From 63dee97e79f65a967f7d6b34bb8141ccaa226e20 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sat, 20 Aug 2022 23:40:29 +0200 Subject: kugel: Minor corrections --- buch/papers/kugel/spherical-harmonics.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'buch') diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 5a17b99..54c8fa9 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -607,11 +607,11 @@ short. Let's do for example lemma \ref{kugel:thm:associated-legendre-ortho}. \end{proof} But that was still rather informative and had a bit of explanation, which is -terrible. Real snobs, such as Wikipedia contributors, some authors and sometimes -regrettably even ourselves, would write instead: +terrible. Real snobs, such as Wikipedia contributors, some authors and +regrettably sometimes even ourselves, would write instead: \begin{proof}[ - Pretentiously short proof of lemma \ref{kugel:thm:associated-legendre-ortho} + Infuriatingly short proof of lemma \ref{kugel:thm:associated-legendre-ortho} ] The associated Legendre polynomials are solutions of the associated Legendre equation which is a Sturm-Liouville problem and are thus orthogonal to each @@ -688,9 +688,9 @@ In some other branches of physics such as seismology and quantum mechanics there is a so called Condon-Shortley phase factor $(-1)^m$ in front of the square root in the definition of the normalized spherical harmonics. It is yet another normalization that is added for physical reasons that are not very relevant to -our discussion, but mention its existence this potential source of confusion -since many numerical packages (such as \texttt{SHTOOLS} \kugeltodo{Reference}) -offer an option to add or remove it from the computation. +our discussion, but we mention this potential source of confusion since many +numerical packages (such as \texttt{SHTOOLS} \kugeltodo{Reference}) offer an +option to add or remove it from the computation. Though, for our purposes we will mostly only need the orthonormal spherical harmonics, so from now on, unless specified otherwise when we say spherical -- cgit v1.2.1