From 3aba88ca005ce951e8052d41d1cb4b448971c3ad Mon Sep 17 00:00:00 2001 From: canuel Date: Tue, 23 Aug 2022 16:19:51 +0200 Subject: chapter about recurrence relation of Legendre Associated Functions and Spherical Harmonics --- buch/papers/kugel/packages.tex | 4 +- buch/papers/kugel/proofs.tex | 2 +- buch/papers/kugel/references.bib | 9 ++ buch/papers/kugel/spherical-harmonics.tex | 166 ++++++++++++++++++++++++++++-- 4 files changed, 169 insertions(+), 12 deletions(-) (limited to 'buch') diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex index ead7653..c02589f 100644 --- a/buch/papers/kugel/packages.tex +++ b/buch/papers/kugel/packages.tex @@ -16,5 +16,5 @@ \node[gray, anchor = center] at ({#1 / 2}, {#2 / 2}) {\Huge \ttfamily \bfseries TODO}; \end{tikzpicture}} -\DeclareMathOperator{\sphlaplacian}{\nabla^2_{\mathit{S}}} -\DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial \mathit{S}}} +\DeclareMathOperator{\sphlaplacian}{\nabla^2_{S}} +\DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial S}} diff --git a/buch/papers/kugel/proofs.tex b/buch/papers/kugel/proofs.tex index 143caa8..4fbef26 100644 --- a/buch/papers/kugel/proofs.tex +++ b/buch/papers/kugel/proofs.tex @@ -166,7 +166,7 @@ \end{proof} -\begin{lemma} +\begin{lemma}\label{kugel:lemma:sol_associated_leg_eq} If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre}, then \begin{equation*} diff --git a/buch/papers/kugel/references.bib b/buch/papers/kugel/references.bib index e5d6452..e3c0f85 100644 --- a/buch/papers/kugel/references.bib +++ b/buch/papers/kugel/references.bib @@ -17,6 +17,15 @@ file = {Submitted Version:/Users/npross/Zotero/storage/SN4YUNQC/Carvalhaes and de Barros - 2015 - The surface Laplacian technique in EEG Theory and.pdf:application/pdf}, } +@article{implementation, + title = {New Implementation of Legendre Polynomials for Solving Partial Differential Equations}, + issn = {272767969}, + url = {https://www.researchgate.net/publication/272767969_New_Implementation_of_Legendre_Polynomials_for_Solving_Partial_Differential_Equations}, + shorttitle = {Implementation og Legendre Polynom}, + date = {2013-12}, + author = {Ali Davari, Abozar Ahmadi} +} + @video{minutephysics_better_2021, title = {A Better Way To Picture Atoms}, url = {https://www.youtube.com/watch?v=W2Xb2GFK2yc}, diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 72f7402..7dcb461 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -313,22 +313,20 @@ obtain the \emph{associated Legendre functions}. The functions \begin{equation} P^m_n (z) = (1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) - = \frac{1}{2^n n!}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n + = \frac{1}{2^n n!}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n, \quad |m|