elliptic2.py b/buch/papers/ellfilter/python/elliptic2.py index 92fefd9..29c6f47 100644 --- a/buch/papers/ellfilter/python/elliptic2.py +++ b/buch/papers/ellfilter/python/elliptic2.py @@ -6,13 +6,14 @@ import numpy as np import matplotlib from matplotlib.patches import Rectangle +import plot_params def ellip_filter(N): order = N passband_ripple_db = 3 stopband_attenuation_db = 20 - omega_c = 1000 + omega_c = 1 a, b = scipy.signal.ellip( order, @@ -34,14 +35,14 @@ def ellip_filter(N): FN2 = ((1/mag**2) - 1) - return w/omega_c, FN2 / epsilon2 + return w/omega_c, FN2 / epsilon2, mag, a, b plt.figure(figsize=(4,2.5)) for N in [5]: - w, FN2 = ellip_filter(N) - plt.semilogy(w, FN2, label=f"$N={N}$") + w, FN2, mag, a, b = ellip_filter(N) + plt.semilogy(w, FN2, label=f"$N={N}, k=0.1$", linewidth=1) plt.gca().add_patch(Rectangle( (0, 0), @@ -53,7 +54,7 @@ plt.gca().add_patch(Rectangle( plt.gca().add_patch(Rectangle( (1, 1), 0.01, 1e2-1, - fc ='green', + fc ='orange', alpha=0.2, lw = 10, )) @@ -61,18 +62,88 @@ plt.gca().add_patch(Rectangle( plt.gca().add_patch(Rectangle( (1.01, 100), 1, 1e6, - fc ='green', + fc ='red', alpha=0.2, lw = 10, )) + +zeros = [0,0.87,1] +poles = [1.01,1.155] + +import matplotlib.transforms +plt.plot( # mark errors as vertical bars + zeros, + np.zeros_like(zeros), + "o", + mfc='none', + color='black', + transform=matplotlib.transforms.blended_transform_factory( + plt.gca().transData, + plt.gca().transAxes, + ), +) +plt.plot( # mark errors as vertical bars + poles, + np.ones_like(poles), + "x", + mfc='none', + color='black', + transform=matplotlib.transforms.blended_transform_factory( + plt.gca().transData, + plt.gca().transAxes, + ), +) + plt.xlim([0,2]) plt.ylim([1e-4,1e6]) plt.grid() plt.xlabel("$w$") plt.ylabel("$F^2_N(w)$") plt.legend() -plt.savefig("F_N_elliptic.pdf") +plt.tight_layout() +plt.savefig("F_N_elliptic.pgf") plt.show() +plt.figure(figsize=(4,2.5)) +plt.plot(w, mag, linewidth=1) + +plt.gca().add_patch(Rectangle( + (0, np.sqrt(2)/2), + 1, 1, + fc ='green', + alpha=0.2, + lw = 10, +)) +plt.gca().add_patch(Rectangle( + (1, 0.1), + 0.01, np.sqrt(2)/2 - 0.1, + fc ='orange', + alpha=0.2, + lw = 10, +)) + +plt.gca().add_patch(Rectangle( + (1.01, 0), + 1, 0.1, + fc ='red', + alpha=0.2, + lw = 10, +)) + +plt.grid() +plt.xlim([0,2]) +plt.ylim([0,1]) +plt.xlabel("$w$") +plt.ylabel("$|H(w)|$") +plt.tight_layout() +plt.savefig("elliptic.pgf") +plt.show() + +print("zeros", a) +print("poles", b) + + + + diff --git a/buch/papers/ellfilter/python/k.pgf b/buch/papers/ellfilter/python/k.pgf new file mode 100644 index 0000000..95d61d4 --- /dev/null +++ b/buch/papers/ellfilter/python/k.pgf @@ -0,0 +1,1157 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.316407in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.256930in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.256930in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.316407in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{0.316407in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.316407in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.801538in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.801538in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.286669in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.286669in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.771800in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.771800in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.256930in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.256930in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.286669in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149740in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{0.987065in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149740in, y=0.938840in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{1.425362in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149740in, y=1.377137in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{1.863658in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149740in, y=1.815433in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.316407in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149740in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.316407in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.100375pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.316427in}{1.237243in}}% +\pgfpathlineto{\pgfqpoint{0.316601in}{1.237243in}}% +\pgfpathlineto{\pgfqpoint{0.318348in}{1.237244in}}% +\pgfpathlineto{\pgfqpoint{0.335813in}{1.237261in}}% +\pgfpathlineto{\pgfqpoint{0.355218in}{1.237312in}}% +\pgfpathlineto{\pgfqpoint{0.374623in}{1.237398in}}% +\pgfpathlineto{\pgfqpoint{0.394028in}{1.237519in}}% +\pgfpathlineto{\pgfqpoint{0.413434in}{1.237674in}}% +\pgfpathlineto{\pgfqpoint{0.432839in}{1.237864in}}% +\pgfpathlineto{\pgfqpoint{0.452244in}{1.238089in}}% +\pgfpathlineto{\pgfqpoint{0.471649in}{1.238349in}}% +\pgfpathlineto{\pgfqpoint{0.491054in}{1.238644in}}% +\pgfpathlineto{\pgfqpoint{0.510460in}{1.238974in}}% +\pgfpathlineto{\pgfqpoint{0.529865in}{1.239340in}}% +\pgfpathlineto{\pgfqpoint{0.549270in}{1.239742in}}% +\pgfpathlineto{\pgfqpoint{0.568675in}{1.240180in}}% +\pgfpathlineto{\pgfqpoint{0.588081in}{1.240655in}}% +\pgfpathlineto{\pgfqpoint{0.607486in}{1.241166in}}% +\pgfpathlineto{\pgfqpoint{0.626891in}{1.241714in}}% +\pgfpathlineto{\pgfqpoint{0.646296in}{1.242300in}}% +\pgfpathlineto{\pgfqpoint{0.665702in}{1.242924in}}% +\pgfpathlineto{\pgfqpoint{0.685107in}{1.243586in}}% +\pgfpathlineto{\pgfqpoint{0.704512in}{1.244287in}}% +\pgfpathlineto{\pgfqpoint{0.723917in}{1.245028in}}% +\pgfpathlineto{\pgfqpoint{0.743322in}{1.245809in}}% +\pgfpathlineto{\pgfqpoint{0.762728in}{1.246630in}}% +\pgfpathlineto{\pgfqpoint{0.782133in}{1.247492in}}% +\pgfpathlineto{\pgfqpoint{0.801538in}{1.248396in}}% +\pgfpathlineto{\pgfqpoint{0.820943in}{1.249343in}}% +\pgfpathlineto{\pgfqpoint{0.840349in}{1.250333in}}% +\pgfpathlineto{\pgfqpoint{0.859754in}{1.251367in}}% +\pgfpathlineto{\pgfqpoint{0.879159in}{1.252446in}}% +\pgfpathlineto{\pgfqpoint{0.898564in}{1.253571in}}% +\pgfpathlineto{\pgfqpoint{0.917969in}{1.254743in}}% +\pgfpathlineto{\pgfqpoint{0.937375in}{1.255962in}}% +\pgfpathlineto{\pgfqpoint{0.956780in}{1.257230in}}% +\pgfpathlineto{\pgfqpoint{0.976185in}{1.258548in}}% +\pgfpathlineto{\pgfqpoint{0.995590in}{1.259917in}}% +\pgfpathlineto{\pgfqpoint{1.014996in}{1.261339in}}% +\pgfpathlineto{\pgfqpoint{1.034401in}{1.262814in}}% +\pgfpathlineto{\pgfqpoint{1.053806in}{1.264344in}}% +\pgfpathlineto{\pgfqpoint{1.073211in}{1.265930in}}% +\pgfpathlineto{\pgfqpoint{1.092617in}{1.267575in}}% +\pgfpathlineto{\pgfqpoint{1.112022in}{1.269279in}}% +\pgfpathlineto{\pgfqpoint{1.131427in}{1.271045in}}% +\pgfpathlineto{\pgfqpoint{1.150832in}{1.272874in}}% +\pgfpathlineto{\pgfqpoint{1.170237in}{1.274768in}}% +\pgfpathlineto{\pgfqpoint{1.189643in}{1.276729in}}% +\pgfpathlineto{\pgfqpoint{1.209048in}{1.278760in}}% +\pgfpathlineto{\pgfqpoint{1.228453in}{1.280863in}}% +\pgfpathlineto{\pgfqpoint{1.247858in}{1.283040in}}% +\pgfpathlineto{\pgfqpoint{1.267264in}{1.285294in}}% +\pgfpathlineto{\pgfqpoint{1.286669in}{1.287627in}}% +\pgfpathlineto{\pgfqpoint{1.306074in}{1.290044in}}% +\pgfpathlineto{\pgfqpoint{1.325479in}{1.292546in}}% +\pgfpathlineto{\pgfqpoint{1.344884in}{1.295137in}}% +\pgfpathlineto{\pgfqpoint{1.364290in}{1.297822in}}% +\pgfpathlineto{\pgfqpoint{1.383695in}{1.300603in}}% +\pgfpathlineto{\pgfqpoint{1.403100in}{1.303485in}}% +\pgfpathlineto{\pgfqpoint{1.422505in}{1.306473in}}% +\pgfpathlineto{\pgfqpoint{1.441911in}{1.309570in}}% +\pgfpathlineto{\pgfqpoint{1.461316in}{1.312784in}}% +\pgfpathlineto{\pgfqpoint{1.480721in}{1.316118in}}% +\pgfpathlineto{\pgfqpoint{1.500126in}{1.319579in}}% +\pgfpathlineto{\pgfqpoint{1.519532in}{1.323174in}}% +\pgfpathlineto{\pgfqpoint{1.538937in}{1.326910in}}% +\pgfpathlineto{\pgfqpoint{1.558342in}{1.330793in}}% +\pgfpathlineto{\pgfqpoint{1.577747in}{1.334833in}}% +\pgfpathlineto{\pgfqpoint{1.597152in}{1.339039in}}% +\pgfpathlineto{\pgfqpoint{1.616558in}{1.343420in}}% +\pgfpathlineto{\pgfqpoint{1.635963in}{1.347988in}}% +\pgfpathlineto{\pgfqpoint{1.655368in}{1.352753in}}% +\pgfpathlineto{\pgfqpoint{1.674773in}{1.357730in}}% +\pgfpathlineto{\pgfqpoint{1.694179in}{1.362933in}}% +\pgfpathlineto{\pgfqpoint{1.713584in}{1.368377in}}% +\pgfpathlineto{\pgfqpoint{1.732989in}{1.374081in}}% +\pgfpathlineto{\pgfqpoint{1.752394in}{1.380064in}}% +\pgfpathlineto{\pgfqpoint{1.771800in}{1.386349in}}% +\pgfpathlineto{\pgfqpoint{1.791205in}{1.392961in}}% +\pgfpathlineto{\pgfqpoint{1.810610in}{1.399927in}}% +\pgfpathlineto{\pgfqpoint{1.830015in}{1.407281in}}% +\pgfpathlineto{\pgfqpoint{1.849420in}{1.415059in}}% +\pgfpathlineto{\pgfqpoint{1.868826in}{1.423303in}}% +\pgfpathlineto{\pgfqpoint{1.888231in}{1.432062in}}% +\pgfpathlineto{\pgfqpoint{1.907636in}{1.441392in}}% +\pgfpathlineto{\pgfqpoint{1.927041in}{1.451361in}}% +\pgfpathlineto{\pgfqpoint{1.946447in}{1.462048in}}% +\pgfpathlineto{\pgfqpoint{1.965852in}{1.473546in}}% +\pgfpathlineto{\pgfqpoint{1.985257in}{1.485971in}}% +\pgfpathlineto{\pgfqpoint{2.004662in}{1.499462in}}% +\pgfpathlineto{\pgfqpoint{2.024067in}{1.514194in}}% +\pgfpathlineto{\pgfqpoint{2.043473in}{1.530388in}}% +\pgfpathlineto{\pgfqpoint{2.062878in}{1.548326in}}% +\pgfpathlineto{\pgfqpoint{2.082283in}{1.568383in}}% +\pgfpathlineto{\pgfqpoint{2.101688in}{1.591069in}}% +\pgfpathlineto{\pgfqpoint{2.121094in}{1.617098in}}% +\pgfpathlineto{\pgfqpoint{2.140499in}{1.647519in}}% +\pgfpathlineto{\pgfqpoint{2.159904in}{1.683962in}}% +\pgfpathlineto{\pgfqpoint{2.179309in}{1.729164in}}% +\pgfpathlineto{\pgfqpoint{2.198715in}{1.788269in}}% +\pgfpathlineto{\pgfqpoint{2.218120in}{1.872854in}}% +\pgfpathlineto{\pgfqpoint{2.237525in}{2.019955in}}% +\pgfpathlineto{\pgfqpoint{2.247876in}{2.315844in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.316407in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.100375pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.454821in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{0.471649in}{2.265444in}}% +\pgfpathlineto{\pgfqpoint{0.491054in}{2.214262in}}% +\pgfpathlineto{\pgfqpoint{0.510460in}{2.168554in}}% +\pgfpathlineto{\pgfqpoint{0.529865in}{2.127278in}}% +\pgfpathlineto{\pgfqpoint{0.549270in}{2.089666in}}% +\pgfpathlineto{\pgfqpoint{0.568675in}{2.055132in}}% +\pgfpathlineto{\pgfqpoint{0.588081in}{2.023222in}}% +\pgfpathlineto{\pgfqpoint{0.607486in}{1.993575in}}% +\pgfpathlineto{\pgfqpoint{0.626891in}{1.965899in}}% +\pgfpathlineto{\pgfqpoint{0.646296in}{1.939958in}}% +\pgfpathlineto{\pgfqpoint{0.665702in}{1.915554in}}% +\pgfpathlineto{\pgfqpoint{0.685107in}{1.892522in}}% +\pgfpathlineto{\pgfqpoint{0.704512in}{1.870720in}}% +\pgfpathlineto{\pgfqpoint{0.723917in}{1.850031in}}% +\pgfpathlineto{\pgfqpoint{0.743322in}{1.830351in}}% +\pgfpathlineto{\pgfqpoint{0.762728in}{1.811591in}}% +\pgfpathlineto{\pgfqpoint{0.782133in}{1.793672in}}% +\pgfpathlineto{\pgfqpoint{0.801538in}{1.776528in}}% +\pgfpathlineto{\pgfqpoint{0.820943in}{1.760096in}}% +\pgfpathlineto{\pgfqpoint{0.840349in}{1.744324in}}% +\pgfpathlineto{\pgfqpoint{0.859754in}{1.729164in}}% +\pgfpathlineto{\pgfqpoint{0.879159in}{1.714573in}}% +\pgfpathlineto{\pgfqpoint{0.898564in}{1.700513in}}% +\pgfpathlineto{\pgfqpoint{0.917969in}{1.686948in}}% +\pgfpathlineto{\pgfqpoint{0.937375in}{1.673849in}}% +\pgfpathlineto{\pgfqpoint{0.956780in}{1.661185in}}% +\pgfpathlineto{\pgfqpoint{0.976185in}{1.648932in}}% +\pgfpathlineto{\pgfqpoint{0.995590in}{1.637065in}}% +\pgfpathlineto{\pgfqpoint{1.014996in}{1.625563in}}% +\pgfpathlineto{\pgfqpoint{1.034401in}{1.614406in}}% +\pgfpathlineto{\pgfqpoint{1.053806in}{1.603575in}}% +\pgfpathlineto{\pgfqpoint{1.073211in}{1.593053in}}% +\pgfpathlineto{\pgfqpoint{1.092617in}{1.582826in}}% +\pgfpathlineto{\pgfqpoint{1.112022in}{1.572877in}}% +\pgfpathlineto{\pgfqpoint{1.131427in}{1.563195in}}% +\pgfpathlineto{\pgfqpoint{1.150832in}{1.553766in}}% +\pgfpathlineto{\pgfqpoint{1.170237in}{1.544578in}}% +\pgfpathlineto{\pgfqpoint{1.189643in}{1.535621in}}% +\pgfpathlineto{\pgfqpoint{1.209048in}{1.526884in}}% +\pgfpathlineto{\pgfqpoint{1.228453in}{1.518359in}}% +\pgfpathlineto{\pgfqpoint{1.247858in}{1.510036in}}% +\pgfpathlineto{\pgfqpoint{1.267264in}{1.501906in}}% +\pgfpathlineto{\pgfqpoint{1.286669in}{1.493962in}}% +\pgfpathlineto{\pgfqpoint{1.306074in}{1.486197in}}% +\pgfpathlineto{\pgfqpoint{1.325479in}{1.478603in}}% +\pgfpathlineto{\pgfqpoint{1.344884in}{1.471174in}}% +\pgfpathlineto{\pgfqpoint{1.364290in}{1.463903in}}% +\pgfpathlineto{\pgfqpoint{1.383695in}{1.456785in}}% +\pgfpathlineto{\pgfqpoint{1.403100in}{1.449815in}}% +\pgfpathlineto{\pgfqpoint{1.422505in}{1.442986in}}% +\pgfpathlineto{\pgfqpoint{1.441911in}{1.436294in}}% +\pgfpathlineto{\pgfqpoint{1.461316in}{1.429735in}}% +\pgfpathlineto{\pgfqpoint{1.480721in}{1.423303in}}% +\pgfpathlineto{\pgfqpoint{1.500126in}{1.416995in}}% +\pgfpathlineto{\pgfqpoint{1.519532in}{1.410805in}}% +\pgfpathlineto{\pgfqpoint{1.538937in}{1.404732in}}% +\pgfpathlineto{\pgfqpoint{1.558342in}{1.398770in}}% +\pgfpathlineto{\pgfqpoint{1.577747in}{1.392916in}}% +\pgfpathlineto{\pgfqpoint{1.597152in}{1.387167in}}% +\pgfpathlineto{\pgfqpoint{1.616558in}{1.381520in}}% +\pgfpathlineto{\pgfqpoint{1.635963in}{1.375971in}}% +\pgfpathlineto{\pgfqpoint{1.655368in}{1.370518in}}% +\pgfpathlineto{\pgfqpoint{1.674773in}{1.365158in}}% +\pgfpathlineto{\pgfqpoint{1.694179in}{1.359888in}}% +\pgfpathlineto{\pgfqpoint{1.713584in}{1.354705in}}% +\pgfpathlineto{\pgfqpoint{1.732989in}{1.349607in}}% +\pgfpathlineto{\pgfqpoint{1.752394in}{1.344593in}}% +\pgfpathlineto{\pgfqpoint{1.771800in}{1.339658in}}% +\pgfpathlineto{\pgfqpoint{1.791205in}{1.334802in}}% +\pgfpathlineto{\pgfqpoint{1.810610in}{1.330022in}}% +\pgfpathlineto{\pgfqpoint{1.830015in}{1.325316in}}% +\pgfpathlineto{\pgfqpoint{1.849420in}{1.320682in}}% +\pgfpathlineto{\pgfqpoint{1.868826in}{1.316118in}}% +\pgfpathlineto{\pgfqpoint{1.888231in}{1.311623in}}% +\pgfpathlineto{\pgfqpoint{1.907636in}{1.307195in}}% +\pgfpathlineto{\pgfqpoint{1.927041in}{1.302831in}}% +\pgfpathlineto{\pgfqpoint{1.946447in}{1.298531in}}% +\pgfpathlineto{\pgfqpoint{1.965852in}{1.294293in}}% +\pgfpathlineto{\pgfqpoint{1.985257in}{1.290116in}}% +\pgfpathlineto{\pgfqpoint{2.004662in}{1.285997in}}% +\pgfpathlineto{\pgfqpoint{2.024067in}{1.281936in}}% +\pgfpathlineto{\pgfqpoint{2.043473in}{1.277931in}}% +\pgfpathlineto{\pgfqpoint{2.062878in}{1.273982in}}% +\pgfpathlineto{\pgfqpoint{2.082283in}{1.270085in}}% +\pgfpathlineto{\pgfqpoint{2.101688in}{1.266241in}}% +\pgfpathlineto{\pgfqpoint{2.121094in}{1.262449in}}% +\pgfpathlineto{\pgfqpoint{2.140499in}{1.258706in}}% +\pgfpathlineto{\pgfqpoint{2.159904in}{1.255013in}}% +\pgfpathlineto{\pgfqpoint{2.179309in}{1.251367in}}% +\pgfpathlineto{\pgfqpoint{2.198715in}{1.247768in}}% +\pgfpathlineto{\pgfqpoint{2.218120in}{1.244215in}}% +\pgfpathlineto{\pgfqpoint{2.237525in}{1.240707in}}% +\pgfpathlineto{\pgfqpoint{2.254990in}{1.237588in}}% +\pgfpathlineto{\pgfqpoint{2.256736in}{1.237278in}}% +\pgfpathlineto{\pgfqpoint{2.256911in}{1.237247in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.316407in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{0.316407in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.256930in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.256930in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.316407in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.256930in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.316407in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.256930in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.859754in,y=1.295197in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle K\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.859754in,y=1.772994in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle K^\prime\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.874885in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.874885in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{2.874885in}{0.548769in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.874885in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.521726in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.521726in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.168566in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.168566in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.815407in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.815407in,y=0.451547in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {6}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.845146in,y=0.272534in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle K\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{0.548769in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=0.500544in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{0.899406in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=0.851181in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{1.250043in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=1.201818in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{1.600680in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=1.552455in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{1.951318in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=1.903092in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.874885in}{2.301955in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.708218in, y=2.253730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.652662in,y=1.425362in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle K^\prime\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.874885in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.501961,0.501961,0.501961}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.382912in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{3.382912in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.874885in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.501961,0.501961,0.501961}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.874885in}{1.099548in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{1.099548in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.874885in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.383004in}{2.315844in}}% +\pgfpathlineto{\pgfqpoint{3.383027in}{2.264692in}}% +\pgfpathlineto{\pgfqpoint{3.383116in}{2.164019in}}% +\pgfpathlineto{\pgfqpoint{3.383230in}{2.086013in}}% +\pgfpathlineto{\pgfqpoint{3.383370in}{2.022353in}}% +\pgfpathlineto{\pgfqpoint{3.383536in}{1.968602in}}% +\pgfpathlineto{\pgfqpoint{3.383728in}{1.922109in}}% +\pgfpathlineto{\pgfqpoint{3.383946in}{1.881163in}}% +\pgfpathlineto{\pgfqpoint{3.384190in}{1.844597in}}% +\pgfpathlineto{\pgfqpoint{3.384460in}{1.811577in}}% +\pgfpathlineto{\pgfqpoint{3.384756in}{1.781487in}}% +\pgfpathlineto{\pgfqpoint{3.385079in}{1.753859in}}% +\pgfpathlineto{\pgfqpoint{3.385429in}{1.728331in}}% +\pgfpathlineto{\pgfqpoint{3.385807in}{1.704613in}}% +\pgfpathlineto{\pgfqpoint{3.386211in}{1.682473in}}% +\pgfpathlineto{\pgfqpoint{3.386644in}{1.661720in}}% +\pgfpathlineto{\pgfqpoint{3.387104in}{1.642197in}}% +\pgfpathlineto{\pgfqpoint{3.387593in}{1.623771in}}% +\pgfpathlineto{\pgfqpoint{3.388110in}{1.606330in}}% +\pgfpathlineto{\pgfqpoint{3.388657in}{1.589779in}}% +\pgfpathlineto{\pgfqpoint{3.389233in}{1.574035in}}% +\pgfpathlineto{\pgfqpoint{3.389839in}{1.559026in}}% +\pgfpathlineto{\pgfqpoint{3.390475in}{1.544692in}}% +\pgfpathlineto{\pgfqpoint{3.391142in}{1.530976in}}% +\pgfpathlineto{\pgfqpoint{3.391841in}{1.517831in}}% +\pgfpathlineto{\pgfqpoint{3.392571in}{1.505213in}}% +\pgfpathlineto{\pgfqpoint{3.393334in}{1.493085in}}% +\pgfpathlineto{\pgfqpoint{3.394130in}{1.481412in}}% +\pgfpathlineto{\pgfqpoint{3.394960in}{1.470164in}}% +\pgfpathlineto{\pgfqpoint{3.395825in}{1.459313in}}% +\pgfpathlineto{\pgfqpoint{3.396725in}{1.448833in}}% +\pgfpathlineto{\pgfqpoint{3.397661in}{1.438702in}}% +\pgfpathlineto{\pgfqpoint{3.398633in}{1.428899in}}% +\pgfpathlineto{\pgfqpoint{3.399643in}{1.419406in}}% +\pgfpathlineto{\pgfqpoint{3.400692in}{1.410204in}}% +\pgfpathlineto{\pgfqpoint{3.401781in}{1.401278in}}% +\pgfpathlineto{\pgfqpoint{3.402910in}{1.392614in}}% +\pgfpathlineto{\pgfqpoint{3.404081in}{1.384197in}}% +\pgfpathlineto{\pgfqpoint{3.405294in}{1.376014in}}% +\pgfpathlineto{\pgfqpoint{3.406552in}{1.368056in}}% +\pgfpathlineto{\pgfqpoint{3.407855in}{1.360310in}}% +\pgfpathlineto{\pgfqpoint{3.409204in}{1.352766in}}% +\pgfpathlineto{\pgfqpoint{3.410602in}{1.345416in}}% +\pgfpathlineto{\pgfqpoint{3.412049in}{1.338250in}}% +\pgfpathlineto{\pgfqpoint{3.413548in}{1.331261in}}% +\pgfpathlineto{\pgfqpoint{3.415099in}{1.324441in}}% +\pgfpathlineto{\pgfqpoint{3.416706in}{1.317782in}}% +\pgfpathlineto{\pgfqpoint{3.418369in}{1.311279in}}% +\pgfpathlineto{\pgfqpoint{3.420091in}{1.304923in}}% +\pgfpathlineto{\pgfqpoint{3.421874in}{1.298711in}}% +\pgfpathlineto{\pgfqpoint{3.423720in}{1.292636in}}% +\pgfpathlineto{\pgfqpoint{3.425632in}{1.286693in}}% +\pgfpathlineto{\pgfqpoint{3.427613in}{1.280876in}}% +\pgfpathlineto{\pgfqpoint{3.429665in}{1.275182in}}% +\pgfpathlineto{\pgfqpoint{3.431792in}{1.269606in}}% +\pgfpathlineto{\pgfqpoint{3.433997in}{1.264143in}}% +\pgfpathlineto{\pgfqpoint{3.436283in}{1.258789in}}% +\pgfpathlineto{\pgfqpoint{3.438654in}{1.253542in}}% +\pgfpathlineto{\pgfqpoint{3.441114in}{1.248396in}}% +\pgfpathlineto{\pgfqpoint{3.443668in}{1.243349in}}% +\pgfpathlineto{\pgfqpoint{3.446321in}{1.238398in}}% +\pgfpathlineto{\pgfqpoint{3.449077in}{1.233539in}}% +\pgfpathlineto{\pgfqpoint{3.451943in}{1.228770in}}% +\pgfpathlineto{\pgfqpoint{3.454924in}{1.224087in}}% +\pgfpathlineto{\pgfqpoint{3.458028in}{1.219487in}}% +\pgfpathlineto{\pgfqpoint{3.461261in}{1.214970in}}% +\pgfpathlineto{\pgfqpoint{3.464631in}{1.210531in}}% +\pgfpathlineto{\pgfqpoint{3.468147in}{1.206168in}}% +\pgfpathlineto{\pgfqpoint{3.471820in}{1.201880in}}% +\pgfpathlineto{\pgfqpoint{3.475659in}{1.197664in}}% +\pgfpathlineto{\pgfqpoint{3.479676in}{1.193518in}}% +\pgfpathlineto{\pgfqpoint{3.483885in}{1.189440in}}% +\pgfpathlineto{\pgfqpoint{3.488300in}{1.185428in}}% +\pgfpathlineto{\pgfqpoint{3.492938in}{1.181480in}}% +\pgfpathlineto{\pgfqpoint{3.497817in}{1.177595in}}% +\pgfpathlineto{\pgfqpoint{3.502957in}{1.173771in}}% +\pgfpathlineto{\pgfqpoint{3.508384in}{1.170006in}}% +\pgfpathlineto{\pgfqpoint{3.514123in}{1.166299in}}% +\pgfpathlineto{\pgfqpoint{3.520206in}{1.162648in}}% +\pgfpathlineto{\pgfqpoint{3.526670in}{1.159052in}}% +\pgfpathlineto{\pgfqpoint{3.533555in}{1.155509in}}% +\pgfpathlineto{\pgfqpoint{3.540911in}{1.152019in}}% +\pgfpathlineto{\pgfqpoint{3.548796in}{1.148579in}}% +\pgfpathlineto{\pgfqpoint{3.557281in}{1.145189in}}% +\pgfpathlineto{\pgfqpoint{3.566449in}{1.141846in}}% +\pgfpathlineto{\pgfqpoint{3.576405in}{1.138552in}}% +\pgfpathlineto{\pgfqpoint{3.587275in}{1.135303in}}% +\pgfpathlineto{\pgfqpoint{3.599224in}{1.132099in}}% +\pgfpathlineto{\pgfqpoint{3.612461in}{1.128939in}}% +\pgfpathlineto{\pgfqpoint{3.627261in}{1.125822in}}% +\pgfpathlineto{\pgfqpoint{3.644002in}{1.122747in}}% +\pgfpathlineto{\pgfqpoint{3.663208in}{1.119713in}}% +\pgfpathlineto{\pgfqpoint{3.685656in}{1.116719in}}% +\pgfpathlineto{\pgfqpoint{3.712547in}{1.113764in}}% +\pgfpathlineto{\pgfqpoint{3.745902in}{1.110847in}}% +\pgfpathlineto{\pgfqpoint{3.789516in}{1.107968in}}% +\pgfpathlineto{\pgfqpoint{3.851932in}{1.105126in}}% +\pgfpathlineto{\pgfqpoint{3.960478in}{1.102320in}}% +\pgfpathlineto{\pgfqpoint{4.328852in}{1.099824in}}% +\pgfpathlineto{\pgfqpoint{4.700641in}{1.099576in}}% +\pgfpathlineto{\pgfqpoint{4.829296in}{1.099567in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.874885in}{0.548769in}}{\pgfqpoint{1.940523in}{1.753186in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.006944in}{-0.006944in}}{\pgfqpoint{0.006944in}{0.006944in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{-0.006944in}}% +\pgfpathcurveto{\pgfqpoint{0.001842in}{-0.006944in}}{\pgfqpoint{0.003608in}{-0.006213in}}{\pgfqpoint{0.004910in}{-0.004910in}}% +\pgfpathcurveto{\pgfqpoint{0.006213in}{-0.003608in}}{\pgfqpoint{0.006944in}{-0.001842in}}{\pgfqpoint{0.006944in}{0.000000in}}% +\pgfpathcurveto{\pgfqpoint{0.006944in}{0.001842in}}{\pgfqpoint{0.006213in}{0.003608in}}{\pgfqpoint{0.004910in}{0.004910in}}% +\pgfpathcurveto{\pgfqpoint{0.003608in}{0.006213in}}{\pgfqpoint{0.001842in}{0.006944in}}{\pgfqpoint{0.000000in}{0.006944in}}% +\pgfpathcurveto{\pgfqpoint{-0.001842in}{0.006944in}}{\pgfqpoint{-0.003608in}{0.006213in}}{\pgfqpoint{-0.004910in}{0.004910in}}% +\pgfpathcurveto{\pgfqpoint{-0.006213in}{0.003608in}}{\pgfqpoint{-0.006944in}{0.001842in}}{\pgfqpoint{-0.006944in}{0.000000in}}% +\pgfpathcurveto{\pgfqpoint{-0.006944in}{-0.001842in}}{\pgfqpoint{-0.006213in}{-0.003608in}}{\pgfqpoint{-0.004910in}{-0.004910in}}% +\pgfpathcurveto{\pgfqpoint{-0.003608in}{-0.006213in}}{\pgfqpoint{-0.001842in}{-0.006944in}}{\pgfqpoint{0.000000in}{-0.006944in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.006944in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.384190in}{1.844597in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.388110in}{1.606330in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.405294in}{1.376014in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.441114in}{1.248396in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.612461in}{1.128939in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.960478in}{1.102320in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.874885in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{2.874885in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.815407in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.874885in}{0.548769in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{0.548769in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.874885in}{2.301955in}}% +\pgfpathlineto{\pgfqpoint{4.815407in}{2.301955in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.907227in,y=1.134612in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \pi/2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.415254in,y=0.583833in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \pi/2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.416532in,y=1.879661in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.10\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.420452in,y=1.641394in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.20\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.437636in,y=1.411078in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.40\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.473456in,y=1.283460in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.60\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.644803in,y=1.164003in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.90\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.992820in,y=1.137383in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle k=0.99\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/ellfilter/python/plot_params.py b/buch/papers/ellfilter/python/plot_params.py new file mode 100644 index 0000000..4ddd1d8 --- /dev/null +++ b/buch/papers/ellfilter/python/plot_params.py @@ -0,0 +1,9 @@ +import matplotlib + +matplotlib.rcParams.update({ + "pgf.texsystem": "pdflatex", + 'font.family': 'serif', + 'font.size': 9, + 'text.usetex': True, + 'pgf.rcfonts': False, +}) diff --git a/buch/papers/ellfilter/references.bib b/buch/papers/ellfilter/references.bib index 2b873af..8f21971 100644 --- a/buch/papers/ellfilter/references.bib +++ b/buch/papers/ellfilter/references.bib @@ -11,3 +11,12 @@ url = {https://www.ece.rutgers.edu/~orfanidi/ece521/notes.pdf} } +% Schwalm +% https://en.wikipedia.org/wiki/Elliptic_rational_functions +% https://en.wikipedia.org/wiki/Rational_function +% https://en.wikipedia.org/wiki/Jacobi_elliptic_functions +% https://de.wikipedia.org/wiki/Elliptisches_Integral +% https://de.wikipedia.org/wiki/Tschebyschow-Polynom +% https://en.wikipedia.org/wiki/Chebyshev_filter +% https://mathworld.wolfram.com/JacobiEllipticFunctions.html +% https://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html diff --git a/buch/papers/ellfilter/tikz/arccos.tikz.tex b/buch/papers/ellfilter/tikz/arccos.tikz.tex index 2bdcc2d..2772620 100644 --- a/buch/papers/ellfilter/tikz/arccos.tikz.tex +++ b/buch/papers/ellfilter/tikz/arccos.tikz.tex @@ -1,81 +1,49 @@ \begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} - \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{Im $z$}; - \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{Re $z$}; + \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{$\mathrm{Im}~z$}; + \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{$\mathrm{Re}~z$}; - \begin{scope} - \draw[thick, ->, orange] (-1, 0) -- (0,0); - \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); - \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); - \draw[thick, ->, orange] (1, 0) -- (0,0); - \draw[thick, ->, red] (2, 0) -- (1,0); - \draw[thick, ->, blue] (2,1.5) -- (2, 0); - \draw[thick, ->, blue] (2,-1.5) -- (2, 0); - \draw[thick, ->, red] (2, 0) -- (3,0); - - \node[anchor=south west] at (0,1.5) {$\infty$}; - \node[anchor=south west] at (0,-1.5) {$\infty$}; - \node[anchor=south west] at (0,0) {$1$}; - \node[anchor=south] at (1,0) {$0$}; - \node[anchor=south west] at (2,0) {$-1$}; - \node[anchor=south west] at (2,1.5) {$-\infty$}; - \node[anchor=south west] at (2,-1.5) {$-\infty$}; - \node[anchor=south west] at (3,0) {$0$}; - \end{scope} + \begin{scope}[xscale=0.6] - \begin{scope}[xshift=4cm] - \draw[thick, ->, orange] (-1, 0) -- (0,0); - \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); - \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); - % \draw[thick, ->, orange] (1, 0) -- (0,0); - % \draw[thick, ->, red] (2, 0) -- (1,0); - % \draw[thick, ->, blue] (2,1.5) -- (2, 0); - % \draw[thick, ->, blue] (2,-1.5) -- (2, 0); - % \draw[thick, ->, red] (2, 0) -- (3,0); - - \node[anchor=south west] at (0,1.5) {$\infty$}; - \node[anchor=south west] at (0,-1.5) {$\infty$}; - \node[anchor=south west] at (0,0) {$1$}; - % \node[anchor=south] at (1,0) {$0$}; - % \node[anchor=south west] at (2,0) {$-1$}; - % \node[anchor=south west] at (2,1.5) {$-\infty$}; - % \node[anchor=south west] at (2,-1.5) {$-\infty$}; - % \node[anchor=south west] at (3,0) {$0$}; - \end{scope} + \clip(-7.5,-2) rectangle (7.5,2); - \begin{scope}[xshift=-4cm] - % \draw[thick, ->, orange] (-1, 0) -- (0,0); \draw[thick, ->, darkgreen] (0, 0) -- (0,1.5); - \draw[thick, ->, darkgreen] (0, 0) -- (0,-1.5); \draw[thick, ->, orange] (1, 0) -- (0,0); \draw[thick, ->, red] (2, 0) -- (1,0); \draw[thick, ->, blue] (2,1.5) -- (2, 0); - \draw[thick, ->, blue] (2,-1.5) -- (2, 0); - \draw[thick, ->, red] (2, 0) -- (3,0); - - \node[anchor=south west] at (0,1.5) {$\infty$}; - \node[anchor=south west] at (0,-1.5) {$\infty$}; - \node[anchor=south west] at (0,0) {$1$}; - \node[anchor=south] at (1,0) {$0$}; - \node[anchor=south west] at (2,0) {$-1$}; - \node[anchor=south west] at (2,1.5) {$-\infty$}; - \node[anchor=south west] at (2,-1.5) {$-\infty$}; - \node[anchor=south west] at (3,0) {$0$}; - \end{scope} - - \node[gray, anchor=north west] at (-4,0) {$-2\pi$}; - \node[gray, anchor=north west] at (-2,0) {$-\pi$}; - \node[gray, anchor=north west] at (0,0) {$0$}; - \node[gray, anchor=north west] at (2,0) {$\pi$}; - \node[gray, anchor=north west] at (4,0) {$2\pi$}; - - - \node[gray, anchor=south east] at (0,-1.5) {$-\infty$}; - \node[gray, anchor=south east] at (0, 0) {$0$}; - \node[gray, anchor=south east] at (0, 1.5) {$\infty$}; + \foreach \i in {-2,...,1} { + \begin{scope}[opacity=0.5, xshift=\i*4cm] + \draw[->, orange] (-1, 0) -- (0,0); + \draw[->, darkgreen] (0, 0) -- (0,1.5); + \draw[->, darkgreen] (0, 0) -- (0,-1.5); + \draw[->, orange] (1, 0) -- (0,0); + \draw[->, red] (2, 0) -- (1,0); + \draw[->, blue] (2,1.5) -- (2, 0); + \draw[->, blue] (2,-1.5) -- (2, 0); + \draw[->, red] (2, 0) -- (3,0); + + \node[zero] at (1,0) {}; + \node[zero] at (3,0) {}; + \end{scope} + } + + \node[gray, anchor=north] at (-6,0) {$-3\pi$}; + \node[gray, anchor=north] at (-4,0) {$-2\pi$}; + \node[gray, anchor=north] at (-2,0) {$-\pi$}; + % \node[gray, anchor=north] at (0,0) {$0$}; + \node[gray, anchor=north] at (2,0) {$\pi$}; + \node[gray, anchor=north] at (4,0) {$2\pi$}; + \node[gray, anchor=north] at (6,0) {$3\pi$}; + + \node[gray, anchor=east] at (0,-1.5) {$-\infty$}; + % \node[gray, anchor=south east] at (0, 0) {$0$}; + \node[gray, anchor=east] at (0, 1.5) {$\infty$}; + \end{scope} \begin{scope}[yshift=-2.5cm] @@ -94,4 +62,5 @@ \end{scope} + \end{tikzpicture} \ No newline at end of file diff --git a/buch/papers/ellfilter/tikz/arccos2.tikz.tex b/buch/papers/ellfilter/tikz/arccos2.tikz.tex index dcf02fd..3fc3cc6 100644 --- a/buch/papers/ellfilter/tikz/arccos2.tikz.tex +++ b/buch/papers/ellfilter/tikz/arccos2.tikz.tex @@ -1,19 +1,18 @@ \begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] - \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} \begin{scope}[xscale=0.5] - \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{Im $z$}; - \draw[gray, ->] (-10,0) -- (10,0) node[anchor=west]{Re $z$}; + \draw[gray, ->] (0,-2) -- (0,2) node[anchor=south]{$\mathrm{Im}~z_1$}; + \draw[gray, ->] (-10,0) -- (10,0) node[anchor=west]{$\mathrm{Re}~z_1$}; \begin{scope} \draw[>->, line width=0.05, thick, blue] (2, 1.5) -- (2,0.05) -- node[anchor=south, pos=0.5]{$N=1$} (0.1,0.05) -- (0.1,1.5); \draw[>->, line width=0.05, thick, orange] (4, 1.5) -- (4,0) -- node[anchor=south, pos=0.25]{$N=2$} (0,0) -- (0,1.5); - \draw[>->, line width=0.05, thick, red] (6, 1.5) -- (6,-0.05) -- node[anchor=south, pos=0.1666]{$N=3$} (-0.1,-0.05) -- (-0.1,1.5); + \draw[>->, line width=0.05, thick, red] (6, 1.5) node[anchor=north west]{$-\infty$} -- (6,-0.05) node[anchor=west]{$-1$} -- node[anchor=north]{$0$} node[anchor=south, pos=0.1666]{$N=3$} (-0.1,-0.05) node[anchor=east]{$1$} -- (-0.1,1.5) node[anchor=north east]{$\infty$}; \node[zero] at (-7,0) {}; diff --git a/buch/papers/ellfilter/tikz/cd.tikz.tex b/buch/papers/ellfilter/tikz/cd.tikz.tex new file mode 100644 index 0000000..7155a85 --- /dev/null +++ b/buch/papers/ellfilter/tikz/cd.tikz.tex @@ -0,0 +1,87 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} + + \begin{scope}[xscale=1, yscale=2] + + \draw[gray, ->] (0,-1.5) -- (0,1.5) node[anchor=south]{$\mathrm{Im}~z$}; + \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{$\mathrm{Re}~z$}; + + \draw[gray] ( 1,0) +(0,0.1) -- +(0, -0.1) node[inner sep=0, anchor=north] {\small $K$}; + + \draw[gray] (0, 0.5) +(0.1, 0) -- +(-0.1, 0) node[inner sep=0, anchor=east]{\small $jK^\prime$}; + + + \begin{scope} + + \begin{scope}[xshift=0cm] + + \clip(-4.5,-1.25) rectangle (4.5,1.25); + + \fill[yellow!30] (0,0) rectangle (1, 0.5); + + + \draw[thick, ->, darkgreen] (0, 0) -- (0,0.5); + \draw[thick, ->, orange] (1, 0) -- (0,0); + \draw[thick, ->, red] (2, 0) -- (1,0); + \draw[thick, ->, blue] (2,0.5) -- (2, 0); + \draw[thick, ->, purple] (1, 0.5) -- (2,0.5); + \draw[thick, ->, cyan] (0, 0.5) -- (1,0.5); + + + + \foreach \i in {-2,...,1} { + \foreach \j in {-2,...,1} { + \begin{scope}[xshift=\i*4cm, yshift=\j*1cm] + \draw[opacity=0.5, ->, darkgreen] (0, 0) -- (0,0.5); + \draw[opacity=0.5, ->, orange] (1, 0) -- (0,0); + \draw[opacity=0.5, ->, red] (2, 0) -- (1,0); + \draw[opacity=0.5, ->, blue] (2,0.5) -- (2, 0); + \draw[opacity=0.5, ->, purple] (1, 0.5) -- (2,0.5); + \draw[opacity=0.5, ->, cyan] (0, 0.5) -- (1,0.5); + \draw[opacity=0.5, ->, darkgreen] (0,1) -- (0,0.5); + \draw[opacity=0.5, ->, blue] (2,0.5) -- (2, 1); + \draw[opacity=0.5, ->, purple] (3, 0.5) -- (2,0.5); + \draw[opacity=0.5, ->, cyan] (4, 0.5) -- (3,0.5); + \draw[opacity=0.5, ->, red] (2, 0) -- (3,0); + \draw[opacity=0.5, ->, orange] (3, 0) -- (4,0); + + \node[zero] at ( 1, 0) {}; + \node[zero] at ( 3, 0) {}; + \node[pole] at ( 1,0.5) {}; + \node[pole] at ( 3,0.5) {}; + + \end{scope} + } + } + + \end{scope} + + \end{scope} + + \end{scope} + + \begin{scope}[yshift=-3.5cm, xscale=0.75] + + \draw[gray, ->] (-6,0) -- (6,0) node[anchor=west]{$w$}; + + \draw[thick, ->, purple] (-5, 0) -- (-3, 0); + \draw[thick, ->, blue] (-3, 0) -- (-2, 0); + \draw[thick, ->, red] (-2, 0) -- (0, 0); + \draw[thick, ->, orange] (0, 0) -- (2, 0); + \draw[thick, ->, darkgreen] (2, 0) -- (3, 0); + \draw[thick, ->, cyan] (3, 0) -- (5, 0); + + \node[anchor=south] at (-5,0) {$-\infty$}; + \node[anchor=south] at (-3,0) {$-1/k$}; + \node[anchor=south] at (-2,0) {$-1$}; + \node[anchor=south] at (0,0) {$0$}; + \node[anchor=south] at (2,0) {$1$}; + \node[anchor=south] at (3,0) {$1/k$}; + \node[anchor=south] at (5,0) {$\infty$}; + + \end{scope} + +\end{tikzpicture} \ No newline at end of file diff --git a/buch/papers/ellfilter/tikz/cd2.tikz.tex b/buch/papers/ellfilter/tikz/cd2.tikz.tex new file mode 100644 index 0000000..0743f7d --- /dev/null +++ b/buch/papers/ellfilter/tikz/cd2.tikz.tex @@ -0,0 +1,84 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + \tikzstyle{dot} = [fill, circle, inner sep =0, minimum height=0.1cm] + + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} + + \begin{scope}[xscale=1.25, yscale=2.5] + + \draw[gray, ->] (0,-0.75) -- (0,1.25) node[anchor=south]{$\mathrm{Im}~z_1$}; + \draw[gray, ->] (-1.5,0) -- (6,0) node[anchor=west]{$\mathrm{Re}~z_1$}; + + \draw[gray] ( 1,0) +(0,0.05) -- +(0, -0.05) node[inner sep=0, anchor=north] {\small $K_1$}; + \draw[gray] ( 5,0) +(0,0.05) -- +(0, -0.05) node[inner sep=0, anchor=north] {\small $5K_1$}; + \draw[gray] (0, 0.5) +(0.1, 0) -- +(-0.1, 0) node[inner sep=0, anchor=east]{\small $jK^\prime_1$}; + + \begin{scope} + + \clip(-1.5,-0.75) rectangle (6.8,1.25); + + % \draw[>->, line width=0.05, thick, blue] (1, 0.45) -- (2, 0.45) -- (2, 0.05) -- ( 0.1, 0.05) -- ( 0.1,0.45) -- (1, 0.45); + % \draw[>->, line width=0.05, thick, orange] (2, 0.5 ) -- (4, 0.5 ) -- (4, 0 ) -- ( 0 , 0 ) -- ( 0 ,0.5 ) -- (2, 0.5 ); + % \draw[>->, line width=0.05, thick, red] (3, 0.55) -- (6, 0.55) -- (6,-0.05) -- (-0.1,-0.05) -- (-0.1,0.55) -- (3, 0.55); + % \node[blue] at (1, 0.25) {$N=1$}; + % \node[orange] at (3, 0.25) {$N=2$}; + % \node[red] at (5, 0.25) {$N=3$}; + + + + % \draw[line width=0.1cm, fill, red!50] (0,0) rectangle (3, 0.5); + % \draw[line width=0.05cm, fill, orange!50] (0,0) rectangle (2, 0.5); + % \fill[yellow!50] (0,0) rectangle (1, 0.5); + % \node[] at (0.5, 0.25) {\small $N=1$}; + % \node[] at (1.5, 0.25) {\small $N=2$}; + % \node[] at (2.5, 0.25) {\small $N=3$}; + + \fill[orange!30] (0,0) rectangle (5, 0.5); + \fill[yellow!30] (0,0) rectangle (1, 0.5); + \node[] at (2.5, 0.25) {\small $N=5$}; + + + \draw[decorate,decoration={brace,amplitude=3pt,mirror}, yshift=0.05cm] + (5,0.5) node(t_k_unten){} -- node[above, yshift=0.1cm]{$NK$} + (0,0.5) node(t_k_opt_unten){}; + + \draw[decorate,decoration={brace,amplitude=3pt,mirror}, xshift=0.1cm] + (5,0) node(t_k_unten){} -- node[right, xshift=0.1cm]{$K^\prime \frac{K_1N}{K} = K^\prime_1$} + (5,0.5) node(t_k_opt_unten){}; + + \foreach \i in {-2,...,1} { + \foreach \j in {-2,...,1} { + \begin{scope}[xshift=\i*4cm, yshift=\j*1cm] + + \node[zero] at ( 1, 0) {}; + \node[zero] at ( 3, 0) {}; + \node[pole] at ( 1,0.5) {}; + \node[pole] at ( 3,0.5) {}; + + \end{scope} + } + } + + + + + \draw[thick, ->, darkgreen] (5, 0) -- node[yshift=-0.5cm]{Durchlassbereich} (0,0); + \draw[thick, ->, orange] (-0, 0) -- node[align=center]{Übergangs-\\berech} (0,0.5); + \draw[thick, ->, red] (0,0.5) -- node[align=center, yshift=0.5cm]{Sperrbereich} (5, 0.5); + + \draw (4,0 ) node[dot]{} node[anchor=south] {\small $1$}; + \draw (2,0 ) node[dot]{} node[anchor=south] {\small $-1$}; + \draw (0,0 ) node[dot]{} node[anchor=south west] {\small $1$}; + \draw (0,0.5) node[dot]{} node[anchor=north west] {\small $1/k$}; + \draw (2,0.5) node[dot]{} node[anchor=north] {\small $-1/k$}; + \draw (4,0.5) node[dot]{} node[anchor=north] {\small $1/k$}; + + + + \end{scope} + + + \end{scope} + +\end{tikzpicture} \ No newline at end of file diff --git a/buch/papers/ellfilter/tikz/fundamental_rectangle.tikz.tex b/buch/papers/ellfilter/tikz/fundamental_rectangle.tikz.tex new file mode 100644 index 0000000..921dbfa --- /dev/null +++ b/buch/papers/ellfilter/tikz/fundamental_rectangle.tikz.tex @@ -0,0 +1,26 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} + + \begin{scope}[xscale=2, yscale=2] + + \draw[gray, ->] (0,-0.25) -- (0,1.25) node[anchor=south]{$\mathrm{Im}~z$}; + \draw[gray, ->] (-0.25,0) -- (1.5,0) node[anchor=west]{$\mathrm{Re}~z$}; + + \draw[gray] ( 1,0) +(0,0.05) -- +(0, -0.05) node[inner sep=0, anchor=north] {\small $K$}; + + \draw[gray] (0, 1) +(0.05, 0) -- +(-0.05, 0) node[inner sep=0, anchor=east]{\small $jK^\prime$}; + + \fill[yellow!50] (0,0) rectangle (1, 1); + + \node[anchor=south east] at ( 1,0) {$c$}; + \node[anchor=north east] at ( 1,1) {$d$}; + \node[anchor=north west] at ( 0,1) {$n$}; + \node[anchor=south west] at ( 0,0) {$s$}; + + \end{scope} + + +\end{tikzpicture} \ No newline at end of file diff --git a/buch/papers/ellfilter/tikz/sn.tikz.tex b/buch/papers/ellfilter/tikz/sn.tikz.tex new file mode 100644 index 0000000..87c63c0 --- /dev/null +++ b/buch/papers/ellfilter/tikz/sn.tikz.tex @@ -0,0 +1,86 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{zero} = [draw, circle, inner sep =0, minimum height=0.15cm] + + \tikzset{pole/.style={cross out, draw=black, minimum size=(0.15cm-\pgflinewidth), inner sep=0pt, outer sep=0pt}} + + \begin{scope}[xscale=1, yscale=2] + + \draw[gray, ->] (0,-1.5) -- (0,1.5) node[anchor=south]{$\mathrm{Im}~z$}; + \draw[gray, ->] (-5,0) -- (5,0) node[anchor=west]{$\mathrm{Re}~z$}; + + \begin{scope} + + \clip(-4.5,-1.25) rectangle (4.5,1.25); + + \fill[yellow!30] (0,0) rectangle (1, 0.5); + + \begin{scope}[xshift=-1cm] + + \draw[thick, ->, darkgreen] (0, 0) -- (0,0.5); + \draw[thick, ->, orange] (1, 0) -- (0,0); + \draw[thick, ->, red] (2, 0) -- (1,0); + \draw[thick, ->, blue] (2,0.5) -- (2, 0); + \draw[thick, ->, purple] (1, 0.5) -- (2,0.5); + \draw[thick, ->, cyan] (0, 0.5) -- (1,0.5); + + + \foreach \i in {-2,...,2} { + \foreach \j in {-2,...,1} { + \begin{scope}[xshift=\i*4cm, yshift=\j*1cm] + \draw[opacity=0.5, ->, darkgreen] (0, 0) -- (0,0.5); + \draw[opacity=0.5, ->, orange] (1, 0) -- (0,0); + \draw[opacity=0.5, ->, red] (2, 0) -- (1,0); + \draw[opacity=0.5, ->, blue] (2,0.5) -- (2, 0); + \draw[opacity=0.5, ->, purple] (1, 0.5) -- (2,0.5); + \draw[opacity=0.5, ->, cyan] (0, 0.5) -- (1,0.5); + \draw[opacity=0.5, ->, darkgreen] (0,1) -- (0,0.5); + \draw[opacity=0.5, ->, blue] (2,0.5) -- (2, 1); + \draw[opacity=0.5, ->, purple] (3, 0.5) -- (2,0.5); + \draw[opacity=0.5, ->, cyan] (4, 0.5) -- (3,0.5); + \draw[opacity=0.5, ->, red] (2, 0) -- (3,0); + \draw[opacity=0.5, ->, orange] (3, 0) -- (4,0); + + \node[zero] at ( 1, 0) {}; + \node[zero] at ( 3, 0) {}; + \node[pole] at ( 1,0.5) {}; + \node[pole] at ( 3,0.5) {}; + + \end{scope} + } + } + + \end{scope} + + \end{scope} + + \draw[gray] ( 1,0) +(0,0.1) -- +(0, -0.1) node[inner sep=0, anchor=north] {\small $K$}; + \draw[gray] (0, 0.5) +(0.1, 0) -- +(-0.1, 0) node[inner sep=0, anchor=east]{\small $jK^\prime$}; + + + + \end{scope} + + \begin{scope}[yshift=-3.5cm, xscale=0.75] + + \draw[gray, ->] (-6,0) -- (6,0) node[anchor=west]{$w$}; + + \draw[thick, ->, purple] (-5, 0) -- (-3, 0); + \draw[thick, ->, blue] (-3, 0) -- (-2, 0); + \draw[thick, ->, red] (-2, 0) -- (0, 0); + \draw[thick, ->, orange] (0, 0) -- (2, 0); + \draw[thick, ->, darkgreen] (2, 0) -- (3, 0); + \draw[thick, ->, cyan] (3, 0) -- (5, 0); + + \node[anchor=south] at (-5,0) {$-\infty$}; + \node[anchor=south] at (-3,0) {$-1/k$}; + \node[anchor=south] at (-2,0) {$-1$}; + \node[anchor=south] at (0,0) {$0$}; + \node[anchor=south] at (2,0) {$1$}; + \node[anchor=south] at (3,0) {$1/k$}; + \node[anchor=south] at (5,0) {$\infty$}; + + \end{scope} + + +\end{tikzpicture} \ No newline at end of file -- cgit v1.2.1 From 2cbc79a82e39702dd78919ac704fae01f50efb12 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Mon, 30 May 2022 00:33:47 +0200 Subject: split main into section files --- buch/papers/ellfilter/Makefile.inc | 17 +- buch/papers/ellfilter/einleitung.tex | 56 ++++ buch/papers/ellfilter/elliptic.tex | 92 ++++++ buch/papers/ellfilter/jacobi.tex | 189 +++++++++++++ buch/papers/ellfilter/main.tex | 485 +------------------------------- buch/papers/ellfilter/teil0.tex | 22 -- buch/papers/ellfilter/teil1.tex | 55 ---- buch/papers/ellfilter/teil2.tex | 40 --- buch/papers/ellfilter/teil3.tex | 40 --- buch/papers/ellfilter/tschebyscheff.tex | 133 +++++++++ 10 files changed, 483 insertions(+), 646 deletions(-) create mode 100644 buch/papers/ellfilter/einleitung.tex create mode 100644 buch/papers/ellfilter/elliptic.tex create mode 100644 buch/papers/ellfilter/jacobi.tex delete mode 100644 buch/papers/ellfilter/teil0.tex delete mode 100644 buch/papers/ellfilter/teil1.tex delete mode 100644 buch/papers/ellfilter/teil2.tex delete mode 100644 buch/papers/ellfilter/teil3.tex create mode 100644 buch/papers/ellfilter/tschebyscheff.tex (limited to 'buch/papers') diff --git a/buch/papers/ellfilter/Makefile.inc b/buch/papers/ellfilter/Makefile.inc index 8f20278..97e4089 100644 --- a/buch/papers/ellfilter/Makefile.inc +++ b/buch/papers/ellfilter/Makefile.inc @@ -3,12 +3,11 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -dependencies-ellfilter = \ - papers/ellfilter/packages.tex \ - papers/ellfilter/main.tex \ - papers/ellfilter/references.bib \ - papers/ellfilter/teil0.tex \ - papers/ellfilter/teil1.tex \ - papers/ellfilter/teil2.tex \ - papers/ellfilter/teil3.tex - +dependencies-ellfilter = \ + papers/ellfilter/packages.tex \ + papers/ellfilter/main.tex \ + papers/ellfilter/references.bib \ + papers/ellfilter/einleitung.tex \ + papers/ellfilter/tschebyscheff.tex \ + papers/ellfilter/jacobi.tex \ + papers/ellfilter/elliptic.tex diff --git a/buch/papers/ellfilter/einleitung.tex b/buch/papers/ellfilter/einleitung.tex new file mode 100644 index 0000000..37fd89f --- /dev/null +++ b/buch/papers/ellfilter/einleitung.tex @@ -0,0 +1,56 @@ +\section{Einleitung} + +% Lineare filter + +% Filter, Signalverarbeitung + + +Der womöglich wichtigste Filtertyp ist das Tiefpassfilter. +Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen. + +% Bei der Implementierung von Filtern + +In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}). +Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen. +Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen. + + +\begin{equation} \label{ellfilter:eq:h_omega} + | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} +\end{equation} + +$\Omega = 2 \pi f$ ist die analoge Frequenz + + +% Linear filter +Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen. + +$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen. + +Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren. +Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$. +Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich. +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_butterworth.pgf} + \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.} + \label{ellfilter:fig:butterworth} +\end{figure} + +wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof? + +\begin{align} + F_N(w) & = + \begin{cases} + w^N & \text{Butterworth} \\ + T_N(w) & \text{Tschebyscheff, Typ 1} \\ + [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ + R_N(w, \xi) & \text{Elliptisch (Cauer)} \\ + \end{cases} +\end{align} + +Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt. +Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete. +Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich. +Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist. +Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter. diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex new file mode 100644 index 0000000..88bfbfe --- /dev/null +++ b/buch/papers/ellfilter/elliptic.tex @@ -0,0 +1,92 @@ +\section{Elliptische rationale Funktionen} + +Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen +\begin{align} + R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \\ + &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ + &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) +\end{align} + + +sieht ähnlich aus wie die trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} +Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. +Die Ordnungszahl $N$ kommt auch als Faktor for. +Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht. + + + +Sinus entspricht $\sn$ + +Damit die Nullstellen an ähnlichen Positionen zu liegen kommen wie bei den Tschebyscheff-Polynomen, muss die $\cd$-Funktion gewählt werden. + +Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/cd.tikz.tex} + \caption{ + $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. + Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. + } + \label{ellfilter:fig:cd} +\end{figure} +Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben. + +Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jaccobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. +Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex} + \caption{ + Fundamentales Rechteck der inversen Jaccobi elliptischen Funktionen. + } + \label{ellfilter:fig:fundamental_rectangle} +\end{figure} + +Auffallend an der $w = \sn(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. +Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. +Falls es möglich ist diese Werte abzufahren im Sti der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. + + + +Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/cd2.tikz.tex} + \caption{ + $z_1$-Ebene der elliptischen rationalen Funktionen. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen passiert. + } + \label{ellfilter:fig:cd2} +\end{figure} +% Da die $\cd^{-1}$-Funktion + + + +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_elliptic.pgf} + \caption{$F_N$ für ein elliptischs filter.} + \label{ellfilter:fig:elliptic} +\end{figure} + +\subsection{Degree Equation} + +Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. +Dies trifft ein wenn die Degree Equation erfüllt ist. + +\begin{equation} + N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} +\end{equation} + + +Leider ist das lösen dieser Gleichung nicht trivial. +Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. + + +\subsection{Polynome?} + +Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. +Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. +Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. + +Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. diff --git a/buch/papers/ellfilter/jacobi.tex b/buch/papers/ellfilter/jacobi.tex new file mode 100644 index 0000000..6a208fa --- /dev/null +++ b/buch/papers/ellfilter/jacobi.tex @@ -0,0 +1,189 @@ +\section{Jacobische elliptische Funktionen} + +%TODO $z$ or $u$ for parameter? + +Für das elliptische Filter wird statt der, für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht. +Der Begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht. + +Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen. +Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$. +Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter. +Zum einen gibt es den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert. +Zum andern das Winkelargument $z$. +Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das. +Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft. +Darum kann hier nicht der gewohnte Winkel verwendet werden. +Das Winkelargument $z$ kann durch das elliptische Integral erster Art +\begin{equation} + z + = + F(\phi, k) + = + \int_{0}^{\phi} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } + = + \int_{0}^{\phi} + \frac{ + dt + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } %TODO which is right? are both functions from phi? +\end{equation} +mit dem Winkel $\phi$ in Verbindung liegt. + +Dabei wird das vollständige und unvollständige Elliptische integral unterschieden. +Beim vollständigen Integral +\begin{equation} + K(k) + = + \int_{0}^{\pi / 2} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + } +\end{equation} +wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung. +Die Zahl wird oft auch abgekürzt mit $K = K(k)$ und ist für das elliptische Filter sehr relevant. +Alle elliptishen Funktionen sind somit $4K$-periodisch. + +Neben dem $\sn$ gibt es zwei weitere basis-elliptische Funktionen $\cn$ und $\dn$. +Dazu kommen noch weitere abgeleitete Funktionen, die durch Quotienten und Kehrwerte dieser Funktionen zustande kommen. +Insgesamt sind es die zwölf Funktionen +\begin{equation*} + \sn \quad + \ns \quad + \scelliptic \quad + \sd \quad + \cn \quad + \nc \quad + \cs \quad + \cd \quad + \dn \quad + \nd \quad + \ds \quad + \dc. +\end{equation*} + +Die Jacobischen elliptischen Funktionen können mit der inversen Funktion des kompletten elliptischen Integrals erster Art +\begin{equation} + \phi = F^{-1}(z, k) +\end{equation} +definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird, also +\begin{equation} + z = F(\phi, k) + \Leftrightarrow + \phi = F^{-1}(z, k). +\end{equation} +Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral dargestellt werden: +\begin{equation} + \sin(\phi) + = + \sin \left( F^{-1}(z, k) \right) + = + \sn(z, k) + = + w +\end{equation} + +\begin{equation} + \phi + = + F^{-1}(z, k) + = + \sin^{-1} \big( \sn (z, k ) \big) + = + \sin^{-1} ( w ) +\end{equation} + +\begin{equation} + F(\phi, k) + = + z + = + F( \sin^{-1} \big( \sn (z, k ) \big) , k) + = + F( \sin^{-1} ( w ), k) +\end{equation} + +\begin{equation} + \sn^{-1}(w, k) + = + F(\phi, k), + \quad + \phi = \sin^{-1}(w) +\end{equation} + +\begin{align} + \sn^{-1}(w, k) + & = + \int_{0}^{\phi} + \frac{ + d\theta + }{ + \sqrt{ + 1-k^2 \sin^2 \theta + } + }, + \quad + \phi = \sin^{-1}(w) + \\ + & = + \int_{0}^{w} + \frac{ + dt + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } +\end{align} + +Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert. +Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen. +Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$. +Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$. +\begin{equation} + \frac{ + 1 + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + } + \in \mathbb{R} + \quad \forall \quad + -1 \leq t \leq 1 +\end{equation} +Die zweite stelle passiert wenn beide Faktoren unter der Wurzel negativ werden, was bei $t = 1/k$ der Fall ist. + + + + +Funktion in relle und komplexe Richtung periodisch + +In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtung $4K^\prime(k)$-periodisch. + + + +%TODO sn^{-1} grafik + +\begin{figure} + \centering + \input{papers/ellfilter/tikz/sn.tikz.tex} + \caption{ + $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. + Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. + } + % \label{ellfilter:fig:cd2} +\end{figure} diff --git a/buch/papers/ellfilter/main.tex b/buch/papers/ellfilter/main.tex index e9d6aba..c58dfa7 100644 --- a/buch/papers/ellfilter/main.tex +++ b/buch/papers/ellfilter/main.tex @@ -8,485 +8,10 @@ \begin{refsection} \chapterauthor{Nicolas Tobler} +\input{papers/ellfilter/einleitung.tex} +\input{papers/ellfilter/tschebyscheff.tex} +\input{papers/ellfilter/jacobi.tex} +\input{papers/ellfilter/elliptic.tex} -\section{Einleitung} - -% Lineare filter - -% Filter, Signalverarbeitung - - -Der womöglich wichtigste Filtertyp ist das Tiefpassfilter. -Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen. - -% Bei der Implementierung von Filtern - -In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}). -Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen. -Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen. - - -\begin{equation} \label{ellfilter:eq:h_omega} - | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} -\end{equation} - -$\Omega = 2 \pi f$ ist die analoge Frequenz - - -% Linear filter -Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen. - -$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen. - -Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren. -Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$. -Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich. -\begin{figure} - \centering - \input{papers/ellfilter/python/F_N_butterworth.pgf} - \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.} - \label{ellfilter:fig:butterworth} -\end{figure} - -wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof? - -\begin{align} - F_N(w) & = - \begin{cases} - w^N & \text{Butterworth} \\ - T_N(w) & \text{Tschebyscheff, Typ 1} \\ - [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ - R_N(w, \xi) & \text{Elliptisch (Cauer)} \\ - \end{cases} -\end{align} - -Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt. -Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete. -Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich. -Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist. -Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter. - -\section{Tschebyscheff-Filter} - -Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter. -Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon. - -Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind: -\begin{align} - T_{0}(x)&=1\\ - T_{1}(x)&=x\\ - T_{2}(x)&=2x^{2}-1\\ - T_{3}(x)&=4x^{3}-3x\\ - T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x). -\end{align} -Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometrischen Funktion -\begin{align} \label{ellfilter:eq:chebychef_polynomials} - T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\ - &= \cos \left(N~z \right), \quad w= \cos(z) -\end{align} -übereinstimmt. -Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären. -Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome. -\begin{figure} - \centering - \input{papers/ellfilter/python/F_N_chebychev2.pgf} - \caption{Die Tschebyscheff-Polynome $C_N$.} - \label{ellfilter:fig:chebychef_polynomials} -\end{figure} -Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt. -Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$. -Diese Eigenschaft ist sehr nützlich für ein Filter. -Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. -\begin{figure} - \centering - \input{papers/ellfilter/python/F_N_chebychev.pgf} - \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.} - \label{ellfiter:fig:chebychef} -\end{figure} - - -Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist. -Die genauere Betrachtung wird uns dann helfen die elliptischen Filter besser zu verstehen. - -Starten wir mit der Funktion, die als erstes auf $w$ angewendet wird, dem Arcuscosinus. -Die invertierte Funktion des Kosinus kann als definites Integral dargestellt werden: -\begin{align} - \cos^{-1}(x) - &= - \int_{x}^{1} - \frac{ - dz - }{ - \sqrt{ - 1-z^2 - } - }\\ - &= - \int_{0}^{x} - \frac{ - -1 - }{ - \sqrt{ - 1-z^2 - } - } - ~dz - + \frac{\pi}{2} -\end{align} -Der Integrand oder auch die Ableitung -\begin{equation} - \frac{ - -1 - }{ - \sqrt{ - 1-z^2 - } - } -\end{equation} -bestimmt dabei die Richtung, in der die Funktion verläuft. -Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert. -Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte. -Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. -Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen. -Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab. -Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/arccos.tikz.tex} - \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.} - \label{ellfilter:fig:arccos} -\end{figure} -Wegen der Periodizität des Kosinus ist auch der Arcuscosinus $2\pi$-periodisch und es entstehen periodische Nullstellen. -% \begin{equation} -% \frac{ -% 1 -% }{ -% \sqrt{ -% 1-z^2 -% } -% } -% \in \mathbb{R} -% \quad -% \forall -% \quad -% -1 \leq z \leq 1 -% \end{equation} -% \begin{equation} -% \frac{ -% 1 -% }{ -% \sqrt{ -% 1-z^2 -% } -% } -% = i \xi \quad | \quad \xi \in \mathbb{R} -% \quad -% \forall -% \quad -% z \leq -1 \cup z \geq 1 -% \end{equation} - -Die Tschebyscheff-Polynome skalieren diese Nullstellen mit dem Ordnungsfaktor $N$, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/arccos2.tikz.tex} - \caption{ - $z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion. - Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für verschiedene Ordnungen $N$. - Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. - } - \label{ellfilter:fig:arccos2} -\end{figure} -Somit passert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen. -Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. - -\section{Jacobische elliptische Funktionen} - -%TODO $z$ or $u$ for parameter? - -Für das elliptische Filter wird statt der, für das Tschebyscheff-Filter benutzen Kreis-Trigonometrie die elliptischen Funktionen gebraucht. -Der Begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es ausschliesslich um die Jacobischen elliptischen Funktionen geht. - -Im Wesentlichen erweitern die Jacobi elliptischen Funktionen die trigonometrische Funktionen für Ellipsen. -Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$. -Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter. -Zum einen gibt es den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert. -Zum andern das Winkelargument $z$. -Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das. -Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft. -Darum kann hier nicht der gewohnte Winkel verwendet werden. -Das Winkelargument $z$ kann durch das elliptische Integral erster Art -\begin{equation} - z - = - F(\phi, k) - = - \int_{0}^{\phi} - \frac{ - d\theta - }{ - \sqrt{ - 1-k^2 \sin^2 \theta - } - } - = - \int_{0}^{\phi} - \frac{ - dt - }{ - \sqrt{ - (1-t^2)(1-k^2 t^2) - } - } %TODO which is right? are both functions from phi? -\end{equation} -mit dem Winkel $\phi$ in Verbindung liegt. - -Dabei wird das vollständige und unvollständige Elliptische integral unterschieden. -Beim vollständigen Integral -\begin{equation} - K(k) - = - \int_{0}^{\pi / 2} - \frac{ - d\theta - }{ - \sqrt{ - 1-k^2 \sin^2 \theta - } - } -\end{equation} -wird über ein viertel Ellipsenbogen integriert also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung. -Die Zahl wird oft auch abgekürzt mit $K = K(k)$ und ist für das elliptische Filter sehr relevant. -Alle elliptishen Funktionen sind somit $4K$-periodisch. - -Neben dem $\sn$ gibt es zwei weitere basis-elliptische Funktionen $\cn$ und $\dn$. -Dazu kommen noch weitere abgeleitete Funktionen, die durch Quotienten und Kehrwerte dieser Funktionen zustande kommen. -Insgesamt sind es die zwölf Funktionen -\begin{equation*} - \sn \quad - \ns \quad - \scelliptic \quad - \sd \quad - \cn \quad - \nc \quad - \cs \quad - \cd \quad - \dn \quad - \nd \quad - \ds \quad - \dc. -\end{equation*} - -Die Jacobischen elliptischen Funktionen können mit der inversen Funktion des kompletten elliptischen Integrals erster Art -\begin{equation} - \phi = F^{-1}(z, k) -\end{equation} -definiert werden. Dabei ist zu beachten dass nur das $z$ Argument der Funktion invertiert wird, also -\begin{equation} - z = F(\phi, k) - \Leftrightarrow - \phi = F^{-1}(z, k). -\end{equation} -Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral dargestellt werden: -\begin{equation} - \sin(\phi) - = - \sin \left( F^{-1}(z, k) \right) - = - \sn(z, k) - = - w -\end{equation} - -\begin{equation} - \phi - = - F^{-1}(z, k) - = - \sin^{-1} \big( \sn (z, k ) \big) - = - \sin^{-1} ( w ) -\end{equation} - -\begin{equation} - F(\phi, k) - = - z - = - F( \sin^{-1} \big( \sn (z, k ) \big) , k) - = - F( \sin^{-1} ( w ), k) -\end{equation} - -\begin{equation} - \sn^{-1}(w, k) - = - F(\phi, k), - \quad - \phi = \sin^{-1}(w) -\end{equation} - -\begin{align} - \sn^{-1}(w, k) - & = - \int_{0}^{\phi} - \frac{ - d\theta - }{ - \sqrt{ - 1-k^2 \sin^2 \theta - } - }, - \quad - \phi = \sin^{-1}(w) - \\ - & = - \int_{0}^{w} - \frac{ - dt - }{ - \sqrt{ - (1-t^2)(1-k^2 t^2) - } - } -\end{align} - -Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert. -Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen. -Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$. -Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$. -\begin{equation} - \frac{ - 1 - }{ - \sqrt{ - (1-t^2)(1-k^2 t^2) - } - } - \in \mathbb{R} - \quad \forall \quad - -1 \leq t \leq 1 -\end{equation} -Die zweite stelle passiert wenn beide Faktoren unter der Wurzel negativ werden, was bei $t = 1/k$ der Fall ist. - - - - -Funktion in relle und komplexe Richtung periodisch - -In der reellen Richtung ist sie $4K(k)$-periodisch und in der imaginären Richtung $4K^\prime(k)$-periodisch. - - - -%TODO sn^{-1} grafik - -\begin{figure} - \centering - \input{papers/ellfilter/tikz/sn.tikz.tex} - \caption{ - $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. - Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. - } - % \label{ellfilter:fig:cd2} -\end{figure} - -\section{Elliptische rationale Funktionen} - -Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen -\begin{align} - R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \\ - &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ - &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) -\end{align} - - -sieht ähnlich aus wie die trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} -Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. -Die Ordnungszahl $N$ kommt auch als Faktor for. -Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht. - - - -Sinus entspricht $\sn$ - -Damit die Nullstellen an ähnlichen Positionen zu liegen kommen wie bei den Tschebyscheff-Polynomen, muss die $\cd$-Funktion gewählt werden. - -Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/cd.tikz.tex} - \caption{ - $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. - Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. - } - \label{ellfilter:fig:cd} -\end{figure} -Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben. - -Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jaccobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. -Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex} - \caption{ - Fundamentales Rechteck der inversen Jaccobi elliptischen Funktionen. - } - \label{ellfilter:fig:fundamental_rectangle} -\end{figure} - -Auffallend an der $w = \sn(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. -Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. -Falls es möglich ist diese Werte abzufahren im Sti der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. - - - -Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/cd2.tikz.tex} - \caption{ - $z_1$-Ebene der elliptischen rationalen Funktionen. - Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen passiert. - } - \label{ellfilter:fig:cd2} -\end{figure} -% Da die $\cd^{-1}$-Funktion - - - -\begin{figure} - \centering - \input{papers/ellfilter/python/F_N_elliptic.pgf} - \caption{$F_N$ für ein elliptischs filter.} - \label{ellfilter:fig:elliptic} -\end{figure} - -\subsection{Degree Equation} - -Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. -Dies trifft ein wenn die Degree Equation erfüllt ist. - -\begin{equation} - N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} -\end{equation} - - -Leider ist das lösen dieser Gleichung nicht trivial. -Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. - - -\subsection{Polynome?} - -Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. -Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. -Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. - -Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. - -\input{papers/ellfilter/teil0.tex} -\input{papers/ellfilter/teil1.tex} -\input{papers/ellfilter/teil2.tex} -\input{papers/ellfilter/teil3.tex} - -% \printbibliography[heading=subbibliography] +\printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/ellfilter/teil0.tex b/buch/papers/ellfilter/teil0.tex deleted file mode 100644 index 6204bc0..0000000 --- a/buch/papers/ellfilter/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -% \section{Teil 0\label{ellfilter:section:teil0}} -% \rhead{Teil 0} -% Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -% nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -% erat, sed diam voluptua \cite{ellfilter:bibtex}. -% At vero eos et accusam et justo duo dolores et ea rebum. -% Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -% dolor sit amet. - -% Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -% nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -% erat, sed diam voluptua. -% At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -% kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -% amet. - - diff --git a/buch/papers/ellfilter/teil1.tex b/buch/papers/ellfilter/teil1.tex deleted file mode 100644 index 4760473..0000000 --- a/buch/papers/ellfilter/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -% \section{Teil 1 -% \label{ellfilter:section:teil1}} -% \rhead{Problemstellung} -% Sed ut perspiciatis unde omnis iste natus error sit voluptatem -% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -% quae ab illo inventore veritatis et quasi architecto beatae vitae -% dicta sunt explicabo. -% Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -% aut fugit, sed quia consequuntur magni dolores eos qui ratione -% voluptatem sequi nesciunt -% \begin{equation} -% \int_a^b x^2\, dx -% = -% \left[ \frac13 x^3 \right]_a^b -% = -% \frac{b^3-a^3}3. -% \label{ellfilter:equation1} -% \end{equation} -% Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -% consectetur, adipisci velit, sed quia non numquam eius modi tempora -% incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -% Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -% suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -% Quis autem vel eum iure reprehenderit qui in ea voluptate velit -% esse quam nihil molestiae consequatur, vel illum qui dolorem eum -% fugiat quo voluptas nulla pariatur? - -% \subsection{De finibus bonorum et malorum -% \label{ellfilter:subsection:finibus}} -% At vero eos et accusamus et iusto odio dignissimos ducimus qui -% blanditiis praesentium voluptatum deleniti atque corrupti quos -% dolores et quas molestias excepturi sint occaecati cupiditate non -% provident, similique sunt in culpa qui officia deserunt mollitia -% animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -% Et harum quidem rerum facilis est et expedita distinctio -% \ref{ellfilter:section:loesung}. -% Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -% impedit quo minus id quod maxime placeat facere possimus, omnis -% voluptas assumenda est, omnis dolor repellendus -% \ref{ellfilter:section:folgerung}. -% Temporibus autem quibusdam et aut officiis debitis aut rerum -% necessitatibus saepe eveniet ut et voluptates repudiandae sint et -% molestiae non recusandae. -% Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -% voluptatibus maiores alias consequatur aut perferendis doloribus -% asperiores repellat. - - diff --git a/buch/papers/ellfilter/teil2.tex b/buch/papers/ellfilter/teil2.tex deleted file mode 100644 index 39dd5d7..0000000 --- a/buch/papers/ellfilter/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -% \section{Teil 2 -% \label{ellfilter:section:teil2}} -% \rhead{Teil 2} -% Sed ut perspiciatis unde omnis iste natus error sit voluptatem -% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -% quae ab illo inventore veritatis et quasi architecto beatae vitae -% dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -% aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -% eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -% est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -% velit, sed quia non numquam eius modi tempora incidunt ut labore -% et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -% veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -% nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -% reprehenderit qui in ea voluptate velit esse quam nihil molestiae -% consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -% pariatur? - -% \subsection{De finibus bonorum et malorum -% \label{ellfilter:subsection:bonorum}} -% At vero eos et accusamus et iusto odio dignissimos ducimus qui -% blanditiis praesentium voluptatum deleniti atque corrupti quos -% dolores et quas molestias excepturi sint occaecati cupiditate non -% provident, similique sunt in culpa qui officia deserunt mollitia -% animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -% est et expedita distinctio. Nam libero tempore, cum soluta nobis -% est eligendi optio cumque nihil impedit quo minus id quod maxime -% placeat facere possimus, omnis voluptas assumenda est, omnis dolor -% repellendus. Temporibus autem quibusdam et aut officiis debitis aut -% rerum necessitatibus saepe eveniet ut et voluptates repudiandae -% sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -% sapiente delectus, ut aut reiciendis voluptatibus maiores alias -% consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/ellfilter/teil3.tex b/buch/papers/ellfilter/teil3.tex deleted file mode 100644 index dad96ad..0000000 --- a/buch/papers/ellfilter/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -% \section{Teil 3 -% \label{ellfilter:section:teil3}} -% \rhead{Teil 3} -% Sed ut perspiciatis unde omnis iste natus error sit voluptatem -% accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -% quae ab illo inventore veritatis et quasi architecto beatae vitae -% dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -% aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -% eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -% est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -% velit, sed quia non numquam eius modi tempora incidunt ut labore -% et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -% veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -% nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -% reprehenderit qui in ea voluptate velit esse quam nihil molestiae -% consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -% pariatur? - -% \subsection{De finibus bonorum et malorum -% \label{ellfilter:subsection:malorum}} -% At vero eos et accusamus et iusto odio dignissimos ducimus qui -% blanditiis praesentium voluptatum deleniti atque corrupti quos -% dolores et quas molestias excepturi sint occaecati cupiditate non -% provident, similique sunt in culpa qui officia deserunt mollitia -% animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -% est et expedita distinctio. Nam libero tempore, cum soluta nobis -% est eligendi optio cumque nihil impedit quo minus id quod maxime -% placeat facere possimus, omnis voluptas assumenda est, omnis dolor -% repellendus. Temporibus autem quibusdam et aut officiis debitis aut -% rerum necessitatibus saepe eveniet ut et voluptates repudiandae -% sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -% sapiente delectus, ut aut reiciendis voluptatibus maiores alias -% consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/ellfilter/tschebyscheff.tex b/buch/papers/ellfilter/tschebyscheff.tex new file mode 100644 index 0000000..7d426b6 --- /dev/null +++ b/buch/papers/ellfilter/tschebyscheff.tex @@ -0,0 +1,133 @@ +\section{Tschebyscheff-Filter} + +Als Einstieg betrachent Wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter. +Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon. + +Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind: +\begin{align} + T_{0}(x)&=1\\ + T_{1}(x)&=x\\ + T_{2}(x)&=2x^{2}-1\\ + T_{3}(x)&=4x^{3}-3x\\ + T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x). +\end{align} +Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometrischen Funktion +\begin{align} \label{ellfilter:eq:chebychef_polynomials} + T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\ + &= \cos \left(N~z \right), \quad w= \cos(z) +\end{align} +übereinstimmt. +Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären. +Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome. +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_chebychev2.pgf} + \caption{Die Tschebyscheff-Polynome $C_N$.} + \label{ellfilter:fig:chebychef_polynomials} +\end{figure} +Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt. +Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$. +Diese Eigenschaft ist sehr nützlich für ein Filter. +Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_chebychev.pgf} + \caption{Die Tschebyscheff-Polynome füllen den erlaubten Bereich besser, und erhalten dadurch eine steilere Flanke im Sperrbereich.} + \label{ellfiter:fig:chebychef} +\end{figure} + + +Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist. +Die genauere Betrachtung wird uns dann helfen die elliptischen Filter besser zu verstehen. + +Starten wir mit der Funktion, die als erstes auf $w$ angewendet wird, dem Arcuscosinus. +Die invertierte Funktion des Kosinus kann als definites Integral dargestellt werden: +\begin{align} + \cos^{-1}(x) + &= + \int_{x}^{1} + \frac{ + dz + }{ + \sqrt{ + 1-z^2 + } + }\\ + &= + \int_{0}^{x} + \frac{ + -1 + }{ + \sqrt{ + 1-z^2 + } + } + ~dz + + \frac{\pi}{2} +\end{align} +Der Integrand oder auch die Ableitung +\begin{equation} + \frac{ + -1 + }{ + \sqrt{ + 1-z^2 + } + } +\end{equation} +bestimmt dabei die Richtung, in der die Funktion verläuft. +Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert. +Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte. +Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. +Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen. +Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab. +Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/arccos.tikz.tex} + \caption{Die Funktion $z = \cos^{-1}(w)$ dargestellt in der komplexen ebene.} + \label{ellfilter:fig:arccos} +\end{figure} +Wegen der Periodizität des Kosinus ist auch der Arcuscosinus $2\pi$-periodisch und es entstehen periodische Nullstellen. +% \begin{equation} +% \frac{ +% 1 +% }{ +% \sqrt{ +% 1-z^2 +% } +% } +% \in \mathbb{R} +% \quad +% \forall +% \quad +% -1 \leq z \leq 1 +% \end{equation} +% \begin{equation} +% \frac{ +% 1 +% }{ +% \sqrt{ +% 1-z^2 +% } +% } +% = i \xi \quad | \quad \xi \in \mathbb{R} +% \quad +% \forall +% \quad +% z \leq -1 \cup z \geq 1 +% \end{equation} + +Die Tschebyscheff-Polynome skalieren diese Nullstellen mit dem Ordnungsfaktor $N$, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/arccos2.tikz.tex} + \caption{ + $z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion. + Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für verschiedene Ordnungen $N$. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. + } + \label{ellfilter:fig:arccos2} +\end{figure} +Somit passert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen. +Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. -- cgit v1.2.1 From 0b6917dcba521381f259dbaeed718ac1407eeefd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 31 May 2022 07:48:27 +0200 Subject: =?UTF-8?q?Sternzeit=20dezimal=20erg=C3=A4nzt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/nav/beispiel.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers') diff --git a/buch/papers/nav/beispiel.txt b/buch/papers/nav/beispiel.txt index 853ae4e..94466ce 100644 --- a/buch/papers/nav/beispiel.txt +++ b/buch/papers/nav/beispiel.txt @@ -1,6 +1,6 @@ Datum: 28. 5. 2022 Zeit: 15:29:49 UTC -Sternzeit: 7h 54m 26.593s +Sternzeit: 7h 54m 26.593s 7.90738694h Deneb -- cgit v1.2.1 From 8eb7793b2100ff83caa1ab8898dcab572d0d995f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 31 May 2022 07:55:04 +0200 Subject: ra korrigiert --- buch/papers/nav/beispiel.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers') diff --git a/buch/papers/nav/beispiel.txt b/buch/papers/nav/beispiel.txt index 94466ce..70e3ce2 100644 --- a/buch/papers/nav/beispiel.txt +++ b/buch/papers/nav/beispiel.txt @@ -4,7 +4,7 @@ Sternzeit: 7h 54m 26.593s 7.90738694h Deneb -RA 20h 42m 12.14s 10.703372h +RA 20h 42m 12.14s 20.703372h DEC 45 21' 40.3" 45.361194 H 50g 15' 17.1" 50.254750h -- cgit v1.2.1