From 84e6c11fada0cb616111c3001acbe1abc585b213 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 16 Aug 2022 13:14:16 +0200 Subject: tscheby kapitel Randbedingungen --- buch/chapters/010-potenzen/tschebyscheff.tex | 3 ++- .../sturmliouville/tschebyscheff_beispiel.tex | 23 ++++++++++++++++++---- 2 files changed, 21 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index ccc2e97..6d21a68 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat. Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet, da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert. -\subsection{Definition der Tschebyscheff-Polynome} +\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}} \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf} @@ -199,6 +199,7 @@ T_0(x)=1. \end{equation} Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden: \begin{equation} +\label{eq:tschebyscheff-polynome} \begin{aligned} T_0(x) &=1 diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 391841a..d441795 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -27,7 +27,7 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $\[ -1, 1\]$ sichergestellt. +jedoch ist die Orthogonalität nur auf dem Intervall $[\-1, 1 ]\ $ sichergestellt. Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} @@ -36,14 +36,29 @@ Die Funktion ist die gleiche wie $w(x)$. Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $\[ -1,1 \]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[\-1, 1 ]\ $ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= h_a + k_a y(-1) + h_a y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0 \end{aligned} -\end{equation} +\end{equation}. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). +Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. +Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Somit erhält man +\begin{equation} + \begin{aligned} + k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 +\end{aligned} +\end{equation}. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + -- cgit v1.2.1 From 787bb84a7cf4f176472bdea001e59eda92469fb3 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 16 Aug 2022 13:59:51 +0200 Subject: Update tschebyscheff_beispiel.tex --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index d441795..fb0194b 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -56,8 +56,8 @@ Somit erhält man \end{aligned} \end{equation}. Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. - Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + -- cgit v1.2.1 From 3e9bc76578e5372c14abbe5de481668a8855a1a8 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 16 Aug 2022 14:39:04 +0200 Subject: removed file. --- .../sturmliouville/tschebyscheff_beispiel.tex | 71 ---------------------- 1 file changed, 71 deletions(-) delete mode 100644 buch/papers/sturmliouville/tschebyscheff_beispiel.tex (limited to 'buch') diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex deleted file mode 100644 index fb0194b..0000000 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ /dev/null @@ -1,71 +0,0 @@ -% -% tschebyscheff_beispiel.tex -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% - -\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit -\begin{align*} - w(x) &= \frac{1}{\sqrt{1-x^2}} \\ - p(x) &= \sqrt{1-x^2} \\ - q(x) &= 0 -\end{align*}. -Da die Sturm-Liouville-Gleichung -\begin{equation} - \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 -\end{equation} -nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen -\begin{equation} - T_n(x) = \cos n (\arccos x) -\end{equation}. -Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: -\begin{equation} - T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ - (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. -\end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $[\-1, 1 ]\ $ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. -Die Funktion -\begin{equation*} - p(x)^-1 = \frac{1}{\sqrt{1-x^2}} -\end{equation*} -ist die gleiche wie $w(x)$. - -Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[\-1, 1 ]\ $ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. -Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man -\begin{equation} -\begin{aligned} - k_a y(-1) + h_a y'(-1) &= 0 - k_b y(-1) + h_b y'(-1) &= 0 -\end{aligned} -\end{equation}. -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). -Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. -Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). -Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. -Somit erhält man -\begin{equation} - \begin{aligned} - k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ - k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 -\end{aligned} -\end{equation}. -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. - - - - - - - - - - - - -- cgit v1.2.1 From 46f7c56ca3b5cb512ed2b82beefeb2057af0d8cf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 17 Aug 2022 13:30:40 +0200 Subject: Corrected formatting errors in fourier example. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 7a37b2b..a72c562 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -20,7 +20,7 @@ die partielle Differentialgleichung \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}}, \end{equation} -wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. +wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise @@ -35,7 +35,7 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. -Es folgen nun +Es folgt nun \begin{equation} \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} u(t,0) @@ -52,7 +52,7 @@ als Randbedingungen. \subsubsection{Randbedingungen für Stab mit isolierten Enden} -Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. @@ -187,7 +187,7 @@ somit auch zu orthogonalen Lösungen führen. % Lösung von X(x), Teil mu % -\subsubsection{Lösund der Differentialgleichung in x} +\subsubsection{Lösund der Differentialgleichung in $x$} Als erstes wird auf die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen. Aufgrund der Struktur der Gleichung @@ -473,7 +473,7 @@ berechnet: \\ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& - a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right] @@ -487,7 +487,7 @@ berechnet: Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass nahezu alle Terme verschwinden, denn \[ - \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx = 0, \] @@ -528,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} \\ &= - a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - \frac{-m\pi}{2} - - \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr) \\ &= a_m l -- cgit v1.2.1 From 030aa1f0d5bb3020c909ff7cedd102ea5ff69927 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 17 Aug 2022 15:47:34 +0200 Subject: Revised solution properties section. --- buch/papers/sturmliouville/eigenschaften.tex | 32 ++++++++++++++++------------ 1 file changed, 18 insertions(+), 14 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 85f0bf3..bef8a39 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -37,31 +37,35 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. -Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem -endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass + +Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu +zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass \[ \langle Av, w \rangle = \langle v, Aw \rangle \] -für $ v, w \in \mathbb{K}^n$ gilt. -Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für -Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, -wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. +für $ v, w \in \mathbb{R}^n$ gilt. +Ist dies der Fall, kann die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended werden. +Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, +wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}. -Dieser besagt, dass wenn ein linearer kompakter Operator in -$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) -Orthonormalsystem existiert. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}, welcher für das +Sturm-Liouville-Problem von Bedeutung ist. +Welche Voraussetzungen erfüllt sein müssen, um diese Version des +Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den +Beispielen in diesem Kapitel als gegeben betrachtet werden. +Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, +also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, +falls er selbstadjungiert ist. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} -- cgit v1.2.1 From 3d0b6bf8410b37fd6d68a83ef08c6794cfdad8cd Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 11:49:37 +0200 Subject: Korrektur Einleitung Alles korrigiert --- buch/papers/sturmliouville/einleitung.tex | 53 +++++++++++++++++-------------- 1 file changed, 29 insertions(+), 24 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 78c1800..163f033 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -5,25 +5,36 @@ % \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} -Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% -Angenommen man hat die lineare homogene Differentialgleichung +Wenn die lineare homogene Differentialgleichung \begin{equation} \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \end{equation} -und schreibt die Gleichung um in: +als \begin{equation} \label{eq:sturm-liouville-equation} \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 \end{equation} -, diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet. +geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. \end{definition} +Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. + +\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also +\begin{equation} + y(a) = y(b) = 0 +\end{equation} +, so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn +\begin{equation} + y'(a) = y'(b) = 0 +\end{equation} +ergibt. -Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} @@ -32,17 +43,10 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} -kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. -Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also -\begin{equation} - y(a) = y(b) = 0 -\end{equation} -, so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn -\begin{equation} - y'(a) = y'(b) = 0 -\end{equation} -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. -Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +kombiniert, dann bekommt man das klassische Sturm-Liouville-Problem. + +\subsection{Eigenwertproblem} +Die Gleichungen \ref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. @@ -59,6 +63,7 @@ Somit ergibt die Gleichung \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. +\subsection{Koeffizientenfunktionen} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. @@ -76,12 +81,12 @@ Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. - \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. + \item $p(x)$ und $w(x)$ sind $>0$. \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. +Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. % @@ -111,7 +116,7 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{aligned} \end{equation} ist kein reguläres Sturm-Liouville-Problem. - Weil wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. @@ -121,9 +126,9 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{beispiel} Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. -Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen. +Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. -Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From 354d497301c69137fd00566b42868370d2bd46a3 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 11:57:07 +0200 Subject: einleitung fertig korrigiert --- buch/papers/sturmliouville/einleitung.tex | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 163f033..700ea1d 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -125,9 +125,8 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat. Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. -Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From b3611aa8b6f2c56c8940c18c582de0fd3dd205f2 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 12:31:12 +0200 Subject: tschebyscheff kapitel fertig geschrieben --- buch/papers/sturmliouville/einleitung.tex | 13 ++++----- .../sturmliouville/tschebyscheff_beispiel.tex | 31 +++++++++++++++------- 2 files changed, 28 insertions(+), 16 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 700ea1d..d497622 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -27,9 +27,9 @@ Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also \begin{equation} - y(a) = y(b) = 0 + y(a) = y(b) = 0, \end{equation} -, so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn +so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn \begin{equation} y'(a) = y'(b) = 0 \end{equation} @@ -53,15 +53,16 @@ Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar \begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y -\end{equation}. + \lambda \overset{Korrespondenz}\leftrightarrow y. +\end{equation} Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung \begin{equation} - \int_{a}^{b} w(x)y_m y_n = 0 -\end{equation}. + \label{eq:skalar-sturm-liouville} + \int_{a}^{b} w(x)y_m y_n = 0. +\end{equation} \subsection{Koeffizientenfunktionen} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index a18684f..3817dc0 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,8 +4,9 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit +\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}} +\subsubsection*{Definition der Koeffizientenfunktion} +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ @@ -14,10 +15,12 @@ Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfun Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} - \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 + \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0 \end{equation} nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. + +\subsubsection*{regulär oder singulär?} +Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen \begin{equation} T_n(x) = \cos n (\arccos x) @@ -28,22 +31,23 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} \end{equation*} -ist die gleiche wie $w(x)$. +ist die gleiche wie $w(x)$ und erfüllt die Bedingung. +\subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} k_a y(-1) + h_a y'(-1) &= 0 - k_b y(-1) + h_b y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} -\end{equation}. +\end{equation} Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). @@ -52,12 +56,19 @@ Somit erhält man \begin{equation} \begin{aligned} k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ - k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} -\end{equation}. +\end{equation} Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. +\begin{beispiel} + Die Gleichung \ref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + \[ + \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. + \] +\end{beispiel} + -- cgit v1.2.1