From ce72c8b27b09ecbf98a454f3b37019aaa948a57e Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Mon, 2 May 2022 16:02:40 +0200 Subject: Intro chapters --- buch/papers/kreismembran/main.tex | 23 ++---- buch/papers/kreismembran/teil0.tex | 16 +---- buch/papers/kreismembran/teil1.tex | 142 +++++++++++++++++++++++++------------ buch/papers/kreismembran/teil2.tex | 79 ++++++++++++--------- 4 files changed, 148 insertions(+), 112 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/main.tex b/buch/papers/kreismembran/main.tex index 67b436c..eafec18 100644 --- a/buch/papers/kreismembran/main.tex +++ b/buch/papers/kreismembran/main.tex @@ -3,28 +3,19 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:kreismembran}} -\lhead{Thema} +\chapter{Schwingungen einer kreisförmligen Membran\label{chapter:kreismembran}} +\lhead{Schwingungen einer kreisförmligen Membran} \begin{refsection} -\chapterauthor{Hans Muster} - -Ein paar Hinweise für die korrekte Formatierung des Textes +\chapterauthor{Andrea Mozzini Vellen und Tim Tönz} \begin{itemize} \item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. +Tim ist ein snitch \item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. +ich dachte wir sind gute Freunden \item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. +du schuldest mir ein bier \item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. +auch ein gin tonic \end{itemize} \input{papers/kreismembran/teil0.tex} diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index e4b1711..1552259 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -3,20 +3,8 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{kreismembran:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{kreismembran:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +\section{Einleitung\label{kreismembran:section:teil0}} +\rhead{Einleitung} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index b715075..29a47a6 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -2,54 +2,102 @@ % teil1.tex -- Beispiel-File für das Paper % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{kreismembran:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt + +\section{Die Hankel Transformation \label{kreismembran:section:teil1}} +\rhead{Die Hankel Transformation} + +Hermann Hankel (1839-1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analyse und insbesondere für seine namensgebende Transformation bekannt ist. +Diese Transformation tritt bei der Untersuchung von funktionen auf, die nur von der Enternung des Ursprungs abhängen. +Er studierte auch funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. +Die Hankel Transformation mit Bessel Funktionen al Kern taucht natürlich bei achsensymmetrischen Problemen auf, die in Zylindrischen Polarkoordinaten formuliert sind. +In diesem Kapitel werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. + +Wir führen die Definition der Hankel Transformation aus der zweidimensionalen Fourier Transformation und ihrer Umkehrung ein, die durch: +\begin{align} + \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) dx dy,\label{equation:fourier_transform}\\ + \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) dx dy \label{equation:inv_fourier_transform} +\end{align} +wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Wie bereits erwähnt, sind Polarkoordinaten für diese Art von Problemen am besten geeignet, also mit, $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$, findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +\begin{align} + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) d\phi. + \label{equation:F_ohne_variable_wechsel} +\end{align} +Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \ref{equation:F_ohne_variable_wechsel} zu reduzieren: +\begin{align} + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} d\alpha, + \label{equation:F_ohne_bessel} +\end{align} +wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. + +Unter Verwendung der Integral Darstellung der Besselfunktion vom Ordnung n +\begin{align} + J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} d\alpha + \label{equation:bessel_n_ordnung} +\end{align} +\eqref{equation:F_ohne_bessel} wird sie zu: +\begin{align} + F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr \label{equation:F_mit_bessel_step_1} \\ + &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), + \label{equation:F_mit_bessel_step_2} +\end{align} +wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel Transformation} von $f(r)$ und ist formell definiert durch: +\begin{align} + \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr. + \label{equation:hankel} +\end{align} + +Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \ref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \ref{equation:inv_fourier_transform}: + +\begin{align*} + e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) d\phi\\ + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} d\phi, +\end{align*} +was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, + +\begin{align} + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} d\alpha \nonumber \\ + &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa,\quad \text{von \eqref{equation:bessel_n_ordnung}} +\end{align} + +Also, die inverse \textit{Hankel Transformation} ist so definiert: +\begin{align} + \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa. + \label{equation:inv_hankel} +\end{align} + +Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel Transformation verwendet, indem die Ordnung angegeben wird. +\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. +Alternativ kann auch die berühmte Hankel Transformationsformel verwendet werden, + +\begin{align} + f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) dp, + \label{equation:hankel_integral_formula} +\end{align} +um die Hankel Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. +Insbesondere die Hankel Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. + +\subsection{Operative Eigenschaften der Hankel Transformation\label{sub:op_properties_hankel}} +In diesem Kapitel werden die operativen Eigenschaften der Hankel Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. + +\subsubsection{Skalierung \label{subsub:skalierung}} +Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: + +\begin{equation} + \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. +\end{equation} + +\subsubsection{Persevalsche Relation \label{subsub:perseval}} +Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: + \begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{kreismembran:equation1} + \int_{0}^{\infty}rf(r) dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) d\kappa. \end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{kreismembran:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{kreismembran:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{kreismembran:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +\subsubsection{Hankel Transformationen von Ableitungen \label{subsub:ableitungen}} +Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: +\begin{align} + &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ + &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), +\end{align} +bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty=0$. \ No newline at end of file diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 7ed217f..45357f2 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -1,40 +1,49 @@ % -% teil2.tex -- Beispiel-File für teil2 -% % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 -\label{kreismembran:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kreismembran:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\section{Lösung der partiellen Differentialgleichung + \label{kreismembran:section:teil2}} +\rhead{Lösung der partiellen Differentialgleichung} + +Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: +\begin{equation*} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u +\end{equation*} +Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt: +\begin{equation*} + \Delta + = + \frac{\partial^2}{\partial r^2} + + + \frac1r + \frac{\partial}{\partial r} + + + \frac{1}{r 2} + \frac{\partial^2}{\partial\varphi^2}. + \label{buch:pde:kreis:laplace} +\end{equation*} + +Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. +Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. +Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran. + +Daher ist die Membranabweichung im Punkt $(r,\theta)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: +\begin{align*} + u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ + (r,\theta,t) &\longmapsto u(r,\theta,t) +\end{align*} +Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt: +\begin{equation*} + u\big|_{\Gamma} = 0 +\end{equation*} + + +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: + +\begin{align*} + u(r,\theta, 0) &:= f(x,y)\\ + \frac{\partial}{\partial t} u(r,\theta, 0) &:= g(x,y) +\end{align*} +An dieser Stelle könnte man zum Beispiel die bereits in Kapitel (TODO:refKAPITEL) vorgestellte Methode der Separation anwenden. Da es sich in diesem Fall jedoch um einem achsensymmetrischen Problem handelt, das in Polarkoordinaten formuliert ist, wird man die Transformationsmethode verwenden, insbesondere die Hankel Transformation. -- cgit v1.2.1 From 951cc9bc8c55fe00180ee97023ed79452e8b4a25 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 12:47:50 +0200 Subject: fix some bugs --- buch/chapters/070-orthogonalitaet/orthogonal.tex | 4 +- buch/chapters/070-orthogonalitaet/rekursion.tex | 10 ++-- buch/papers/nav/images/Makefile | 33 ++++++++++++ buch/papers/nav/images/dreieck1.pdf | Bin 0 -> 11578 bytes buch/papers/nav/images/dreieck1.tex | 59 +++++++++++++++++++++ buch/papers/nav/images/dreieck2.pdf | Bin 0 -> 8812 bytes buch/papers/nav/images/dreieck2.tex | 59 +++++++++++++++++++++ buch/papers/nav/images/dreieck3.pdf | Bin 0 -> 10636 bytes buch/papers/nav/images/dreieck3.tex | 59 +++++++++++++++++++++ buch/papers/nav/images/dreieck4.pdf | Bin 0 -> 13231 bytes buch/papers/nav/images/dreieck4.tex | 64 +++++++++++++++++++++++ buch/papers/nav/images/dreieck5.pdf | Bin 0 -> 8721 bytes buch/papers/nav/images/dreieck5.tex | 64 +++++++++++++++++++++++ buch/papers/nav/images/dreieck6.pdf | Bin 0 -> 10699 bytes buch/papers/nav/images/dreieck6.tex | 64 +++++++++++++++++++++++ buch/papers/nav/images/dreieck7.pdf | Bin 0 -> 11079 bytes buch/papers/nav/images/dreieck7.tex | 64 +++++++++++++++++++++++ 17 files changed, 473 insertions(+), 7 deletions(-) create mode 100644 buch/papers/nav/images/dreieck1.pdf create mode 100644 buch/papers/nav/images/dreieck1.tex create mode 100644 buch/papers/nav/images/dreieck2.pdf create mode 100644 buch/papers/nav/images/dreieck2.tex create mode 100644 buch/papers/nav/images/dreieck3.pdf create mode 100644 buch/papers/nav/images/dreieck3.tex create mode 100644 buch/papers/nav/images/dreieck4.pdf create mode 100644 buch/papers/nav/images/dreieck4.tex create mode 100644 buch/papers/nav/images/dreieck5.pdf create mode 100644 buch/papers/nav/images/dreieck5.tex create mode 100644 buch/papers/nav/images/dreieck6.pdf create mode 100644 buch/papers/nav/images/dreieck6.tex create mode 100644 buch/papers/nav/images/dreieck7.pdf create mode 100644 buch/papers/nav/images/dreieck7.tex (limited to 'buch') diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index a84248a..677e865 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -842,14 +842,14 @@ bei geeigneter Normierung die {\em Hermite-Polynome}. % % Laguerre-Gewichtsfunktion % -\subsection{Laguerre-Gewichtsfunktion} +\subsubsection{Laguerre-Gewichtsfunktion} Ähnlich wie die Hermite-Gewichtsfunktion ist die {\em Laguerre-Gewichtsfunktion} \index{Laguerre-Gewichtsfunktion}% \[ w_{\text{Laguerre}}(x) = -w^{-x} +e^{-x} \] auf ganz $\mathbb{R}$ definiert, und sie geht für $x\to\infty$ wieder sehr rasch gegen $0$. diff --git a/buch/chapters/070-orthogonalitaet/rekursion.tex b/buch/chapters/070-orthogonalitaet/rekursion.tex index 5ec7fed..dc5531b 100644 --- a/buch/chapters/070-orthogonalitaet/rekursion.tex +++ b/buch/chapters/070-orthogonalitaet/rekursion.tex @@ -30,7 +30,7 @@ Skalarproduktes $\langle\,\;,\;\rangle_w$, wenn für alle $n$, $m$. \end{definition} -\subsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome} +\subsubsection{Allgemeine Drei-Term-Rekursion für orthogonale Polynome} Der folgende Satz besagt, dass $p_n$ eine Rekursionsbeziehung erfüllt. \begin{satz} @@ -55,7 +55,7 @@ C_{n+1} = \frac{A_{n+1}}{A_n}\frac{h_{n+1}}{h_n}. \end{equation} \end{satz} -\subsection{Multiplikationsoperator mit $x$} +\subsubsection{Multiplikationsoperator mit $x$} Man kann die Relation auch nach dem Produkt $xp_n(x)$ auflösen, dann wird sie \begin{equation} @@ -72,7 +72,7 @@ Die Multiplikation mit $x$ ist eine lineare Abbildung im Raum der Funktionen. Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} besagt, dass diese Abbildung in der Basis der Polynome $p_k$ tridiagonale Form hat. -\subsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome} +\subsubsection{Drei-Term-Rekursion für die Tschebyscheff-Polynome} Eine Relation der Form~\eqref{buch:orthogonal:eqn:multixrelation} wurde bereits in Abschnitt~\ref{buch:potenzen:tschebyscheff:rekursionsbeziehungen} @@ -80,12 +80,12 @@ hergeleitet. In der Form~\eqref{buch:orthogonal:eqn:rekursion} geschrieben lautet sie \[ -T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x). +T_{n+1}(x) = 2x\,T_n(x)-T_{n-1}(x), \] also $A_n=2$, $B_n=0$ und $C_n=1$. -\subsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}} +\subsubsection{Beweis von Satz~\ref{buch:orthogonal:satz:drei-term-rekursion}} Die Relation~\eqref{buch:orthogonal:eqn:multixrelation} zeigt auch, dass der Beweis die Koeffizienten $\langle xp_k,p_j\rangle_w$ berechnen muss. diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index a0d7b34..0c1cbc3 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -3,9 +3,42 @@ # # (c) 2022 # +all: dreiecke dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex pdflatex dreieck.tex dreieckdata.tex: pk.m octave pk.m + +DREIECKE = \ + dreieck1.pdf \ + dreieck2.pdf \ + dreieck3.pdf \ + dreieck4.pdf \ + dreieck5.pdf \ + dreieck6.pdf \ + dreieck7.pdf + +dreiecke: $(DREIECKE) + +dreieck1.pdf: dreieck1.tex dreieckdata.tex macros.tex + pdflatex dreieck1.tex + +dreieck2.pdf: dreieck2.tex dreieckdata.tex macros.tex + pdflatex dreieck2.tex + +dreieck3.pdf: dreieck3.tex dreieckdata.tex macros.tex + pdflatex dreieck3.tex + +dreieck4.pdf: dreieck4.tex dreieckdata.tex macros.tex + pdflatex dreieck4.tex + +dreieck5.pdf: dreieck5.tex dreieckdata.tex macros.tex + pdflatex dreieck5.tex + +dreieck6.pdf: dreieck6.tex dreieckdata.tex macros.tex + pdflatex dreieck6.tex + +dreieck7.pdf: dreieck7.tex dreieckdata.tex macros.tex + pdflatex dreieck7.tex diff --git a/buch/papers/nav/images/dreieck1.pdf b/buch/papers/nav/images/dreieck1.pdf new file mode 100644 index 0000000..5bdf23d Binary files /dev/null and b/buch/papers/nav/images/dreieck1.pdf differ diff --git a/buch/papers/nav/images/dreieck1.tex b/buch/papers/nav/images/dreieck1.tex new file mode 100644 index 0000000..436314c --- /dev/null +++ b/buch/papers/nav/images/dreieck1.tex @@ -0,0 +1,59 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelAlpha{red} +\winkelGamma{blue} +\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck2.pdf b/buch/papers/nav/images/dreieck2.pdf new file mode 100644 index 0000000..a872b25 Binary files /dev/null and b/buch/papers/nav/images/dreieck2.pdf differ diff --git a/buch/papers/nav/images/dreieck2.tex b/buch/papers/nav/images/dreieck2.tex new file mode 100644 index 0000000..99aabb7 --- /dev/null +++ b/buch/papers/nav/images/dreieck2.tex @@ -0,0 +1,59 @@ +% +% dreieck2.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +%\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck3.pdf b/buch/papers/nav/images/dreieck3.pdf new file mode 100644 index 0000000..65070c6 Binary files /dev/null and b/buch/papers/nav/images/dreieck3.pdf differ diff --git a/buch/papers/nav/images/dreieck3.tex b/buch/papers/nav/images/dreieck3.tex new file mode 100644 index 0000000..0cf5363 --- /dev/null +++ b/buch/papers/nav/images/dreieck3.tex @@ -0,0 +1,59 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\seiteC{black} +\seiteB{black} +%\seiteA{black} + +%\seiteL{gray} +\seitePB{gray} +\seitePC{gray} + +\draw[line width=1.4pt] \kanteAB; +\draw[line width=1.4pt] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[line width=1.4pt] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[color=gray] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{gray}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node[color=gray] at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck4.pdf b/buch/papers/nav/images/dreieck4.pdf new file mode 100644 index 0000000..4871a1e Binary files /dev/null and b/buch/papers/nav/images/dreieck4.pdf differ diff --git a/buch/papers/nav/images/dreieck4.tex b/buch/papers/nav/images/dreieck4.tex new file mode 100644 index 0000000..19a7d12 --- /dev/null +++ b/buch/papers/nav/images/dreieck4.tex @@ -0,0 +1,64 @@ +% +% dreieck4.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +\winkelBetaEins{brown} + +%\seiteC{gray} +%\seiteB{gray} +%\seiteL{gray} + +\seiteA{black} +\seitePB{black} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=gray] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[color=black,line width=1.4pt] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{gray}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node[color=gray] at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck5.pdf b/buch/papers/nav/images/dreieck5.pdf new file mode 100644 index 0000000..cf686e0 Binary files /dev/null and b/buch/papers/nav/images/dreieck5.pdf differ diff --git a/buch/papers/nav/images/dreieck5.tex b/buch/papers/nav/images/dreieck5.tex new file mode 100644 index 0000000..d1117d1 --- /dev/null +++ b/buch/papers/nav/images/dreieck5.tex @@ -0,0 +1,64 @@ +% +% dreieck4.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +%\winkelBetaEins{brown} + +%\seiteC{gray} +%\seiteB{gray} +%\seiteL{gray} + +%\seiteA{black} +\seitePB{black} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=gray] \kanteAC; +%\draw[color=gray] \kanteAP; +\draw[color=black,line width=1.4pt] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{gray}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node[color=gray] at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck6.pdf b/buch/papers/nav/images/dreieck6.pdf new file mode 100644 index 0000000..7efd673 Binary files /dev/null and b/buch/papers/nav/images/dreieck6.pdf differ diff --git a/buch/papers/nav/images/dreieck6.tex b/buch/papers/nav/images/dreieck6.tex new file mode 100644 index 0000000..87db1c2 --- /dev/null +++ b/buch/papers/nav/images/dreieck6.tex @@ -0,0 +1,64 @@ +% +% dreieck6.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +%\winkelOmega{gray} +%\winkelBetaEins{brown} + +\seiteC{black} +\seiteB{black} +%\seiteA{gray} + +\seiteL{black} +\seitePB{black} +\seitePC{black} + +\draw[color=black,line width=1.4pt] \kanteAB; +\draw[color=black,line width=1.4pt] \kanteAC; +\draw[color=black,line width=1.4pt] \kanteAP; +%\draw[color=gray] \kanteBC; +\draw[color=black,line width=1.4pt] \kanteBP; +\draw[color=black,line width=1.4pt] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{black}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node at (A) [above] {$A$}; +\node at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/nav/images/dreieck7.pdf b/buch/papers/nav/images/dreieck7.pdf new file mode 100644 index 0000000..aa83e28 Binary files /dev/null and b/buch/papers/nav/images/dreieck7.pdf differ diff --git a/buch/papers/nav/images/dreieck7.tex b/buch/papers/nav/images/dreieck7.tex new file mode 100644 index 0000000..f084708 --- /dev/null +++ b/buch/papers/nav/images/dreieck7.tex @@ -0,0 +1,64 @@ +% +% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\skala{1} + +\def\punkt#1#2{ + \fill[color=#2] #1 circle[radius=0.08]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{dreieckdata.tex} +\input{macros.tex} + +%\winkelKappa{gray} + +%\winkelAlpha{red} +%\winkelGamma{blue} +%\winkelBeta{darkgreen} + +\winkelOmega{gray} +%\winkelBetaEins{brown} + +\seiteC{black} +\seiteB{black} +\seiteA{gray} + +\seiteL{black} +\seitePB{gray} +\seitePC{black} + +\draw[color=gray] \kanteAB; +\draw[color=black,line width=1.4pt] \kanteAC; +\draw[color=black,line width=1.4pt] \kanteAP; +\draw[color=gray] \kanteBC; +\draw[color=gray] \kanteBP; +\draw[line width=1.4pt] \kanteCP; + +\punkt{(A)}{black}; +\punkt{(B)}{gray}; +\punkt{(C)}{black}; +\punkt{(P)}{black}; + +\node at (A) [above] {$A$}; +\node[color=gray] at (B) [left] {$B$}; +\node at (C) [right] {$C$}; +\node at (P) [below] {$P$}; + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From 7b3657a77eeec57f2dd21de6fdc36e5240560c8e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 15:13:30 +0200 Subject: improvements --- buch/papers/fm/anim/Makefile | 12 +++++ buch/papers/fm/anim/animation.tex | 85 +++++++++++++++++++++++++++++++++ buch/papers/fm/anim/fm.m | 98 +++++++++++++++++++++++++++++++++++++++ 3 files changed, 195 insertions(+) create mode 100644 buch/papers/fm/anim/Makefile create mode 100644 buch/papers/fm/anim/animation.tex create mode 100644 buch/papers/fm/anim/fm.m (limited to 'buch') diff --git a/buch/papers/fm/anim/Makefile b/buch/papers/fm/anim/Makefile new file mode 100644 index 0000000..f4c7850 --- /dev/null +++ b/buch/papers/fm/anim/Makefile @@ -0,0 +1,12 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller +# +all: animation.pdf + +parts.tex: fm.m + octave fm.m + +animation.pdf: animation.tex parts.tex + pdflatex animation.tex diff --git a/buch/papers/fm/anim/animation.tex b/buch/papers/fm/anim/animation.tex new file mode 100644 index 0000000..4a6f428 --- /dev/null +++ b/buch/papers/fm/anim/animation.tex @@ -0,0 +1,85 @@ +% +% animation.tex +% +% (c) 2022 Prof Dr Andreas Müller, +% +\documentclass[aspectratio=169]{beamer} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{epic} +\usepackage{color} +\usepackage{array} +\usepackage{ifthen} +\usepackage{lmodern} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{nccmath} +\usepackage{mathtools} +\usepackage{adjustbox} +\usepackage{multimedia} +\usepackage{verbatim} +\usepackage{wasysym} +\usepackage{stmaryrd} +\usepackage{tikz} +\usetikzlibrary{shapes.geometric} +\usetikzlibrary{decorations.pathreplacing} +\usetikzlibrary{calc} +\usetikzlibrary{arrows} +\usetikzlibrary{3d} +\usetikzlibrary{arrows,shapes,math,decorations.text,automata} +\usepackage{pifont} +\usepackage[all]{xy} +\usepackage[many]{tcolorbox} +\mode{% +\usetheme[hideothersubsections,hidetitle]{Hannover} +} +\beamertemplatenavigationsymbolsempty +\begin{document} + +\def\spektrum#1#2{ +\only<#1>{ + \begin{scope} + \color{red} + \input{#2} + \end{scope} +} +} + +\begin{frame} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\def\df{0.37} +\def\da{1} + +\draw[->,color=gray] (0,-0.1) -- (0,6.3) [right] coordinate[label={right:$a$}]; + +\foreach \a in {1,...,5}{ + \draw[color=gray!50] (-6,{(6-\a)*\da}) -- (6,{(6-\a)*\da}); +} +\draw[color=gray!50] (-6,{6*\da}) -- (6,{6*\da}); +\foreach \f in {-15,-10,-5,5,10,15}{ + \draw[color=gray!50] ({\f*\df},0) -- ({\f*\df},{6*\da}); +} + +\input{parts.tex} + +\draw[->] (-6.1,0) -- (6.9,0) coordinate[label={$f$}]; +\foreach \f in {-16,...,16}{ + \draw ({\f*\df},-0.05) -- ({\f*\df},0.05); +} +\foreach \f in {-15,-10,-5,5,10,15}{ + \node at ({\f*\df},-0.1) [below] {$\f f_m$}; + \draw ({\f*\df},-0.1) -- ({\f*\df},0.1); +} +\node at (0,-0.1) [below] {$0$}; + +\foreach \a in {1,...,5}{ + \node at (6,{(6-\a)*\da}) [right] {$-\a$}; +} +\node at (6,{6*\da}) [right] {$\phantom{-}0$}; + +\end{tikzpicture} +\end{center} +\end{frame} + +\end{document} diff --git a/buch/papers/fm/anim/fm.m b/buch/papers/fm/anim/fm.m new file mode 100644 index 0000000..9062818 --- /dev/null +++ b/buch/papers/fm/anim/fm.m @@ -0,0 +1,98 @@ +# +# fm.m -- animation frequenzspektrum +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global fc; +fc = 1e6; +global width; +width = 16; +global fm; +fm = 1000; +global gamma; +gamma = 2; +global resolution; +resolution = 300; + +function retval = spektrum(beta, fm) + global width; + global fc; + retval = zeros(2 * width + 1, 2); + center = width + 1; + for k = (0:width) + retval(center - k, 1) = fc - k * fm; + retval(center + k, 1) = fc + k * fm; + a = besselj(k, beta); + retval(center - k, 2) = a; + retval(center + k, 2) = a; + endfor +endfunction + +function drawspectrum(fn, spectrum, foffset, fscale, beta) + n = size(spectrum)(1,1); + for i = (1:n) + f = (spectrum(i, 1) - foffset)/fscale; + a = log10(spectrum(i, 2)) + 6; + if (a < 0) + a = 0; + end + fprintf(fn, "\\draw[line width=3.5pt] "); + fprintf(fn, "({%.2f*\\df},0) -- ({%.2f*\\df},{%.5f*\\da});\n", + f, f, abs(a)); + fprintf(fn, "\\node at ({-15*\\df},5.5) [right] {$\\beta = %.3f$};", beta); + endfor +endfunction + +function drawhull(fn, beta) + global resolution; + fprintf(fn, "\\begin{scope}\n"); + fprintf(fn, "\\clip ({-16.5*\\df},0) rectangle ({16.5*\\df},{6*\\da});\n"); + p = zeros(resolution, 2); + for k = (1:resolution) + nu = 16.5 * (k - 1) / resolution; + p(k,1) = nu; + y = log10(abs(besselj(nu, beta))) + 6; + p(k,2) = y; + end + fprintf(fn, "\\draw[color=blue] ({%.4f*\\df},{%.5f*\\da})", + p(1,1), p(1,2)); + for k = (2:resolution) + fprintf(fn, "\n -- ({%.4f*\\df},{%.5f*\\da})", + p(k,1), p(k,2)); + endfor + fprintf(fn, ";\n\n"); + fprintf(fn, "\\draw[color=blue] ({%.4f*\\df},{%.5f*\\da})", + p(1,1), p(1,2)); + for k = (2:resolution) + fprintf(fn, "\n -- ({%.4f*\\df},{%.5f*\\da})", + -p(k,1), p(k,2)); + endfor + fprintf(fn, ";\n\n"); + fprintf(fn, "\\end{scope}\n"); +endfunction + +function animation(betamin, betamax, steps) + global fm; + global fc; + global gamma; + fa = fopen("parts.tex", "w"); + for k = (1:steps) + % add entry to parts.tex + fprintf(fa, "\\spektrum{%d}{texfiles/a%04d.tex}\n", k, k); + % compute beta + x = (k - 1) / (steps - 1); + beta = betamin + (betamax - betamin) * (x ^ gamma); + % create a new file + name = sprintf("texfiles/a%04d.tex", k); + fn = fopen(name, "w"); + % write the hull + drawhull(fn, beta); + % compute and write the spectrum + spectrum = spektrum(beta, fm); + drawspectrum(fn, spectrum, fc, fm, beta); + fclose(fn); + endfor + fclose(fa); +endfunction + +animation(0.001,10.1,200) -- cgit v1.2.1 From d223b0ff1fb5364b2b243b8fd4fd7a0e9ffba285 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 20:12:50 +0200 Subject: 3dimages --- buch/papers/nav/images/Makefile | 66 ++++++++++++++- buch/papers/nav/images/common.inc | 149 ++++++++++++++++++++++++++++++++++ buch/papers/nav/images/dreieck3d1.pov | 58 +++++++++++++ buch/papers/nav/images/dreieck3d1.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d2.pov | 26 ++++++ buch/papers/nav/images/dreieck3d2.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d3.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d3.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d4.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d4.tex | 54 ++++++++++++ buch/papers/nav/images/dreieck3d5.pov | 26 ++++++ buch/papers/nav/images/dreieck3d5.tex | 53 ++++++++++++ buch/papers/nav/images/dreieck3d6.pov | 37 +++++++++ buch/papers/nav/images/dreieck3d6.tex | 55 +++++++++++++ buch/papers/nav/images/dreieck3d7.pov | 39 +++++++++ buch/papers/nav/images/dreieck3d7.tex | 55 +++++++++++++ 16 files changed, 850 insertions(+), 1 deletion(-) create mode 100644 buch/papers/nav/images/common.inc create mode 100644 buch/papers/nav/images/dreieck3d1.pov create mode 100644 buch/papers/nav/images/dreieck3d1.tex create mode 100644 buch/papers/nav/images/dreieck3d2.pov create mode 100644 buch/papers/nav/images/dreieck3d2.tex create mode 100644 buch/papers/nav/images/dreieck3d3.pov create mode 100644 buch/papers/nav/images/dreieck3d3.tex create mode 100644 buch/papers/nav/images/dreieck3d4.pov create mode 100644 buch/papers/nav/images/dreieck3d4.tex create mode 100644 buch/papers/nav/images/dreieck3d5.pov create mode 100644 buch/papers/nav/images/dreieck3d5.tex create mode 100644 buch/papers/nav/images/dreieck3d6.pov create mode 100644 buch/papers/nav/images/dreieck3d6.tex create mode 100644 buch/papers/nav/images/dreieck3d7.pov create mode 100644 buch/papers/nav/images/dreieck3d7.tex (limited to 'buch') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index 0c1cbc3..c9dcacc 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2022 # -all: dreiecke +all: dreiecke3d dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex pdflatex dreieck.tex @@ -42,3 +42,67 @@ dreieck6.pdf: dreieck6.tex dreieckdata.tex macros.tex dreieck7.pdf: dreieck7.tex dreieckdata.tex macros.tex pdflatex dreieck7.tex + +DREIECKE3D = \ + dreieck3d1.pdf \ + dreieck3d2.pdf \ + dreieck3d3.pdf \ + dreieck3d4.pdf \ + dreieck3d5.pdf \ + dreieck3d6.pdf \ + dreieck3d7.pdf + +dreiecke3d: $(DREIECKE3D) + +POVRAYOPTIONS = -W1080 -H1080 +#POVRAYOPTIONS = -W480 -H480 + +dreieck3d1.png: dreieck3d1.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d1.png dreieck3d1.pov +dreieck3d1.jpg: dreieck3d1.png + convert dreieck3d1.png -density 300 -units PixelsPerInch dreieck3d1.jpg +dreieck3d1.pdf: dreieck3d1.tex dreieck3d1.jpg + pdflatex dreieck3d1.tex + +dreieck3d2.png: dreieck3d2.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d2.png dreieck3d2.pov +dreieck3d2.jpg: dreieck3d2.png + convert dreieck3d2.png -density 300 -units PixelsPerInch dreieck3d2.jpg +dreieck3d2.pdf: dreieck3d2.tex dreieck3d2.jpg + pdflatex dreieck3d2.tex + +dreieck3d3.png: dreieck3d3.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d3.png dreieck3d3.pov +dreieck3d3.jpg: dreieck3d3.png + convert dreieck3d3.png -density 300 -units PixelsPerInch dreieck3d3.jpg +dreieck3d3.pdf: dreieck3d3.tex dreieck3d3.jpg + pdflatex dreieck3d3.tex + +dreieck3d4.png: dreieck3d4.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d4.png dreieck3d4.pov +dreieck3d4.jpg: dreieck3d4.png + convert dreieck3d4.png -density 300 -units PixelsPerInch dreieck3d4.jpg +dreieck3d4.pdf: dreieck3d4.tex dreieck3d4.jpg + pdflatex dreieck3d4.tex + +dreieck3d5.png: dreieck3d5.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d5.png dreieck3d5.pov +dreieck3d5.jpg: dreieck3d5.png + convert dreieck3d5.png -density 300 -units PixelsPerInch dreieck3d5.jpg +dreieck3d5.pdf: dreieck3d5.tex dreieck3d5.jpg + pdflatex dreieck3d5.tex + +dreieck3d6.png: dreieck3d6.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d6.png dreieck3d6.pov +dreieck3d6.jpg: dreieck3d6.png + convert dreieck3d6.png -density 300 -units PixelsPerInch dreieck3d6.jpg +dreieck3d6.pdf: dreieck3d6.tex dreieck3d6.jpg + pdflatex dreieck3d6.tex + +dreieck3d7.png: dreieck3d7.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d7.png dreieck3d7.pov +dreieck3d7.jpg: dreieck3d7.png + convert dreieck3d7.png -density 300 -units PixelsPerInch dreieck3d7.jpg +dreieck3d7.pdf: dreieck3d7.tex dreieck3d7.jpg + pdflatex dreieck3d7.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc new file mode 100644 index 0000000..33d9384 --- /dev/null +++ b/buch/papers/nav/images/common.inc @@ -0,0 +1,149 @@ +// +// common.inc -- 3d Darstellung +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.034; + +#declare A = vnormalize(< 0, 1, 0>); +#declare B = vnormalize(< 1, 2, -8>); +#declare C = vnormalize(< 5, 1, 0>); +#declare P = vnormalize(< 5, -1, -7>); + +camera { + location <40, 20, -20> + look_at <0, 0.24, -0.20> + right x * imagescale + up y * imagescale +} + +light_source { + <10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +#macro grosskreis(normale, staerke) +union { + #declare v1 = vcross(normale, ); + #declare v1 = vnormalize(v1); + #declare v2 = vnormalize(vcross(v1, normale)); + #declare phisteps = 100; + #declare phistep = pi / phisteps; + #declare phi = 0; + #declare p1 = v1; + #while (phi < 2 * pi - phistep/2) + sphere { p1, staerke } + #declare phi = phi + phistep; + #declare p2 = v1 * cos(phi) + v2 * sin(phi); + cylinder { p1, p2, staerke } + #declare p1 = p2; + #end +} +#end + +#macro seite(p, q, staerke) + #declare n = vcross(p, q); + intersection { + grosskreis(n, staerke) + plane { -vcross(n, q) * vdot(vcross(n, q), p), 0 } + plane { -vcross(n, p) * vdot(vcross(n, p), q), 0 } + } +#end + +#macro winkel(w, p, q, staerke) + #declare n = vnormalize(w); + #declare pp = vnormalize(p - vdot(n, p) * n); + #declare qq = vnormalize(q - vdot(n, q) * n); + intersection { + sphere { <0, 0, 0>, 1 + staerke } + cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), 0.4 } + plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } + plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } + } +#end + +#macro punkt(p, staerke) + sphere { p, 1.5 * staerke } +#end + +#declare fett = 0.015; +#declare fine = 0.010; + +#declare dreieckfarbe = rgb<0.6,0.6,0.6>; +#declare rot = rgb<0.8,0.2,0.2>; +#declare gruen = rgb<0,0.6,0>; +#declare blau = rgb<0.2,0.2,0.8>; + +sphere { + <0, 0, 0>, 1 + pigment { + color rgb<0.8,0.8,0.8> + } +} + +//union { +// sphere { A, 0.02 } +// sphere { B, 0.02 } +// sphere { C, 0.02 } +// sphere { P, 0.02 } +// pigment { +// color Red +// } +//} + +//union { +// winkel(A, B, C) +// winkel(B, P, C) +// seite(B, C, 0.01) +// seite(B, P, 0.01) +// pigment { +// color rgb<0,0.6,0> +// } +//} diff --git a/buch/papers/nav/images/dreieck3d1.pov b/buch/papers/nav/images/dreieck3d1.pov new file mode 100644 index 0000000..8afe60e --- /dev/null +++ b/buch/papers/nav/images/dreieck3d1.pov @@ -0,0 +1,58 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fine) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, A, fine) + pigment { + color gruen + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(C, A, B, fine) + pigment { + color blau + } + finish { + specular 0.95 + metallic + } +} diff --git a/buch/papers/nav/images/dreieck3d1.tex b/buch/papers/nav/images/dreieck3d1.tex new file mode 100644 index 0000000..799b21a --- /dev/null +++ b/buch/papers/nav/images/dreieck3d1.tex @@ -0,0 +1,53 @@ +% +% dreieck3d1.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d1.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3) {$\alpha$}; +\node at (-2.5,-0.5) {$\beta$}; +\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d2.pov b/buch/papers/nav/images/dreieck3d2.pov new file mode 100644 index 0000000..c23a54c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d2.pov @@ -0,0 +1,26 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d2.tex b/buch/papers/nav/images/dreieck3d2.tex new file mode 100644 index 0000000..0f6e10c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d2.tex @@ -0,0 +1,53 @@ +% +% dreieck3d2.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d2.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d3.pov b/buch/papers/nav/images/dreieck3d3.pov new file mode 100644 index 0000000..f2496b5 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d3.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fine) + seite(B, P, fine) + seite(C, P, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fine) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d3.tex b/buch/papers/nav/images/dreieck3d3.tex new file mode 100644 index 0000000..a047b1b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d3.tex @@ -0,0 +1,53 @@ +% +% dreieck3d3.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d3.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d4.pov b/buch/papers/nav/images/dreieck3d4.pov new file mode 100644 index 0000000..bddcf7c --- /dev/null +++ b/buch/papers/nav/images/dreieck3d4.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fine) + seite(A, C, fine) + punkt(A, fine) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + seite(B, C, fett) + seite(B, P, fett) + seite(C, P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, P, fine) + pigment { + color rgb<0.6,0.4,0.2> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d4.tex b/buch/papers/nav/images/dreieck3d4.tex new file mode 100644 index 0000000..d49fb66 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d4.tex @@ -0,0 +1,54 @@ +% +% dreieck3d4.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d4.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +%\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +%\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.3,-1.5) {$\beta_1$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d5.pov b/buch/papers/nav/images/dreieck3d5.pov new file mode 100644 index 0000000..32fc9e6 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d5.pov @@ -0,0 +1,26 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fine) + seite(A, C, fine) + punkt(A, fine) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + seite(B, C, fett) + seite(B, P, fett) + seite(C, P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d5.tex b/buch/papers/nav/images/dreieck3d5.tex new file mode 100644 index 0000000..8011b37 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d5.tex @@ -0,0 +1,53 @@ +% +% dreieck3d5.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d5.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +%\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +%\node at (2.6,1.5) {$b$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d6.pov b/buch/papers/nav/images/dreieck3d6.pov new file mode 100644 index 0000000..7611950 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d6.pov @@ -0,0 +1,37 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(A, C, fett) + seite(B, P, fett) + seite(C, P, fett) + seite(A, P, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, A, P, fine) + pigment { + color rgb<0.6,0.2,0.6> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d6.tex b/buch/papers/nav/images/dreieck3d6.tex new file mode 100644 index 0000000..bbca2ca --- /dev/null +++ b/buch/papers/nav/images/dreieck3d6.tex @@ -0,0 +1,55 @@ +% +% dreieck3d6.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d6.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +%\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.7,0.3) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.4,-0.6) {$\kappa$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/nav/images/dreieck3d7.pov b/buch/papers/nav/images/dreieck3d7.pov new file mode 100644 index 0000000..fa48f5b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d7.pov @@ -0,0 +1,39 @@ +// +// dreiecke3d.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, C, fett) + seite(A, P, fett) + seite(C, P, fett) + + seite(A, B, fine) + seite(B, C, fine) + seite(B, P, fine) + punkt(A, fett) + punkt(C, fett) + punkt(P, fett) + punkt(B, fine) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, P, C, fine) + pigment { + color rgb<0.4,0.4,1> + } + finish { + specular 0.95 + metallic + } +} + diff --git a/buch/papers/nav/images/dreieck3d7.tex b/buch/papers/nav/images/dreieck3d7.tex new file mode 100644 index 0000000..4027a8b --- /dev/null +++ b/buch/papers/nav/images/dreieck3d7.tex @@ -0,0 +1,55 @@ +% +% dreieck3d7.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d7.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.7,0.3) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +%\node at (0.7,3) {$\alpha$}; +%\node at (-2.5,-0.5) {$\beta$}; +%\node at (2.3,-1.2) {$\gamma$}; +\node at (0.8,3.1) {$\omega$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From fc8bf49548f168fe0a77e1446c73ff7be5d980cf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 23:11:38 +0200 Subject: fresnel paper erste Fassung --- buch/papers/fresnel/Makefile | 15 ++- buch/papers/fresnel/eulerspirale.m | 61 +++++++++ buch/papers/fresnel/eulerspirale.pdf | Bin 0 -> 22592 bytes buch/papers/fresnel/eulerspirale.tex | 41 ++++++ buch/papers/fresnel/fresnelgraph.pdf | Bin 0 -> 30018 bytes buch/papers/fresnel/fresnelgraph.tex | 46 +++++++ buch/papers/fresnel/main.tex | 24 +--- buch/papers/fresnel/pfad.pdf | Bin 0 -> 19126 bytes buch/papers/fresnel/pfad.tex | 34 +++++ buch/papers/fresnel/references.bib | 11 ++ buch/papers/fresnel/teil0.tex | 109 +++++++++++++--- buch/papers/fresnel/teil1.tex | 239 ++++++++++++++++++++++++++++------- buch/papers/fresnel/teil2.tex | 48 +++---- buch/papers/fresnel/teil3.tex | 136 +++++++++++++++----- 14 files changed, 617 insertions(+), 147 deletions(-) create mode 100644 buch/papers/fresnel/eulerspirale.m create mode 100644 buch/papers/fresnel/eulerspirale.pdf create mode 100644 buch/papers/fresnel/eulerspirale.tex create mode 100644 buch/papers/fresnel/fresnelgraph.pdf create mode 100644 buch/papers/fresnel/fresnelgraph.tex create mode 100644 buch/papers/fresnel/pfad.pdf create mode 100644 buch/papers/fresnel/pfad.tex (limited to 'buch') diff --git a/buch/papers/fresnel/Makefile b/buch/papers/fresnel/Makefile index c8aa073..11af3a7 100644 --- a/buch/papers/fresnel/Makefile +++ b/buch/papers/fresnel/Makefile @@ -1,9 +1,22 @@ # # Makefile -- make file for the paper fresnel # -# (c) 2020 Prof Dr Andreas Mueller +# (c) 2022 Prof Dr Andreas Mueller # +all: fresnelgraph.pdf eulerspirale.pdf pfad.pdf images: @echo "no images to be created in fresnel" +eulerpath.tex: eulerspirale.m + octave eulerspirale.m + +fresnelgraph.pdf: fresnelgraph.tex eulerpath.tex + pdflatex fresnelgraph.tex + +eulerspirale.pdf: eulerspirale.tex eulerpath.tex + pdflatex eulerspirale.tex + +pfad.pdf: pfad.tex + pdflatex pfad.tex + diff --git a/buch/papers/fresnel/eulerspirale.m b/buch/papers/fresnel/eulerspirale.m new file mode 100644 index 0000000..84e3696 --- /dev/null +++ b/buch/papers/fresnel/eulerspirale.m @@ -0,0 +1,61 @@ +# +# eulerspirale.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +# +global n; +n = 1000; +global tmax; +tmax = 10; +global N; +N = round(n*5/tmax); + +function retval = f(x, t) + x = pi * t^2 / 2; + retval = [ cos(x); sin(x) ]; +endfunction + +x0 = [ 0; 0 ]; +t = tmax * (0:n) / n; + +c = lsode(@f, x0, t); + +fn = fopen("eulerpath.tex", "w"); + +fprintf(fn, "\\def\\fresnela{ (0,0)"); +for i = (2:n) + fprintf(fn, "\n\t-- (%.4f,%.4f)", c(i,1), c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\fresnelb{ (0,0)"); +for i = (2:n) + fprintf(fn, "\n\t-- (%.4f,%.4f)", -c(i,1), -c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Cplotright{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,1)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Cplotleft{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,1)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Splotright{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Splotleft{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fclose(fn); diff --git a/buch/papers/fresnel/eulerspirale.pdf b/buch/papers/fresnel/eulerspirale.pdf new file mode 100644 index 0000000..4a85a50 Binary files /dev/null and b/buch/papers/fresnel/eulerspirale.pdf differ diff --git a/buch/papers/fresnel/eulerspirale.tex b/buch/papers/fresnel/eulerspirale.tex new file mode 100644 index 0000000..38ef756 --- /dev/null +++ b/buch/papers/fresnel/eulerspirale.tex @@ -0,0 +1,41 @@ +% +% eulerspirale.tex -- Darstellung der Eulerspirale +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{eulerpath.tex} + +\def\s{8} + +\begin{scope}[scale=\s] +\draw[color=blue] (-0.5,-0.5) rectangle (0.5,0.5); +\draw[color=darkgreen,line width=1.4pt] \fresnela; +\draw[color=darkgreen,line width=1.4pt] \fresnelb; +\fill[color=blue] (0.5,0.5) circle[radius={0.1/\s}]; +\fill[color=blue] (-0.5,-0.5) circle[radius={0.1/\s}]; +\draw (-0.5,{-0.05/\s}) -- (-0.5,{0.05/\s}); +\draw (0.5,{-0.05/\s}) -- (0.5,{-0.05/\s}); +\node at (-0.5,0) [above left] {$\frac12$}; +\node at (0.5,0) [below right] {$\frac12$}; +\node at (0,-0.5) [below right] {$\frac12$}; +\node at (0,0.5) [above left] {$\frac12$}; +\end{scope} + +\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$C(x)$}];; +\draw[->] (0,-5.8) -- (0,6.1) coordinate[label={left:$S(x)$}];; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/fresnelgraph.pdf b/buch/papers/fresnel/fresnelgraph.pdf new file mode 100644 index 0000000..9ccad56 Binary files /dev/null and b/buch/papers/fresnel/fresnelgraph.pdf differ diff --git a/buch/papers/fresnel/fresnelgraph.tex b/buch/papers/fresnel/fresnelgraph.tex new file mode 100644 index 0000000..20df951 --- /dev/null +++ b/buch/papers/fresnel/fresnelgraph.tex @@ -0,0 +1,46 @@ +% +% fresnelgraph.tex -- Graphs of the fresnel functions +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{eulerpath.tex} +\def\dx{1.3} +\def\dy{2.6} + +\draw[color=gray] (0,{0.5*\dy}) -- ({5*\dx},{0.5*\dy}); +\draw[color=gray] (0,{-0.5*\dy}) -- ({-5*\dx},{-0.5*\dy}); + +\draw[color=blue,line width=1.4pt] \Splotright; +\draw[color=blue,line width=1.4pt] \Splotleft; + +\draw[color=red,line width=1.4pt] \Cplotright; +\draw[color=red,line width=1.4pt] \Cplotleft; + +\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$x$}]; +\draw[->] (0,-2.3) -- (0,2.3) coordinate[label={$y$}]; + +\foreach \x in {1,2,3,4,5}{ + \draw ({\x*\dx},-0.05) -- ({\x*\dx},0.05); + \draw ({-\x*\dx},-0.05) -- ({-\x*\dx},0.05); + \node at ({\x*\dx},-0.05) [below] {$\x$}; + \node at ({-\x*\dx},0.05) [above] {$-\x$}; +} +\draw (-0.05,{0.5*\dy}) -- (0.05,{0.5*\dy}); +\node at (-0.05,{0.5*\dy}) [left] {$\frac12$}; +\draw (-0.05,{-0.5*\dy}) -- (0.05,{-0.5*\dy}); +\node at (0.05,{-0.5*\dy}) [right] {$-\frac12$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/main.tex b/buch/papers/fresnel/main.tex index bbaf7e6..e6ee3b5 100644 --- a/buch/papers/fresnel/main.tex +++ b/buch/papers/fresnel/main.tex @@ -3,29 +3,11 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:fresnel}} -\lhead{Thema} +\chapter{Fresnel-Integrale\label{chapter:fresnel}} +\lhead{Fresnel-Integrale} \begin{refsection} -\chapterauthor{Hans Muster} +\chapterauthor{Andreas Müller} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} \input{papers/fresnel/teil0.tex} \input{papers/fresnel/teil1.tex} diff --git a/buch/papers/fresnel/pfad.pdf b/buch/papers/fresnel/pfad.pdf new file mode 100644 index 0000000..ff514cc Binary files /dev/null and b/buch/papers/fresnel/pfad.pdf differ diff --git a/buch/papers/fresnel/pfad.tex b/buch/papers/fresnel/pfad.tex new file mode 100644 index 0000000..5439a71 --- /dev/null +++ b/buch/papers/fresnel/pfad.tex @@ -0,0 +1,34 @@ +% +% pfad.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\draw[->] (-1,0) -- (9,0) coordinate[label={$\operatorname{Re}$}]; +\draw[->] (0,-1) -- (0,6) coordinate[label={left:$\operatorname{Im}$}]; + +\draw[->,color=red,line width=1.4pt] (0,0) -- (7,0); +\draw[->,color=blue,line width=1.4pt] (7,0) arc (0:45:7); +\draw[->,color=darkgreen,line width=1.4pt] (45:7) -- (0,0); + +\node[color=red] at (3.5,0) [below] {$\gamma_1(t) = tR$}; +\node[color=blue] at (25:7) [right] {$\gamma_2(t) = Re^{it}$}; +\node[color=darkgreen] at (45:3.5) [above left] {$\gamma_3(t) = te^{i\pi/4}$}; + +\node at (7,0) [below] {$R$}; +\node at (45:7) [above] {$Re^{i\pi/4}$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/references.bib b/buch/papers/fresnel/references.bib index 84cd3bc..58e9242 100644 --- a/buch/papers/fresnel/references.bib +++ b/buch/papers/fresnel/references.bib @@ -33,3 +33,14 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@online{fresnel:fresnelC, + url = { https://functions.wolfram.com/GammaBetaErf/FresnelC/introductions/FresnelIntegrals/ShowAll.html }, + title = { FresnelC }, + date = { 2022-05-13 } +} + +@online{fresnel:wikipedia, + url = { https://en.wikipedia.org/wiki/Fresnel_integral }, + title = { Fresnel Integral }, + date = { 2022-05-13 } +} diff --git a/buch/papers/fresnel/teil0.tex b/buch/papers/fresnel/teil0.tex index 5e9fdaf..253e2f3 100644 --- a/buch/papers/fresnel/teil0.tex +++ b/buch/papers/fresnel/teil0.tex @@ -1,22 +1,101 @@ % -% einleitung.tex -- Beispiel-File für die Einleitung +% teil0.tex -- Definition % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{fresnel:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{fresnel:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +\section{Definition\label{fresnel:section:teil0}} +\rhead{Definition} +Die Funktion $e^{x^2}$ hat bekanntermassen keine elementare Stammfunktion, +weshalb die Fehlerfunktion als Stammfunktion definiert wurde. +Die Funktionen $\cos x^2$ und $\sin x^2$ sind eng mit $e^{x^2}$ +verwandt, es ist daher nicht überraschend, dass sie ebenfalls +keine elementare Stammfunktionen haben. +Dies rechtfertigt die Definition der Fresnel-Integrale als neue spezielle +Funktionen. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. +\begin{definition} +Die Funktionen +\begin{align*} +C(x) &= \int_0^x \cos\biggl(\frac{\pi}2 t^2\biggr)\,dt +\\ +S(x) &= \int_0^x \sin\biggl(\frac{\pi}2 t^2\biggr)\,dt +\end{align*} +heissen die Fesnel-Integrale. +\end{definition} +Der Faktor $\frac{\pi}2$ ist einigermassen willkürlich, man könnte +daher noch allgemeiner die Funktionen +\begin{align*} +C_a(x) &= \int_0^x \cos(at^2)\,dt +\\ +S_a(x) &= \int_0^x \sin(at^2)\,dt +\end{align*} +definieren, so dass die Funktionen $C(x)$ und $S(x)$ der Fall +$a=\frac{\pi}2$ werden, also +\[ +\begin{aligned} +C(x) &= C_{\frac{\pi}2}(x), +& +S(x) &= S_{\frac{\pi}2}(x). +\end{aligned} +\] +Durch eine Substution $t=bs$ erhält man +\begin{align*} +C_a(x) +&= +\int_0^x \cos(at^2)\,dt += +b +\int_0^{\frac{x}b} \cos(ab^2s^2)\,ds += +b +C_{ab^2}\biggl(\frac{x}b\biggr) +\\ +S_a(x) +&= +\int_0^x \sin(at^2)\,dt += +b +\int_0^{\frac{x}b} \sin(ab^2s^2)\,ds += +b +S_{ab^2}\biggl(\frac{x}b\biggr). +\end{align*} +Indem man $ab^2=\frac{\pi}2$ setzt, also +\[ +b += +\sqrt{\frac{\pi}{2a}} +, +\] +kann man die Funktionen $C_a(x)$ und $S_a(x)$ durch $C(x)$ und $S(x)$ +ausdrücken: +\begin{align} +C_a(x) +&= +\sqrt{\frac{\pi}{2a}} +C\biggl(x +\sqrt{\frac{2a}{\pi}} +\biggr) +&&\text{und}& +S_a(x) +&= +\sqrt{\frac{\pi}{2a}} +S\biggl(x +\sqrt{\frac{2a}{\pi}} +\biggr). +\label{fresnel:equation:arg} +\end{align} +Im Folgenden werden wir meistens nur den Fall $a=1$, also die Funktionen +$C_1(x)$ und $S_1(x)$ betrachten, da in diesem Fall die Formeln einfacher +werden. +\begin{figure} +\centering +\includegraphics{papers/fresnel/fresnelgraph.pdf} +\caption{Graph der Funktionen $C(x)$ ({\color{red}rot}) +und $S(x)$ ({\color{blue}blau}) +\label{fresnel:figure:plot}} +\end{figure} +Die Abbildung~\ref{fresnel:figure:plot} zeigt die Graphen der +Funktion $C(x)$ und $S(x)$. diff --git a/buch/papers/fresnel/teil1.tex b/buch/papers/fresnel/teil1.tex index a2df138..df84797 100644 --- a/buch/papers/fresnel/teil1.tex +++ b/buch/papers/fresnel/teil1.tex @@ -1,55 +1,202 @@ % -% teil1.tex -- Beispiel-File für das Paper +% teil1.tex -- Euler-Spirale % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 -\label{fresnel:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{fresnel:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. +\section{Euler-Spirale +\label{fresnel:section:eulerspirale}} +\rhead{Euler-Spirale} +\begin{figure} +\centering +\includegraphics{papers/fresnel/eulerspirale.pdf} +\caption{Die Eulerspirale ist die Kurve mit der Parameterdarstellung +$x\mapsto (C(x),S(x))$, sie ist rot dargestellt. +Sie windet sich unendlich oft um die beiden Punkte $(\pm\frac12,\pm\frac12)$. +\label{fresnel:figure:eulerspirale}} +\end{figure} +Ein besseres Verständnis für die beiden Funktionen $C(x)$ und $S(x)$ +als die Darstellung~\ref{fresnel:figure:plot} ermöglicht die +Abbildung~\ref{fresnel:figure:eulerspirale}, die die beiden Funktionen +als die $x$- und $y$-Koordinaten der Parameterdarstellung einer Kurve +zeigt. +Sie heisst die {\em Euler-Spirale}. +Die Spirale scheint sich für $x\to\pm\infty$ um die Punkte +$(\pm\frac12,\pm\frac12)$ zu winden. -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? +\begin{figure} +\centering +\includegraphics{papers/fresnel/pfad.pdf} +\caption{Pfad zur Berechnung der Grenzwerte $C_1(\infty)$ und +$S_1(\infty)$ mit Hilfe des Cauchy-Integralsatzes +\label{fresnel:figure:pfad}} +\end{figure} -\subsection{De finibus bonorum et malorum -\label{fresnel:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. -Et harum quidem rerum facilis est et expedita distinctio -\ref{fresnel:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{fresnel:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +\begin{satz} +Die Grenzwerte der Fresnel-Integrale für $x\to\pm\infty$ sind +\[ +\lim_{x\to\pm\infty} C(x) += +\lim_{x\to\pm\infty} S(x) += +\frac12. +\] +\end{satz} +\begin{proof}[Beweis] +Die komplexe Funktion +\[ +f(z) = e^{-z^2} +\] +ist eine ganze Funktion, das Integral über einen geschlossenen +Pfad in der komplexen Ebene verschwindet daher. +Wir verwenden den Pfad in Abbildung~\ref{fresnel:figure:pfad} +bestehend aus den drei Segmenten $\gamma_1$ entlang der reellen +Achse von $0$ bis $R$, dem Kreisbogen $\gamma_2$ um $0$ mit Radius $R$ +und $\gamma_3$ mit der Parametrisierung $t\mapsto te^{i\pi/4}$. + +Das Teilintegral über $\gamma_1$ ist +\[ +\lim_{R\to\infty} +\int_{\gamma_1} e^{-z^2}\,dz += +\int_0^\infty e^{-t^2}\,dt += +\frac{\sqrt{\pi}}2. +\] +Das Integral über $\gamma_3$ ist +\begin{align*} +\lim_{R\to\infty} +\int_{\gamma_3} +e^{-z^2}\,dz +&= +-\int_0^\infty \exp(-t^2 e^{i\pi/2}) e^{i\pi/4}\,dt += +- +\int_0^\infty e^{-it^2}\,dt\, +e^{i\pi/4} +\\ +&= +-e^{i\pi/4}\int_0^\infty \cos t^2 - i \sin t^2\,dt +\\ +&= +-\frac{1}{\sqrt{2}}(1+i) +\bigl( +C_1(\infty) +-i +S_1(\infty) +\bigr) +\\ +&= +-\frac{1}{\sqrt{2}} +\bigl( +C_1(\infty)+S_1(\infty) ++ +i(C_1(\infty)-S_1(\infty)) +\bigr), +\end{align*} +wobei wir +\[ +C_1(\infty) = \lim_{R\to\infty} C_1(R) +\qquad\text{und}\qquad +S_1(\infty) = \lim_{R\to\infty} S_1(R) +\] +abgekürzt haben. +Das Integral über das Segment $\gamma_2$ lässt sich +mit der Parametrisierung +\( +\gamma_2(t) += +Re^{it} += +R(\cos t + i\sin t) +\) +wie folgt +abschätzen: +\begin{align*} +\biggl|\int_{\gamma_2} e^{-z^2} \,dz\biggr| +&= +\biggl| +\int_0^{\frac{\pi}4} +\exp(-R^2(\cos 2t + i\sin 2t)) iR e^{it}\,dt +\biggr| +\\ +&\le +R +\int_0^{\frac{\pi}4} +e^{-R^2\cos 2t} +\,dt +\le +R +\int_0^{\frac{\pi}4} +e^{-R^2(1-\frac{4}{\pi}t)} +\,dt. +\intertext{Dabei haben wir $\cos 2t\ge 1-\frac{4}\pi t$ verwendet. +Mit dieser Vereinfachung kann das Integral ausgewertet werden und +ergibt} +&= +Re^{-R^2} +\int_0^{\frac{\pi}4} +e^{R^2\frac{\pi}4t} +\,dt += +Re^{-R^2} +\biggl[ +\frac{4}{\pi R^2} +e^{R^2\frac{\pi}4t} +\biggr]_0^{\frac{\pi}4} += +\frac{4}{\pi R} +e^{-R^2}(e^{R^2}-1) += +\frac{4}{\pi R} +(1-e^{-R^2}) +\to 0 +\end{align*} +für $R\to \infty$. +Im Grenzwert $R\to \infty$ kann der Teil $\gamma_2$ des Pfades +vernachlässigt werden. + +Das Integral über den geschlossenen Pfad $\gamma$ verschwindet. +Da der Teil $\gamma_2$ keine Rolle spielt, müssen sich die +Integrale über $\gamma_1$ und $\gamma_3$ wegheben, also +\begin{align*} +0 += +\int_\gamma e^{-z^2}\,dz +&= +\int_{\gamma_1} e^{-z^2}\,dz ++ +\int_{\gamma_2} e^{-z^2}\,dz ++ +\int_{\gamma_3} e^{-z^2}\,dz +\\ +&\to +\frac{\sqrt{\pi}}2 +-\frac{1}{\sqrt{2}}(C_1(\infty)+S_1(\infty)) +-\frac{i}{\sqrt{2}}(C_1(\infty)-S_1(\infty)). +\end{align*} +Der Imaginärteil ist $C_1(\infty)-S_1(\infty)$, da er verschwinden +muss, folgt $C_1(\infty)=S_1(\infty)$. +Nach Multlikation mit $\sqrt{2}$ folgt aus der Tatsache, dass auch +der Realteil verschwinden muss +\[ +\frac{\sqrt{\pi}}{\sqrt{2}} = C_1(\infty)+S_1(\infty) +\qquad +\Rightarrow +\qquad +C_1(\infty) += +S_1(\infty) += +\frac{\sqrt{\pi}}{2\sqrt{2}} +\] +Aus +\eqref{fresnel:equation:arg} +erhält man dann auch die Grenzwerte +\[ +C(\infty)=S(\infty)=\frac12. +\qedhere +\] +\end{proof} diff --git a/buch/papers/fresnel/teil2.tex b/buch/papers/fresnel/teil2.tex index 701c3ee..22d2a89 100644 --- a/buch/papers/fresnel/teil2.tex +++ b/buch/papers/fresnel/teil2.tex @@ -3,38 +3,22 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 -\label{fresnel:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +\section{Klothoide +\label{fresnel:section:klothoide}} +\rhead{Klothoide} +In diesem Abschnitt soll gezeigt werden, dass die Krümmung der +Euler-Spirale proportional zur vom Nullpunkt aus gemessenen Bogenlänge +ist. -\subsection{De finibus bonorum et malorum -\label{fresnel:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\begin{definition} +Eine ebene Kurve, deren Krümmung proportionale zur Kurvenlänge ist, +heisst {\em Klothoide}. +\end{definition} +Die Klothoide wird zum Beispiel im Strassenbau bei Autobahnkurven +angewendet. +Fährt man mit konstanter Geschwindigkeit mit entlang einer Klothoide, +muss man die Krümmung mit konstaner Geschwindigkeit ändern, +also das Lenkrad mit konstanter Geschwindigkeit drehen. +Dies ermöglicht eine ruhige Fahrweise. diff --git a/buch/papers/fresnel/teil3.tex b/buch/papers/fresnel/teil3.tex index d4f15f6..a5b5878 100644 --- a/buch/papers/fresnel/teil3.tex +++ b/buch/papers/fresnel/teil3.tex @@ -3,38 +3,110 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{fresnel:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +\section{Numerische Berechnung der Fresnel-Integrale +\label{fresnel:section:numerik}} +\rhead{Numerische Berechnung} +Die Fresnel-Integrale können mit verschiedenen Methoden effizient berechnet +werden. -\subsection{De finibus bonorum et malorum -\label{fresnel:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\subsection{Komplexe Fehlerfunktionen} +Es wurde schon darauf hingewiesen, dass der Integrand der Fresnel-Integrale +mit $e^{t^2}$ verwandt ist. +Tatsächlich kann gezeigt werden dass sich die Fresnel-Integrale mit +Hilfe der komplexen Fehlerfunktion als +\[ +\left. +\begin{matrix} +S_1(z) +\\ +C_1(z) +\end{matrix} +\; +\right\} += +\frac{1\pm i}4\biggl( +\operatorname{erf}\biggl(\frac{1+i}2\sqrt{\pi}z\biggr) +\mp +\operatorname{erf}\biggl(\frac{1-i}2\sqrt{\pi}z\biggr) +\biggr) +\] +ausdrücken lassen. +Diese Darstellung ist jedoch für die numerische Berechnung nur +beschränkt nützlich, weil die meisten Bibliotheken für die Fehlerfunktion +diese nur für reelle Argument auszuwerten gestatten. + +\subsection{Als Lösung einer Differentialgleichung} +Da die Fresnel-Integrale die sehr einfachen Differentialgleichungen +\[ +C'(x) = \cos \biggl(\frac{\pi}2 x^2\biggr) +\qquad\text{und}\qquad +S'(x) = \sin \biggl(\frac{\pi}2 x^2\biggr) +\] +erfüllen, kann man eine Methode zur Lösung von Differentialgleichung +verwenden. +Die Abbildungen~\ref{fresnel:figure:plot} und \ref{fresnel:figure:eulerspirale} +wurden auf diese Weise erzeugt. + +\subsection{Taylor-Reihe integrieren} +Die Taylorreihen +\begin{align*} +\cos x +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k)!} x^{2k} +&&\text{und}& +\sin x +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} x^{2k+1} +\intertext{% +der trigonometrischen Funktionen werden durch Einsetzen von $x=t^2$ +zu} +\cos t^2 +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k)!} t^{4k} +&&\text{und}& +\sin t^2 +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} t^{4k+2}. +\intertext{% +Die Fresnel-Integrale $C_1(x)$ und $S_1(x)$ können daher durch +termweise Integration mit Hilfe der Reihen} +C_1(x) +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k)!} \frac{x^{4k+1}}{4k+1} +&&\text{und}& +S_1(x) +&= +\sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!} \frac{x^{4k+3}}{4k+3} +\end{align*} +berechnet werden. +Diese Reihen sind insbesondere für kleine Werte von $x$ sehr +schnell konvergent. + +\subsection{Hypergeometrische Reihen} +Aus der Reihenentwicklung kann jetzt auch eine Darstellung der +Fresnel-Integrale durch hypergeometrische Reihen gefunden werden +\cite{fresnel:fresnelC}. +Es ergibt sich +\begin{align*} +S(z) +&= +\frac{\pi z^3}{6} +\cdot +\mathstrut_1F_2\biggl( +\begin{matrix}\frac34\\\frac32,\frac74\end{matrix} +; +-\frac{\pi^2z^4}{16} +\biggr) +\\ +C(z) +&= +z +\cdot +\mathstrut_1F_2\biggl( +\begin{matrix}\frac14\\\frac12,\frac54\end{matrix} +; +-\frac{\pi^2z^4}{16} +\biggr). +\end{align*} -- cgit v1.2.1 From 2b1142edd31d88f9c4b050abf4aeb1e885925ad5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 13 May 2022 23:15:21 +0200 Subject: typos --- buch/papers/fresnel/teil1.tex | 6 +++--- buch/papers/fresnel/teil3.tex | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/fresnel/teil1.tex b/buch/papers/fresnel/teil1.tex index df84797..a41ddb7 100644 --- a/buch/papers/fresnel/teil1.tex +++ b/buch/papers/fresnel/teil1.tex @@ -45,9 +45,9 @@ Die Grenzwerte der Fresnel-Integrale für $x\to\pm\infty$ sind \begin{proof}[Beweis] Die komplexe Funktion -\[ +\( f(z) = e^{-z^2} -\] +\) ist eine ganze Funktion, das Integral über einen geschlossenen Pfad in der komplexen Ebene verschwindet daher. Wir verwenden den Pfad in Abbildung~\ref{fresnel:figure:pfad} @@ -190,7 +190,7 @@ C_1(\infty) = S_1(\infty) = -\frac{\sqrt{\pi}}{2\sqrt{2}} +\frac{\sqrt{\pi}}{2\sqrt{2}}. \] Aus \eqref{fresnel:equation:arg} diff --git a/buch/papers/fresnel/teil3.tex b/buch/papers/fresnel/teil3.tex index a5b5878..37e6bee 100644 --- a/buch/papers/fresnel/teil3.tex +++ b/buch/papers/fresnel/teil3.tex @@ -30,7 +30,7 @@ C_1(z) \operatorname{erf}\biggl(\frac{1-i}2\sqrt{\pi}z\biggr) \biggr) \] -ausdrücken lassen. +ausdrücken lassen \cite{fresnel:fresnelC}. Diese Darstellung ist jedoch für die numerische Berechnung nur beschränkt nützlich, weil die meisten Bibliotheken für die Fehlerfunktion diese nur für reelle Argument auszuwerten gestatten. -- cgit v1.2.1 From a28b0e8a16564e78aaecc299526fa8bb96964e0e Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 14 May 2022 18:21:13 +0200 Subject: corrections to zeta_gamma --- buch/papers/zeta/zeta_gamma.tex | 53 ++++++++++++++++++++++++----------------- 1 file changed, 31 insertions(+), 22 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 59c8744..bed4262 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -1,38 +1,47 @@ -\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} -\rhead{Zusammenhang mit Gammafunktion} +\section{Zusammenhang mit der Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion} +\rhead{Zusammenhang mit der Gammafunktion} -Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her. +In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. %TODO ref Gamma -Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion -\begin{align} +Wir erinnern uns an die Definition der Gammafunktion in \ref{buch:rekursion:gamma:integralbeweis} +\begin{equation*} + \Gamma(s) + = + \int_0^{\infty} t^{s-1} e^{-t} \,dt, +\end{equation*} +wobei die Notation an die Zetafunktion angepasst ist. +Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus +\begin{align*} \Gamma(s) &= - \int_0^{\infty} t^{s-1} e^{-t} dt - \\ + \int_0^{\infty} n^{s-1}u^{s-1} e^{-nu} n \,du \\ &= - \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du - && - \text{Division durch }n^s - \\ + \int_0^{\infty} n^s u^{s-1} e^{-nu} \,du. +\end{align*} +Durch Division mit durch $n^s$ ergibt sich die Quotienten +\begin{equation*} \frac{\Gamma(s)}{n^s} - &= - \int_0^{\infty} u^{s-1} e^{-nu}du - && - \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} - \\ + = + \int_0^{\infty} u^{s-1} e^{-nu} \,du, +\end{equation*} +welche sich zur Zetafunktion summieren +\begin{equation} + \sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^s} + = \Gamma(s) \zeta(s) - &= + = \int_0^{\infty} u^{s-1} \sum_{n=1}^{\infty}e^{-nu} - du. + \,du. \label{zeta:equation:zeta_gamma1} -\end{align} +\end{equation} Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten \begin{align} - \sum_{n=1}^{\infty}e^{-u^n} + \sum_{n=1}^{\infty}\left(e^{-u}\right)^n &= - \sum_{n=0}^{\infty}e^{-u^n} + \sum_{n=0}^{\infty}\left(e^{-u}\right)^n - 1 \\ @@ -42,7 +51,7 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = -- cgit v1.2.1 From 8f643765aa134d48da27f161890f07038d2223f3 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 14 May 2022 22:17:18 +0200 Subject: Alle einfachen Korrekturen umgesetzt --- buch/papers/zeta/analytic_continuation.tex | 108 ++++++++++++++++++----------- buch/papers/zeta/zeta_gamma.tex | 2 +- 2 files changed, 68 insertions(+), 42 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index bb95b92..5e09e42 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -14,8 +14,8 @@ Zuerst definieren die Dirichletsche Etafunktion als wobei die Reihe bis auf die alternierenden Vorzeichen die selbe wie in der Zetafunktion ist. Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) > 0$, da dann die einzelnen Glieder monoton fallend sind. -Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion mit der Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. -Die folgenden Schritte zeigen, wie man dazu kommt: +Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion durch die Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. +Zuerst wiederholen wir zweimal die Definition der Zetafunktion \eqref{zeta:equation1}, wobei wir sie einmal durch $2^{s-1}$ teilen \begin{align} \zeta(s) &= @@ -26,8 +26,10 @@ Die folgenden Schritte zeigen, wie man dazu kommt: \zeta(s) &= \sum_{n=1}^{\infty} - \frac{2}{(2n)^s} \label{zeta:align2} - \\ + \frac{2}{(2n)^s}. \label{zeta:align2} +\end{align} +Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:align2}, ergibt sich +\begin{align} \left(1 - \frac{1}{2^{s-1}} \right) \zeta(s) &= @@ -36,14 +38,15 @@ Die folgenden Schritte zeigen, wie man dazu kommt: + \frac{1}{3^s} \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} \ldots - && \text{\eqref{zeta:align1}} - \text{\eqref{zeta:align2}} - \\ - &= \eta(s) \\ + &= \eta(s). +\end{align} +Dies ist die Fortsetzung auf den noch unbekannten Bereich $0 < \Re(s) < 1$ +\begin{equation} \zeta(s) - &= + := \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). -\end{align} +\end{equation} \subsection{Fortsetzung auf ganz $\mathbb{C}$} \label{zeta:subsection:auf_ganz} Für die Fortsetzung auf den Rest von $\mathbb{C}$, verwenden wir den Zusammenhang von Gamma- und Zetafunktion aus \ref{zeta:section:zusammenhang_mit_gammafunktion}. @@ -61,7 +64,7 @@ Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten (\pi n^2)^{\frac{s}{2}} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - dx + \,dx && \text{Division durch } (\pi n^2)^{\frac{s}{2}} \\ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} @@ -69,7 +72,7 @@ Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \int_0^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - dx + \,dx && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} \\ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} @@ -79,7 +82,7 @@ Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} - dx. \label{zeta:equation:integral1} + \,dx. \label{zeta:equation:integral1} \end{align} Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. %TODO Wieso folgendes -> aus Fourier Signal @@ -97,82 +100,103 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al \int_0^{\infty} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx = + \underbrace{ \int_0^{1} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx + }_{I_1} + + \underbrace{ \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) - dx, + \,dx + }_{I_2} + = + I_1 + I_2, \end{equation} -wobei wir uns nun auf den ersten Teil konzentrieren werden. -Dabei setzen wir das Wissen aus \eqref{zeta:equation:psi} ein und erhalten +wobei wir uns nun auf den ersten Teil $I_1$ konzentrieren werden. +Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten \begin{align} + I_1 + = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx &= \int_0^{1} x^{\frac{s}{2}-1} \left( - \frac{1}{2} + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}}. + + \frac{1}{2 \sqrt{x}} \right) - dx + \,dx \\ &= \int_0^{1} x^{\frac{s}{2}-\frac{3}{2}} \psi \left( \frac{1}{x} \right) + \frac{1}{2} - \left( + \biggl( x^{\frac{s}{2}-\frac{3}{2}} - x^{\frac{s}{2}-1} - \right) - dx + \biggl) + \,dx \\ &= + \underbrace{ \int_0^{1} x^{\frac{s}{2}-\frac{3}{2}} \psi \left( \frac{1}{x} \right) - dx - + \frac{1}{2} + \,dx + }_{I_3} + + + \underbrace{ + \frac{1}{2} \int_0^1 x^{\frac{s}{2}-\frac{3}{2}} - x^{\frac{s}{2}-1} - dx. \label{zeta:equation:integral3} + \,dx + }_{I_4}. \label{zeta:equation:integral3} \end{align} -Dabei kann das zweite Integral gelöst werden als +Dabei kann das zweite Integral $I_4$ gelöst werden als \begin{equation} + I_4 + = \frac{1}{2} \int_0^1 x^{\frac{s}{2}-\frac{3}{2}} - x^{\frac{s}{2}-1} - dx + \,dx = \frac{1}{s(s-1)}. \end{equation} -Das erste Integral aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. +Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. Dies ergibt \begin{align} + I_3 + = \int_{\infty}^{1} - {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} \psi(u) \frac{-du}{u^2} &= \int_{1}^{\infty} - {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} \psi(u) \frac{du}{u^2} \\ @@ -180,21 +204,23 @@ Dies ergibt \int_{1}^{\infty} x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} \psi(x) - dx, + \,dx, \end{align} wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals von \eqref{zeta:equation:integral2} sind. Wir setzen beide Lösungen ein in Gleichung \eqref{zeta:equation:integral3} und erhalten \begin{equation} + I_1 + = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx = \int_{1}^{\infty} x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} \psi(x) - dx + \,dx + \frac{1}{s(s-1)}. \end{equation} @@ -206,12 +232,12 @@ Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um s \int_0^{1} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx + \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx \nonumber \\ &= @@ -220,12 +246,12 @@ Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um s \int_{1}^{\infty} x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} \psi(x) - dx + \,dx + \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) - dx + \,dx \\ &= \frac{1}{s(s-1)} @@ -237,7 +263,7 @@ Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um s x^{\frac{s}{2}-1} \right) \psi(x) - dx + \,dx \\ &= \frac{-1}{s(1-s)} @@ -249,7 +275,7 @@ Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um s x^{\frac{s}{2}} \right) \frac{\psi(x)}{x} - dx, + \,dx, \end{align} zu erhalten. Wenn wir dieses Resultat genau anschauen, erkennen wir dass sich nichts verändert wenn $s$ mit $1-s$ ersetzt wird. @@ -261,4 +287,4 @@ Somit haben wir die analytische Fortsetzung gefunden als \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} \zeta(1-s). \end{equation} - +%TODO Definitionen und Gleichungen klarer unterscheiden diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index bed4262..49fea74 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -5,7 +5,7 @@ In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunkt Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. %TODO ref Gamma -Wir erinnern uns an die Definition der Gammafunktion in \ref{buch:rekursion:gamma:integralbeweis} +Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} \begin{equation*} \Gamma(s) = -- cgit v1.2.1 From 5fa246097347d82af591aa186f1b7fe32fbd1cf3 Mon Sep 17 00:00:00 2001 From: Runterer <37069007+Runterer@users.noreply.github.com> Date: Mon, 16 May 2022 15:35:30 +0200 Subject: added tikz -> kudos nic --- buch/papers/zeta/continuation_overview.tikz.tex | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) create mode 100644 buch/papers/zeta/continuation_overview.tikz.tex (limited to 'buch') diff --git a/buch/papers/zeta/continuation_overview.tikz.tex b/buch/papers/zeta/continuation_overview.tikz.tex new file mode 100644 index 0000000..03224ff --- /dev/null +++ b/buch/papers/zeta/continuation_overview.tikz.tex @@ -0,0 +1,17 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=0.9cm, scale=2, + dot/.style={fill, circle, inner sep=0, minimum size=0.1cm}] + + \draw[->] (-2,0) -- (-1,0) node[dot]{} node[anchor=north]{$-1$} -- (0,0) node[anchor=north west]{$0$} -- (1,0) node[anchor=north west]{$1$} -- (2,0) node[anchor=west]{Re$(s)$}; + + \draw[->] (0,-1.2) -- (0,1.2) node[anchor=south]{Im$(s)$}; + \begin{scope}[yscale=0.1] + \draw[] (1,-1) -- (1,1); + \end{scope} + + \begin{scope}[] + \fill[opacity=0.2, red] (-1.8,1) rectangle (0, -1); + \fill[opacity=0.2, blue] (0,1) rectangle (1, -1); + \fill[opacity=0.2, green] (1,1) rectangle (1.8, -1); + \end{scope} + +\end{tikzpicture} \ No newline at end of file -- cgit v1.2.1 From d7bff7e403a0e54880cb04b350a91a2f664b2708 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:30:44 +0200 Subject: =?UTF-8?q?Ich=20habe=20nun=20alle=20Kapitel=20als=20Textfile=20se?= =?UTF-8?q?perat=20eingef=C3=BCgt,=20einen=20zus=C3=A4tzlichen=20unterordn?= =?UTF-8?q?er=20gemacht=20f=C3=BCr=20die=20bilder,=20dann=20im=20main.tex?= =?UTF-8?q?=20die=20input=20befehle=20angepasst=20und=20committe=20nun.=20?= =?UTF-8?q?Bemerkung:=20Wir=20werden=20diese=20Woche=20noch=20das=202D=20-?= =?UTF-8?q?=20Dreieck=20mit=20einem=20Kugeldreieck=20ersetzen!=20Sonst=20w?= =?UTF-8?q?=C3=A4re=20unsere=20Arbeit=20(=20Bis=20auf=20finishing=20wie=20?= =?UTF-8?q?Rechtschreibung=20und=20Formatierung)=20eigentlich=20fertig.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/nav/bilder/dreieck.png | Bin 0 -> 91703 bytes buch/papers/nav/bilder/kugel1.png | Bin 0 -> 9051 bytes buch/papers/nav/bilder/kugel2.png | Bin 0 -> 9103 bytes buch/papers/nav/bilder/kugel3.png | Bin 0 -> 215188 bytes buch/papers/nav/bilder/projektion.png | Bin 0 -> 41289 bytes buch/papers/nav/einleitung.tex | 17 +++ buch/papers/nav/flatearth.tex | 31 ++++++ buch/papers/nav/geschichte.tex | 22 ++++ buch/papers/nav/main.log | 109 +++++++++++++++++++ buch/papers/nav/main.tex | 29 ++---- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++++++++++++++++++++ buch/papers/nav/packages.tex | 6 ++ buch/papers/nav/trigo.tex | 51 +++++++++ 13 files changed, 433 insertions(+), 22 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.png create mode 100644 buch/papers/nav/bilder/kugel1.png create mode 100644 buch/papers/nav/bilder/kugel2.png create mode 100644 buch/papers/nav/bilder/kugel3.png create mode 100644 buch/papers/nav/bilder/projektion.png create mode 100644 buch/papers/nav/einleitung.tex create mode 100644 buch/papers/nav/flatearth.tex create mode 100644 buch/papers/nav/geschichte.tex create mode 100644 buch/papers/nav/main.log create mode 100644 buch/papers/nav/nautischesdreieck.tex create mode 100644 buch/papers/nav/trigo.tex (limited to 'buch') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png new file mode 100644 index 0000000..2b02105 Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.png differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png new file mode 100644 index 0000000..b3188b7 Binary files /dev/null and b/buch/papers/nav/bilder/kugel1.png differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png new file mode 100644 index 0000000..057740f Binary files /dev/null and b/buch/papers/nav/bilder/kugel2.png differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png new file mode 100644 index 0000000..97066a2 Binary files /dev/null and b/buch/papers/nav/bilder/kugel3.png differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png new file mode 100644 index 0000000..5dcc0c8 Binary files /dev/null and b/buch/papers/nav/bilder/projektion.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex new file mode 100644 index 0000000..42f4b6c --- /dev/null +++ b/buch/papers/nav/einleitung.tex @@ -0,0 +1,17 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Einleitung} +Heut zu Tage ist die Navigation ein Teil des Lebens. +Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex new file mode 100644 index 0000000..b14dd4b --- /dev/null +++ b/buch/papers/nav/flatearth.tex @@ -0,0 +1,31 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} + \section{Warum ist die Erde nicht flach?} + + \begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{bilder/projektion.png} + \caption{Mercator Projektion} + \end{center} + \end{figure} + +Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Die Fotos von unserem Planeten oder die Berichte der Astronauten. + Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. + Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. + Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. + Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. +Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex new file mode 100644 index 0000000..a20eb6d --- /dev/null +++ b/buch/papers/nav/geschichte.tex @@ -0,0 +1,22 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Geschichte der sphärischen Navigation} +Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. +Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. +Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. +Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. +Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. +Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. +Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. +Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. +Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. +Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. +Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. +Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.log b/buch/papers/nav/main.log new file mode 100644 index 0000000..d7aa0a9 --- /dev/null +++ b/buch/papers/nav/main.log @@ -0,0 +1,109 @@ +This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 16 MAY 2022 20:27 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**./main.tex +(main.tex +LaTeX2e <2021-11-15> patch level 1 +L3 programming layer <2022-02-24> +! Undefined control sequence. +l.6 \chapter + {Thema\label{chapter:nav}} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + + +! LaTeX Error: Missing \begin{document}. + +See the LaTeX manual or LaTeX Companion for explanation. +Type H for immediate help. + ... + +l.6 \chapter{T + hema\label{chapter:nav}} +You're in trouble here. Try typing to proceed. +If that doesn't work, type X to quit. + +Missing character: There is no T in font nullfont! +Missing character: There is no h in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no m in font nullfont! +Missing character: There is no a in font nullfont! +! Undefined control sequence. +l.7 \lhead + {Thema} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + +Missing character: There is no T in font nullfont! +Missing character: There is no h in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no m in font nullfont! +Missing character: There is no a in font nullfont! + +! LaTeX Error: Environment refsection undefined. + +See the LaTeX manual or LaTeX Companion for explanation. +Type H for immediate help. + ... + +l.8 \begin{refsection} + +Your command was ignored. +Type I to replace it with another command, +or to continue without it. + +! Undefined control sequence. +l.9 \chapterauthor + {Hans Muster} +The control sequence at the end of the top line +of your error message was never \def'ed. If you have +misspelled it (e.g., `\hobx'), type `I' and the correct +spelling (e.g., `I\hbox'). Otherwise just continue, +and I'll forget about whatever was undefined. + +Missing character: There is no H in font nullfont! +Missing character: There is no a in font nullfont! +Missing character: There is no n in font nullfont! +Missing character: There is no s in font nullfont! +Missing character: There is no M in font nullfont! +Missing character: There is no u in font nullfont! +Missing character: There is no s in font nullfont! +Missing character: There is no t in font nullfont! +Missing character: There is no e in font nullfont! +Missing character: There is no r in font nullfont! + +Overfull \hbox (20.0pt too wide) in paragraph at lines 6--10 +[][] + [] + + +! LaTeX Error: File `papers/nav/einleitung.tex' not found. + +Type X to quit or to proceed, +or enter new name. (Default extension: tex) + +Enter file name: +! Emergency stop. + + +l.13 \input{papers/nav/einleitung.tex} + ^^M +*** (cannot \read from terminal in nonstop modes) + + +Here is how much of TeX's memory you used: + 22 strings out of 478582 + 530 string characters out of 2856069 + 288951 words of memory out of 3000000 + 18307 multiletter control sequences out of 15000+600000 + 469259 words of font info for 28 fonts, out of 8000000 for 9000 + 1141 hyphenation exceptions out of 8191 + 16i,0n,26p,84b,28s stack positions out of 10000i,1000n,20000p,200000b,80000s +! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e11e2c0..1ad16da 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,29 +8,14 @@ \begin{refsection} \chapterauthor{Hans Muster} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} -\input{papers/nav/teil0.tex} -\input{papers/nav/teil1.tex} -\input{papers/nav/teil2.tex} -\input{papers/nav/teil3.tex} + +\input{papers/nav/einleitung.tex} +\input{papers/nav/geschichte.tex} +\input{papers/nav/flatearth.tex} +\input{papers/nav/trigo.tex} +\input{papers/nav/nautischesdreieck.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex new file mode 100644 index 0000000..0bb213c --- /dev/null +++ b/buch/papers/nav/nautischesdreieck.tex @@ -0,0 +1,190 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + \usepackage{xcolor, soul} + \sethlcolor{yellow} +\begin{document} + \setlength{\parindent}{0em} +\section{Das Nautische Dreieck} +\subsection{Definition des Nautischen Dreiecks} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ +Das Nautische Dreieck definiert sich durch folgende Ecken: +\begin{itemize} + \item Zenit + \item Gestirn + \item Himmelspol +\end{itemize} +Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. +Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. +Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +\\ +Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} +Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: + +$\alpha \ \widehat{=} \ Rektaszension $ + +$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns + +$\theta \ \widehat{=} \ Sternzeit$ + +$\phi \ \widehat{=} \ Geographische \ Breite $ + +$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns + +$a \ \widehat{=} \ Azimut $ + +$h \ \widehat{=} \ Hoehe$ + + + +\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} + + \begin{center} + \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \end{center} +Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. + +\subsection{Varianten vom Nautischen Dreieck} +\section{Standortbestimmung ohne elektronische Hilfsmittel} +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. +Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. + + \begin{center} + \includegraphics[width=6cm]{Bilder/dreieck.png} + \end{center} + + + +\subsection{Ecke P - Unser Standort} +Unser eigener Standort ist der gesuchte Punkt A. + +\subsection{Ecke A - Nordpol} +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. + +\subsection{Ecke B und C - Bildpunkt XXX und YYY} +Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. +Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. +\\ +Es gibt diverse Gestirne, die man nutzen kann. +\begin{itemize} + \item Sonne + \item Mond + \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn +\end{itemize} + +Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). +Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. +Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. + +\subsubsection{Sternzeit und Rektaszension} +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. +Die Lösung ist die Sternzeit. +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. + +Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. +Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} + +Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich + + $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. + + Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. + Dies gilt analog auch für das zweite Gestirn. + + \subsubsection{Deklination} + Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. + + + +\subsection{Bestimmung des eigenen Standortes P} +Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. +Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. + + + \begin{center} + \includegraphics[width=5cm]{Bilder/dreieck.png} + \end{center} + + +\subsubsection{Bestimmung des ersten Dreiecks} + Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. + Dann ist $c = \frac{\pi}{2} - \delta_1$. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. + Dann ist $b = \frac{\pi}{2} - \delta_2$. + + Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. + Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + +mit + + $\delta_1 =$ Deklination Bildpunkt XXX + +$\delta_2 =$ Deklination Bildpunk YYY + +$\lambda_1 =$ Längengrad Bildpunkt XXX + +$\lambda_2 =$ Längengrad Bildpunkt YYY + + Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. + +Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. + +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. + +\subsubsection{Bestimmung des zweiten Dreiecks} +Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort P. +Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. + +Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ + +mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +\\ + +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes + +$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. + +Es fehlt uns noch $\beta1$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen +\\ + +Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. +\\ + +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ + +Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ + + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..15c7fdc 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,9 @@ % following example %\usepackage{packagename} +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{xcolor, soul} diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex new file mode 100644 index 0000000..0dbd7a1 --- /dev/null +++ b/buch/papers/nav/trigo.tex @@ -0,0 +1,51 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + + +\begin{document} + \section{Sphärische Trigonometrie} + \subsection{Das Kugeldreieck} + +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. +A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. +Laut dieser Definition ist die Seite c der Winkel AMB. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. +Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +\begin{figure}[h] + \begin{center} + \includegraphics[width=6cm]{Bilder/kugel1.png} + \end{center} + +\end{figure} + +\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} +Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. + \newpage +\subsection{Winkelangabe} + + \begin{center} + \includegraphics[width=8cm]{Bilder/kugel2.png} + \end{center} + +Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. +Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und +$\alpha+\beta+\gamma > \pi$. +Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. + +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. +Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. + +\end{document} \ No newline at end of file -- cgit v1.2.1 From e898a9c36fb707474ee869f6ec47119d0592e59f Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:32:38 +0200 Subject: =?UTF-8?q?Revert=20"Ich=20habe=20nun=20alle=20Kapitel=20als=20Tex?= =?UTF-8?q?tfile=20seperat=20eingef=C3=BCgt,=20einen=20zus=C3=A4tzlichen?= =?UTF-8?q?=20unterordner=20gemacht=20f=C3=BCr=20die=20bilder,=20dann=20im?= =?UTF-8?q?=20main.tex=20die=20input=20befehle=20angepasst=20und=20committ?= =?UTF-8?q?e=20nun."?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This reverts commit d7bff7e403a0e54880cb04b350a91a2f664b2708. --- buch/papers/nav/bilder/dreieck.png | Bin 91703 -> 0 bytes buch/papers/nav/bilder/kugel1.png | Bin 9051 -> 0 bytes buch/papers/nav/bilder/kugel2.png | Bin 9103 -> 0 bytes buch/papers/nav/bilder/kugel3.png | Bin 215188 -> 0 bytes buch/papers/nav/bilder/projektion.png | Bin 41289 -> 0 bytes buch/papers/nav/einleitung.tex | 17 --- buch/papers/nav/flatearth.tex | 31 ------ buch/papers/nav/geschichte.tex | 22 ---- buch/papers/nav/main.log | 109 ------------------- buch/papers/nav/main.tex | 29 ++++-- buch/papers/nav/nautischesdreieck.tex | 190 ---------------------------------- buch/papers/nav/packages.tex | 6 -- buch/papers/nav/trigo.tex | 51 --------- 13 files changed, 22 insertions(+), 433 deletions(-) delete mode 100644 buch/papers/nav/bilder/dreieck.png delete mode 100644 buch/papers/nav/bilder/kugel1.png delete mode 100644 buch/papers/nav/bilder/kugel2.png delete mode 100644 buch/papers/nav/bilder/kugel3.png delete mode 100644 buch/papers/nav/bilder/projektion.png delete mode 100644 buch/papers/nav/einleitung.tex delete mode 100644 buch/papers/nav/flatearth.tex delete mode 100644 buch/papers/nav/geschichte.tex delete mode 100644 buch/papers/nav/main.log delete mode 100644 buch/papers/nav/nautischesdreieck.tex delete mode 100644 buch/papers/nav/trigo.tex (limited to 'buch') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png deleted file mode 100644 index 2b02105..0000000 Binary files a/buch/papers/nav/bilder/dreieck.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png deleted file mode 100644 index b3188b7..0000000 Binary files a/buch/papers/nav/bilder/kugel1.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png deleted file mode 100644 index 057740f..0000000 Binary files a/buch/papers/nav/bilder/kugel2.png and /dev/null differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png deleted file mode 100644 index 97066a2..0000000 Binary files a/buch/papers/nav/bilder/kugel3.png and /dev/null differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png deleted file mode 100644 index 5dcc0c8..0000000 Binary files a/buch/papers/nav/bilder/projektion.png and /dev/null differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex deleted file mode 100644 index 42f4b6c..0000000 --- a/buch/papers/nav/einleitung.tex +++ /dev/null @@ -1,17 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Einleitung} -Heut zu Tage ist die Navigation ein Teil des Lebens. -Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. -Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. -Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex deleted file mode 100644 index b14dd4b..0000000 --- a/buch/papers/nav/flatearth.tex +++ /dev/null @@ -1,31 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} - \section{Warum ist die Erde nicht flach?} - - \begin{figure}[h] - \begin{center} - \includegraphics[width=10cm]{bilder/projektion.png} - \caption{Mercator Projektion} - \end{center} - \end{figure} - -Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. -Die Fotos von unserem Planeten oder die Berichte der Astronauten. - Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. - Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. - Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. - Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. - Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. -In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. -Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex deleted file mode 100644 index a20eb6d..0000000 --- a/buch/papers/nav/geschichte.tex +++ /dev/null @@ -1,22 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Geschichte der sphärischen Navigation} -Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. -Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. -Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. -Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. -Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. -Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. -Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. -Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. -Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. -Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. -Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. -Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. -Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.log b/buch/papers/nav/main.log deleted file mode 100644 index d7aa0a9..0000000 --- a/buch/papers/nav/main.log +++ /dev/null @@ -1,109 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 16 MAY 2022 20:27 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**./main.tex -(main.tex -LaTeX2e <2021-11-15> patch level 1 -L3 programming layer <2022-02-24> -! Undefined control sequence. -l.6 \chapter - {Thema\label{chapter:nav}} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - - -! LaTeX Error: Missing \begin{document}. - -See the LaTeX manual or LaTeX Companion for explanation. -Type H for immediate help. - ... - -l.6 \chapter{T - hema\label{chapter:nav}} -You're in trouble here. Try typing to proceed. -If that doesn't work, type X to quit. - -Missing character: There is no T in font nullfont! -Missing character: There is no h in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no m in font nullfont! -Missing character: There is no a in font nullfont! -! Undefined control sequence. -l.7 \lhead - {Thema} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - -Missing character: There is no T in font nullfont! -Missing character: There is no h in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no m in font nullfont! -Missing character: There is no a in font nullfont! - -! LaTeX Error: Environment refsection undefined. - -See the LaTeX manual or LaTeX Companion for explanation. -Type H for immediate help. - ... - -l.8 \begin{refsection} - -Your command was ignored. -Type I to replace it with another command, -or to continue without it. - -! Undefined control sequence. -l.9 \chapterauthor - {Hans Muster} -The control sequence at the end of the top line -of your error message was never \def'ed. If you have -misspelled it (e.g., `\hobx'), type `I' and the correct -spelling (e.g., `I\hbox'). Otherwise just continue, -and I'll forget about whatever was undefined. - -Missing character: There is no H in font nullfont! -Missing character: There is no a in font nullfont! -Missing character: There is no n in font nullfont! -Missing character: There is no s in font nullfont! -Missing character: There is no M in font nullfont! -Missing character: There is no u in font nullfont! -Missing character: There is no s in font nullfont! -Missing character: There is no t in font nullfont! -Missing character: There is no e in font nullfont! -Missing character: There is no r in font nullfont! - -Overfull \hbox (20.0pt too wide) in paragraph at lines 6--10 -[][] - [] - - -! LaTeX Error: File `papers/nav/einleitung.tex' not found. - -Type X to quit or to proceed, -or enter new name. (Default extension: tex) - -Enter file name: -! Emergency stop. - - -l.13 \input{papers/nav/einleitung.tex} - ^^M -*** (cannot \read from terminal in nonstop modes) - - -Here is how much of TeX's memory you used: - 22 strings out of 478582 - 530 string characters out of 2856069 - 288951 words of memory out of 3000000 - 18307 multiletter control sequences out of 15000+600000 - 469259 words of font info for 28 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 16i,0n,26p,84b,28s stack positions out of 10000i,1000n,20000p,200000b,80000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 1ad16da..e11e2c0 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,14 +8,29 @@ \begin{refsection} \chapterauthor{Hans Muster} +Ein paar Hinweise für die korrekte Formatierung des Textes +\begin{itemize} +\item +Absätze werden gebildet, indem man eine Leerzeile einfügt. +Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. +\item +Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende +Optionen werden gelöscht. +Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. +\item +Beginnen Sie jeden Satz auf einer neuen Zeile. +Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen +in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt +anzuwenden. +\item +Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren +Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. +\end{itemize} - -\input{papers/nav/einleitung.tex} -\input{papers/nav/geschichte.tex} -\input{papers/nav/flatearth.tex} -\input{papers/nav/trigo.tex} -\input{papers/nav/nautischesdreieck.tex} - +\input{papers/nav/teil0.tex} +\input{papers/nav/teil1.tex} +\input{papers/nav/teil2.tex} +\input{papers/nav/teil3.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex deleted file mode 100644 index 0bb213c..0000000 --- a/buch/papers/nav/nautischesdreieck.tex +++ /dev/null @@ -1,190 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - \usepackage{xcolor, soul} - \sethlcolor{yellow} -\begin{document} - \setlength{\parindent}{0em} -\section{Das Nautische Dreieck} -\subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. -Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ -Das Nautische Dreieck definiert sich durch folgende Ecken: -\begin{itemize} - \item Zenit - \item Gestirn - \item Himmelspol -\end{itemize} -Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. -Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. -Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. -\\ -Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} -Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: - -$\alpha \ \widehat{=} \ Rektaszension $ - -$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns - -$\theta \ \widehat{=} \ Sternzeit$ - -$\phi \ \widehat{=} \ Geographische \ Breite $ - -$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns - -$a \ \widehat{=} \ Azimut $ - -$h \ \widehat{=} \ Hoehe$ - - - -\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} - - \begin{center} - \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} - \end{center} -Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. - -\subsection{Varianten vom Nautischen Dreieck} -\section{Standortbestimmung ohne elektronische Hilfsmittel} -Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. -Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. - - \begin{center} - \includegraphics[width=6cm]{Bilder/dreieck.png} - \end{center} - - - -\subsection{Ecke P - Unser Standort} -Unser eigener Standort ist der gesuchte Punkt A. - -\subsection{Ecke A - Nordpol} -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. - -\subsection{Ecke B und C - Bildpunkt XXX und YYY} -Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. -Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. -\\ -Es gibt diverse Gestirne, die man nutzen kann. -\begin{itemize} - \item Sonne - \item Mond - \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn -\end{itemize} - -Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). -Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. -Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. - -\subsubsection{Sternzeit und Rektaszension} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. -Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. -Die Lösung ist die Sternzeit. -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. - -Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. -Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} - -Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich - - $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. - - Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. - Dies gilt analog auch für das zweite Gestirn. - - \subsubsection{Deklination} - Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. - - - -\subsection{Bestimmung des eigenen Standortes P} -Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. -Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. - - - \begin{center} - \includegraphics[width=5cm]{Bilder/dreieck.png} - \end{center} - - -\subsubsection{Bestimmung des ersten Dreiecks} - Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. - Dann ist $c = \frac{\pi}{2} - \delta_1$. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. - Dann ist $b = \frac{\pi}{2} - \delta_2$. - - Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. - Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - -mit - - $\delta_1 =$ Deklination Bildpunkt XXX - -$\delta_2 =$ Deklination Bildpunk YYY - -$\lambda_1 =$ Längengrad Bildpunkt XXX - -$\lambda_2 =$ Längengrad Bildpunkt YYY - - Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - -Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. -Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. -Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. - -Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. - -Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. - -\subsubsection{Bestimmung des zweiten Dreiecks} -Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. -Die dritte Ecke ist der eigene Standort P. -Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. - -Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. -Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ - -mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. -\\ - -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes - -$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. - -Es fehlt uns noch $\beta1$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen -\\ - -Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. -\\ - -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. -\\ - -Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ - - - -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 15c7fdc..9faa48d 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,9 +8,3 @@ % following example %\usepackage{packagename} -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\usepackage{xcolor, soul} diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex deleted file mode 100644 index 0dbd7a1..0000000 --- a/buch/papers/nav/trigo.tex +++ /dev/null @@ -1,51 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - - -\begin{document} - \section{Sphärische Trigonometrie} - \subsection{Das Kugeldreieck} - -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. -A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. -Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite c der Winkel AMB. -Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. -Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. -Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. -\begin{figure}[h] - \begin{center} - \includegraphics[width=6cm]{Bilder/kugel1.png} - \end{center} - -\end{figure} - -\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} -Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. - \newpage -\subsection{Winkelangabe} - - \begin{center} - \includegraphics[width=8cm]{Bilder/kugel2.png} - \end{center} - -Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. -Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und -$\alpha+\beta+\gamma > \pi$. -Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. - -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. - -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. - -\end{document} \ No newline at end of file -- cgit v1.2.1 From 309284c1f79df5b8553b0b8875db188ff7d930af Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Mon, 16 May 2022 20:43:09 +0200 Subject: no message --- buch/papers/nav/bilder/dreieck.png | Bin 0 -> 91703 bytes buch/papers/nav/bilder/kugel1.png | Bin 0 -> 9051 bytes buch/papers/nav/bilder/kugel2.png | Bin 0 -> 9103 bytes buch/papers/nav/bilder/kugel3.png | Bin 0 -> 215188 bytes buch/papers/nav/bilder/projektion.png | Bin 0 -> 41289 bytes buch/papers/nav/einleitung.tex | 17 +++ buch/papers/nav/flatearth.tex | 31 ++++++ buch/papers/nav/geschichte.tex | 22 ++++ buch/papers/nav/main.tex | 28 ++--- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++++++++++++++++++++ buch/papers/nav/packages.tex | 5 + buch/papers/nav/teil0.tex | 22 ---- buch/papers/nav/teil1.tex | 55 ---------- buch/papers/nav/teil2.tex | 40 ------- buch/papers/nav/teil3.tex | 40 ------- buch/papers/nav/trigo.tex | 51 +++++++++ 16 files changed, 322 insertions(+), 179 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.png create mode 100644 buch/papers/nav/bilder/kugel1.png create mode 100644 buch/papers/nav/bilder/kugel2.png create mode 100644 buch/papers/nav/bilder/kugel3.png create mode 100644 buch/papers/nav/bilder/projektion.png create mode 100644 buch/papers/nav/einleitung.tex create mode 100644 buch/papers/nav/flatearth.tex create mode 100644 buch/papers/nav/geschichte.tex create mode 100644 buch/papers/nav/nautischesdreieck.tex delete mode 100644 buch/papers/nav/teil0.tex delete mode 100644 buch/papers/nav/teil1.tex delete mode 100644 buch/papers/nav/teil2.tex delete mode 100644 buch/papers/nav/teil3.tex create mode 100644 buch/papers/nav/trigo.tex (limited to 'buch') diff --git a/buch/papers/nav/bilder/dreieck.png b/buch/papers/nav/bilder/dreieck.png new file mode 100644 index 0000000..2b02105 Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.png differ diff --git a/buch/papers/nav/bilder/kugel1.png b/buch/papers/nav/bilder/kugel1.png new file mode 100644 index 0000000..b3188b7 Binary files /dev/null and b/buch/papers/nav/bilder/kugel1.png differ diff --git a/buch/papers/nav/bilder/kugel2.png b/buch/papers/nav/bilder/kugel2.png new file mode 100644 index 0000000..057740f Binary files /dev/null and b/buch/papers/nav/bilder/kugel2.png differ diff --git a/buch/papers/nav/bilder/kugel3.png b/buch/papers/nav/bilder/kugel3.png new file mode 100644 index 0000000..97066a2 Binary files /dev/null and b/buch/papers/nav/bilder/kugel3.png differ diff --git a/buch/papers/nav/bilder/projektion.png b/buch/papers/nav/bilder/projektion.png new file mode 100644 index 0000000..5dcc0c8 Binary files /dev/null and b/buch/papers/nav/bilder/projektion.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex new file mode 100644 index 0000000..42f4b6c --- /dev/null +++ b/buch/papers/nav/einleitung.tex @@ -0,0 +1,17 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Einleitung} +Heut zu Tage ist die Navigation ein Teil des Lebens. +Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex new file mode 100644 index 0000000..b14dd4b --- /dev/null +++ b/buch/papers/nav/flatearth.tex @@ -0,0 +1,31 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} + \section{Warum ist die Erde nicht flach?} + + \begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{bilder/projektion.png} + \caption{Mercator Projektion} + \end{center} + \end{figure} + +Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Die Fotos von unserem Planeten oder die Berichte der Astronauten. + Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. + Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. + Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. + Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. +Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex new file mode 100644 index 0000000..a20eb6d --- /dev/null +++ b/buch/papers/nav/geschichte.tex @@ -0,0 +1,22 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + +\begin{document} +\section{Geschichte der sphärischen Navigation} +Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. +Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. +Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. +Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. +Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. +Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. +Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. +Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. +Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. +Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. +Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. +Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e11e2c0..9758de9 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -8,29 +8,13 @@ \begin{refsection} \chapterauthor{Hans Muster} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} -\input{papers/nav/teil0.tex} -\input{papers/nav/teil1.tex} -\input{papers/nav/teil2.tex} -\input{papers/nav/teil3.tex} + +\input{papers/nav/einleitung.tex} +\input{papers/nav/geschichte.tex} +\input{papers/nav/flatearth.tex} +\input{papers/nav/trigo.tex} +\input{papers/nav/nautischesdreieck.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex new file mode 100644 index 0000000..0bb213c --- /dev/null +++ b/buch/papers/nav/nautischesdreieck.tex @@ -0,0 +1,190 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + \usepackage{xcolor, soul} + \sethlcolor{yellow} +\begin{document} + \setlength{\parindent}{0em} +\section{Das Nautische Dreieck} +\subsection{Definition des Nautischen Dreiecks} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ +Das Nautische Dreieck definiert sich durch folgende Ecken: +\begin{itemize} + \item Zenit + \item Gestirn + \item Himmelspol +\end{itemize} +Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. +Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. +Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +\\ +Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} +Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: + +$\alpha \ \widehat{=} \ Rektaszension $ + +$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns + +$\theta \ \widehat{=} \ Sternzeit$ + +$\phi \ \widehat{=} \ Geographische \ Breite $ + +$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns + +$a \ \widehat{=} \ Azimut $ + +$h \ \widehat{=} \ Hoehe$ + + + +\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} + + \begin{center} + \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \end{center} +Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. + +\subsection{Varianten vom Nautischen Dreieck} +\section{Standortbestimmung ohne elektronische Hilfsmittel} +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. +Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. + + \begin{center} + \includegraphics[width=6cm]{Bilder/dreieck.png} + \end{center} + + + +\subsection{Ecke P - Unser Standort} +Unser eigener Standort ist der gesuchte Punkt A. + +\subsection{Ecke A - Nordpol} +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. + +\subsection{Ecke B und C - Bildpunkt XXX und YYY} +Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. +Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. +\\ +Es gibt diverse Gestirne, die man nutzen kann. +\begin{itemize} + \item Sonne + \item Mond + \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn +\end{itemize} + +Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). +Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. +Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. + +\subsubsection{Sternzeit und Rektaszension} +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. +Die Lösung ist die Sternzeit. +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. + +Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. +Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} + +Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich + + $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. + + Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. + Dies gilt analog auch für das zweite Gestirn. + + \subsubsection{Deklination} + Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. + + + +\subsection{Bestimmung des eigenen Standortes P} +Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. +Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. + + + \begin{center} + \includegraphics[width=5cm]{Bilder/dreieck.png} + \end{center} + + +\subsubsection{Bestimmung des ersten Dreiecks} + Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. + Dann ist $c = \frac{\pi}{2} - \delta_1$. + + Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. + Dann ist $b = \frac{\pi}{2} - \delta_2$. + + Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. + Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + +mit + + $\delta_1 =$ Deklination Bildpunkt XXX + +$\delta_2 =$ Deklination Bildpunk YYY + +$\lambda_1 =$ Längengrad Bildpunkt XXX + +$\lambda_2 =$ Längengrad Bildpunkt YYY + + Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. + +Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. + +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. + +\subsubsection{Bestimmung des zweiten Dreiecks} +Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort P. +Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. + +Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ + +mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +\\ + +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes + +$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. + +Es fehlt uns noch $\beta1$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen +\\ + +Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. +\\ + +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ + +Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ + + + +\end{document} \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..16d3a3c 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,8 @@ % following example %\usepackage{packagename} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{xcolor, soul} \ No newline at end of file diff --git a/buch/papers/nav/teil0.tex b/buch/papers/nav/teil0.tex deleted file mode 100644 index f3323a9..0000000 --- a/buch/papers/nav/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{nav:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{nav:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/nav/teil1.tex b/buch/papers/nav/teil1.tex deleted file mode 100644 index 996202f..0000000 --- a/buch/papers/nav/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{nav:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{nav:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{nav:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{nav:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/nav/teil2.tex b/buch/papers/nav/teil2.tex deleted file mode 100644 index 5a52e03..0000000 --- a/buch/papers/nav/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{nav:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/nav/teil3.tex b/buch/papers/nav/teil3.tex deleted file mode 100644 index 2b5d2d5..0000000 --- a/buch/papers/nav/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{nav:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{nav:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex new file mode 100644 index 0000000..0dbd7a1 --- /dev/null +++ b/buch/papers/nav/trigo.tex @@ -0,0 +1,51 @@ +\documentclass[12pt]{scrartcl} +\usepackage{ucs} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} + + +\begin{document} + \section{Sphärische Trigonometrie} + \subsection{Das Kugeldreieck} + +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. +A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. +Laut dieser Definition ist die Seite c der Winkel AMB. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. +Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +\begin{figure}[h] + \begin{center} + \includegraphics[width=6cm]{Bilder/kugel1.png} + \end{center} + +\end{figure} + +\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} +Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. + \newpage +\subsection{Winkelangabe} + + \begin{center} + \includegraphics[width=8cm]{Bilder/kugel2.png} + \end{center} + +Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. +Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und +$\alpha+\beta+\gamma > \pi$. +Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. + +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. +Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. + +\end{document} \ No newline at end of file -- cgit v1.2.1 From 800ca10daf88dd073c239b6478bb34f81e48410f Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 17 May 2022 13:34:13 +0200 Subject: first commit nav --- buch/buch.aux | 22 + buch/buch.bbl | 0 buch/buch.blg | 48 + buch/buch.idx | 0 buch/buch.log | 2106 +++++++++++++++++++++++++++++++++ buch/papers/nav/einleitung.tex | 12 +- buch/papers/nav/flatearth.tex | 38 +- buch/papers/nav/main.tex | 5 +- buch/papers/nav/nautischesdreieck.tex | 139 ++- buch/papers/nav/packages.tex | 5 - buch/papers/nav/sincos.tex | 16 + buch/papers/nav/trigo.tex | 28 +- 12 files changed, 2299 insertions(+), 120 deletions(-) create mode 100644 buch/buch.aux create mode 100644 buch/buch.bbl create mode 100644 buch/buch.blg create mode 100644 buch/buch.idx create mode 100644 buch/buch.log create mode 100644 buch/papers/nav/sincos.tex (limited to 'buch') diff --git a/buch/buch.aux b/buch/buch.aux new file mode 100644 index 0000000..6730af9 --- /dev/null +++ b/buch/buch.aux @@ -0,0 +1,22 @@ +\relax +\providecommand\hyper@newdestlabel[2]{} +\providecommand\babel@aux[2]{} +\@nameuse{bbl@beforestart} +\catcode `"\active +\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} +\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined +\global\let\oldcontentsline\contentsline +\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} +\global\let\oldnewlabel\newlabel +\gdef\newlabel#1#2{\newlabelxx{#1}#2} +\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} +\AtEndDocument{\ifx\hyper@anchor\@undefined +\let\contentsline\oldcontentsline +\let\newlabel\oldnewlabel +\fi} +\fi} +\global\let\hyper@last\relax +\gdef\HyperFirstAtBeginDocument#1{#1} +\providecommand\HyField@AuxAddToFields[1]{} +\providecommand\HyField@AuxAddToCoFields[2]{} +\providecommand\BKM@entry[2]{} diff --git a/buch/buch.bbl b/buch/buch.bbl new file mode 100644 index 0000000..e69de29 diff --git a/buch/buch.blg b/buch/buch.blg new file mode 100644 index 0000000..706b1d8 --- /dev/null +++ b/buch/buch.blg @@ -0,0 +1,48 @@ +This is BibTeX, Version 0.99d +Capacity: max_strings=200000, hash_size=200000, hash_prime=170003 +The top-level auxiliary file: buch.aux +I found no \citation commands---while reading file buch.aux +I found no \bibdata command---while reading file buch.aux +I found no \bibstyle command---while reading file buch.aux +You've used 0 entries, + 0 wiz_defined-function locations, + 83 strings with 482 characters, +and the built_in function-call counts, 0 in all, are: += -- 0 +> -- 0 +< -- 0 ++ -- 0 +- -- 0 +* -- 0 +:= -- 0 +add.period$ -- 0 +call.type$ -- 0 +change.case$ -- 0 +chr.to.int$ -- 0 +cite$ -- 0 +duplicate$ -- 0 +empty$ -- 0 +format.name$ -- 0 +if$ -- 0 +int.to.chr$ -- 0 +int.to.str$ -- 0 +missing$ -- 0 +newline$ -- 0 +num.names$ -- 0 +pop$ -- 0 +preamble$ -- 0 +purify$ -- 0 +quote$ -- 0 +skip$ -- 0 +stack$ -- 0 +substring$ -- 0 +swap$ -- 0 +text.length$ -- 0 +text.prefix$ -- 0 +top$ -- 0 +type$ -- 0 +warning$ -- 0 +while$ -- 0 +width$ -- 0 +write$ -- 0 +(There were 3 error messages) diff --git a/buch/buch.idx b/buch/buch.idx new file mode 100644 index 0000000..e69de29 diff --git a/buch/buch.log b/buch/buch.log new file mode 100644 index 0000000..4175a27 --- /dev/null +++ b/buch/buch.log @@ -0,0 +1,2106 @@ +This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 17 MAY 2022 13:22 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**./buch.tex +(buch.tex +LaTeX2e <2021-11-15> patch level 1 +L3 programming layer <2022-02-24> (common/content.tex +(D:\Programme\Miktex\tex/latex/base\book.cls +Document Class: book 2021/10/04 v1.4n Standard LaTeX document class +(D:\Programme\Miktex\tex/latex/base\bk10.clo +File: bk10.clo 2021/10/04 v1.4n Standard LaTeX file (size option) +) +\c@part=\count185 +\c@chapter=\count186 +\c@section=\count187 +\c@subsection=\count188 +\c@subsubsection=\count189 +\c@paragraph=\count190 +\c@subparagraph=\count191 +\c@figure=\count192 +\c@table=\count193 +\abovecaptionskip=\skip47 +\belowcaptionskip=\skip48 +\bibindent=\dimen138 +) (common/packages.tex +(D:\Programme\Miktex\tex/latex/etex-pkg\etex.sty +Package: etex 2016/08/01 v2.7 eTeX basic definition package (PEB,DPC) +\et@xins=\count194 +) +(D:\Programme\Miktex\tex/latex/geometry\geometry.sty +Package: geometry 2020/01/02 v5.9 Page Geometry + +(D:\Programme\Miktex\tex/latex/graphics\keyval.sty +Package: keyval 2014/10/28 v1.15 key=value parser (DPC) +\KV@toks@=\toks16 +) +(D:\Programme\Miktex\tex/generic/iftex\ifvtex.sty +Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. + +(D:\Programme\Miktex\tex/generic/iftex\iftex.sty +Package: iftex 2022/02/03 v1.0f TeX engine tests +)) +\Gm@cnth=\count195 +\Gm@cntv=\count196 +\c@Gm@tempcnt=\count197 +\Gm@bindingoffset=\dimen139 +\Gm@wd@mp=\dimen140 +\Gm@odd@mp=\dimen141 +\Gm@even@mp=\dimen142 +\Gm@layoutwidth=\dimen143 +\Gm@layoutheight=\dimen144 +\Gm@layouthoffset=\dimen145 +\Gm@layoutvoffset=\dimen146 +\Gm@dimlist=\toks17 + +(D:\Programme\Miktex\tex/latex/geometry\geometry.cfg)) +(D:\Programme\Miktex\tex/generic/babel\babel.sty +Package: babel 2022/02/26 3.73 The Babel package +\babel@savecnt=\count198 +\U@D=\dimen147 +\l@unhyphenated=\language79 + +(D:\Programme\Miktex\tex/generic/babel\txtbabel.def) +\bbl@readstream=\read2 +\bbl@dirlevel=\count199 + +************************************* +* Local config file bblopts.cfg used +* +(D:\Programme\Miktex\tex/latex/arabi\bblopts.cfg +File: bblopts.cfg 2005/09/08 v0.1 add Arabic and Farsi to "declared" options of + babel +) +(D:\Programme\Miktex\tex/latex/babel-english\english.ldf +Language: english 2017/06/06 v3.3r English support from the babel system +Package babel Info: Hyphen rules for 'canadian' set to \l@english +(babel) (\language0). Reported on input line 102. +Package babel Info: Hyphen rules for 'australian' set to \l@ukenglish +(babel) (\language73). Reported on input line 105. +Package babel Info: Hyphen rules for 'newzealand' set to \l@ukenglish +(babel) (\language73). Reported on input line 108. +) +(D:\Programme\Miktex\tex/latex/babel-german\ngerman.ldf +Language: ngerman 2021/02/27 v2.13 German support for babel (post-1996 orthogra +phy) + +(D:\Programme\Miktex\tex/latex/babel-german\ngermanb.ldf +Language: ngermanb 2021/02/27 v2.13 German support for babel (post-1996 orthogr +aphy) +Package babel Info: Making " an active character on input line 122. +))) +(D:\Programme\Miktex\tex/latex/base\inputenc.sty +Package: inputenc 2021/02/14 v1.3d Input encoding file +\inpenc@prehook=\toks18 +\inpenc@posthook=\toks19 +) +(D:\Programme\Miktex\tex/latex/base\fontenc.sty +Package: fontenc 2021/04/29 v2.0v Standard LaTeX package +) +(D:\Programme\Miktex\tex/latex/cancel\cancel.sty +Package: cancel 2013/04/12 v2.2 Cancel math terms +) +(D:\Programme\Miktex\tex/latex/psnfss\times.sty +Package: times 2020/03/25 PSNFSS-v9.3 (SPQR) +) +(D:\Programme\Miktex\tex/latex/amsmath\amsmath.sty +Package: amsmath 2021/10/15 v2.17l AMS math features +\@mathmargin=\skip49 + +For additional information on amsmath, use the `?' option. +(D:\Programme\Miktex\tex/latex/amsmath\amstext.sty +Package: amstext 2021/08/26 v2.01 AMS text + +(D:\Programme\Miktex\tex/latex/amsmath\amsgen.sty +File: amsgen.sty 1999/11/30 v2.0 generic functions +\@emptytoks=\toks20 +\ex@=\dimen148 +)) +(D:\Programme\Miktex\tex/latex/amsmath\amsbsy.sty +Package: amsbsy 1999/11/29 v1.2d Bold Symbols +\pmbraise@=\dimen149 +) +(D:\Programme\Miktex\tex/latex/amsmath\amsopn.sty +Package: amsopn 2021/08/26 v2.02 operator names +) +Normal \count register pool exhausted, switching to extended pool. +\inf@bad=\count277 +LaTeX Info: Redefining \frac on input line 234. +\uproot@=\count278 +\leftroot@=\count279 +LaTeX Info: Redefining \overline on input line 399. +\classnum@=\count280 +\DOTSCASE@=\count281 +LaTeX Info: Redefining \ldots on input line 496. +LaTeX Info: Redefining \dots on input line 499. +LaTeX Info: Redefining \cdots on input line 620. +\Mathstrutbox@=\box50 +\strutbox@=\box51 +\big@size=\dimen150 +LaTeX Font Info: Redeclaring font encoding OML on input line 743. +LaTeX Font Info: Redeclaring font encoding OMS on input line 744. +\macc@depth=\count282 +\c@MaxMatrixCols=\count283 +\dotsspace@=\muskip16 +\c@parentequation=\count284 +\dspbrk@lvl=\count285 +\tag@help=\toks21 +\row@=\count286 +\column@=\count287 +\maxfields@=\count288 +\andhelp@=\toks22 +\eqnshift@=\dimen151 +\alignsep@=\dimen152 +\tagshift@=\dimen153 +\tagwidth@=\dimen154 +\totwidth@=\dimen155 +\lineht@=\dimen156 +\@envbody=\toks23 +\multlinegap=\skip50 +\multlinetaggap=\skip51 +\mathdisplay@stack=\toks24 +LaTeX Info: Redefining \[ on input line 2938. +LaTeX Info: Redefining \] on input line 2939. +) +(D:\Programme\Miktex\tex/latex/amsmath\amscd.sty +Package: amscd 2017/04/14 v2.1 AMS Commutative Diagrams +\athelp@=\toks25 +\minaw@=\dimen157 +\bigaw@=\dimen158 +\minCDarrowwidth=\dimen159 +) +(D:\Programme\Miktex\tex/latex/amsfonts\amssymb.sty +Package: amssymb 2013/01/14 v3.01 AMS font symbols + +(D:\Programme\Miktex\tex/latex/amsfonts\amsfonts.sty +Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support +\symAMSa=\mathgroup4 +\symAMSb=\mathgroup5 +LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. +LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' +(Font) U/euf/m/n --> U/euf/b/n on input line 106. +)) +(D:\Programme\Miktex\tex/latex/amscls\amsthm.sty +Package: amsthm 2020/05/29 v2.20.6 +\thm@style=\toks26 +\thm@bodyfont=\toks27 +\thm@headfont=\toks28 +\thm@notefont=\toks29 +\thm@headpunct=\toks30 +\thm@preskip=\skip52 +\thm@postskip=\skip53 +\thm@headsep=\skip54 +\dth@everypar=\toks31 +) +(D:\Programme\Miktex\tex/latex/graphics\graphicx.sty +Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) + +(D:\Programme\Miktex\tex/latex/graphics\graphics.sty +Package: graphics 2021/03/04 v1.4d Standard LaTeX Graphics (DPC,SPQR) + +(D:\Programme\Miktex\tex/latex/graphics\trig.sty +Package: trig 2021/08/11 v1.11 sin cos tan (DPC) +) +(D:\Programme\Miktex\tex/latex/graphics-cfg\graphics.cfg +File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration +) +Package graphics Info: Driver file: pdftex.def on input line 107. + +(D:\Programme\Miktex\tex/latex/graphics-def\pdftex.def +File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex +)) +\Gin@req@height=\dimen160 +\Gin@req@width=\dimen161 +) +(D:\Programme\Miktex\tex/latex/fancyhdr\fancyhdr.sty +Package: fancyhdr 2022/05/10 v4.0.2 Extensive control of page headers and foote +rs +\f@nch@headwidth=\skip55 +\f@nch@O@elh=\skip56 +\f@nch@O@erh=\skip57 +\f@nch@O@olh=\skip58 +\f@nch@O@orh=\skip59 +\f@nch@O@elf=\skip60 +\f@nch@O@erf=\skip61 +\f@nch@O@olf=\skip62 +\f@nch@O@orf=\skip63 +) +(D:\Programme\Miktex\tex/latex/base\textcomp.sty +Package: textcomp 2020/02/02 v2.0n Standard LaTeX package +) +(D:\Programme\Miktex\tex/latex/txfonts\txfonts.sty +Package: txfonts 2008/01/22 v3.2.1 +LaTeX Font Info: Redeclaring symbol font `operators' on input line 21. +LaTeX Font Info: Overwriting symbol font `operators' in version `normal' +(Font) OT1/cmr/m/n --> OT1/txr/m/n on input line 21. +LaTeX Font Info: Overwriting symbol font `operators' in version `bold' +(Font) OT1/cmr/bx/n --> OT1/txr/m/n on input line 21. +LaTeX Font Info: Overwriting symbol font `operators' in version `bold' +(Font) OT1/txr/m/n --> OT1/txr/bx/n on input line 22. +\symitalic=\mathgroup6 +LaTeX Font Info: Overwriting symbol font `italic' in version `bold' +(Font) OT1/txr/m/it --> OT1/txr/bx/it on input line 26. +LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 29. +LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' +(Font) OT1/cmr/bx/n --> OT1/txr/bx/n on input line 29. +LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' +(Font) OT1/cmr/bx/n --> OT1/txr/bx/n on input line 29. +LaTeX Font Info: Redeclaring math alphabet \mathit on input line 30. +LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' +(Font) OT1/cmr/m/it --> OT1/txr/m/it on input line 30. +LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' +(Font) OT1/cmr/bx/it --> OT1/txr/m/it on input line 30. +LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' +(Font) OT1/txr/m/it --> OT1/txr/bx/it on input line 31. +LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 40. +LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' +(Font) OT1/cmss/m/n --> OT1/txss/m/n on input line 40. +LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' +(Font) OT1/cmss/bx/n --> OT1/txss/m/n on input line 40. +LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' +(Font) OT1/txss/m/n --> OT1/txss/b/n on input line 41. +LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 50. +LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' +(Font) OT1/cmtt/m/n --> OT1/txtt/m/n on input line 50. +LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' +(Font) OT1/cmtt/m/n --> OT1/txtt/m/n on input line 50. +LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' +(Font) OT1/txtt/m/n --> OT1/txtt/b/n on input line 51. +LaTeX Font Info: Redeclaring symbol font `letters' on input line 58. +LaTeX Font Info: Overwriting symbol font `letters' in version `normal' +(Font) OML/cmm/m/it --> OML/txmi/m/it on input line 58. +LaTeX Font Info: Overwriting symbol font `letters' in version `bold' +(Font) OML/cmm/b/it --> OML/txmi/m/it on input line 58. +LaTeX Font Info: Overwriting symbol font `letters' in version `bold' +(Font) OML/txmi/m/it --> OML/txmi/bx/it on input line 59. +\symlettersA=\mathgroup7 +LaTeX Font Info: Overwriting symbol font `lettersA' in version `bold' +(Font) U/txmia/m/it --> U/txmia/bx/it on input line 67. +LaTeX Font Info: Redeclaring math alphabet \mathfrak on input line 70. +LaTeX Font Info: Redeclaring symbol font `symbols' on input line 77. +LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' +(Font) OMS/cmsy/m/n --> OMS/txsy/m/n on input line 77. +LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' +(Font) OMS/cmsy/b/n --> OMS/txsy/m/n on input line 77. +LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' +(Font) OMS/txsy/m/n --> OMS/txsy/bx/n on input line 78. +LaTeX Font Info: Redeclaring symbol font `AMSa' on input line 93. +LaTeX Font Info: Overwriting symbol font `AMSa' in version `normal' +(Font) U/msa/m/n --> U/txsya/m/n on input line 93. +LaTeX Font Info: Overwriting symbol font `AMSa' in version `bold' +(Font) U/msa/m/n --> U/txsya/m/n on input line 93. +LaTeX Font Info: Overwriting symbol font `AMSa' in version `bold' +(Font) U/txsya/m/n --> U/txsya/bx/n on input line 94. +LaTeX Font Info: Redeclaring symbol font `AMSb' on input line 102. +LaTeX Font Info: Overwriting symbol font `AMSb' in version `normal' +(Font) U/msb/m/n --> U/txsyb/m/n on input line 102. +LaTeX Font Info: Overwriting symbol font `AMSb' in version `bold' +(Font) U/msb/m/n --> U/txsyb/m/n on input line 102. +LaTeX Font Info: Overwriting symbol font `AMSb' in version `bold' +(Font) U/txsyb/m/n --> U/txsyb/bx/n on input line 103. +\symsymbolsC=\mathgroup8 +LaTeX Font Info: Overwriting symbol font `symbolsC' in version `bold' +(Font) U/txsyc/m/n --> U/txsyc/bx/n on input line 113. +LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 120. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' +(Font) OMX/cmex/m/n --> OMX/txex/m/n on input line 120. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' +(Font) OMX/cmex/m/n --> OMX/txex/m/n on input line 120. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' +(Font) OMX/txex/m/n --> OMX/txex/bx/n on input line 121. +\symlargesymbolsA=\mathgroup9 +LaTeX Font Info: Overwriting symbol font `largesymbolsA' in version `bold' +(Font) U/txexa/m/n --> U/txexa/bx/n on input line 129. +LaTeX Font Info: Redeclaring math symbol \mathsterling on input line 164. +LaTeX Info: Redefining \not on input line 1043. +LaTeX Info: Redefining \textsquare on input line 1063. +LaTeX Info: Redefining \openbox on input line 1064. +) +(D:\Programme\Miktex\tex/latex/jknappen\mathrsfs.sty +Package: mathrsfs 1996/01/01 Math RSFS package v1.0 (jk) +\symrsfs=\mathgroup10 +) +(D:\Programme\Miktex\tex/latex/units\nicefrac.sty +Package: nicefrac 1998/08/04 v0.9b Nice fractions +\L@UnitsRaiseDisplaystyle=\skip64 +\L@UnitsRaiseTextstyle=\skip65 +\L@UnitsRaiseScriptstyle=\skip66 + +(D:\Programme\Miktex\tex/latex/base\ifthen.sty +Package: ifthen 2020/11/24 v1.1c Standard LaTeX ifthen package (DPC) +)) +(D:\Programme\Miktex\tex/latex/tools\bm.sty +Package: bm 2021/04/25 v1.2e Bold Symbol Support (DPC/FMi) +Package bm Info: No bold for \U/rsfs/m/n, using \pmb. +) +(D:\Programme\Miktex\tex/latex/eepic\epic.sty +Enhancements to Picture Environment. Version 1.2 - Released June 1, 1986 +\@@multicnt=\count289 +\d@lta=\count290 +\@delta=\dimen162 +\@@delta=\dimen163 +\@gridcnt=\count291 +\@joinkind=\count292 +\@dotgap=\dimen164 +\@ddotgap=\dimen165 +\@x@diff=\count293 +\@y@diff=\count294 +\x@diff=\dimen166 +\y@diff=\dimen167 +\@dotbox=\box52 +\num@segments=\count295 +\num@segmentsi=\count296 +\@datafile=\read3 +) (D:\Programme\Miktex\tex/latex/tools\verbatim.sty +Package: verbatim 2020-07-07 v1.5u LaTeX2e package for verbatim enhancements +\every@verbatim=\toks32 +\verbatim@line=\toks33 +\verbatim@in@stream=\read4 +) +(D:\Programme\Miktex\tex/latex/paralist\paralist.sty +Package: paralist 2017/01/22 v2.7 Extended list environments +\pltopsep=\skip67 +\plpartopsep=\skip68 +\plitemsep=\skip69 +\plparsep=\skip70 +\pl@lab=\toks34 +) +(D:\Programme\Miktex\tex/latex/base\makeidx.sty +Package: makeidx 2021/10/04 v1.0m Standard LaTeX package +) +(D:\Programme\Miktex\tex/latex/tools\array.sty +Package: array 2021/10/04 v2.5f Tabular extension package (FMi) +\col@sep=\dimen168 +\ar@mcellbox=\box53 +\extrarowheight=\dimen169 +\NC@list=\toks35 +\extratabsurround=\skip71 +\backup@length=\skip72 +\ar@cellbox=\box54 +) +(D:\Programme\Miktex\tex/latex/multirow\multirow.sty +Package: multirow 2021/03/15 v2.8 Span multiple rows of a table +\multirow@colwidth=\skip73 +\multirow@cntb=\count297 +\multirow@dima=\skip74 +\bigstrutjot=\dimen170 +) +(D:\Programme\Miktex\tex/latex/hyperref\hyperref.sty +Package: hyperref 2022-02-21 v7.00n Hypertext links for LaTeX + +(D:\Programme\Miktex\tex/generic/ltxcmds\ltxcmds.sty +Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO) +) +(D:\Programme\Miktex\tex/generic/pdftexcmds\pdftexcmds.sty +Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO +) + +(D:\Programme\Miktex\tex/generic/infwarerr\infwarerr.sty +Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) +) +Package pdftexcmds Info: \pdf@primitive is available. +Package pdftexcmds Info: \pdf@ifprimitive is available. +Package pdftexcmds Info: \pdfdraftmode found. +) +(D:\Programme\Miktex\tex/generic/kvsetkeys\kvsetkeys.sty +Package: kvsetkeys 2019/12/15 v1.18 Key value parser (HO) +) +(D:\Programme\Miktex\tex/generic/kvdefinekeys\kvdefinekeys.sty +Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) +) +(D:\Programme\Miktex\tex/generic/pdfescape\pdfescape.sty +Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) +) +(D:\Programme\Miktex\tex/latex/hycolor\hycolor.sty +Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) +) +(D:\Programme\Miktex\tex/latex/letltxmacro\letltxmacro.sty +Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) +) +(D:\Programme\Miktex\tex/latex/auxhook\auxhook.sty +Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) +) +(D:\Programme\Miktex\tex/latex/kvoptions\kvoptions.sty +Package: kvoptions 2020-10-07 v3.14 Key value format for package options (HO) +) +\@linkdim=\dimen171 +\Hy@linkcounter=\count298 +\Hy@pagecounter=\count299 + +(D:\Programme\Miktex\tex/latex/hyperref\pd1enc.def +File: pd1enc.def 2022-02-21 v7.00n Hyperref: PDFDocEncoding definition (HO) +Now handling font encoding PD1 ... +... no UTF-8 mapping file for font encoding PD1 +) +(D:\Programme\Miktex\tex/generic/intcalc\intcalc.sty +Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) +) +(D:\Programme\Miktex\tex/generic/etexcmds\etexcmds.sty +Package: etexcmds 2019/12/15 v1.7 Avoid name clashes with e-TeX commands (HO) +) +\Hy@SavedSpaceFactor=\count300 + +(D:\Programme\Miktex\tex/latex/hyperref\puenc.def +File: puenc.def 2022-02-21 v7.00n Hyperref: PDF Unicode definition (HO) +Now handling font encoding PU ... +... no UTF-8 mapping file for font encoding PU +) +Package hyperref Info: Hyper figures OFF on input line 4137. +Package hyperref Info: Link nesting OFF on input line 4142. +Package hyperref Info: Hyper index ON on input line 4145. +Package hyperref Info: Plain pages OFF on input line 4152. +Package hyperref Info: Backreferencing OFF on input line 4157. +Package hyperref Info: Implicit mode ON; LaTeX internals redefined. +Package hyperref Info: Bookmarks ON on input line 4390. +\c@Hy@tempcnt=\count301 + +(D:\Programme\Miktex\tex/latex/url\url.sty +\Urlmuskip=\muskip17 +Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. +) +LaTeX Info: Redefining \url on input line 4749. +\XeTeXLinkMargin=\dimen172 + +(D:\Programme\Miktex\tex/generic/bitset\bitset.sty +Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) + +(D:\Programme\Miktex\tex/generic/bigintcalc\bigintcalc.sty +Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO +) +)) +\Fld@menulength=\count302 +\Field@Width=\dimen173 +\Fld@charsize=\dimen174 +Package hyperref Info: Hyper figures OFF on input line 6027. +Package hyperref Info: Link nesting OFF on input line 6032. +Package hyperref Info: Hyper index ON on input line 6035. +Package hyperref Info: backreferencing OFF on input line 6042. +Package hyperref Info: Link coloring OFF on input line 6047. +Package hyperref Info: Link coloring with OCG OFF on input line 6052. +Package hyperref Info: PDF/A mode OFF on input line 6057. +LaTeX Info: Redefining \ref on input line 6097. +LaTeX Info: Redefining \pageref on input line 6101. + +(D:\Programme\Miktex\tex/latex/base\atbegshi-ltx.sty +Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi +package with kernel methods +) +\Hy@abspage=\count303 +\c@Item=\count304 +\c@Hfootnote=\count305 +) +Package hyperref Info: Driver (autodetected): hpdftex. + +(D:\Programme\Miktex\tex/latex/hyperref\hpdftex.def +File: hpdftex.def 2022-02-21 v7.00n Hyperref driver for pdfTeX + +(D:\Programme\Miktex\tex/latex/base\atveryend-ltx.sty +Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac +kage +with kernel methods +) +\Fld@listcount=\count306 +\c@bookmark@seq@number=\count307 + +(D:\Programme\Miktex\tex/latex/rerunfilecheck\rerunfilecheck.sty +Package: rerunfilecheck 2019/12/05 v1.9 Rerun checks for auxiliary files (HO) + +(D:\Programme\Miktex\tex/generic/uniquecounter\uniquecounter.sty +Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) +) +Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 +86. +) +\Hy@SectionHShift=\skip75 +) +(D:\Programme\Miktex\tex/latex/subfigure\subfigure.sty +Package: subfigure 2002/07/30 v2.1.4 subfigure package +\subfigtopskip=\skip76 +\subfigcapskip=\skip77 +\subfigcaptopadj=\dimen175 +\subfigbottomskip=\skip78 +\subfigcapmargin=\dimen176 +\subfiglabelskip=\skip79 +\c@subfigure=\count308 +\c@lofdepth=\count309 +\c@subtable=\count310 +\c@lotdepth=\count311 + +**************************************** +* Local config file subfigure.cfg used * +**************************************** +(D:\Programme\Miktex\tex/latex/subfigure\subfigure.cfg) +\subfig@top=\skip80 +\subfig@bottom=\skip81 +) +(D:\Programme\Miktex\tex/latex/pgf/frontendlayer\tikz.sty +(D:\Programme\Miktex\tex/latex/pgf/basiclayer\pgf.sty +(D:\Programme\Miktex\tex/latex/pgf/utilities\pgfrcs.sty +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-common.tex +\pgfutil@everybye=\toks36 +\pgfutil@tempdima=\dimen177 +\pgfutil@tempdimb=\dimen178 + +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-common-lists.tex)) +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-latex.def +\pgfutil@abb=\box55 +) +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfrcs.code.tex +(D:\Programme\Miktex\tex/generic/pgf\pgf.revision.tex) +Package: pgfrcs 2021/05/15 v3.1.9a (3.1.9a) +)) +Package: pgf 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/latex/pgf/basiclayer\pgfcore.sty +(D:\Programme\Miktex\tex/latex/pgf/systemlayer\pgfsys.sty +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys.code.tex +Package: pgfsys 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeys.code.tex +\pgfkeys@pathtoks=\toks37 +\pgfkeys@temptoks=\toks38 + +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeysfiltered.code.tex +\pgfkeys@tmptoks=\toks39 +)) +\pgf@x=\dimen179 +\pgf@y=\dimen180 +\pgf@xa=\dimen181 +\pgf@ya=\dimen182 +\pgf@xb=\dimen183 +\pgf@yb=\dimen184 +\pgf@xc=\dimen185 +\pgf@yc=\dimen186 +\pgf@xd=\dimen187 +\pgf@yd=\dimen188 +\w@pgf@writea=\write3 +\r@pgf@reada=\read5 +\c@pgf@counta=\count312 +\c@pgf@countb=\count313 +\c@pgf@countc=\count314 +\c@pgf@countd=\count315 +\t@pgf@toka=\toks40 +\t@pgf@tokb=\toks41 +\t@pgf@tokc=\toks42 +\pgf@sys@id@count=\count316 + +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgf.cfg +File: pgf.cfg 2021/05/15 v3.1.9a (3.1.9a) +) +Driver file for pgf: pgfsys-pdftex.def + +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys-pdftex.def +File: pgfsys-pdftex.def 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys-common-pdf.def +File: pgfsys-common-pdf.def 2021/05/15 v3.1.9a (3.1.9a) +))) +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsyssoftpath.code.tex +File: pgfsyssoftpath.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfsyssoftpath@smallbuffer@items=\count317 +\pgfsyssoftpath@bigbuffer@items=\count318 +) +(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsysprotocol.code.tex +File: pgfsysprotocol.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/latex/xcolor\xcolor.sty +Package: xcolor 2021/10/31 v2.13 LaTeX color extensions (UK) + +(D:\Programme\Miktex\tex/latex/graphics-cfg\color.cfg +File: color.cfg 2016/01/02 v1.6 sample color configuration +) +Package xcolor Info: Driver file: pdftex.def on input line 227. +Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1352. +Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1356. +Package xcolor Info: Model `RGB' extended on input line 1368. +Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1370. +Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1371. +Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1372. +Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1373. +Package xcolor Info: Model `Gray' substituted by `gray' on input line 1374. +Package xcolor Info: Model `wave' substituted by `hsb' on input line 1375. +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcore.code.tex +Package: pgfcore 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathcalc.code.tex +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathutil.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathparser.code.tex +\pgfmath@dimen=\dimen189 +\pgfmath@count=\count319 +\pgfmath@box=\box56 +\pgfmath@toks=\toks43 +\pgfmath@stack@operand=\toks44 +\pgfmath@stack@operation=\toks45 +) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.code.tex +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.basic.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.trigonometric.code.t +ex) (D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.random.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.comparison.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.base.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.round.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.misc.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.integerarithmetics.c +ode.tex))) (D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfloat.code.tex +\c@pgfmathroundto@lastzeros=\count320 +)) +(D:\Programme\Miktex\tex/generic/pgf/math\pgfint.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepoints.code.tex +File: pgfcorepoints.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@picminx=\dimen190 +\pgf@picmaxx=\dimen191 +\pgf@picminy=\dimen192 +\pgf@picmaxy=\dimen193 +\pgf@pathminx=\dimen194 +\pgf@pathmaxx=\dimen195 +\pgf@pathminy=\dimen196 +\pgf@pathmaxy=\dimen197 +\pgf@xx=\dimen198 +\pgf@xy=\dimen199 +Normal \dimen register pool exhausted, switching to extended pool. +\pgf@yx=\dimen256 +\pgf@yy=\dimen257 +\pgf@zx=\dimen258 +\pgf@zy=\dimen259 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathconstruct.code.tex +File: pgfcorepathconstruct.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@path@lastx=\dimen260 +\pgf@path@lasty=\dimen261 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathusage.code.tex +File: pgfcorepathusage.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@shorten@end@additional=\dimen262 +\pgf@shorten@start@additional=\dimen263 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorescopes.code.tex +File: pgfcorescopes.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfpic=\box57 +\pgf@hbox=\box58 +\pgf@layerbox@main=\box59 +\pgf@picture@serial@count=\count321 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoregraphicstate.code.tex +File: pgfcoregraphicstate.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgflinewidth=\dimen264 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoretransformations.code.tex +File: pgfcoretransformations.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@pt@x=\dimen265 +\pgf@pt@y=\dimen266 +\pgf@pt@temp=\dimen267 +) (D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorequick.code.tex +File: pgfcorequick.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreobjects.code.tex +File: pgfcoreobjects.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathprocessing.code.tex +File: pgfcorepathprocessing.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) (D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorearrows.code.tex +File: pgfcorearrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfarrowsep=\dimen268 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreshade.code.tex +File: pgfcoreshade.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@max=\dimen269 +\pgf@sys@shading@range@num=\count322 +\pgf@shadingcount=\count323 +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreimage.code.tex +File: pgfcoreimage.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreexternal.code.tex +File: pgfcoreexternal.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfexternal@startupbox=\box60 +)) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorelayers.code.tex +File: pgfcorelayers.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoretransparency.code.tex +File: pgfcoretransparency.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepatterns.code.tex +File: pgfcorepatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorerdf.code.tex +File: pgfcorerdf.code.tex 2021/05/15 v3.1.9a (3.1.9a) +))) +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleshapes.code.tex +File: pgfmoduleshapes.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfnodeparttextbox=\box61 +) +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleplot.code.tex +File: pgfmoduleplot.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/latex/pgf/compatibility\pgfcomp-version-0-65.sty +Package: pgfcomp-version-0-65 2021/05/15 v3.1.9a (3.1.9a) +\pgf@nodesepstart=\dimen270 +\pgf@nodesepend=\dimen271 +) +(D:\Programme\Miktex\tex/latex/pgf/compatibility\pgfcomp-version-1-18.sty +Package: pgfcomp-version-1-18 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/latex/pgf/utilities\pgffor.sty +(D:\Programme\Miktex\tex/latex/pgf/utilities\pgfkeys.sty +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeys.code.tex)) +(D:\Programme\Miktex\tex/latex/pgf/math\pgfmath.sty +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex)) +(D:\Programme\Miktex\tex/generic/pgf/utilities\pgffor.code.tex +Package: pgffor 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex) +\pgffor@iter=\dimen272 +\pgffor@skip=\dimen273 +\pgffor@stack=\toks46 +\pgffor@toks=\toks47 +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz\tikz.code.tex +Package: tikz 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryplothandlers.code.tex +File: pgflibraryplothandlers.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@plot@mark@count=\count324 +\pgfplotmarksize=\dimen274 +) +\tikz@lastx=\dimen275 +\tikz@lasty=\dimen276 +\tikz@lastxsaved=\dimen277 +\tikz@lastysaved=\dimen278 +\tikz@lastmovetox=\dimen279 +\tikz@lastmovetoy=\dimen280 +\tikzleveldistance=\dimen281 +\tikzsiblingdistance=\dimen282 +\tikz@figbox=\box62 +\tikz@figbox@bg=\box63 +\tikz@tempbox=\box64 +\tikz@tempbox@bg=\box65 +\tikztreelevel=\count325 +\tikznumberofchildren=\count326 +\tikznumberofcurrentchild=\count327 +\tikz@fig@count=\count328 +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulematrix.code.tex +File: pgfmodulematrix.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfmatrixcurrentrow=\count329 +\pgfmatrixcurrentcolumn=\count330 +\pgf@matrix@numberofcolumns=\count331 +) +\tikz@expandcount=\count332 + +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryto +paths.code.tex +File: tikzlibrarytopaths.code.tex 2021/05/15 v3.1.9a (3.1.9a) +))) (D:\Programme\Miktex\tex/latex/tikz-cd\tikz-cd.sty +Package: tikz-cd 2021/05/04 v1.0 Commutative diagrams with TikZ + +(D:\Programme\Miktex\tex/latex/tikz-cd\tikzlibrarycd.code.tex +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryma +trix.code.tex +File: tikzlibrarymatrix.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryqu +otes.code.tex +File: tikzlibraryquotes.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryarrows.meta.code.tex +File: pgflibraryarrows.meta.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfarrowinset=\dimen283 +\pgfarrowlength=\dimen284 +\pgfarrowwidth=\dimen285 +\pgfarrowlinewidth=\dimen286 +))) (D:\Programme\Miktex\tex/latex/pgfplots\pgfplots.sty +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.revision.tex) +Package: pgfplots 2021/05/15 v1.18.1 Data Visualization (1.18.1) + +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotscore.code.tex +\t@pgfplots@toka=\toks48 +\t@pgfplots@tokb=\toks49 +\t@pgfplots@tokc=\toks50 +\pgfplots@tmpa=\dimen287 +\c@pgfplots@coordindex=\count333 +\c@pgfplots@scanlineindex=\count334 + +(D:\Programme\Miktex\tex/generic/pgfplots/sys\pgfplotssysgeneric.code.tex)) +(D:\Programme\Miktex\tex/generic/pgfplots/libs\pgfplotslibrary.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots/oldpgfcompatib\pgfplotsoldpgfsupp_loa +der.code.tex +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryfpu.code.tex)) +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsutil.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsliststructure.c +ode.tex) +(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsliststructureex +t.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsarray.code.tex +\c@pgfplotsarray@tmp=\count335 +) +(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsmatrix.code.tex +) +(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstableshared.code.tex +\c@pgfplotstable@counta=\count336 +\t@pgfplotstable@a=\toks51 +) +(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsdeque.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsbinary.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsbinary.data.code.tex)) +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsutil.verb.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots/libs\pgflibrarypgfplots.surfshading.c +ode.tex +\c@pgfplotslibrarysurf@no=\count337 + +(D:\Programme\Miktex\tex/generic/pgfplots/sys\pgflibrarypgfplots.surfshading.pg +fsys-pdftex.def))) +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotscolormap.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotscolor.code.tex)) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsstackedplots.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsplothandlers.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsmeshplothandler.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsmeshplotimage.code.tex))) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.scaling.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotscoordprocessing.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.errorbars.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.markers.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsticks.code.tex) +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.paths.code.tex) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde +corations.code.tex +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduledecorations.code.tex +\pgfdecoratedcompleteddistance=\dimen288 +\pgfdecoratedremainingdistance=\dimen289 +\pgfdecoratedinputsegmentcompleteddistance=\dimen290 +\pgfdecoratedinputsegmentremainingdistance=\dimen291 +\pgf@decorate@distancetomove=\dimen292 +\pgf@decorate@repeatstate=\count338 +\pgfdecorationsegmentamplitude=\dimen293 +\pgfdecorationsegmentlength=\dimen294 +) +\tikz@lib@dec@box=\box66 +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde +corations.pathmorphing.code.tex +(D:\Programme\Miktex\tex/generic/pgf/libraries/decorations\pgflibrarydecoration +s.pathmorphing.code.tex)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde +corations.pathreplacing.code.tex +(D:\Programme\Miktex\tex/generic/pgf/libraries/decorations\pgflibrarydecoration +s.pathreplacing.code.tex)) +(D:\Programme\Miktex\tex/generic/pgfplots/libs\tikzlibrarypgfplots.contourlua.c +ode.tex) +\pgfplots@numplots=\count339 +\pgfplots@xmin@reg=\dimen295 +\pgfplots@xmax@reg=\dimen296 +\pgfplots@ymin@reg=\dimen297 +\pgfplots@ymax@reg=\dimen298 +\pgfplots@zmin@reg=\dimen299 +\pgfplots@zmax@reg=\dimen300 +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypl +otmarks.code.tex +File: tikzlibraryplotmarks.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryplotmarks.code.tex +File: pgflibraryplotmarks.code.tex 2021/05/15 v3.1.9a (3.1.9a) +))) +(D:\Programme\Miktex\tex/latex/pgfplots\pgfplotstable.sty +(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.revision.tex) +Package: pgfplotstable 2021/05/15 v1.18.1 Table typesetting and Pretty-printing + (1.18.1) + +(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstable.code.tex +(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstable.coltype.code.t +ex))) (D:\Programme\Miktex\tex/latex/csquotes\csquotes.sty +Package: csquotes 2021-02-22 v5.2l context-sensitive quotations (JAW) + +(D:\Programme\Miktex\tex/latex/etoolbox\etoolbox.sty +Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) +\etb@tempcnta=\count340 +) +\csq@reset=\count341 +\csq@gtype=\count342 +\csq@glevel=\count343 +\csq@qlevel=\count344 +\csq@maxlvl=\count345 +\csq@tshold=\count346 +\csq@ltx@everypar=\toks52 + +(D:\Programme\Miktex\tex/latex/csquotes\csquotes.def +File: csquotes.def 2021-02-22 v5.2l csquotes generic definitions (JAW) +) +Package csquotes Info: Trying to load configuration file 'csquotes.cfg'... +Package csquotes Info: ... configuration file loaded successfully. + +(D:\Programme\Miktex\tex/latex/csquotes\csquotes.cfg +File: csquotes.cfg +) +Package csquotes Info: Disabling multilingual quotes. +Package csquotes Info: Redefining alias 'english' -> 'english/american'. +) +(D:\Programme\Miktex\tex/latex/wasysym\wasysym.sty +Package: wasysym 2020/01/19 v2.4 Wasy-2 symbol support package +\symwasy=\mathgroup11 +LaTeX Font Info: Overwriting symbol font `wasy' in version `bold' +(Font) U/wasy/m/n --> U/wasy/b/n on input line 93. +) +(D:\Programme\Miktex\tex/latex/environ\environ.sty +Package: environ 2014/05/04 v0.3 A new way to define environments + +(D:\Programme\Miktex\tex/latex/trimspaces\trimspaces.sty +Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list +)) +(D:\Programme\Miktex\tex/latex/appendix\appendix.sty +Package: appendix 2020/02/08 v1.2c extra appendix facilities +\c@@pps=\count347 +\c@@ppsavesec=\count348 +\c@@ppsaveapp=\count349 +) +(D:\Programme\Miktex\tex/latex/placeins\placeins.sty +Package: placeins 2005/04/18 v 2.2 +) +(D:\Programme\Miktex\tex/generic/xypic\xy.sty +(D:\Programme\Miktex\tex/generic/xypic\xy.tex Bootstrap'ing: catcodes, +docmode, (D:\Programme\Miktex\tex/generic/xypic\xyrecat.tex) +(D:\Programme\Miktex\tex/generic/xypic\xyidioms.tex) + + Xy-pic version 3.8.9 <2013/10/06> + Copyright (c) 1991-2013 by Kristoffer H. Rose and others + Xy-pic is free software: see the User's Guide for details. + +Loading kernel: messages; fonts; allocations: state, +\X@c=\dimen301 +\Y@c=\dimen302 +\U@c=\dimen303 +\D@c=\dimen304 +\L@c=\dimen305 +\R@c=\dimen306 +\Edge@c=\toks53 +\X@p=\dimen307 +\Y@p=\dimen308 +\U@p=\dimen309 +\D@p=\dimen310 +\L@p=\dimen311 +\R@p=\dimen312 +\Edge@p=\toks54 +\X@origin=\dimen313 +\Y@origin=\dimen314 +\X@xbase=\dimen315 +\Y@xbase=\dimen316 +\X@ybase=\dimen317 +\Y@ybase=\dimen318 +\X@min=\dimen319 +\Y@min=\dimen320 +\X@max=\dimen321 +\Y@max=\dimen322 +\lastobjectbox@=\box67 +\zerodotbox@=\box68 +\almostz@=\dimen323 + direction, +\d@X=\dimen324 +\d@Y=\dimen325 +\K@=\count350 +\KK@=\count351 +\Direction=\count352 +\K@dXdY=\dimen326 +\K@dYdX=\dimen327 +\xyread@=\read6 +\xywrite@=\write4 +\csp@=\count353 +\quotPTK@=\dimen328 + +utility macros; pictures: \xy, positions, +\swaptoks@@=\toks55 +\connectobjectbox@@=\box69 + objects, +\styletoks@=\toks56 + decorations; +kernel objects: directionals, circles, text; options; algorithms: directions, +edges, connections; Xy-pic loaded) +(D:\Programme\Miktex\tex/generic/iftex\ifpdf.sty +Package: ifpdf 2019/10/25 v3.4 ifpdf legacy package. Use iftex instead. +) +Package: xy 2013/10/06 Xy-pic version 3.8.9 + +(D:\Programme\Miktex\tex/generic/xypic\xyall.tex + Xy-pic option: All features v.3.8 +(D:\Programme\Miktex\tex/generic/xypic\xycurve.tex + Xy-pic option: Curve and Spline extension v.3.12 curve, +\crv@cnt@=\count354 +\crvpts@=\toks57 +\splinebox@=\box70 +\splineval@=\dimen329 +\splinedepth@=\dimen330 +\splinetol@=\dimen331 +\splinelength@=\dimen332 + circles, +\L@=\dimen333 + loaded) +(D:\Programme\Miktex\tex/generic/xypic\xyframe.tex + Xy-pic option: Frame and Bracket extension v.3.14 loaded) +(D:\Programme\Miktex\tex/generic/xypic\xycmtip.tex + Xy-pic option: Computer Modern tip extension v.3.7 +(D:\Programme\Miktex\tex/generic/xypic\xytips.tex + Xy-pic option: More Tips extension v.3.11 loaded) loaded) +(D:\Programme\Miktex\tex/generic/xypic\xyline.tex + Xy-pic option: Line styles extension v.3.10 +\xylinethick@=\dimen334 + loaded) +(D:\Programme\Miktex\tex/generic/xypic\xyrotate.tex + Xy-pic option: Rotate and Scale extension v.3.8 loaded) +(D:\Programme\Miktex\tex/generic/xypic\xycolor.tex + Xy-pic option: Colour extension v.3.11 loaded) +(D:\Programme\Miktex\tex/generic/xypic\xymatrix.tex + Xy-pic option: Matrix feature v.3.14 +\Row=\count355 +\Col=\count356 +\queue@=\toks58 +\queue@@=\toks59 +\qcount@=\count357 +\qcount@@=\count358 +\matrixsize@=\count359 + loaded) +(D:\Programme\Miktex\tex/generic/xypic\xyarrow.tex + Xy-pic option: Arrow and Path feature v.3.9 path, \ar, loaded) +(D:\Programme\Miktex\tex/generic/xypic\xygraph.tex + Xy-pic option: Graph feature v.3.11 loaded) loaded) +(D:\Programme\Miktex\tex/generic/xypic\xypdf.tex + Xy-pic option: PDF driver v.1.7 Xy-pic pdf driver: `color' extension support +(D:\Programme\Miktex\tex/generic/xypic\xypdf-co.tex loaded) +Xy-pic pdf driver: `curve' extension support +(D:\Programme\Miktex\tex/generic/xypic\xypdf-cu.tex loaded) +Xy-pic pdf driver: `frame' extension support +(D:\Programme\Miktex\tex/generic/xypic\xypdf-fr.tex loaded) +Xy-pic pdf driver: `line' extension support +(D:\Programme\Miktex\tex/generic/xypic\xypdf-li.tex loaded) +Xy-pic pdf driver: `rotate' extension support +(D:\Programme\Miktex\tex/generic/xypic\xypdf-ro.tex loaded) loaded)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryca +lc.code.tex +File: tikzlibrarycalc.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryin +tersections.code.tex +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryintersections.code.tex +\pgf@intersect@solutions=\count360 +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryth +rough.code.tex +File: tikzlibrarythrough.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryba +ckgrounds.code.tex +File: tikzlibrarybackgrounds.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@layerbox@background=\box71 +\pgf@layerboxsaved@background=\box72 +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries/graphs\tikzli +brarygraphs.code.tex +File: tikzlibrarygraphs.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\tikz@lib@auto@number=\count361 +\tikz@qnode@count=\count362 +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypo +sitioning.code.tex +File: tikzlibrarypositioning.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.code.tex +File: tikzlibraryshapes.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.geometric.code.tex +File: tikzlibraryshapes.geometric.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.geometri +c.code.tex +File: pgflibraryshapes.geometric.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.misc.code.tex +File: tikzlibraryshapes.misc.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.misc.cod +e.tex +File: pgflibraryshapes.misc.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.symbols.code.tex +File: tikzlibraryshapes.symbols.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.symbols. +code.tex +File: pgflibraryshapes.symbols.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.arrows.code.tex +File: tikzlibraryshapes.arrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.arrows.c +ode.tex +File: pgflibraryshapes.arrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.callouts.code.tex +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.callouts +.code.tex)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh +apes.multipart.code.tex +File: tikzlibraryshapes.multipart.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.multipar +t.code.tex +File: pgflibraryshapes.multipart.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgfnodepartlowerbox=\box73 +\pgfnodeparttwobox=\box74 +\pgfnodepartthreebox=\box75 +\pgfnodepartfourbox=\box76 +\pgfnodeparttwentybox=\box77 +\pgfnodepartnineteenbox=\box78 +\pgfnodeparteighteenbox=\box79 +\pgfnodepartseventeenbox=\box80 +\pgfnodepartsixteenbox=\box81 +\pgfnodepartfifteenbox=\box82 +\pgfnodepartfourteenbox=\box83 +\pgfnodepartthirteenbox=\box84 +\pgfnodeparttwelvebox=\box85 +\pgfnodepartelevenbox=\box86 +\pgfnodeparttenbox=\box87 +\pgfnodepartninebox=\box88 +\pgfnodeparteightbox=\box89 +\pgfnodepartsevenbox=\box90 +\pgfnodepartsixbox=\box91 +\pgfnodepartfivebox=\box92 +))) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryar +rows.code.tex +File: tikzlibraryarrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryarrows.code.tex +File: pgflibraryarrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\arrowsize=\dimen335 +)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryfi +t.code.tex +File: tikzlibraryfit.code.tex 2021/05/15 v3.1.9a (3.1.9a) +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryma +th.code.tex +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryfp +u.code.tex) +\tikz@math@for@depth=\count363 +\tikz@math@dimen=\dimen336 +\tikz@math@toks=\toks60 +) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypa +tterns.code.tex +File: tikzlibrarypatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibrarypatterns.code.tex +File: pgflibrarypatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) +)) +(D:\Programme\Miktex\tex/latex/pgf/frontendlayer/libraries\tikzlibraryexternal. +code.tex +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzexternals +hared.code.tex)) +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries/datavisualiza +tion\tikzlibrarydatavisualization.code.tex +File: tikzlibrarydatavisualization.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduledatavisualization.code.te +x +File: pgfmoduledatavisualization.code.tex 2021/05/15 v3.1.9a (3.1.9a) + (D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleoo.code.tex +\pgfoo@objectcount=\count364 +\pgfoothis@count=\count365 +\pgfoo@toks=\toks61 +) +\pgf@lib@dv@cache@count=\count366 +\pgf@lib@dv@cache@count=\count367 +) +\tikzdvvisualizercounter=\count368 +) +(D:\Programme\Miktex\tex/latex/circuitikz\circuitikz.sty +Package: circuitikz 2022/05/08{} The CircuiTikz circuit drawing package version + 1.5.2 + +(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarybe +nding.code.tex +File: tikzlibrarybending.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulebending.code.tex +File: pgfmodulebending.code.tex 2021/05/15 v3.1.9a (3.1.9a) + +(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulenonlineartransformations. +code.tex +File: pgfmodulenonlineartransformations.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgftransformnonlinearflatness=\dimen337 +) +(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibrarycurvilinear.code.tex +File: pgflibrarycurvilinear.code.tex 2021/05/15 v3.1.9a (3.1.9a) +\pgf@curvilinear@time@a=\dimen338 +\pgf@curvilinear@length@a=\dimen339 +\pgf@curvilinear@length@b=\dimen340 +\pgf@curvilinear@length@c=\dimen341 +\pgf@curvilinear@length@d=\dimen342 +) +\pgf@arrows@the@rigidity=\dimen343 +)) (D:\Programme\Miktex\tex/generic/circuitikz\pgfcirc.defines.tex +\pgf@circ@count@a=\count369 +\pgf@circ@count@b=\count370 +\pgf@circ@count@c=\count371 +\pgf@circ@res@up=\dimen344 +\pgf@circ@res@down=\dimen345 +\pgf@circ@res@zero=\dimen346 +\pgf@circ@res@left=\dimen347 +\pgf@circ@res@right=\dimen348 +\pgf@circ@res@other=\dimen349 +\pgf@circ@res@step=\dimen350 +\pgf@circ@res@temp=\dimen351 +\pgf@circ@Rlen=\dimen352 +\pgf@circ@scaled@Rlen=\dimen353 +\pgfstartlinewidth=\dimen354 +) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircutils.tex +\ctikz@scratchbox=\box93 +) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircpath.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircshapes.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircmonopoles.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircbipoles.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirctripoles.tex +\pgf@circ@res@count=\count372 +) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircquadpoles.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircmultipoles.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirclabel.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircvoltage.tex +\pgfcirc@labelshift=\dimen355 +) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirccurrent.tex) +(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircflow.tex) +(D:\Programme\Miktex\tex/latex/xstring\xstring.sty +(D:\Programme\Miktex\tex/generic/xstring\xstring.tex +\integerpart=\count373 +\decimalpart=\count374 +) +Package: xstring 2021/07/21 v1.84 String manipulations (CT) +) +(D:\Programme\Miktex\tex/latex/siunitx\siunitx.sty +Package: siunitx 2022-05-03 v3.1.1 A comprehensive (SI) units package +\l__siunitx_angle_tmp_dim=\dimen356 +\l__siunitx_angle_marker_box=\box94 +\l__siunitx_angle_unit_box=\box95 +\l__siunitx_compound_count_int=\count375 + +(D:\Programme\Miktex\tex/latex/translations\translations.sty +Package: translations 2022/02/05 v1.12 internationalization of LaTeX2e packages + (CN) +) +\l__siunitx_number_exponent_fixed_int=\count376 +\l__siunitx_number_min_decimal_int=\count377 +\l__siunitx_number_min_integer_int=\count378 +\l__siunitx_number_round_precision_int=\count379 +\l__siunitx_number_group_first_int=\count380 +\l__siunitx_number_group_size_int=\count381 +\l__siunitx_number_group_minimum_int=\count382 +\l__siunitx_table_tmp_box=\box96 +\l__siunitx_table_tmp_dim=\dimen357 +\l__siunitx_table_column_width_dim=\dimen358 +\l__siunitx_table_integer_box=\box97 +\l__siunitx_table_decimal_box=\box98 +\l__siunitx_table_before_box=\box99 +\l__siunitx_table_after_box=\box100 +\l__siunitx_table_before_dim=\dimen359 +\l__siunitx_table_carry_dim=\dimen360 +\l__siunitx_unit_tmp_int=\count383 +\l__siunitx_unit_position_int=\count384 +\l__siunitx_unit_total_int=\count385 + +(D:\Programme\Miktex\tex/latex/l3packages/l3keys2e\l3keys2e.sty +(D:\Programme\Miktex\tex/latex/l3kernel\expl3.sty +Package: expl3 2022-02-24 L3 programming layer (loader) + +(D:\Programme\Miktex\tex/latex/l3backend\l3backend-pdftex.def +File: l3backend-pdftex.def 2022-02-07 L3 backend support: PDF output (pdfTeX) +\l__color_backend_stack_int=\count386 +\l__pdf_internal_box=\box101 +)) +Package: l3keys2e 2022-01-12 LaTeX2e option processing using LaTeX3 keys +))) +(D:\Programme\Miktex\tex/latex/tools\tabularx.sty +Package: tabularx 2020/01/15 v2.11c `tabularx' package (DPC) +\TX@col@width=\dimen361 +\TX@old@table=\dimen362 +\TX@old@col=\dimen363 +\TX@target=\dimen364 +\TX@delta=\dimen365 +\TX@cols=\count387 +\TX@ftn=\toks62 +) +(D:\Programme\Miktex\tex/latex/algorithmicx\algpseudocode.sty +Package: algpseudocode + +(D:\Programme\Miktex\tex/latex/algorithmicx\algorithmicx.sty +Package: algorithmicx 2005/04/27 v1.2 Algorithmicx + +Document Style algorithmicx 1.2 - a greatly improved `algorithmic' style +\c@ALG@line=\count388 +\c@ALG@rem=\count389 +\c@ALG@nested=\count390 +\ALG@tlm=\skip82 +\ALG@thistlm=\skip83 +\c@ALG@Lnr=\count391 +\c@ALG@blocknr=\count392 +\c@ALG@storecount=\count393 +\c@ALG@tmpcounter=\count394 +\ALG@tmplength=\skip84 +) +Document Style - pseudocode environments for use with the `algorithmicx' style +) (D:\Programme\Miktex\tex/latex/algorithms\algorithm.sty +Package: algorithm 2009/08/24 v0.1 Document Style `algorithm' - floating enviro +nment + +(D:\Programme\Miktex\tex/latex/float\float.sty +Package: float 2001/11/08 v1.3d Float enhancements (AL) +\c@float@type=\count395 +\float@exts=\toks63 +\float@box=\box102 +\@float@everytoks=\toks64 +\@floatcapt=\box103 +) +\@float@every@algorithm=\toks65 +\c@algorithm=\count396 +) +(D:\Programme\Miktex\tex/latex/was\gensymb.sty +Package: gensymb 2003/07/02 v1.0 (WaS) +) +(D:\Programme\Miktex\tex/latex/mathtools\mathtools.sty +Package: mathtools 2022/02/07 v1.28a mathematical typesetting tools + +(D:\Programme\Miktex\tex/latex/tools\calc.sty +Package: calc 2017/05/25 v4.3 Infix arithmetic (KKT,FJ) +\calc@Acount=\count397 +\calc@Bcount=\count398 +\calc@Adimen=\dimen366 +\calc@Bdimen=\dimen367 +\calc@Askip=\skip85 +\calc@Bskip=\skip86 +LaTeX Info: Redefining \setlength on input line 80. +LaTeX Info: Redefining \addtolength on input line 81. +\calc@Ccount=\count399 +\calc@Cskip=\skip87 +) +(D:\Programme\Miktex\tex/latex/mathtools\mhsetup.sty +Package: mhsetup 2021/03/18 v1.4 programming setup (MH) +) +\g_MT_multlinerow_int=\count400 +\l_MT_multwidth_dim=\dimen368 +\origjot=\skip88 +\l_MT_shortvdotswithinadjustabove_dim=\dimen369 +\l_MT_shortvdotswithinadjustbelow_dim=\dimen370 +\l_MT_above_intertext_sep=\dimen371 +\l_MT_below_intertext_sep=\dimen372 +\l_MT_above_shortintertext_sep=\dimen373 +\l_MT_below_shortintertext_sep=\dimen374 +\xmathstrut@box=\box104 +\xmathstrut@dim=\dimen375 +) +(D:\Programme\Miktex\tex/latex/tcolorbox\tcolorbox.sty +Package: tcolorbox 2022/01/07 version 5.0.2 text color boxes +\tcb@titlebox=\box105 +\tcb@upperbox=\box106 +\tcb@lowerbox=\box107 +\tcb@phantombox=\box108 +\c@tcbbreakpart=\count401 +\c@tcblayer=\count402 +\c@tcolorbox@number=\count403 +\tcb@temp=\box109 +\tcb@temp=\box110 +\tcb@temp=\box111 +\tcb@temp=\box112 + +(D:\Programme\Miktex\tex/latex/tcolorbox\tcbraster.code.tex +Library (tcolorbox): 'tcbraster.code.tex' version '5.0.2' +\c@tcbrastercolumn=\count404 +\c@tcbrasterrow=\count405 +\c@tcbrasternum=\count406 +\c@tcbraster=\count407 +) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbskins.code.tex +Library (tcolorbox): 'tcbskins.code.tex' version '5.0.2' +\tcb@waterbox=\box113 +(D:\Programme\Miktex\tex/latex/tcolorbox\tcbskinsjigsaw.code.tex +Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '5.0.2' +)) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbbreakable.code.tex +Library (tcolorbox): 'tcbbreakable.code.tex' version '5.0.2' +(D:\Programme\Miktex\tex/generic/oberdiek\pdfcol.sty +Package: pdfcol 2019/12/29 v1.6 Handle new color stacks for pdfTeX (HO) +) +Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. +\tcb@testbox=\box114 +\tcb@totalupperbox=\box115 +\tcb@totallowerbox=\box116 +) +(D:\Programme\Miktex\tex/latex/tcolorbox\tcbhooks.code.tex +Library (tcolorbox): 'tcbhooks.code.tex' version '5.0.2' +) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbtheorems.code.tex +Library (tcolorbox): 'tcbtheorems.code.tex' version '5.0.2' +) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbfitting.code.tex +Library (tcolorbox): 'tcbfitting.code.tex' version '5.0.2' +\tcbfitdim=\dimen376 +\tcb@lowerfitdim=\dimen377 +\tcb@upperfitdim=\dimen378 +\tcb@cur@hbadness=\count408 +) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbxparse.code.tex +Library (tcolorbox): 'tcbxparse.code.tex' version '5.0.2' +(D:\Programme\Miktex\tex/latex/l3packages/xparse\xparse.sty +Package: xparse 2022-01-12 L3 Experimental document command parser +))) +(D:\Programme\Miktex\tex/latex/incgraph\incgraph.sty +Package: incgraph 2021/10/20 version 1.2.0 LaTeX special graphics inclusion + +(D:\Programme\Miktex\tex/latex/bookmark\bookmark.sty +Package: bookmark 2020-11-06 v1.29 PDF bookmarks (HO) + +(D:\Programme\Miktex\tex/latex/bookmark\bkm-pdftex.def +File: bkm-pdftex.def 2020-11-06 v1.29 bookmark driver for pdfTeX (HO) +\BKM@id=\count409 +)) +\igrbox=\box117 +\igr@length=\dimen379 +\c@igrtarget=\count410 +) (common/lststyles.tex (D:\Programme\Miktex\tex/latex/listings\listings.sty +\lst@mode=\count411 +\lst@gtempboxa=\box118 +\lst@token=\toks66 +\lst@length=\count412 +\lst@currlwidth=\dimen380 +\lst@column=\count413 +\lst@pos=\count414 +\lst@lostspace=\dimen381 +\lst@width=\dimen382 +\lst@newlines=\count415 +\lst@lineno=\count416 +\lst@maxwidth=\dimen383 + +(D:\Programme\Miktex\tex/latex/listings\lstmisc.sty +File: lstmisc.sty 2020/03/24 1.8d (Carsten Heinz) +\c@lstnumber=\count417 +\lst@skipnumbers=\count418 +\lst@framebox=\box119 +) +(D:\Programme\Miktex\tex/latex/listings\listings.cfg +File: listings.cfg 2020/03/24 1.8d listings configuration +)) +Package: listings 2020/03/24 1.8d (Carsten Heinz) +) +(D:\Programme\Miktex\tex/latex/caption\caption.sty +Package: caption 2022/03/01 v3.6b Customizing captions (AR) + +(D:\Programme\Miktex\tex/latex/caption\caption3.sty +Package: caption3 2022/03/17 v2.3b caption3 kernel (AR) +\caption@tempdima=\dimen384 +\captionmargin=\dimen385 +\caption@leftmargin=\dimen386 +\caption@rightmargin=\dimen387 +\caption@width=\dimen388 +\caption@indent=\dimen389 +\caption@parindent=\dimen390 +\caption@hangindent=\dimen391 +Package caption Info: Standard document class detected. +) +\c@caption@flags=\count419 +\c@continuedfloat=\count420 +Package caption Info: float package is loaded. +Package caption Info: hyperref package is loaded. +Package caption Info: listings package is loaded. +Package caption Info: subfigure package is loaded. +) +(D:\Programme\Miktex\tex/latex/standalone\standalone.sty +Package: standalone 2018/03/26 v1.3a Package to include TeX sub-files with prea +mbles + +(D:\Programme\Miktex\tex/latex/tools\shellesc.sty +Package: shellesc 2019/11/08 v1.0c unified shell escape interface for LaTeX +Package shellesc Info: Restricted shell escape enabled on input line 77. +) +(D:\Programme\Miktex\tex/latex/xkeyval\xkeyval.sty +Package: xkeyval 2020/11/20 v2.8 package option processing (HA) + +(D:\Programme\Miktex\tex/generic/xkeyval\xkeyval.tex +(D:\Programme\Miktex\tex/generic/xkeyval\xkvutils.tex +\XKV@toks=\toks67 +\XKV@tempa@toks=\toks68 +) +\XKV@depth=\count421 +File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA) +)) +(D:\Programme\Miktex\tex/latex/currfile\currfile.sty +Package: currfile 2020/09/29 v0.7d Provides the file path elements of the curre +nt input file + +(D:\Programme\Miktex\tex/latex/filehook\filehook.sty +Package: filehook 2020/09/29 v0.8a Hooks for input files + +(D:\Programme\Miktex\tex/latex/filehook\filehook-2020.sty +Package: filehook-2020 2020/09/29 v0.8a Hooks for input files +)) +\c@currfiledepth=\count422 +) +(D:\Programme\Miktex\tex/latex/gincltex\gincltex.sty +(D:\Programme\Miktex\tex/latex/svn-prov\svn-prov.sty +Package: svn-prov 2010/04/24 v3.1862 Package Date/Version from SVN Keywords +) +Package: gincltex 2011/09/04 v0.3 Include external LaTeX files like graphics + +(D:\Programme\Miktex\tex/latex/adjustbox\adjustbox.sty +Package: adjustbox 2020/08/19 v1.3 Adjusting TeX boxes (trim, clip, ...) + +(D:\Programme\Miktex\tex/latex/adjustbox\adjcalc.sty +Package: adjcalc 2012/05/16 v1.1 Provides advanced setlength with multiple back +-ends (calc, etex, pgfmath) +) +(D:\Programme\Miktex\tex/latex/adjustbox\trimclip.sty +Package: trimclip 2020/08/19 v1.2 Trim and clip general TeX material + +(D:\Programme\Miktex\tex/latex/collectbox\collectbox.sty +Package: collectbox 2012/05/17 v0.4b Collect macro arguments as boxes +\collectedbox=\box120 +) +\tc@llx=\dimen392 +\tc@lly=\dimen393 +\tc@urx=\dimen394 +\tc@ury=\dimen395 +Package trimclip Info: Using driver 'tc-pdftex.def'. + +(D:\Programme\Miktex\tex/latex/adjustbox\tc-pdftex.def +File: tc-pdftex.def 2019/01/04 v2.2 Clipping driver for pdftex +)) +\adjbox@Width=\dimen396 +\adjbox@Height=\dimen397 +\adjbox@Depth=\dimen398 +\adjbox@Totalheight=\dimen399 +\adjbox@pwidth=\dimen400 +\adjbox@pheight=\dimen401 +\adjbox@pdepth=\dimen402 +\adjbox@ptotalheight=\dimen403 + +(D:\Programme\Miktex\tex/latex/ifoddpage\ifoddpage.sty +Package: ifoddpage 2016/04/23 v1.1 Conditionals for odd/even page detection +\c@checkoddpage=\count423 +) +(D:\Programme\Miktex\tex/latex/varwidth\varwidth.sty +Package: varwidth 2009/03/30 ver 0.92; Variable-width minipages +\@vwid@box=\box121 +\sift@deathcycles=\count424 +\@vwid@loff=\dimen404 +\@vwid@roff=\dimen405 +)) +\gincltex@box=\box122 +) +(D:\Programme\Miktex\tex/latex/filemod\filemod-expmin.sty +Package: filemod-expmin 2011/09/19 v1.2 Get and compare file modification times + (expandable; minimal) +)) +(D:\Programme\Miktex\tex/latex/biblatex\biblatex.sty +Package: biblatex 2022/02/02 v3.17 programmable bibliographies (PK/MW) + +(D:\Programme\Miktex\tex/latex/logreq\logreq.sty +Package: logreq 2010/08/04 v1.0 xml request logger +\lrq@indent=\count425 + +(D:\Programme\Miktex\tex/latex/logreq\logreq.def +File: logreq.def 2010/08/04 v1.0 logreq spec v1.0 +)) +\c@tabx@nest=\count426 +\c@listtotal=\count427 +\c@listcount=\count428 +\c@liststart=\count429 +\c@liststop=\count430 +\c@citecount=\count431 +\c@citetotal=\count432 +\c@multicitecount=\count433 +\c@multicitetotal=\count434 +\c@instcount=\count435 +\c@maxnames=\count436 +\c@minnames=\count437 +\c@maxitems=\count438 +\c@minitems=\count439 +\c@citecounter=\count440 +\c@maxcitecounter=\count441 +\c@savedcitecounter=\count442 +\c@uniquelist=\count443 +\c@uniquename=\count444 +\c@refsection=\count445 +\c@refsegment=\count446 +\c@maxextratitle=\count447 +\c@maxextratitleyear=\count448 +\c@maxextraname=\count449 +\c@maxextradate=\count450 +\c@maxextraalpha=\count451 +\c@abbrvpenalty=\count452 +\c@highnamepenalty=\count453 +\c@lownamepenalty=\count454 +\c@maxparens=\count455 +\c@parenlevel=\count456 +\blx@tempcnta=\count457 +\blx@tempcntb=\count458 +\blx@tempcntc=\count459 +\c@blx@maxsection=\count460 +\c@blx@maxsegment@0=\count461 +\blx@notetype=\count462 +\blx@parenlevel@text=\count463 +\blx@parenlevel@foot=\count464 +\c@blx@sectionciteorder@0=\count465 +\blx@entrysetcounter=\count466 +\blx@biblioinstance=\count467 +\labelnumberwidth=\skip89 +\labelalphawidth=\skip90 +\biblabelsep=\skip91 +\bibitemsep=\skip92 +\bibnamesep=\skip93 +\bibinitsep=\skip94 +\bibparsep=\skip95 +\bibhang=\skip96 +\blx@bcfin=\read7 +\blx@bcfout=\write5 +\blx@langwohyphens=\language80 +\c@mincomprange=\count468 +\c@maxcomprange=\count469 +\c@mincompwidth=\count470 +Package biblatex Info: Trying to load biblatex default data model... +Package biblatex Info: ... file 'blx-dm.def' found. + +(D:\Programme\Miktex\tex/latex/biblatex\blx-dm.def +File: blx-dm.def 2022/02/02 v3.17 biblatex localization (PK/MW) +) +Package biblatex Info: Trying to load biblatex custom data model... +Package biblatex Info: ... file 'biblatex-dm.cfg' not found. +\c@afterword=\count471 +\c@savedafterword=\count472 +\c@annotator=\count473 +\c@savedannotator=\count474 +\c@author=\count475 +\c@savedauthor=\count476 +\c@bookauthor=\count477 +\c@savedbookauthor=\count478 +\c@commentator=\count479 +\c@savedcommentator=\count480 +\c@editor=\count481 +\c@savededitor=\count482 +\c@editora=\count483 +\c@savededitora=\count484 +\c@editorb=\count485 +\c@savededitorb=\count486 +\c@editorc=\count487 +\c@savededitorc=\count488 +\c@foreword=\count489 +\c@savedforeword=\count490 +\c@holder=\count491 +\c@savedholder=\count492 +\c@introduction=\count493 +\c@savedintroduction=\count494 +\c@namea=\count495 +\c@savednamea=\count496 +\c@nameb=\count497 +\c@savednameb=\count498 +\c@namec=\count499 +\c@savednamec=\count500 +\c@translator=\count501 +\c@savedtranslator=\count502 +\c@shortauthor=\count503 +\c@savedshortauthor=\count504 +\c@shorteditor=\count505 +\c@savedshorteditor=\count506 +\c@labelname=\count507 +\c@savedlabelname=\count508 +\c@institution=\count509 +\c@savedinstitution=\count510 +\c@lista=\count511 +\c@savedlista=\count512 +\c@listb=\count513 +\c@savedlistb=\count514 +\c@listc=\count515 +\c@savedlistc=\count516 +\c@listd=\count517 +\c@savedlistd=\count518 +\c@liste=\count519 +\c@savedliste=\count520 +\c@listf=\count521 +\c@savedlistf=\count522 +\c@location=\count523 +\c@savedlocation=\count524 +\c@organization=\count525 +\c@savedorganization=\count526 +\c@origlocation=\count527 +\c@savedoriglocation=\count528 +\c@origpublisher=\count529 +\c@savedorigpublisher=\count530 +\c@publisher=\count531 +\c@savedpublisher=\count532 +\c@language=\count533 +\c@savedlanguage=\count534 +\c@origlanguage=\count535 +\c@savedoriglanguage=\count536 +\c@pageref=\count537 +\c@savedpageref=\count538 +\shorthandwidth=\skip97 +\shortjournalwidth=\skip98 +\shortserieswidth=\skip99 +\shorttitlewidth=\skip100 +\shortauthorwidth=\skip101 +\shorteditorwidth=\skip102 +\locallabelnumberwidth=\skip103 +\locallabelalphawidth=\skip104 +\localshorthandwidth=\skip105 +\localshortjournalwidth=\skip106 +\localshortserieswidth=\skip107 +\localshorttitlewidth=\skip108 +\localshortauthorwidth=\skip109 +\localshorteditorwidth=\skip110 +Package biblatex Info: Trying to load compatibility code... +Package biblatex Info: ... file 'blx-compat.def' found. + +(D:\Programme\Miktex\tex/latex/biblatex\blx-compat.def +File: blx-compat.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) +) +Package biblatex Info: Trying to load BibTeX backend compatibility... +Package biblatex Info: ... file 'blx-bibtex.def' found. + +(D:\Programme\Miktex\tex/latex/biblatex\blx-bibtex.def +File: blx-bibtex.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) + + +Package biblatex Warning: Using fall-back BibTeX(8) backend: +(biblatex) functionality may be reduced/unavailable. + +) +Package biblatex Info: Trying to load generic definitions... +Package biblatex Info: ... file 'biblatex.def' found. + (D:\Programme\Miktex\tex/latex/biblatex\biblatex.def +File: biblatex.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) +\c@textcitecount=\count539 +\c@textcitetotal=\count540 +\c@textcitemaxnames=\count541 +\c@biburlbigbreakpenalty=\count542 +\c@biburlbreakpenalty=\count543 +\c@biburlnumpenalty=\count544 +\c@biburlucpenalty=\count545 +\c@biburllcpenalty=\count546 +\biburlbigskip=\muskip18 +\biburlnumskip=\muskip19 +\biburlucskip=\muskip20 +\biburllcskip=\muskip21 +\c@smartand=\count547 +) +Package biblatex Info: Trying to load bibliography style 'numeric'... +Package biblatex Info: ... file 'numeric.bbx' found. + +(D:\Programme\Miktex\tex/latex/biblatex/bbx\numeric.bbx +File: numeric.bbx 2022/02/02 v3.17 biblatex bibliography style (PK/MW) +Package biblatex Info: Trying to load bibliography style 'standard'... +Package biblatex Info: ... file 'standard.bbx' found. + +(D:\Programme\Miktex\tex/latex/biblatex/bbx\standard.bbx +File: standard.bbx 2022/02/02 v3.17 biblatex bibliography style (PK/MW) +\c@bbx:relatedcount=\count548 +\c@bbx:relatedtotal=\count549 +)) +Package biblatex Info: Trying to load citation style 'numeric'... +Package biblatex Info: ... file 'numeric.cbx' found. + +(D:\Programme\Miktex\tex/latex/biblatex/cbx\numeric.cbx +File: numeric.cbx 2022/02/02 v3.17 biblatex citation style (PK/MW) +Package biblatex Info: Redefining '\cite'. +Package biblatex Info: Redefining '\parencite'. +Package biblatex Info: Redefining '\footcite'. +Package biblatex Info: Redefining '\footcitetext'. +Package biblatex Info: Redefining '\smartcite'. +Package biblatex Info: Redefining '\supercite'. +Package biblatex Info: Redefining '\textcite'. +Package biblatex Info: Redefining '\textcites'. +Package biblatex Info: Redefining '\cites'. +Package biblatex Info: Redefining '\parencites'. +Package biblatex Info: Redefining '\smartcites'. +) +Package biblatex Info: Trying to load configuration file... +Package biblatex Info: ... file 'biblatex.cfg' found. + +(D:\Programme\Miktex\tex/latex/biblatex\biblatex.cfg +File: biblatex.cfg +) +Package biblatex Info: Input encoding 'utf8' detected. +Package biblatex Info: Document encoding is UTF8 .... +Package biblatex Info: ... and expl3 +(biblatex) 2022-02-24 L3 programming layer (loader) +(biblatex) is new enough (at least 2020/04/06), +(biblatex) setting 'casechanger=expl3'. + +(D:\Programme\Miktex\tex/latex/biblatex\blx-case-expl3.sty +Package: blx-case-expl3 2022/02/02 v3.17 expl3 case changing code for biblatex +))) +(papers/common/addpackages.tex (papers/000template/packages.tex) +(papers/lambertw/packages.tex) (papers/fm/packages.tex) +(papers/parzyl/packages.tex) (papers/fresnel/packages.tex) +(papers/kreismembran/packages.tex) (papers/sturmliouville/packages.tex) +(papers/laguerre/packages.tex) +(D:\Programme\Miktex\tex/latex/derivative\derivative.sty +Package: derivative 2021/06/03 v1.1 Nice and easy derivatives and differentials + for LaTeX +\l__deriv_vmo_int=\count550 +\l__deriv_tmpa_int=\count551 +\l__deriv_tmpb_int=\count552 +\l__deriv_numerical_int=\count553 +\l__deriv_sort_counter_int=\count554 +\l__deriv_sort_max_int=\count555 +\l__deriv_position_int=\count556 +\l__deriv_rebuild_int=\count557 +) +(papers/zeta/packages.tex) (papers/0f1/packages.tex) (papers/nav/packages.tex) +(papers/transfer/packages.tex) (papers/kra/packages.tex) +(papers/kugel/packages.tex) (papers/hermite/packages.tex) +(papers/ellfilter/packages.tex) (papers/dreieck/packages.tex)) +(papers/common/addbibresources.tex) +\@indexfile=\write6 +\openout6 = `buch.idx'. + + +Writing index file buch.idx +LaTeX Font Info: Trying to load font information for T1+txr on input line 35 +. +(D:\Programme\Miktex\tex/latex/txfonts\t1txr.fd +File: t1txr.fd 2000/12/15 v3.1 +) (buch.aux) +\openout1 = `buch.aux'. + +LaTeX Font Info: Checking defaults for OML/txmi/m/it on input line 35. +LaTeX Font Info: Trying to load font information for OML+txmi on input line +35. + +(D:\Programme\Miktex\tex/latex/txfonts\omltxmi.fd +File: omltxmi.fd 2000/12/15 v3.1 +) +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for OMS/txsy/m/n on input line 35. +LaTeX Font Info: Trying to load font information for OMS+txsy on input line +35. + +(D:\Programme\Miktex\tex/latex/txfonts\omstxsy.fd +File: omstxsy.fd 2000/12/15 v3.1 +) +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 35. +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 35. +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 35. +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for OMX/txex/m/n on input line 35. +LaTeX Font Info: Trying to load font information for OMX+txex on input line +35. + +(D:\Programme\Miktex\tex/latex/txfonts\omxtxex.fd +File: omxtxex.fd 2000/12/15 v3.1 +) +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for U/txexa/m/n on input line 35. +LaTeX Font Info: Trying to load font information for U+txexa on input line 3 +5. + +(D:\Programme\Miktex\tex/latex/txfonts\utxexa.fd +File: utxexa.fd 2000/12/15 v3.1 +) +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 35. +LaTeX Font Info: ... okay on input line 35. +LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 35. +LaTeX Font Info: ... okay on input line 35. + +*geometry* driver: auto-detecting +*geometry* detected driver: pdftex +*geometry* verbose mode - [ preamble ] result: +* driver: pdftex +* paper: custom +* layout: +* layoutoffset:(h,v)=(0.0pt,0.0pt) +* bindingoffset: 28.45274pt +* modes: twoside +* h-part:(L,W,R)=(22.7622pt, 398.33858pt, 34.14331pt) +* v-part:(T,H,B)=(59.75078pt, 569.05511pt, 54.06024pt) +* \paperwidth=483.69684pt +* \paperheight=682.86613pt +* \textwidth=398.33858pt +* \textheight=569.05511pt +* \oddsidemargin=-21.05504pt +* \evensidemargin=-38.12668pt +* \topmargin=-42.5867pt +* \headheight=15.0pt +* \headsep=18.06749pt +* \topskip=10.0pt +* \footskip=25.29494pt +* \marginparwidth=125.0pt +* \marginparsep=7.0pt +* \columnsep=10.0pt +* \skip\footins=9.0pt plus 4.0pt minus 2.0pt +* \hoffset=0.0pt +* \voffset=0.0pt +* \mag=1000 +* \@twocolumnfalse +* \@twosidetrue +* \@mparswitchtrue +* \@reversemarginfalse +* (1in=72.27pt=25.4mm, 1cm=28.453pt) + +(D:\Programme\Miktex\tex/context/base/mkii\supp-pdf.mkii +[Loading MPS to PDF converter (version 2006.09.02).] +\scratchcounter=\count558 +\scratchdimen=\dimen406 +\scratchbox=\box123 +\nofMPsegments=\count559 +\nofMParguments=\count560 +\everyMPshowfont=\toks69 +\MPscratchCnt=\count561 +\MPscratchDim=\dimen407 +\MPnumerator=\count562 +\makeMPintoPDFobject=\count563 +\everyMPtoPDFconversion=\toks70 +) (D:\Programme\Miktex\tex/latex/epstopdf-pkg\epstopdf-base.sty +Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf +Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 +85. + +(D:\Programme\Miktex\tex/latex/00miktex\epstopdf-sys.cfg +File: epstopdf-sys.cfg 2021/03/18 v2.0 Configuration of epstopdf for MiKTeX +)) +Package hyperref Info: Link coloring OFF on input line 35. + +(D:\Programme\Miktex\tex/latex/hyperref\nameref.sty +Package: nameref 2021-04-02 v2.47 Cross-referencing by name of section + +(D:\Programme\Miktex\tex/latex/refcount\refcount.sty +Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) +) +(D:\Programme\Miktex\tex/generic/gettitlestring\gettitlestring.sty +Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) +) +\c@section@level=\count564 +) +LaTeX Info: Redefining \ref on input line 35. +LaTeX Info: Redefining \pageref on input line 35. +LaTeX Info: Redefining \nameref on input line 35. + + +Package pgfplots Warning: running in backwards compatibility mode (unsuitable t +ick labels; missing features). Consider writing \pgfplotsset{compat=1.18} into +your preamble. + on input line 35. + +LaTeX Font Info: Trying to load font information for OT1+txr on input line 3 +5. +(D:\Programme\Miktex\tex/latex/txfonts\ot1txr.fd +File: ot1txr.fd 2000/12/15 v3.1 +) +LaTeX Font Info: Trying to load font information for U+txsya on input line 3 +5. + +(D:\Programme\Miktex\tex/latex/txfonts\utxsya.fd +File: utxsya.fd 2000/12/15 v3.1 +) +LaTeX Font Info: Trying to load font information for U+txsyb on input line 3 +5. + +(D:\Programme\Miktex\tex/latex/txfonts\utxsyb.fd +File: utxsyb.fd 2000/12/15 v3.1 +) +LaTeX Font Info: Trying to load font information for U+txmia on input line 3 +5. + +(D:\Programme\Miktex\tex/latex/txfonts\utxmia.fd +File: utxmia.fd 2000/12/15 v3.1 +) +LaTeX Font Info: Trying to load font information for U+txsyc on input line 3 +5. + +(D:\Programme\Miktex\tex/latex/txfonts\utxsyc.fd +File: utxsyc.fd 2000/12/15 v3.1 +) +LaTeX Font Info: Trying to load font information for U+rsfs on input line 35 +. + +(D:\Programme\Miktex\tex/latex/jknappen\ursfs.fd +File: ursfs.fd 1998/03/24 rsfs font definition file (jk) +) +LaTeX Font Info: Trying to load font information for U+wasy on input line 35 +. + +(D:\Programme\Miktex\tex/latex/wasysym\uwasy.fd +File: uwasy.fd 2020/01/19 v2.4 Wasy-2 symbol font definitions +) +Package xypdf Info: Line width: 0.56pt on input line 35. + +(D:\Programme\Miktex\tex/latex/translations/dicts\translations-basic-dictionary +-german.trsl +File: translations-basic-dictionary-german.trsl (german translation file `trans +lations-basic-dictionary') +) +Package translations Info: loading dictionary `translations-basic-dictionary' f +or `german'. on input line 35. + +(D:\Programme\Miktex\tex/latex/translations/dicts\translations-basic-dictionary +-english.trsl +File: translations-basic-dictionary-english.trsl (english translation file `tra +nslations-basic-dictionary') +) +Package translations Info: loading dictionary `translations-basic-dictionary' f +or `english'. on input line 35. +\symgns@font=\mathgroup12 +LaTeX Font Info: Overwriting symbol font `gns@font' in version `bold' +(Font) TS1/txr/m/n --> TS1/txr/b/n on input line 35. +Package gensymb Info: Math companion symbols declared on input line 35. +LaTeX Info: Redefining \degree on input line 35. +LaTeX Info: Redefining \celsius on input line 35. +Package gensymb Info: Using text companion symbols for \degree, \celsius and \p +erthousand on input line 35. +LaTeX Info: Redefining \ohm on input line 35. +Package gensymb Info: Using \textohm for \ohm on input line 35. +LaTeX Info: Redefining \micro on input line 35. +Package gensymb Info: Using \textmu for \micro on input line 35. +\c@lstlisting=\count565 +Package caption Info: Begin \AtBeginDocument code. +Package caption Info: End \AtBeginDocument code. +Package biblatex Info: Trying to load language 'ngerman'... +Package biblatex Info: ... file 'ngerman.lbx' found. + (D:\Programme\Miktex\tex/latex/biblatex/lbx\ngerman.lbx +File: ngerman.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) +Package biblatex Info: Trying to load language 'german'... +Package biblatex Info: ... file 'german.lbx' found. + +(D:\Programme\Miktex\tex/latex/biblatex/lbx\german.lbx +File: german.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) +) +Package biblatex Info: Trying to load language 'german'... +Package biblatex Info: ... file 'german.lbx' found. + +(D:\Programme\Miktex\tex/latex/biblatex/lbx\german.lbx +File: german.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) + +Runaway definition? +-> +! TeX capacity exceeded, sorry [main memory size=3000000]. + \XKV@resb + +l.575 } + +If you really absolutely need more capacity, +you can ask a wizard to enlarge me. + + +Here is how much of TeX's memory you used: + 81845 strings out of 478582 + 2061696 string characters out of 2856069 + 3000001 words of memory out of 3000000 + 98832 multiletter control sequences out of 15000+600000 + 484206 words of font info for 75 fonts, out of 8000000 for 9000 + 1143 hyphenation exceptions out of 8191 + 105i,3n,99p,3369b,2422s stack positions out of 10000i,1000n,20000p,200000b,80000s +! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 42f4b6c..e24f294 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -1,17 +1,9 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\begin{document} + \section{Einleitung} Heut zu Tage ist die Navigation ein Teil des Lebens. Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. - - -\end{document} \ No newline at end of file +In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index b14dd4b..fbabbde 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -1,31 +1,23 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\begin{document} - \section{Warum ist die Erde nicht flach?} - - \begin{figure}[h] - \begin{center} - \includegraphics[width=10cm]{bilder/projektion.png} - \caption{Mercator Projektion} - \end{center} - \end{figure} + +\section{Warum ist die Erde nicht flach?} + +\begin{figure}[h] + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/projektion.png} + \caption[Mercator Projektion]{Mercator Projektion} + \end{center} +\end{figure} Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. Die Fotos von unserem Planeten oder die Berichte der Astronauten. - Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. - Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. - Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. - Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. - Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. +Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. +Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. +Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. +Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. +Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - - -\end{document} \ No newline at end of file +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 9758de9..8688421 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -4,9 +4,9 @@ % (c) 2020 Hochschule Rapperswil % \chapter{Thema\label{chapter:nav}} -\lhead{Thema} +\lhead{Sphärische Navigation} \begin{refsection} -\chapterauthor{Hans Muster} +\chapterauthor{Enez Erdem, Marc Kühne} @@ -15,6 +15,7 @@ \input{papers/nav/flatearth.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} +\input{papers/nav/sincos.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 0bb213c..d6e1388 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,12 +1,3 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - \usepackage{xcolor, soul} - \sethlcolor{yellow} -\begin{document} - \setlength{\parindent}{0em} \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. @@ -19,7 +10,7 @@ Das Nautische Dreieck definiert sich durch folgende Ecken: \end{itemize} Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. -Der Himmelspol ist der Nordpol an die Himmelskugel projeziert. +Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. \\ Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: \begin{itemize} @@ -35,7 +26,7 @@ $\alpha \ \widehat{=} \ Rektaszension $ $\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns -$\theta \ \widehat{=} \ Sternzeit$ +$\theta \ \widehat{=} \ Sternzeit\ von\ Greenwich$ $\phi \ \widehat{=} \ Geographische \ Breite $ @@ -46,24 +37,31 @@ $a \ \widehat{=} \ Azimut $ $h \ \widehat{=} \ Hoehe$ - +\newpage \subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} - +\begin{figure}[h] \begin{center} - \includegraphics[height=5cm,width=5cm]{Bilder/kugel3.png} + \includegraphics[height=5cm,width=5cm]{papers/nav/bilder/kugel3.png} + \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} +\end{figure} + Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. -\subsection{Varianten vom Nautischen Dreieck} + \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. +\begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{Bilder/dreieck.png} - \end{center} + \includegraphics[width=6cm]{papers/nav/bilder/dreieck.png} + \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} + \end{center} +\end{figure} + @@ -73,8 +71,8 @@ Unser eigener Standort ist der gesuchte Punkt A. \subsection{Ecke A - Nordpol} Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. - -\subsection{Ecke B und C - Bildpunkt XXX und YYY} +\newpage +\subsection{Ecke B und C - Bildpunkt X und Y} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. \\ @@ -96,64 +94,80 @@ Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eige Die Lösung ist die Sternzeit. Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. - + Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum vom aktuellen Tag, welches sich leicht recherchieren oder berechnen lässt: \hl{$JD=....$} - -Nun berechnet man $T=\frac{JD-2451545}{36525}$ und damit die mittlere Sternzeit von Greenwich +Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Im Anschluss berechnet man die Sternzeit von Greenwich +\\ +\\ +$T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +\\ +\\ +Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. +Dies gilt analog auch für das zweite Gestirn. - $T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 * T + 0^s,093104*T^2 - 0^s,0000062 * T^3$. - - Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. - Dies gilt analog auch für das zweite Gestirn. - - \subsubsection{Deklination} - Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad $\psi = \delta$. - +\subsubsection{Deklination} +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +\newpage \subsection{Bestimmung des eigenen Standortes P} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. +\begin{figure}[h] \begin{center} - \includegraphics[width=5cm]{Bilder/dreieck.png} - \end{center} + \includegraphics[width=4.5cm]{papers/nav/bilder/dreieck.png} + \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} + \end{center} +\end{figure} \subsubsection{Bestimmung des ersten Dreiecks} - Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. - Dann ist $c = \frac{\pi}{2} - \delta_1$. - - Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. - Dann ist $b = \frac{\pi}{2} - \delta_2$. - - Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. - Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - + +$A=$ Nordpol + +$B=$ Bildpunkt des Gestirns XXX + +$C=$ Bildpunkt des Gestirns YYY +\\ +\\ +Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. + +Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. +Dann ist $c = \frac{\pi}{2} - \delta_1$. + +Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. +Dann ist $b = \frac{\pi}{2} - \delta_2$. + +Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. +Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. + mit - - $\delta_1 =$ Deklination Bildpunkt XXX - + +$\delta_1 =$ Deklination Bildpunkt XXX + $\delta_2 =$ Deklination Bildpunk YYY $\lambda_1 =$ Längengrad Bildpunkt XXX $\lambda_2 =$ Längengrad Bildpunkt YYY - Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! + +Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. -Mithilfe des Seiten-Kosinussatzes $cos(a) = cos(b)*cos(c) + sin(b) * sin(c)*cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. +Mithilfe des Seiten-Kosinussatzes + +$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. + Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $sin(\beta) = sin(b) * \frac{sin(\alpha)}{sin(a)} $. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. @@ -168,23 +182,22 @@ Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. \\ -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$ mit den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes +Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. -$cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$ berechnen. +Für den Seiten-Kosinussatz benötigt es noch $\kappa$. +Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen und anschliessend $\beta + \beta1 =\kappa$. -Es fehlt uns noch $\beta1$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen -\\ +Somit ist $cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ -Somit ist $\delta = cos(l) = cos(c)*cos(pb) + sin(c) * sin(pb)*cos(\beta)$. -\\ +und -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ABP$ în der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +$\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]$. \\ -Somit ist $\omega=sin(pb)*\frac{sin(\beta)}{sin(l)}$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ - - +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. +\\ -\end{document} \ No newline at end of file +Somit ist $\omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}]$ und unsere gesuchte geographische Länge schlussendlich +$\lambda=\lambda_1 - \omega$ mit $\lambda_1$=Längengrad Bildpunkt XXX. +\newpage +\listoffigures \ No newline at end of file diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 16d3a3c..9faa48d 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,8 +8,3 @@ % following example %\usepackage{packagename} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} -\usepackage{xcolor, soul} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex new file mode 100644 index 0000000..23e3303 --- /dev/null +++ b/buch/papers/nav/sincos.tex @@ -0,0 +1,16 @@ + + + +\section{Warum sind die Sinus- und Kosinusfunktionen spezielle Funktionen?} +Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen (Himmelskörper) zu berechnen. +Jedoch konnten sie sie nicht lösen. +Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und wurde zu einer Hilfswissenschaft der Astronomen. +In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen zu diesem Thema angestellt. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. +Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um 900 den Sinussatz. +Zur Zeit der großen Entdeckungsreisen im 15. Jahrhundert wurden die Forschungen in sphärischer Trigonometrie wieder forciert. +Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet. +Im nächsten Jahrhundert folgte der Winkelkosinussatz. +Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. +Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 0dbd7a1..2edd651 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,14 +1,6 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} +\section{Sphärische Trigonometrie} +\subsection{Das Kugeldreieck} - -\begin{document} - \section{Sphärische Trigonometrie} - \subsection{Das Kugeldreieck} - Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. @@ -19,7 +11,8 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. \begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{Bilder/kugel1.png} + \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} \end{figure} @@ -27,12 +20,15 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. - \newpage +\newpage \subsection{Winkelangabe} - +\begin{figure}[h] + \begin{center} - \includegraphics[width=8cm]{Bilder/kugel2.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} +\end{figure} Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und @@ -46,6 +42,4 @@ Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta) \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a * \cos b$ wenn $\alpha \lor \beta \lor \gamma = \frac{\pi}{2} $. - -\end{document} \ No newline at end of file +Es gilt nämlich: $\cos c = \cos a \cdot \cos b$ wenn $\alpha= \frac{\pi}{2} \lor \beta=\frac{\pi}{2} \lor \gamma = \frac{\pi}{2} $. \ No newline at end of file -- cgit v1.2.1 From c0f7b4bd46fa66526f8ddfb20ce9edbcfbb03d81 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 17 May 2022 16:02:53 +0200 Subject: no message --- buch/papers/nav/main.tex | 5 +++-- buch/papers/nav/nautischesdreieck.tex | 37 +++++++++++++++++++---------------- buch/papers/nav/packages.tex | 1 + buch/papers/nav/trigo.tex | 36 +++++++++++++++++++++++++++------- 4 files changed, 53 insertions(+), 26 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 8688421..de8d1d6 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -3,7 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Thema\label{chapter:nav}} +\chapter{Spährische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} \chapterauthor{Enez Erdem, Marc Kühne} @@ -11,11 +11,12 @@ \input{papers/nav/einleitung.tex} +\input{papers/nav/sincos.tex} \input{papers/nav/geschichte.tex} \input{papers/nav/flatearth.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} -\input{papers/nav/sincos.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index d6e1388..b61e908 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -37,6 +37,7 @@ $a \ \widehat{=} \ Azimut $ $h \ \widehat{=} \ Hoehe$ + \newpage \subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure}[h] @@ -129,45 +130,47 @@ Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. $A=$ Nordpol -$B=$ Bildpunkt des Gestirns XXX +$B=$ Bildpunkt des Gestirns X -$C=$ Bildpunkt des Gestirns YYY +$C=$ Bildpunkt des Gestirns Y \\ \\ Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt XXX" sei $c$. +Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. Dann ist $c = \frac{\pi}{2} - \delta_1$. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt YYY" sei $b$. +Die Seitenlänge der Seite "Nordpol zum Bildpunkt Y" sei $b$. Dann ist $b = \frac{\pi}{2} - \delta_2$. Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. - +\\ +\\ mit -$\delta_1 =$ Deklination Bildpunkt XXX - -$\delta_2 =$ Deklination Bildpunk YYY +$\delta_1 =$ Deklination Bildpunkt X -$\lambda_1 =$ Längengrad Bildpunkt XXX +$\delta_2 =$ Deklination Bildpunk Y -$\lambda_2 =$ Längengrad Bildpunkt YYY +$\lambda_1 =$ Längengrad Bildpunkt X +$\lambda_2 =$ Längengrad Bildpunkt Y Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - +\\ +\\ Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes - -$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. - +$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ +können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. -Dieser bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. -Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. +Diese bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. +Im Zähler sind die Seiten, im Nenner die Winkel. +Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 9faa48d..5b87303 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,3 +8,4 @@ % following example %\usepackage{packagename} +\usepackage{amsmath} \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 2edd651..8b4634f 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,3 +1,4 @@ +\setlength{\parindent}{0em} \section{Sphärische Trigonometrie} \subsection{Das Kugeldreieck} @@ -11,7 +12,7 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. \begin{figure}[h] \begin{center} - \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + %\includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} @@ -25,21 +26,42 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \begin{figure}[h] \begin{center} - \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + %\includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} \end{figure} + Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. -Für die Summe der Innenwinkel gilt $\alpha+\beta+\gamma = \frac{A}{r^2} + \pi$ und -$\alpha+\beta+\gamma > \pi$. -Der sphärische Exzess $\epsilon = \alpha+\beta+\gamma - \pi$ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. +Für die Summe der Innenwinkel gilt +\begin{align} + \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber +\end{align} + +Der sphärische Exzess +\begin{align} + \epsilon = \alpha+\beta+\gamma - \pi \nonumber +\end{align} +beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} $ auch beim Kugeldreieck gilt. + +Das bedeutet, dass + +\begin{align} + \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} +\end{align} + + \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. -Es gilt nämlich: $\cos c = \cos a \cdot \cos b$ wenn $\alpha= \frac{\pi}{2} \lor \beta=\frac{\pi}{2} \lor \gamma = \frac{\pi}{2} $. \ No newline at end of file + +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & + \alpha = \frac{\pi}{2} \lor \beta =\frac{\pi}{2} \lor \gamma = \frac{\pi}{2}.\nonumber +\end{align} + \ No newline at end of file -- cgit v1.2.1 From 955047b8a63a3b08b27d9203030e2b5193e21dab Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Wed, 18 May 2022 13:55:56 +0200 Subject: Ersten Entwurf --- buch/papers/kreismembran/main.tex | 10 -- buch/papers/kreismembran/teil1.tex | 181 ++++++++++++++++++------------------- buch/papers/kreismembran/teil2.tex | 128 +++++++++++++++++++------- buch/papers/kreismembran/teil3.tex | 102 ++++++++++++++------- 4 files changed, 255 insertions(+), 166 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/main.tex b/buch/papers/kreismembran/main.tex index eafec18..e63a118 100644 --- a/buch/papers/kreismembran/main.tex +++ b/buch/papers/kreismembran/main.tex @@ -7,16 +7,6 @@ \lhead{Schwingungen einer kreisförmligen Membran} \begin{refsection} \chapterauthor{Andrea Mozzini Vellen und Tim Tönz} -\begin{itemize} -\item -Tim ist ein snitch -\item -ich dachte wir sind gute Freunden -\item -du schuldest mir ein bier -\item -auch ein gin tonic -\end{itemize} \input{papers/kreismembran/teil0.tex} \input{papers/kreismembran/teil1.tex} diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 29a47a6..aef5b79 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -3,101 +3,98 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -\section{Die Hankel Transformation \label{kreismembran:section:teil1}} -\rhead{Die Hankel Transformation} - -Hermann Hankel (1839-1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analyse und insbesondere für seine namensgebende Transformation bekannt ist. -Diese Transformation tritt bei der Untersuchung von funktionen auf, die nur von der Enternung des Ursprungs abhängen. -Er studierte auch funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. -Die Hankel Transformation mit Bessel Funktionen al Kern taucht natürlich bei achsensymmetrischen Problemen auf, die in Zylindrischen Polarkoordinaten formuliert sind. -In diesem Kapitel werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. - -Wir führen die Definition der Hankel Transformation aus der zweidimensionalen Fourier Transformation und ihrer Umkehrung ein, die durch: -\begin{align} - \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) dx dy,\label{equation:fourier_transform}\\ - \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) dx dy \label{equation:inv_fourier_transform} -\end{align} -wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Wie bereits erwähnt, sind Polarkoordinaten für diese Art von Problemen am besten geeignet, also mit, $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$, findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: -\begin{align} - F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) d\phi. - \label{equation:F_ohne_variable_wechsel} -\end{align} -Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \ref{equation:F_ohne_variable_wechsel} zu reduzieren: -\begin{align} - F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} d\alpha, - \label{equation:F_ohne_bessel} -\end{align} -wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. - -Unter Verwendung der Integral Darstellung der Besselfunktion vom Ordnung n -\begin{align} - J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} d\alpha - \label{equation:bessel_n_ordnung} -\end{align} -\eqref{equation:F_ohne_bessel} wird sie zu: -\begin{align} - F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr \label{equation:F_mit_bessel_step_1} \\ - &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), - \label{equation:F_mit_bessel_step_2} -\end{align} -wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel Transformation} von $f(r)$ und ist formell definiert durch: -\begin{align} - \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr. - \label{equation:hankel} -\end{align} - -Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \ref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \ref{equation:inv_fourier_transform}: +\section{Lösungsmethode 1: Separationsmethode  + \label{kreismembran:section:teil1}} +\rhead{Lösungsmethode 1: Separationsmethode} +An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmetode gelöst. + +Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: +\begin{equation*} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u +\end{equation*} +Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt: +\begin{equation*} + \Delta + = + \frac{\partial^2}{\partial r^2} + + + \frac1r + \frac{\partial}{\partial r} + + + \frac{1}{r 2} + \frac{\partial^2}{\partial\varphi^2}. + \label{buch:pde:kreis:laplace} +\end{equation*} + +Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. +Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. +Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran. + +Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} - e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) d\phi\\ - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} d\phi, + u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ + (r,\varphi,t) &\longmapsto u(r,\varphi,t) \end{align*} -was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, - -\begin{align} - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} d\alpha \nonumber \\ - &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa,\quad \text{von \eqref{equation:bessel_n_ordnung}} -\end{align} - -Also, die inverse \textit{Hankel Transformation} ist so definiert: -\begin{align} - \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa. - \label{equation:inv_hankel} -\end{align} - -Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel Transformation verwendet, indem die Ordnung angegeben wird. -\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. -Alternativ kann auch die berühmte Hankel Transformationsformel verwendet werden, - -\begin{align} - f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) dp, - \label{equation:hankel_integral_formula} -\end{align} -um die Hankel Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. -Insbesondere die Hankel Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. - -\subsection{Operative Eigenschaften der Hankel Transformation\label{sub:op_properties_hankel}} -In diesem Kapitel werden die operativen Eigenschaften der Hankel Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. - -\subsubsection{Skalierung \label{subsub:skalierung}} -Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: - -\begin{equation} - \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. -\end{equation} - -\subsubsection{Persevalsche Relation \label{subsub:perseval}} -Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: - +Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt: +\begin{equation*} + u\big|_{\Gamma} = 0 +\end{equation*} +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: +\begin{align*} + u(r,\varphi, 0) &= f(r,\varphi)\\ + \frac{\partial}{\partial t} u(r,\varphi, 0) &= g(r,\varphi) +\end{align*} +Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +\begin{equation*} + u(r,\varphi, t) = F(r)G(\varphi)T(t) +\end{equation*} +Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetz in der Differenzialgleichung ergibt: +\begin{equation*} + \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)} +\end{equation*} +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Grunden suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +\begin{gather*} + T''(t) + c^2\kappa^2T(t) = 0\\ + r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 = - \frac{G''(\varphi)}{G(\varphi)} +\end{gather*} +In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: +\begin{gather*} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \\ + G''(\varphi) = \nu G(\varphi) +\end{gather*} +$G$ kann in einer Fourierreihe entwickelt werden, so dass man sieht, dass $\nu$ die Form $n^2$ mit einer positiven ganzen Zahl sein muss, also: +\begin{equation*} + G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) +\end{equation*} +Die Gleichung $F$ hat die Gestalt +\begin{equation*} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \quad (*) +\end{equation*} +Wir bereits in der Vorlesung von Prof. Müller gezeigt, sind die Besselfunktionen +\begin{equation*} + J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} +\end{equation*} +Lösungen der "Besselschen Differenzialgleichung" +\begin{equation*} + x^2 y'' + xy' + (x^2 - \nu^2)y = 0 +\end{equation*} +Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung $(*)$. Die +Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion +$J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich +viele Nullstellen +\begin{equation*} + \alpha_{1n} < \alpha_{2n} < ... +\end{equation*} +haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergit sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass +\begin{equation*} + F(r) = J_n (\kappa_{mn}r) \quad mit \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} +\end{equation*} +Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. Durch Überlagerung aller Ergebnisse erhält man die Lösung \begin{equation} - \int_{0}^{\infty}rf(r) dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) d\kappa. + u(r, \varphi, t) = \displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=0}^{\infty} J_n (k_{mn}r)\cos(n\varphi)[a_{mn}\cos(c \kappa_{mn} t)+b_{mn}\sin(c \kappa_{mn} t)] \end{equation} +Dabei sind m und n ganze Zahlen, wobei m für die Anzahl der Knotenkreise und n +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei kmn die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. -\subsubsection{Hankel Transformationen von Ableitungen \label{subsub:ableitungen}} -Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: - -\begin{align} - &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ - &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), -\end{align} -bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty=0$. \ No newline at end of file +An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche und Diskussion mit Prof. Müller wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 45357f2..8afe817 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -2,48 +2,112 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Lösung der partiellen Differentialgleichung - \label{kreismembran:section:teil2}} -\rhead{Lösung der partiellen Differentialgleichung} +\section{Die Hankel Transformation \label{kreismembran:section:teil2}} +\rhead{Die Hankel Transformation} + +Hermann Hankel (1839-1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analyse und insbesondere für seine namensgebende Transformation bekannt ist. +Diese Transformation tritt bei der Untersuchung von funktionen auf, die nur von der Enternung des Ursprungs abhängen. +Er studierte auch funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. +Die Hankel Transformation mit Bessel Funktionen al Kern taucht natürlich bei achsensymmetrischen Problemen auf, die in Zylindrischen Polarkoordinaten formuliert sind. +In diesem Kapitel werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. + + +Wir führen die Definition der Hankel Transformation aus der zweidimensionalen Fourier Transformation und ihrer Umkehrung ein, die durch: +\begin{align} + \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) dx dy,\label{equation:fourier_transform}\\ + \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) dx dy \label{equation:inv_fourier_transform} +\end{align} +wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Wie bereits erwähnt, sind Polarkoordinaten für diese Art von Problemen am besten geeignet, also mit, $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$, findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +\begin{align} + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) d\phi. + \label{equation:F_ohne_variable_wechsel} +\end{align} +Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: +\begin{align} + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} d\alpha, + \label{equation:F_ohne_bessel} +\end{align} +wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. + +Unter Verwendung der Integral Darstellung der Besselfunktion vom Ordnung n +\begin{align} + J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} d\alpha + \label{equation:bessel_n_ordnung} +\end{align} +\eqref{equation:F_ohne_bessel} wird sie zu: +\begin{align} + F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr \label{equation:F_mit_bessel_step_1} \\ + &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), + \label{equation:F_mit_bessel_step_2} +\end{align} +wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel Transformation} von $f(r)$ und ist formell definiert durch: +\begin{align} + \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr. + \label{equation:hankel} +\end{align} + +Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}: + +\begin{align} + e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) d\phi\\ + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} d\phi, +\end{align} +was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, + +\begin{align} + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} d\alpha \nonumber \\ + &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa,\quad \text{von \eqref{equation:bessel_n_ordnung}} +\end{align} + +Also, die inverse \textit{Hankel Transformation} ist so definiert: +\begin{align} + \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa. + \label{equation:inv_hankel} +\end{align} + +Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel Transformation verwendet, indem die Ordnung angegeben wird. +\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. +Alternativ kann auch die berühmte Hankel Transformationsformel verwendet werden, + +\begin{align} + f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) dp, + \label{equation:hankel_integral_formula} +\end{align} +um die Hankel Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. +Insbesondere die Hankel Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. + +\subsection{Operative Eigenschaften der Hankel Transformation\label{sub:op_properties_hankel}} +In diesem Kapitel werden die operativen Eigenschaften der Hankel Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. + +\subsubsection{Theorem 1: Skalierung \label{subsub:skalierung}} +Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: -Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: \begin{equation*} - \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u + \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. \end{equation*} -Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt: + +\subsubsection{Theorem 2: Persevalsche Relation \label{subsub:perseval}} +Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: + \begin{equation*} - \Delta - = - \frac{\partial^2}{\partial r^2} - + - \frac1r - \frac{\partial}{\partial r} - + - \frac{1}{r 2} - \frac{\partial^2}{\partial\varphi^2}. - \label{buch:pde:kreis:laplace} + \int_{0}^{\infty}rf(r) dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) d\kappa. \end{equation*} -Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. -Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran. +\subsubsection{Theorem 3: Hankel Transformationen von Ableitungen \label{subsub:ableitungen}} +Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: -Daher ist die Membranabweichung im Punkt $(r,\theta)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} - u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ - (r,\theta,t) &\longmapsto u(r,\theta,t) + &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ + &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} -Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt: -\begin{equation*} - u\big|_{\Gamma} = 0 -\end{equation*} +bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$. +\subsubsection{Theorem 4 \label{subsub:thorem4}} +Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: +\begin{equation*} + \mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa), +\end{equation*} +bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden als $r\to0$ und $r\to\infty$. -\begin{align*} - u(r,\theta, 0) &:= f(x,y)\\ - \frac{\partial}{\partial t} u(r,\theta, 0) &:= g(x,y) -\end{align*} -An dieser Stelle könnte man zum Beispiel die bereits in Kapitel (TODO:refKAPITEL) vorgestellte Methode der Separation anwenden. Da es sich in diesem Fall jedoch um einem achsensymmetrischen Problem handelt, das in Polarkoordinaten formuliert ist, wird man die Transformationsmethode verwenden, insbesondere die Hankel Transformation. diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 73dee0f..bef8b5f 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -3,38 +3,76 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 +\section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kreismembran:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\rhead{Lösungsmethode 2: Transformationsmethode} +Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion u nur von der Entfernung zum Ausgangspunkt abhängt. Wir führen also das Konzept einer unendlichen und achsensymmetrischen Membran ein: +\begin{equation*} + \frac{\partial^2u}{\partial t^2} + = + c^2 \left(\frac{\partial^2 u}{\partial r^2} + + + \frac{1}{r} + \frac{\partial u}{\partial r} \right), \quad 00 + \label{eq:PDE_inf_membane} +\end{equation*} + +\begin{align} + u(r,0)=f(r), \quad \frac{\partial}{\partial t} u(r,0) = g(r), \quad \text{für} \quad 0 Date: Wed, 18 May 2022 14:20:41 +0200 Subject: =?UTF-8?q?Dreiecke=20f=C3=BCr=20Nav?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../050-differential/uebungsaufgaben/airy.cpp | 4 +- buch/chapters/110-elliptisch/ellintegral.tex | 2 +- buch/papers/nav/images/Makefile | 10 ++- buch/papers/nav/images/common.inc | 28 +++++- buch/papers/nav/images/dreieck3d1.pdf | Bin 0 -> 90451 bytes buch/papers/nav/images/dreieck3d1.pov | 12 +-- buch/papers/nav/images/dreieck3d2.pdf | Bin 0 -> 69523 bytes buch/papers/nav/images/dreieck3d2.pov | 6 +- buch/papers/nav/images/dreieck3d3.pdf | Bin 0 -> 82512 bytes buch/papers/nav/images/dreieck3d3.pov | 8 +- buch/papers/nav/images/dreieck3d4.pdf | Bin 0 -> 85037 bytes buch/papers/nav/images/dreieck3d4.pov | 8 +- buch/papers/nav/images/dreieck3d5.pdf | Bin 0 -> 70054 bytes buch/papers/nav/images/dreieck3d5.pov | 6 +- buch/papers/nav/images/dreieck3d6.pov | 2 +- buch/papers/nav/images/dreieck3d7.pov | 10 +-- buch/papers/nav/images/dreieck3d8.jpg | Bin 0 -> 93432 bytes buch/papers/nav/images/dreieck3d8.pdf | Bin 0 -> 107370 bytes buch/papers/nav/images/dreieck3d8.pov | 96 +++++++++++++++++++++ buch/papers/nav/images/dreieck3d8.tex | 57 ++++++++++++ 20 files changed, 216 insertions(+), 33 deletions(-) create mode 100644 buch/papers/nav/images/dreieck3d1.pdf create mode 100644 buch/papers/nav/images/dreieck3d2.pdf create mode 100644 buch/papers/nav/images/dreieck3d3.pdf create mode 100644 buch/papers/nav/images/dreieck3d4.pdf create mode 100644 buch/papers/nav/images/dreieck3d5.pdf create mode 100644 buch/papers/nav/images/dreieck3d8.jpg create mode 100644 buch/papers/nav/images/dreieck3d8.pdf create mode 100644 buch/papers/nav/images/dreieck3d8.pov create mode 100644 buch/papers/nav/images/dreieck3d8.tex (limited to 'buch') diff --git a/buch/chapters/050-differential/uebungsaufgaben/airy.cpp b/buch/chapters/050-differential/uebungsaufgaben/airy.cpp index e4df8e1..eb5c6be 100644 --- a/buch/chapters/050-differential/uebungsaufgaben/airy.cpp +++ b/buch/chapters/050-differential/uebungsaufgaben/airy.cpp @@ -44,8 +44,8 @@ double h0f1(double c, double x) { double f1(double x) { // unfortunately, gsl_sf_hyperg_0F1 does not work if c<1, because // it uses a relation to the bessel functions - //return gsl_sf_hyperg_0F1(2/3, x*x*x/9.); - return h0f1(2./3., x*x*x/9.); + return gsl_sf_hyperg_0F1(2/3, x*x*x/9.); + //return h0f1(2./3., x*x*x/9.); } double f2(double x) { diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 4cb2ba3..3acce2f 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -651,7 +651,7 @@ werden, dass $1-k'^2=k^2$ ist. \begin{definition} Ist $0\le k\le 1$ der Modul eines elliptischen Integrals, dann heisst -$k' = \sqrt{1-k^2}$ er {\em Komplementärmodul} oder {\em Komplement +$k' = \sqrt{1-k^2}$ der {\em Komplementärmodul} oder {\em Komplement des Moduls}. Es ist $k^2+k'^2=1$. \end{definition} diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index c9dcacc..bbdea2f 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -50,7 +50,8 @@ DREIECKE3D = \ dreieck3d4.pdf \ dreieck3d5.pdf \ dreieck3d6.pdf \ - dreieck3d7.pdf + dreieck3d7.pdf \ + dreieck3d8.pdf dreiecke3d: $(DREIECKE3D) @@ -106,3 +107,10 @@ dreieck3d7.jpg: dreieck3d7.png dreieck3d7.pdf: dreieck3d7.tex dreieck3d7.jpg pdflatex dreieck3d7.tex +dreieck3d8.png: dreieck3d8.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d8.png dreieck3d8.pov +dreieck3d8.jpg: dreieck3d8.png + convert dreieck3d8.png -density 300 -units PixelsPerInch dreieck3d8.jpg +dreieck3d8.pdf: dreieck3d8.tex dreieck3d8.jpg + pdflatex dreieck3d8.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc index 33d9384..e2a1ed0 100644 --- a/buch/papers/nav/images/common.inc +++ b/buch/papers/nav/images/common.inc @@ -97,13 +97,13 @@ union { } #end -#macro winkel(w, p, q, staerke) +#macro winkel(w, p, q, staerke, r) #declare n = vnormalize(w); #declare pp = vnormalize(p - vdot(n, p) * n); #declare qq = vnormalize(q - vdot(n, q) * n); intersection { sphere { <0, 0, 0>, 1 + staerke } - cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), 0.4 } + cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), r } plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } } @@ -113,8 +113,30 @@ union { sphere { p, 1.5 * staerke } #end +#macro dreieck(p, q, r, farbe) + #declare n1 = vnormalize(vcross(p, q)); + #declare n2 = vnormalize(vcross(q, r)); + #declare n3 = vnormalize(vcross(r, p)); + intersection { + plane { n1, 0 } + plane { n2, 0 } + plane { n3, 0 } + sphere { <0, 0, 0>, 1 + 0.001 } + pigment { + color farbe + } + finish { + metallic + specular 0.4 + } + } +#end + #declare fett = 0.015; -#declare fine = 0.010; +#declare fein = 0.010; + +#declare klein = 0.3; +#declare gross = 0.4; #declare dreieckfarbe = rgb<0.6,0.6,0.6>; #declare rot = rgb<0.8,0.2,0.2>; diff --git a/buch/papers/nav/images/dreieck3d1.pdf b/buch/papers/nav/images/dreieck3d1.pdf new file mode 100644 index 0000000..015bce7 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d1.pdf differ diff --git a/buch/papers/nav/images/dreieck3d1.pov b/buch/papers/nav/images/dreieck3d1.pov index 8afe60e..e491075 100644 --- a/buch/papers/nav/images/dreieck3d1.pov +++ b/buch/papers/nav/images/dreieck3d1.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } @@ -25,7 +25,7 @@ union { } object { - winkel(A, B, C, fine) + winkel(A, B, C, fein, gross) pigment { color rot } @@ -36,7 +36,7 @@ object { } object { - winkel(B, C, A, fine) + winkel(B, C, A, fein, gross) pigment { color gruen } @@ -47,7 +47,7 @@ object { } object { - winkel(C, A, B, fine) + winkel(C, A, B, fein, gross) pigment { color blau } diff --git a/buch/papers/nav/images/dreieck3d2.pdf b/buch/papers/nav/images/dreieck3d2.pdf new file mode 100644 index 0000000..6b3f09d Binary files /dev/null and b/buch/papers/nav/images/dreieck3d2.pdf differ diff --git a/buch/papers/nav/images/dreieck3d2.pov b/buch/papers/nav/images/dreieck3d2.pov index c23a54c..c0625ce 100644 --- a/buch/papers/nav/images/dreieck3d2.pov +++ b/buch/papers/nav/images/dreieck3d2.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } diff --git a/buch/papers/nav/images/dreieck3d3.pdf b/buch/papers/nav/images/dreieck3d3.pdf new file mode 100644 index 0000000..7d79455 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d3.pdf differ diff --git a/buch/papers/nav/images/dreieck3d3.pov b/buch/papers/nav/images/dreieck3d3.pov index f2496b5..b6f64d5 100644 --- a/buch/papers/nav/images/dreieck3d3.pov +++ b/buch/papers/nav/images/dreieck3d3.pov @@ -12,9 +12,9 @@ union { punkt(A, fett) punkt(B, fett) punkt(C, fett) - punkt(P, fine) - seite(B, P, fine) - seite(C, P, fine) + punkt(P, fein) + seite(B, P, fein) + seite(C, P, fein) pigment { color dreieckfarbe } @@ -25,7 +25,7 @@ union { } object { - winkel(A, B, C, fine) + winkel(A, B, C, fein, gross) pigment { color rot } diff --git a/buch/papers/nav/images/dreieck3d4.pdf b/buch/papers/nav/images/dreieck3d4.pdf new file mode 100644 index 0000000..e1ea757 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d4.pdf differ diff --git a/buch/papers/nav/images/dreieck3d4.pov b/buch/papers/nav/images/dreieck3d4.pov index bddcf7c..b6f17e3 100644 --- a/buch/papers/nav/images/dreieck3d4.pov +++ b/buch/papers/nav/images/dreieck3d4.pov @@ -6,9 +6,9 @@ #include "common.inc" union { - seite(A, B, fine) - seite(A, C, fine) - punkt(A, fine) + seite(A, B, fein) + seite(A, C, fein) + punkt(A, fein) punkt(B, fett) punkt(C, fett) punkt(P, fett) @@ -25,7 +25,7 @@ union { } object { - winkel(B, C, P, fine) + winkel(B, C, P, fein, gross) pigment { color rgb<0.6,0.4,0.2> } diff --git a/buch/papers/nav/images/dreieck3d5.pdf b/buch/papers/nav/images/dreieck3d5.pdf new file mode 100644 index 0000000..6848331 Binary files /dev/null and b/buch/papers/nav/images/dreieck3d5.pdf differ diff --git a/buch/papers/nav/images/dreieck3d5.pov b/buch/papers/nav/images/dreieck3d5.pov index 32fc9e6..188f181 100644 --- a/buch/papers/nav/images/dreieck3d5.pov +++ b/buch/papers/nav/images/dreieck3d5.pov @@ -6,9 +6,9 @@ #include "common.inc" union { - seite(A, B, fine) - seite(A, C, fine) - punkt(A, fine) + seite(A, B, fein) + seite(A, C, fein) + punkt(A, fein) punkt(B, fett) punkt(C, fett) punkt(P, fett) diff --git a/buch/papers/nav/images/dreieck3d6.pov b/buch/papers/nav/images/dreieck3d6.pov index 7611950..191a1e7 100644 --- a/buch/papers/nav/images/dreieck3d6.pov +++ b/buch/papers/nav/images/dreieck3d6.pov @@ -25,7 +25,7 @@ union { } object { - winkel(B, A, P, fine) + winkel(B, A, P, fein, gross) pigment { color rgb<0.6,0.2,0.6> } diff --git a/buch/papers/nav/images/dreieck3d7.pov b/buch/papers/nav/images/dreieck3d7.pov index fa48f5b..aae5c6c 100644 --- a/buch/papers/nav/images/dreieck3d7.pov +++ b/buch/papers/nav/images/dreieck3d7.pov @@ -10,13 +10,13 @@ union { seite(A, P, fett) seite(C, P, fett) - seite(A, B, fine) - seite(B, C, fine) - seite(B, P, fine) + seite(A, B, fein) + seite(B, C, fein) + seite(B, P, fein) punkt(A, fett) punkt(C, fett) punkt(P, fett) - punkt(B, fine) + punkt(B, fein) pigment { color dreieckfarbe } @@ -27,7 +27,7 @@ union { } object { - winkel(A, P, C, fine) + winkel(A, P, C, fein, gross) pigment { color rgb<0.4,0.4,1> } diff --git a/buch/papers/nav/images/dreieck3d8.jpg b/buch/papers/nav/images/dreieck3d8.jpg new file mode 100644 index 0000000..52bd25e Binary files /dev/null and b/buch/papers/nav/images/dreieck3d8.jpg differ diff --git a/buch/papers/nav/images/dreieck3d8.pdf b/buch/papers/nav/images/dreieck3d8.pdf new file mode 100644 index 0000000..9d630aa Binary files /dev/null and b/buch/papers/nav/images/dreieck3d8.pdf differ diff --git a/buch/papers/nav/images/dreieck3d8.pov b/buch/papers/nav/images/dreieck3d8.pov new file mode 100644 index 0000000..9e9921a --- /dev/null +++ b/buch/papers/nav/images/dreieck3d8.pov @@ -0,0 +1,96 @@ +// +// dreiecke3d8.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +union { + seite(A, B, fett) + seite(B, C, fett) + seite(A, C, fett) + seite(A, P, fein) + seite(B, P, fett) + seite(C, P, fett) + punkt(A, fett) + punkt(B, fett) + punkt(C, fett) + punkt(P, fett) + pigment { + color dreieckfarbe + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, B, C, fein, klein) + pigment { + color rot + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, C, A, fein, klein) + pigment { + color gruen + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(C, A, B, fein, gross) + pigment { + color blau + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(A, P, C, fein/2, gross) + pigment { + color rgb<0.8,0,0.8> + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, P, C, fein, klein) + pigment { + color rgb<1,0.8,0> + } + finish { + specular 0.95 + metallic + } +} + +object { + winkel(B, P, A, fein/2, gross) + pigment { + color rgb<0.4,0.6,0.8> + } + finish { + specular 0.95 + metallic + } +} + +dreieck(A, B, C, White) + + diff --git a/buch/papers/nav/images/dreieck3d8.tex b/buch/papers/nav/images/dreieck3d8.tex new file mode 100644 index 0000000..c59c7b0 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d8.tex @@ -0,0 +1,57 @@ +% +% dreieck3d8.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=8cm]{dreieck3d8.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0.7,3.8) {$A$}; +\node at (-3.4,-0.8) {$B$}; +\node at (3.3,-2.1) {$C$}; +\node at (-1.4,-3.5) {$P$}; + +\node at (-1.9,2.1) {$c$}; +\node at (-0.2,-1.2) {$a$}; +\node at (2.6,1.5) {$b$}; +\node at (-0.8,0) {$l$}; + +\node at (-2.6,-2.2) {$p_b$}; +\node at (1,-2.9) {$p_c$}; + +\node at (0.7,3.3) {$\alpha$}; +\node at (0.8,2.85) {$\omega$}; +\node at (-2.6,-0.6) {$\beta$}; +\node at (2.3,-1.2) {$\gamma$}; +\node at (-2.6,-1.3) {$\beta_1$}; +\node at (-2.1,-0.8) {$\kappa$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From 525ff82400b685dc6dd0d6376253545720471be0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:25:26 +0200 Subject: remove bad files --- buch/buch.aux | 22 - buch/buch.bbl | 0 buch/buch.blg | 48 - buch/buch.idx | 0 buch/buch.log | 2106 --------------------------------- buch/papers/nav/images/dreieck3d5.pdf | Bin 70054 -> 70045 bytes 6 files changed, 2176 deletions(-) delete mode 100644 buch/buch.aux delete mode 100644 buch/buch.bbl delete mode 100644 buch/buch.blg delete mode 100644 buch/buch.idx delete mode 100644 buch/buch.log (limited to 'buch') diff --git a/buch/buch.aux b/buch/buch.aux deleted file mode 100644 index 6730af9..0000000 --- a/buch/buch.aux +++ /dev/null @@ -1,22 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\babel@aux[2]{} -\@nameuse{bbl@beforestart} -\catcode `"\active -\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} -\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined -\global\let\oldcontentsline\contentsline -\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} -\global\let\oldnewlabel\newlabel -\gdef\newlabel#1#2{\newlabelxx{#1}#2} -\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} -\AtEndDocument{\ifx\hyper@anchor\@undefined -\let\contentsline\oldcontentsline -\let\newlabel\oldnewlabel -\fi} -\fi} -\global\let\hyper@last\relax -\gdef\HyperFirstAtBeginDocument#1{#1} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} diff --git a/buch/buch.bbl b/buch/buch.bbl deleted file mode 100644 index e69de29..0000000 diff --git a/buch/buch.blg b/buch/buch.blg deleted file mode 100644 index 706b1d8..0000000 --- a/buch/buch.blg +++ /dev/null @@ -1,48 +0,0 @@ -This is BibTeX, Version 0.99d -Capacity: max_strings=200000, hash_size=200000, hash_prime=170003 -The top-level auxiliary file: buch.aux -I found no \citation commands---while reading file buch.aux -I found no \bibdata command---while reading file buch.aux -I found no \bibstyle command---while reading file buch.aux -You've used 0 entries, - 0 wiz_defined-function locations, - 83 strings with 482 characters, -and the built_in function-call counts, 0 in all, are: -= -- 0 -> -- 0 -< -- 0 -+ -- 0 -- -- 0 -* -- 0 -:= -- 0 -add.period$ -- 0 -call.type$ -- 0 -change.case$ -- 0 -chr.to.int$ -- 0 -cite$ -- 0 -duplicate$ -- 0 -empty$ -- 0 -format.name$ -- 0 -if$ -- 0 -int.to.chr$ -- 0 -int.to.str$ -- 0 -missing$ -- 0 -newline$ -- 0 -num.names$ -- 0 -pop$ -- 0 -preamble$ -- 0 -purify$ -- 0 -quote$ -- 0 -skip$ -- 0 -stack$ -- 0 -substring$ -- 0 -swap$ -- 0 -text.length$ -- 0 -text.prefix$ -- 0 -top$ -- 0 -type$ -- 0 -warning$ -- 0 -while$ -- 0 -width$ -- 0 -write$ -- 0 -(There were 3 error messages) diff --git a/buch/buch.idx b/buch/buch.idx deleted file mode 100644 index e69de29..0000000 diff --git a/buch/buch.log b/buch/buch.log deleted file mode 100644 index 4175a27..0000000 --- a/buch/buch.log +++ /dev/null @@ -1,2106 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.24 (MiKTeX 22.3) (preloaded format=pdflatex 2022.4.16) 17 MAY 2022 13:22 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**./buch.tex -(buch.tex -LaTeX2e <2021-11-15> patch level 1 -L3 programming layer <2022-02-24> (common/content.tex -(D:\Programme\Miktex\tex/latex/base\book.cls -Document Class: book 2021/10/04 v1.4n Standard LaTeX document class -(D:\Programme\Miktex\tex/latex/base\bk10.clo -File: bk10.clo 2021/10/04 v1.4n Standard LaTeX file (size option) -) -\c@part=\count185 -\c@chapter=\count186 -\c@section=\count187 -\c@subsection=\count188 -\c@subsubsection=\count189 -\c@paragraph=\count190 -\c@subparagraph=\count191 -\c@figure=\count192 -\c@table=\count193 -\abovecaptionskip=\skip47 -\belowcaptionskip=\skip48 -\bibindent=\dimen138 -) (common/packages.tex -(D:\Programme\Miktex\tex/latex/etex-pkg\etex.sty -Package: etex 2016/08/01 v2.7 eTeX basic definition package (PEB,DPC) -\et@xins=\count194 -) -(D:\Programme\Miktex\tex/latex/geometry\geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(D:\Programme\Miktex\tex/latex/graphics\keyval.sty -Package: keyval 2014/10/28 v1.15 key=value parser (DPC) -\KV@toks@=\toks16 -) -(D:\Programme\Miktex\tex/generic/iftex\ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. - -(D:\Programme\Miktex\tex/generic/iftex\iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -)) -\Gm@cnth=\count195 -\Gm@cntv=\count196 -\c@Gm@tempcnt=\count197 -\Gm@bindingoffset=\dimen139 -\Gm@wd@mp=\dimen140 -\Gm@odd@mp=\dimen141 -\Gm@even@mp=\dimen142 -\Gm@layoutwidth=\dimen143 -\Gm@layoutheight=\dimen144 -\Gm@layouthoffset=\dimen145 -\Gm@layoutvoffset=\dimen146 -\Gm@dimlist=\toks17 - -(D:\Programme\Miktex\tex/latex/geometry\geometry.cfg)) -(D:\Programme\Miktex\tex/generic/babel\babel.sty -Package: babel 2022/02/26 3.73 The Babel package -\babel@savecnt=\count198 -\U@D=\dimen147 -\l@unhyphenated=\language79 - -(D:\Programme\Miktex\tex/generic/babel\txtbabel.def) -\bbl@readstream=\read2 -\bbl@dirlevel=\count199 - -************************************* -* Local config file bblopts.cfg used -* -(D:\Programme\Miktex\tex/latex/arabi\bblopts.cfg -File: bblopts.cfg 2005/09/08 v0.1 add Arabic and Farsi to "declared" options of - babel -) -(D:\Programme\Miktex\tex/latex/babel-english\english.ldf -Language: english 2017/06/06 v3.3r English support from the babel system -Package babel Info: Hyphen rules for 'canadian' set to \l@english -(babel) (\language0). Reported on input line 102. -Package babel Info: Hyphen rules for 'australian' set to \l@ukenglish -(babel) (\language73). Reported on input line 105. -Package babel Info: Hyphen rules for 'newzealand' set to \l@ukenglish -(babel) (\language73). Reported on input line 108. -) -(D:\Programme\Miktex\tex/latex/babel-german\ngerman.ldf -Language: ngerman 2021/02/27 v2.13 German support for babel (post-1996 orthogra -phy) - -(D:\Programme\Miktex\tex/latex/babel-german\ngermanb.ldf -Language: ngermanb 2021/02/27 v2.13 German support for babel (post-1996 orthogr -aphy) -Package babel Info: Making " an active character on input line 122. -))) -(D:\Programme\Miktex\tex/latex/base\inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks18 -\inpenc@posthook=\toks19 -) -(D:\Programme\Miktex\tex/latex/base\fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(D:\Programme\Miktex\tex/latex/cancel\cancel.sty -Package: cancel 2013/04/12 v2.2 Cancel math terms -) -(D:\Programme\Miktex\tex/latex/psnfss\times.sty -Package: times 2020/03/25 PSNFSS-v9.3 (SPQR) -) -(D:\Programme\Miktex\tex/latex/amsmath\amsmath.sty -Package: amsmath 2021/10/15 v2.17l AMS math features -\@mathmargin=\skip49 - -For additional information on amsmath, use the `?' option. -(D:\Programme\Miktex\tex/latex/amsmath\amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(D:\Programme\Miktex\tex/latex/amsmath\amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks20 -\ex@=\dimen148 -)) -(D:\Programme\Miktex\tex/latex/amsmath\amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen149 -) -(D:\Programme\Miktex\tex/latex/amsmath\amsopn.sty -Package: amsopn 2021/08/26 v2.02 operator names -) -Normal \count register pool exhausted, switching to extended pool. -\inf@bad=\count277 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count278 -\leftroot@=\count279 -LaTeX Info: Redefining \overline on input line 399. -\classnum@=\count280 -\DOTSCASE@=\count281 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box50 -\strutbox@=\box51 -\big@size=\dimen150 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count282 -\c@MaxMatrixCols=\count283 -\dotsspace@=\muskip16 -\c@parentequation=\count284 -\dspbrk@lvl=\count285 -\tag@help=\toks21 -\row@=\count286 -\column@=\count287 -\maxfields@=\count288 -\andhelp@=\toks22 -\eqnshift@=\dimen151 -\alignsep@=\dimen152 -\tagshift@=\dimen153 -\tagwidth@=\dimen154 -\totwidth@=\dimen155 -\lineht@=\dimen156 -\@envbody=\toks23 -\multlinegap=\skip50 -\multlinetaggap=\skip51 -\mathdisplay@stack=\toks24 -LaTeX Info: Redefining \[ on input line 2938. -LaTeX Info: Redefining \] on input line 2939. -) -(D:\Programme\Miktex\tex/latex/amsmath\amscd.sty -Package: amscd 2017/04/14 v2.1 AMS Commutative Diagrams -\athelp@=\toks25 -\minaw@=\dimen157 -\bigaw@=\dimen158 -\minCDarrowwidth=\dimen159 -) -(D:\Programme\Miktex\tex/latex/amsfonts\amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(D:\Programme\Miktex\tex/latex/amsfonts\amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(D:\Programme\Miktex\tex/latex/amscls\amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks26 -\thm@bodyfont=\toks27 -\thm@headfont=\toks28 -\thm@notefont=\toks29 -\thm@headpunct=\toks30 -\thm@preskip=\skip52 -\thm@postskip=\skip53 -\thm@headsep=\skip54 -\dth@everypar=\toks31 -) -(D:\Programme\Miktex\tex/latex/graphics\graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(D:\Programme\Miktex\tex/latex/graphics\graphics.sty -Package: graphics 2021/03/04 v1.4d Standard LaTeX Graphics (DPC,SPQR) - -(D:\Programme\Miktex\tex/latex/graphics\trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(D:\Programme\Miktex\tex/latex/graphics-cfg\graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(D:\Programme\Miktex\tex/latex/graphics-def\pdftex.def -File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen160 -\Gin@req@width=\dimen161 -) -(D:\Programme\Miktex\tex/latex/fancyhdr\fancyhdr.sty -Package: fancyhdr 2022/05/10 v4.0.2 Extensive control of page headers and foote -rs -\f@nch@headwidth=\skip55 -\f@nch@O@elh=\skip56 -\f@nch@O@erh=\skip57 -\f@nch@O@olh=\skip58 -\f@nch@O@orh=\skip59 -\f@nch@O@elf=\skip60 -\f@nch@O@erf=\skip61 -\f@nch@O@olf=\skip62 -\f@nch@O@orf=\skip63 -) -(D:\Programme\Miktex\tex/latex/base\textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(D:\Programme\Miktex\tex/latex/txfonts\txfonts.sty -Package: txfonts 2008/01/22 v3.2.1 -LaTeX Font Info: Redeclaring symbol font `operators' on input line 21. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/txr/m/n on input line 21. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/txr/m/n on input line 21. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/txr/m/n --> OT1/txr/bx/n on input line 22. -\symitalic=\mathgroup6 -LaTeX Font Info: Overwriting symbol font `italic' in version `bold' -(Font) OT1/txr/m/it --> OT1/txr/bx/it on input line 26. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/txr/bx/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/txr/bx/n on input line 29. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 30. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/txr/m/it on input line 30. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/txr/m/it on input line 30. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/txr/m/it --> OT1/txr/bx/it on input line 31. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 40. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/txss/m/n on input line 40. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/txss/m/n on input line 40. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/txss/m/n --> OT1/txss/b/n on input line 41. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 50. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/txtt/m/n on input line 50. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/txtt/m/n on input line 50. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/txtt/m/n --> OT1/txtt/b/n on input line 51. -LaTeX Font Info: Redeclaring symbol font `letters' on input line 58. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/txmi/m/it on input line 58. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/txmi/m/it on input line 58. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/txmi/m/it --> OML/txmi/bx/it on input line 59. -\symlettersA=\mathgroup7 -LaTeX Font Info: Overwriting symbol font `lettersA' in version `bold' -(Font) U/txmia/m/it --> U/txmia/bx/it on input line 67. -LaTeX Font Info: Redeclaring math alphabet \mathfrak on input line 70. -LaTeX Font Info: Redeclaring symbol font `symbols' on input line 77. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/txsy/m/n on input line 77. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/txsy/m/n on input line 77. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/txsy/m/n --> OMS/txsy/bx/n on input line 78. -LaTeX Font Info: Redeclaring symbol font `AMSa' on input line 93. -LaTeX Font Info: Overwriting symbol font `AMSa' in version `normal' -(Font) U/msa/m/n --> U/txsya/m/n on input line 93. -LaTeX Font Info: Overwriting symbol font `AMSa' in version `bold' -(Font) U/msa/m/n --> U/txsya/m/n on input line 93. -LaTeX Font Info: Overwriting symbol font `AMSa' in version `bold' -(Font) U/txsya/m/n --> U/txsya/bx/n on input line 94. -LaTeX Font Info: Redeclaring symbol font `AMSb' on input line 102. -LaTeX Font Info: Overwriting symbol font `AMSb' in version `normal' -(Font) U/msb/m/n --> U/txsyb/m/n on input line 102. -LaTeX Font Info: Overwriting symbol font `AMSb' in version `bold' -(Font) U/msb/m/n --> U/txsyb/m/n on input line 102. -LaTeX Font Info: Overwriting symbol font `AMSb' in version `bold' -(Font) U/txsyb/m/n --> U/txsyb/bx/n on input line 103. -\symsymbolsC=\mathgroup8 -LaTeX Font Info: Overwriting symbol font `symbolsC' in version `bold' -(Font) U/txsyc/m/n --> U/txsyc/bx/n on input line 113. -LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 120. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/txex/m/n on input line 120. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/txex/m/n on input line 120. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/txex/m/n --> OMX/txex/bx/n on input line 121. -\symlargesymbolsA=\mathgroup9 -LaTeX Font Info: Overwriting symbol font `largesymbolsA' in version `bold' -(Font) U/txexa/m/n --> U/txexa/bx/n on input line 129. -LaTeX Font Info: Redeclaring math symbol \mathsterling on input line 164. -LaTeX Info: Redefining \not on input line 1043. -LaTeX Info: Redefining \textsquare on input line 1063. -LaTeX Info: Redefining \openbox on input line 1064. -) -(D:\Programme\Miktex\tex/latex/jknappen\mathrsfs.sty -Package: mathrsfs 1996/01/01 Math RSFS package v1.0 (jk) -\symrsfs=\mathgroup10 -) -(D:\Programme\Miktex\tex/latex/units\nicefrac.sty -Package: nicefrac 1998/08/04 v0.9b Nice fractions -\L@UnitsRaiseDisplaystyle=\skip64 -\L@UnitsRaiseTextstyle=\skip65 -\L@UnitsRaiseScriptstyle=\skip66 - -(D:\Programme\Miktex\tex/latex/base\ifthen.sty -Package: ifthen 2020/11/24 v1.1c Standard LaTeX ifthen package (DPC) -)) -(D:\Programme\Miktex\tex/latex/tools\bm.sty -Package: bm 2021/04/25 v1.2e Bold Symbol Support (DPC/FMi) -Package bm Info: No bold for \U/rsfs/m/n, using \pmb. -) -(D:\Programme\Miktex\tex/latex/eepic\epic.sty -Enhancements to Picture Environment. Version 1.2 - Released June 1, 1986 -\@@multicnt=\count289 -\d@lta=\count290 -\@delta=\dimen162 -\@@delta=\dimen163 -\@gridcnt=\count291 -\@joinkind=\count292 -\@dotgap=\dimen164 -\@ddotgap=\dimen165 -\@x@diff=\count293 -\@y@diff=\count294 -\x@diff=\dimen166 -\y@diff=\dimen167 -\@dotbox=\box52 -\num@segments=\count295 -\num@segmentsi=\count296 -\@datafile=\read3 -) (D:\Programme\Miktex\tex/latex/tools\verbatim.sty -Package: verbatim 2020-07-07 v1.5u LaTeX2e package for verbatim enhancements -\every@verbatim=\toks32 -\verbatim@line=\toks33 -\verbatim@in@stream=\read4 -) -(D:\Programme\Miktex\tex/latex/paralist\paralist.sty -Package: paralist 2017/01/22 v2.7 Extended list environments -\pltopsep=\skip67 -\plpartopsep=\skip68 -\plitemsep=\skip69 -\plparsep=\skip70 -\pl@lab=\toks34 -) -(D:\Programme\Miktex\tex/latex/base\makeidx.sty -Package: makeidx 2021/10/04 v1.0m Standard LaTeX package -) -(D:\Programme\Miktex\tex/latex/tools\array.sty -Package: array 2021/10/04 v2.5f Tabular extension package (FMi) -\col@sep=\dimen168 -\ar@mcellbox=\box53 -\extrarowheight=\dimen169 -\NC@list=\toks35 -\extratabsurround=\skip71 -\backup@length=\skip72 -\ar@cellbox=\box54 -) -(D:\Programme\Miktex\tex/latex/multirow\multirow.sty -Package: multirow 2021/03/15 v2.8 Span multiple rows of a table -\multirow@colwidth=\skip73 -\multirow@cntb=\count297 -\multirow@dima=\skip74 -\bigstrutjot=\dimen170 -) -(D:\Programme\Miktex\tex/latex/hyperref\hyperref.sty -Package: hyperref 2022-02-21 v7.00n Hypertext links for LaTeX - -(D:\Programme\Miktex\tex/generic/ltxcmds\ltxcmds.sty -Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO) -) -(D:\Programme\Miktex\tex/generic/pdftexcmds\pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) - -(D:\Programme\Miktex\tex/generic/infwarerr\infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -) -(D:\Programme\Miktex\tex/generic/kvsetkeys\kvsetkeys.sty -Package: kvsetkeys 2019/12/15 v1.18 Key value parser (HO) -) -(D:\Programme\Miktex\tex/generic/kvdefinekeys\kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(D:\Programme\Miktex\tex/generic/pdfescape\pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) -) -(D:\Programme\Miktex\tex/latex/hycolor\hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(D:\Programme\Miktex\tex/latex/letltxmacro\letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(D:\Programme\Miktex\tex/latex/auxhook\auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(D:\Programme\Miktex\tex/latex/kvoptions\kvoptions.sty -Package: kvoptions 2020-10-07 v3.14 Key value format for package options (HO) -) -\@linkdim=\dimen171 -\Hy@linkcounter=\count298 -\Hy@pagecounter=\count299 - -(D:\Programme\Miktex\tex/latex/hyperref\pd1enc.def -File: pd1enc.def 2022-02-21 v7.00n Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(D:\Programme\Miktex\tex/generic/intcalc\intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -(D:\Programme\Miktex\tex/generic/etexcmds\etexcmds.sty -Package: etexcmds 2019/12/15 v1.7 Avoid name clashes with e-TeX commands (HO) -) -\Hy@SavedSpaceFactor=\count300 - -(D:\Programme\Miktex\tex/latex/hyperref\puenc.def -File: puenc.def 2022-02-21 v7.00n Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Hyper figures OFF on input line 4137. -Package hyperref Info: Link nesting OFF on input line 4142. -Package hyperref Info: Hyper index ON on input line 4145. -Package hyperref Info: Plain pages OFF on input line 4152. -Package hyperref Info: Backreferencing OFF on input line 4157. -Package hyperref Info: Implicit mode ON; LaTeX internals redefined. -Package hyperref Info: Bookmarks ON on input line 4390. -\c@Hy@tempcnt=\count301 - -(D:\Programme\Miktex\tex/latex/url\url.sty -\Urlmuskip=\muskip17 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4749. -\XeTeXLinkMargin=\dimen172 - -(D:\Programme\Miktex\tex/generic/bitset\bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(D:\Programme\Miktex\tex/generic/bigintcalc\bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count302 -\Field@Width=\dimen173 -\Fld@charsize=\dimen174 -Package hyperref Info: Hyper figures OFF on input line 6027. -Package hyperref Info: Link nesting OFF on input line 6032. -Package hyperref Info: Hyper index ON on input line 6035. -Package hyperref Info: backreferencing OFF on input line 6042. -Package hyperref Info: Link coloring OFF on input line 6047. -Package hyperref Info: Link coloring with OCG OFF on input line 6052. -Package hyperref Info: PDF/A mode OFF on input line 6057. -LaTeX Info: Redefining \ref on input line 6097. -LaTeX Info: Redefining \pageref on input line 6101. - -(D:\Programme\Miktex\tex/latex/base\atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -\Hy@abspage=\count303 -\c@Item=\count304 -\c@Hfootnote=\count305 -) -Package hyperref Info: Driver (autodetected): hpdftex. - -(D:\Programme\Miktex\tex/latex/hyperref\hpdftex.def -File: hpdftex.def 2022-02-21 v7.00n Hyperref driver for pdfTeX - -(D:\Programme\Miktex\tex/latex/base\atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count306 -\c@bookmark@seq@number=\count307 - -(D:\Programme\Miktex\tex/latex/rerunfilecheck\rerunfilecheck.sty -Package: rerunfilecheck 2019/12/05 v1.9 Rerun checks for auxiliary files (HO) - -(D:\Programme\Miktex\tex/generic/uniquecounter\uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -86. -) -\Hy@SectionHShift=\skip75 -) -(D:\Programme\Miktex\tex/latex/subfigure\subfigure.sty -Package: subfigure 2002/07/30 v2.1.4 subfigure package -\subfigtopskip=\skip76 -\subfigcapskip=\skip77 -\subfigcaptopadj=\dimen175 -\subfigbottomskip=\skip78 -\subfigcapmargin=\dimen176 -\subfiglabelskip=\skip79 -\c@subfigure=\count308 -\c@lofdepth=\count309 -\c@subtable=\count310 -\c@lotdepth=\count311 - -**************************************** -* Local config file subfigure.cfg used * -**************************************** -(D:\Programme\Miktex\tex/latex/subfigure\subfigure.cfg) -\subfig@top=\skip80 -\subfig@bottom=\skip81 -) -(D:\Programme\Miktex\tex/latex/pgf/frontendlayer\tikz.sty -(D:\Programme\Miktex\tex/latex/pgf/basiclayer\pgf.sty -(D:\Programme\Miktex\tex/latex/pgf/utilities\pgfrcs.sty -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-common.tex -\pgfutil@everybye=\toks36 -\pgfutil@tempdima=\dimen177 -\pgfutil@tempdimb=\dimen178 - -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-common-lists.tex)) -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfutil-latex.def -\pgfutil@abb=\box55 -) -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfrcs.code.tex -(D:\Programme\Miktex\tex/generic/pgf\pgf.revision.tex) -Package: pgfrcs 2021/05/15 v3.1.9a (3.1.9a) -)) -Package: pgf 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/latex/pgf/basiclayer\pgfcore.sty -(D:\Programme\Miktex\tex/latex/pgf/systemlayer\pgfsys.sty -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys.code.tex -Package: pgfsys 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeys.code.tex -\pgfkeys@pathtoks=\toks37 -\pgfkeys@temptoks=\toks38 - -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeysfiltered.code.tex -\pgfkeys@tmptoks=\toks39 -)) -\pgf@x=\dimen179 -\pgf@y=\dimen180 -\pgf@xa=\dimen181 -\pgf@ya=\dimen182 -\pgf@xb=\dimen183 -\pgf@yb=\dimen184 -\pgf@xc=\dimen185 -\pgf@yc=\dimen186 -\pgf@xd=\dimen187 -\pgf@yd=\dimen188 -\w@pgf@writea=\write3 -\r@pgf@reada=\read5 -\c@pgf@counta=\count312 -\c@pgf@countb=\count313 -\c@pgf@countc=\count314 -\c@pgf@countd=\count315 -\t@pgf@toka=\toks40 -\t@pgf@tokb=\toks41 -\t@pgf@tokc=\toks42 -\pgf@sys@id@count=\count316 - -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgf.cfg -File: pgf.cfg 2021/05/15 v3.1.9a (3.1.9a) -) -Driver file for pgf: pgfsys-pdftex.def - -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys-pdftex.def -File: pgfsys-pdftex.def 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsys-common-pdf.def -File: pgfsys-common-pdf.def 2021/05/15 v3.1.9a (3.1.9a) -))) -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsyssoftpath.code.tex -File: pgfsyssoftpath.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfsyssoftpath@smallbuffer@items=\count317 -\pgfsyssoftpath@bigbuffer@items=\count318 -) -(D:\Programme\Miktex\tex/generic/pgf/systemlayer\pgfsysprotocol.code.tex -File: pgfsysprotocol.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/latex/xcolor\xcolor.sty -Package: xcolor 2021/10/31 v2.13 LaTeX color extensions (UK) - -(D:\Programme\Miktex\tex/latex/graphics-cfg\color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 227. -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1352. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1356. -Package xcolor Info: Model `RGB' extended on input line 1368. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1370. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1372. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1373. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1374. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1375. -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcore.code.tex -Package: pgfcore 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathcalc.code.tex -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathutil.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathparser.code.tex -\pgfmath@dimen=\dimen189 -\pgfmath@count=\count319 -\pgfmath@box=\box56 -\pgfmath@toks=\toks43 -\pgfmath@stack@operand=\toks44 -\pgfmath@stack@operation=\toks45 -) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.code.tex -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.basic.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.trigonometric.code.t -ex) (D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.random.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.comparison.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.base.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.round.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.misc.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfunctions.integerarithmetics.c -ode.tex))) (D:\Programme\Miktex\tex/generic/pgf/math\pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count320 -)) -(D:\Programme\Miktex\tex/generic/pgf/math\pgfint.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepoints.code.tex -File: pgfcorepoints.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@picminx=\dimen190 -\pgf@picmaxx=\dimen191 -\pgf@picminy=\dimen192 -\pgf@picmaxy=\dimen193 -\pgf@pathminx=\dimen194 -\pgf@pathmaxx=\dimen195 -\pgf@pathminy=\dimen196 -\pgf@pathmaxy=\dimen197 -\pgf@xx=\dimen198 -\pgf@xy=\dimen199 -Normal \dimen register pool exhausted, switching to extended pool. -\pgf@yx=\dimen256 -\pgf@yy=\dimen257 -\pgf@zx=\dimen258 -\pgf@zy=\dimen259 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathconstruct.code.tex -File: pgfcorepathconstruct.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@path@lastx=\dimen260 -\pgf@path@lasty=\dimen261 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathusage.code.tex -File: pgfcorepathusage.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@shorten@end@additional=\dimen262 -\pgf@shorten@start@additional=\dimen263 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorescopes.code.tex -File: pgfcorescopes.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfpic=\box57 -\pgf@hbox=\box58 -\pgf@layerbox@main=\box59 -\pgf@picture@serial@count=\count321 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoregraphicstate.code.tex -File: pgfcoregraphicstate.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgflinewidth=\dimen264 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoretransformations.code.tex -File: pgfcoretransformations.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@pt@x=\dimen265 -\pgf@pt@y=\dimen266 -\pgf@pt@temp=\dimen267 -) (D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorequick.code.tex -File: pgfcorequick.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreobjects.code.tex -File: pgfcoreobjects.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepathprocessing.code.tex -File: pgfcorepathprocessing.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) (D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorearrows.code.tex -File: pgfcorearrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfarrowsep=\dimen268 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreshade.code.tex -File: pgfcoreshade.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@max=\dimen269 -\pgf@sys@shading@range@num=\count322 -\pgf@shadingcount=\count323 -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreimage.code.tex -File: pgfcoreimage.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoreexternal.code.tex -File: pgfcoreexternal.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfexternal@startupbox=\box60 -)) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorelayers.code.tex -File: pgfcorelayers.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcoretransparency.code.tex -File: pgfcoretransparency.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorepatterns.code.tex -File: pgfcorepatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/basiclayer\pgfcorerdf.code.tex -File: pgfcorerdf.code.tex 2021/05/15 v3.1.9a (3.1.9a) -))) -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleshapes.code.tex -File: pgfmoduleshapes.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfnodeparttextbox=\box61 -) -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleplot.code.tex -File: pgfmoduleplot.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/latex/pgf/compatibility\pgfcomp-version-0-65.sty -Package: pgfcomp-version-0-65 2021/05/15 v3.1.9a (3.1.9a) -\pgf@nodesepstart=\dimen270 -\pgf@nodesepend=\dimen271 -) -(D:\Programme\Miktex\tex/latex/pgf/compatibility\pgfcomp-version-1-18.sty -Package: pgfcomp-version-1-18 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/latex/pgf/utilities\pgffor.sty -(D:\Programme\Miktex\tex/latex/pgf/utilities\pgfkeys.sty -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgfkeys.code.tex)) -(D:\Programme\Miktex\tex/latex/pgf/math\pgfmath.sty -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex)) -(D:\Programme\Miktex\tex/generic/pgf/utilities\pgffor.code.tex -Package: pgffor 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/math\pgfmath.code.tex) -\pgffor@iter=\dimen272 -\pgffor@skip=\dimen273 -\pgffor@stack=\toks46 -\pgffor@toks=\toks47 -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz\tikz.code.tex -Package: tikz 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryplothandlers.code.tex -File: pgflibraryplothandlers.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@plot@mark@count=\count324 -\pgfplotmarksize=\dimen274 -) -\tikz@lastx=\dimen275 -\tikz@lasty=\dimen276 -\tikz@lastxsaved=\dimen277 -\tikz@lastysaved=\dimen278 -\tikz@lastmovetox=\dimen279 -\tikz@lastmovetoy=\dimen280 -\tikzleveldistance=\dimen281 -\tikzsiblingdistance=\dimen282 -\tikz@figbox=\box62 -\tikz@figbox@bg=\box63 -\tikz@tempbox=\box64 -\tikz@tempbox@bg=\box65 -\tikztreelevel=\count325 -\tikznumberofchildren=\count326 -\tikznumberofcurrentchild=\count327 -\tikz@fig@count=\count328 -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulematrix.code.tex -File: pgfmodulematrix.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfmatrixcurrentrow=\count329 -\pgfmatrixcurrentcolumn=\count330 -\pgf@matrix@numberofcolumns=\count331 -) -\tikz@expandcount=\count332 - -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryto -paths.code.tex -File: tikzlibrarytopaths.code.tex 2021/05/15 v3.1.9a (3.1.9a) -))) (D:\Programme\Miktex\tex/latex/tikz-cd\tikz-cd.sty -Package: tikz-cd 2021/05/04 v1.0 Commutative diagrams with TikZ - -(D:\Programme\Miktex\tex/latex/tikz-cd\tikzlibrarycd.code.tex -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryma -trix.code.tex -File: tikzlibrarymatrix.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryqu -otes.code.tex -File: tikzlibraryquotes.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryarrows.meta.code.tex -File: pgflibraryarrows.meta.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfarrowinset=\dimen283 -\pgfarrowlength=\dimen284 -\pgfarrowwidth=\dimen285 -\pgfarrowlinewidth=\dimen286 -))) (D:\Programme\Miktex\tex/latex/pgfplots\pgfplots.sty -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.revision.tex) -Package: pgfplots 2021/05/15 v1.18.1 Data Visualization (1.18.1) - -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotscore.code.tex -\t@pgfplots@toka=\toks48 -\t@pgfplots@tokb=\toks49 -\t@pgfplots@tokc=\toks50 -\pgfplots@tmpa=\dimen287 -\c@pgfplots@coordindex=\count333 -\c@pgfplots@scanlineindex=\count334 - -(D:\Programme\Miktex\tex/generic/pgfplots/sys\pgfplotssysgeneric.code.tex)) -(D:\Programme\Miktex\tex/generic/pgfplots/libs\pgfplotslibrary.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots/oldpgfcompatib\pgfplotsoldpgfsupp_loa -der.code.tex -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryfpu.code.tex)) -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsutil.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsliststructure.c -ode.tex) -(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsliststructureex -t.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsarray.code.tex -\c@pgfplotsarray@tmp=\count335 -) -(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsmatrix.code.tex -) -(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstableshared.code.tex -\c@pgfplotstable@counta=\count336 -\t@pgfplotstable@a=\toks51 -) -(D:\Programme\Miktex\tex/generic/pgfplots/liststructure\pgfplotsdeque.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsbinary.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsbinary.data.code.tex)) -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotsutil.verb.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots/libs\pgflibrarypgfplots.surfshading.c -ode.tex -\c@pgfplotslibrarysurf@no=\count337 - -(D:\Programme\Miktex\tex/generic/pgfplots/sys\pgflibrarypgfplots.surfshading.pg -fsys-pdftex.def))) -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotscolormap.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots/util\pgfplotscolor.code.tex)) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsstackedplots.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsplothandlers.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsmeshplothandler.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsmeshplotimage.code.tex))) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.scaling.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotscoordprocessing.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.errorbars.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.markers.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplotsticks.code.tex) -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.paths.code.tex) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde -corations.code.tex -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduledecorations.code.tex -\pgfdecoratedcompleteddistance=\dimen288 -\pgfdecoratedremainingdistance=\dimen289 -\pgfdecoratedinputsegmentcompleteddistance=\dimen290 -\pgfdecoratedinputsegmentremainingdistance=\dimen291 -\pgf@decorate@distancetomove=\dimen292 -\pgf@decorate@repeatstate=\count338 -\pgfdecorationsegmentamplitude=\dimen293 -\pgfdecorationsegmentlength=\dimen294 -) -\tikz@lib@dec@box=\box66 -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde -corations.pathmorphing.code.tex -(D:\Programme\Miktex\tex/generic/pgf/libraries/decorations\pgflibrarydecoration -s.pathmorphing.code.tex)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryde -corations.pathreplacing.code.tex -(D:\Programme\Miktex\tex/generic/pgf/libraries/decorations\pgflibrarydecoration -s.pathreplacing.code.tex)) -(D:\Programme\Miktex\tex/generic/pgfplots/libs\tikzlibrarypgfplots.contourlua.c -ode.tex) -\pgfplots@numplots=\count339 -\pgfplots@xmin@reg=\dimen295 -\pgfplots@xmax@reg=\dimen296 -\pgfplots@ymin@reg=\dimen297 -\pgfplots@ymax@reg=\dimen298 -\pgfplots@zmin@reg=\dimen299 -\pgfplots@zmax@reg=\dimen300 -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypl -otmarks.code.tex -File: tikzlibraryplotmarks.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryplotmarks.code.tex -File: pgflibraryplotmarks.code.tex 2021/05/15 v3.1.9a (3.1.9a) -))) -(D:\Programme\Miktex\tex/latex/pgfplots\pgfplotstable.sty -(D:\Programme\Miktex\tex/generic/pgfplots\pgfplots.revision.tex) -Package: pgfplotstable 2021/05/15 v1.18.1 Table typesetting and Pretty-printing - (1.18.1) - -(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstable.code.tex -(D:\Programme\Miktex\tex/generic/pgfplots/numtable\pgfplotstable.coltype.code.t -ex))) (D:\Programme\Miktex\tex/latex/csquotes\csquotes.sty -Package: csquotes 2021-02-22 v5.2l context-sensitive quotations (JAW) - -(D:\Programme\Miktex\tex/latex/etoolbox\etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count340 -) -\csq@reset=\count341 -\csq@gtype=\count342 -\csq@glevel=\count343 -\csq@qlevel=\count344 -\csq@maxlvl=\count345 -\csq@tshold=\count346 -\csq@ltx@everypar=\toks52 - -(D:\Programme\Miktex\tex/latex/csquotes\csquotes.def -File: csquotes.def 2021-02-22 v5.2l csquotes generic definitions (JAW) -) -Package csquotes Info: Trying to load configuration file 'csquotes.cfg'... -Package csquotes Info: ... configuration file loaded successfully. - -(D:\Programme\Miktex\tex/latex/csquotes\csquotes.cfg -File: csquotes.cfg -) -Package csquotes Info: Disabling multilingual quotes. -Package csquotes Info: Redefining alias 'english' -> 'english/american'. -) -(D:\Programme\Miktex\tex/latex/wasysym\wasysym.sty -Package: wasysym 2020/01/19 v2.4 Wasy-2 symbol support package -\symwasy=\mathgroup11 -LaTeX Font Info: Overwriting symbol font `wasy' in version `bold' -(Font) U/wasy/m/n --> U/wasy/b/n on input line 93. -) -(D:\Programme\Miktex\tex/latex/environ\environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(D:\Programme\Miktex\tex/latex/trimspaces\trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -(D:\Programme\Miktex\tex/latex/appendix\appendix.sty -Package: appendix 2020/02/08 v1.2c extra appendix facilities -\c@@pps=\count347 -\c@@ppsavesec=\count348 -\c@@ppsaveapp=\count349 -) -(D:\Programme\Miktex\tex/latex/placeins\placeins.sty -Package: placeins 2005/04/18 v 2.2 -) -(D:\Programme\Miktex\tex/generic/xypic\xy.sty -(D:\Programme\Miktex\tex/generic/xypic\xy.tex Bootstrap'ing: catcodes, -docmode, (D:\Programme\Miktex\tex/generic/xypic\xyrecat.tex) -(D:\Programme\Miktex\tex/generic/xypic\xyidioms.tex) - - Xy-pic version 3.8.9 <2013/10/06> - Copyright (c) 1991-2013 by Kristoffer H. Rose and others - Xy-pic is free software: see the User's Guide for details. - -Loading kernel: messages; fonts; allocations: state, -\X@c=\dimen301 -\Y@c=\dimen302 -\U@c=\dimen303 -\D@c=\dimen304 -\L@c=\dimen305 -\R@c=\dimen306 -\Edge@c=\toks53 -\X@p=\dimen307 -\Y@p=\dimen308 -\U@p=\dimen309 -\D@p=\dimen310 -\L@p=\dimen311 -\R@p=\dimen312 -\Edge@p=\toks54 -\X@origin=\dimen313 -\Y@origin=\dimen314 -\X@xbase=\dimen315 -\Y@xbase=\dimen316 -\X@ybase=\dimen317 -\Y@ybase=\dimen318 -\X@min=\dimen319 -\Y@min=\dimen320 -\X@max=\dimen321 -\Y@max=\dimen322 -\lastobjectbox@=\box67 -\zerodotbox@=\box68 -\almostz@=\dimen323 - direction, -\d@X=\dimen324 -\d@Y=\dimen325 -\K@=\count350 -\KK@=\count351 -\Direction=\count352 -\K@dXdY=\dimen326 -\K@dYdX=\dimen327 -\xyread@=\read6 -\xywrite@=\write4 -\csp@=\count353 -\quotPTK@=\dimen328 - -utility macros; pictures: \xy, positions, -\swaptoks@@=\toks55 -\connectobjectbox@@=\box69 - objects, -\styletoks@=\toks56 - decorations; -kernel objects: directionals, circles, text; options; algorithms: directions, -edges, connections; Xy-pic loaded) -(D:\Programme\Miktex\tex/generic/iftex\ifpdf.sty -Package: ifpdf 2019/10/25 v3.4 ifpdf legacy package. Use iftex instead. -) -Package: xy 2013/10/06 Xy-pic version 3.8.9 - -(D:\Programme\Miktex\tex/generic/xypic\xyall.tex - Xy-pic option: All features v.3.8 -(D:\Programme\Miktex\tex/generic/xypic\xycurve.tex - Xy-pic option: Curve and Spline extension v.3.12 curve, -\crv@cnt@=\count354 -\crvpts@=\toks57 -\splinebox@=\box70 -\splineval@=\dimen329 -\splinedepth@=\dimen330 -\splinetol@=\dimen331 -\splinelength@=\dimen332 - circles, -\L@=\dimen333 - loaded) -(D:\Programme\Miktex\tex/generic/xypic\xyframe.tex - Xy-pic option: Frame and Bracket extension v.3.14 loaded) -(D:\Programme\Miktex\tex/generic/xypic\xycmtip.tex - Xy-pic option: Computer Modern tip extension v.3.7 -(D:\Programme\Miktex\tex/generic/xypic\xytips.tex - Xy-pic option: More Tips extension v.3.11 loaded) loaded) -(D:\Programme\Miktex\tex/generic/xypic\xyline.tex - Xy-pic option: Line styles extension v.3.10 -\xylinethick@=\dimen334 - loaded) -(D:\Programme\Miktex\tex/generic/xypic\xyrotate.tex - Xy-pic option: Rotate and Scale extension v.3.8 loaded) -(D:\Programme\Miktex\tex/generic/xypic\xycolor.tex - Xy-pic option: Colour extension v.3.11 loaded) -(D:\Programme\Miktex\tex/generic/xypic\xymatrix.tex - Xy-pic option: Matrix feature v.3.14 -\Row=\count355 -\Col=\count356 -\queue@=\toks58 -\queue@@=\toks59 -\qcount@=\count357 -\qcount@@=\count358 -\matrixsize@=\count359 - loaded) -(D:\Programme\Miktex\tex/generic/xypic\xyarrow.tex - Xy-pic option: Arrow and Path feature v.3.9 path, \ar, loaded) -(D:\Programme\Miktex\tex/generic/xypic\xygraph.tex - Xy-pic option: Graph feature v.3.11 loaded) loaded) -(D:\Programme\Miktex\tex/generic/xypic\xypdf.tex - Xy-pic option: PDF driver v.1.7 Xy-pic pdf driver: `color' extension support -(D:\Programme\Miktex\tex/generic/xypic\xypdf-co.tex loaded) -Xy-pic pdf driver: `curve' extension support -(D:\Programme\Miktex\tex/generic/xypic\xypdf-cu.tex loaded) -Xy-pic pdf driver: `frame' extension support -(D:\Programme\Miktex\tex/generic/xypic\xypdf-fr.tex loaded) -Xy-pic pdf driver: `line' extension support -(D:\Programme\Miktex\tex/generic/xypic\xypdf-li.tex loaded) -Xy-pic pdf driver: `rotate' extension support -(D:\Programme\Miktex\tex/generic/xypic\xypdf-ro.tex loaded) loaded)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryca -lc.code.tex -File: tikzlibrarycalc.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryin -tersections.code.tex -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryintersections.code.tex -\pgf@intersect@solutions=\count360 -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryth -rough.code.tex -File: tikzlibrarythrough.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryba -ckgrounds.code.tex -File: tikzlibrarybackgrounds.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@layerbox@background=\box71 -\pgf@layerboxsaved@background=\box72 -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries/graphs\tikzli -brarygraphs.code.tex -File: tikzlibrarygraphs.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\tikz@lib@auto@number=\count361 -\tikz@qnode@count=\count362 -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypo -sitioning.code.tex -File: tikzlibrarypositioning.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.code.tex -File: tikzlibraryshapes.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.geometric.code.tex -File: tikzlibraryshapes.geometric.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.geometri -c.code.tex -File: pgflibraryshapes.geometric.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.misc.code.tex -File: tikzlibraryshapes.misc.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.misc.cod -e.tex -File: pgflibraryshapes.misc.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.symbols.code.tex -File: tikzlibraryshapes.symbols.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.symbols. -code.tex -File: pgflibraryshapes.symbols.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.arrows.code.tex -File: tikzlibraryshapes.arrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.arrows.c -ode.tex -File: pgflibraryshapes.arrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.callouts.code.tex -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.callouts -.code.tex)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarysh -apes.multipart.code.tex -File: tikzlibraryshapes.multipart.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries/shapes\pgflibraryshapes.multipar -t.code.tex -File: pgflibraryshapes.multipart.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgfnodepartlowerbox=\box73 -\pgfnodeparttwobox=\box74 -\pgfnodepartthreebox=\box75 -\pgfnodepartfourbox=\box76 -\pgfnodeparttwentybox=\box77 -\pgfnodepartnineteenbox=\box78 -\pgfnodeparteighteenbox=\box79 -\pgfnodepartseventeenbox=\box80 -\pgfnodepartsixteenbox=\box81 -\pgfnodepartfifteenbox=\box82 -\pgfnodepartfourteenbox=\box83 -\pgfnodepartthirteenbox=\box84 -\pgfnodeparttwelvebox=\box85 -\pgfnodepartelevenbox=\box86 -\pgfnodeparttenbox=\box87 -\pgfnodepartninebox=\box88 -\pgfnodeparteightbox=\box89 -\pgfnodepartsevenbox=\box90 -\pgfnodepartsixbox=\box91 -\pgfnodepartfivebox=\box92 -))) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryar -rows.code.tex -File: tikzlibraryarrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibraryarrows.code.tex -File: pgflibraryarrows.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\arrowsize=\dimen335 -)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryfi -t.code.tex -File: tikzlibraryfit.code.tex 2021/05/15 v3.1.9a (3.1.9a) -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryma -th.code.tex -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibraryfp -u.code.tex) -\tikz@math@for@depth=\count363 -\tikz@math@dimen=\dimen336 -\tikz@math@toks=\toks60 -) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarypa -tterns.code.tex -File: tikzlibrarypatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibrarypatterns.code.tex -File: pgflibrarypatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a) -)) -(D:\Programme\Miktex\tex/latex/pgf/frontendlayer/libraries\tikzlibraryexternal. -code.tex -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzexternals -hared.code.tex)) -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries/datavisualiza -tion\tikzlibrarydatavisualization.code.tex -File: tikzlibrarydatavisualization.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduledatavisualization.code.te -x -File: pgfmoduledatavisualization.code.tex 2021/05/15 v3.1.9a (3.1.9a) - (D:\Programme\Miktex\tex/generic/pgf/modules\pgfmoduleoo.code.tex -\pgfoo@objectcount=\count364 -\pgfoothis@count=\count365 -\pgfoo@toks=\toks61 -) -\pgf@lib@dv@cache@count=\count366 -\pgf@lib@dv@cache@count=\count367 -) -\tikzdvvisualizercounter=\count368 -) -(D:\Programme\Miktex\tex/latex/circuitikz\circuitikz.sty -Package: circuitikz 2022/05/08{} The CircuiTikz circuit drawing package version - 1.5.2 - -(D:\Programme\Miktex\tex/generic/pgf/frontendlayer/tikz/libraries\tikzlibrarybe -nding.code.tex -File: tikzlibrarybending.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulebending.code.tex -File: pgfmodulebending.code.tex 2021/05/15 v3.1.9a (3.1.9a) - -(D:\Programme\Miktex\tex/generic/pgf/modules\pgfmodulenonlineartransformations. -code.tex -File: pgfmodulenonlineartransformations.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgftransformnonlinearflatness=\dimen337 -) -(D:\Programme\Miktex\tex/generic/pgf/libraries\pgflibrarycurvilinear.code.tex -File: pgflibrarycurvilinear.code.tex 2021/05/15 v3.1.9a (3.1.9a) -\pgf@curvilinear@time@a=\dimen338 -\pgf@curvilinear@length@a=\dimen339 -\pgf@curvilinear@length@b=\dimen340 -\pgf@curvilinear@length@c=\dimen341 -\pgf@curvilinear@length@d=\dimen342 -) -\pgf@arrows@the@rigidity=\dimen343 -)) (D:\Programme\Miktex\tex/generic/circuitikz\pgfcirc.defines.tex -\pgf@circ@count@a=\count369 -\pgf@circ@count@b=\count370 -\pgf@circ@count@c=\count371 -\pgf@circ@res@up=\dimen344 -\pgf@circ@res@down=\dimen345 -\pgf@circ@res@zero=\dimen346 -\pgf@circ@res@left=\dimen347 -\pgf@circ@res@right=\dimen348 -\pgf@circ@res@other=\dimen349 -\pgf@circ@res@step=\dimen350 -\pgf@circ@res@temp=\dimen351 -\pgf@circ@Rlen=\dimen352 -\pgf@circ@scaled@Rlen=\dimen353 -\pgfstartlinewidth=\dimen354 -) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircutils.tex -\ctikz@scratchbox=\box93 -) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircpath.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircshapes.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircmonopoles.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircbipoles.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirctripoles.tex -\pgf@circ@res@count=\count372 -) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircquadpoles.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircmultipoles.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirclabel.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircvoltage.tex -\pgfcirc@labelshift=\dimen355 -) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcirccurrent.tex) -(D:\Programme\Miktex\tex/generic/circuitikz\pgfcircflow.tex) -(D:\Programme\Miktex\tex/latex/xstring\xstring.sty -(D:\Programme\Miktex\tex/generic/xstring\xstring.tex -\integerpart=\count373 -\decimalpart=\count374 -) -Package: xstring 2021/07/21 v1.84 String manipulations (CT) -) -(D:\Programme\Miktex\tex/latex/siunitx\siunitx.sty -Package: siunitx 2022-05-03 v3.1.1 A comprehensive (SI) units package -\l__siunitx_angle_tmp_dim=\dimen356 -\l__siunitx_angle_marker_box=\box94 -\l__siunitx_angle_unit_box=\box95 -\l__siunitx_compound_count_int=\count375 - -(D:\Programme\Miktex\tex/latex/translations\translations.sty -Package: translations 2022/02/05 v1.12 internationalization of LaTeX2e packages - (CN) -) -\l__siunitx_number_exponent_fixed_int=\count376 -\l__siunitx_number_min_decimal_int=\count377 -\l__siunitx_number_min_integer_int=\count378 -\l__siunitx_number_round_precision_int=\count379 -\l__siunitx_number_group_first_int=\count380 -\l__siunitx_number_group_size_int=\count381 -\l__siunitx_number_group_minimum_int=\count382 -\l__siunitx_table_tmp_box=\box96 -\l__siunitx_table_tmp_dim=\dimen357 -\l__siunitx_table_column_width_dim=\dimen358 -\l__siunitx_table_integer_box=\box97 -\l__siunitx_table_decimal_box=\box98 -\l__siunitx_table_before_box=\box99 -\l__siunitx_table_after_box=\box100 -\l__siunitx_table_before_dim=\dimen359 -\l__siunitx_table_carry_dim=\dimen360 -\l__siunitx_unit_tmp_int=\count383 -\l__siunitx_unit_position_int=\count384 -\l__siunitx_unit_total_int=\count385 - -(D:\Programme\Miktex\tex/latex/l3packages/l3keys2e\l3keys2e.sty -(D:\Programme\Miktex\tex/latex/l3kernel\expl3.sty -Package: expl3 2022-02-24 L3 programming layer (loader) - -(D:\Programme\Miktex\tex/latex/l3backend\l3backend-pdftex.def -File: l3backend-pdftex.def 2022-02-07 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count386 -\l__pdf_internal_box=\box101 -)) -Package: l3keys2e 2022-01-12 LaTeX2e option processing using LaTeX3 keys -))) -(D:\Programme\Miktex\tex/latex/tools\tabularx.sty -Package: tabularx 2020/01/15 v2.11c `tabularx' package (DPC) -\TX@col@width=\dimen361 -\TX@old@table=\dimen362 -\TX@old@col=\dimen363 -\TX@target=\dimen364 -\TX@delta=\dimen365 -\TX@cols=\count387 -\TX@ftn=\toks62 -) -(D:\Programme\Miktex\tex/latex/algorithmicx\algpseudocode.sty -Package: algpseudocode - -(D:\Programme\Miktex\tex/latex/algorithmicx\algorithmicx.sty -Package: algorithmicx 2005/04/27 v1.2 Algorithmicx - -Document Style algorithmicx 1.2 - a greatly improved `algorithmic' style -\c@ALG@line=\count388 -\c@ALG@rem=\count389 -\c@ALG@nested=\count390 -\ALG@tlm=\skip82 -\ALG@thistlm=\skip83 -\c@ALG@Lnr=\count391 -\c@ALG@blocknr=\count392 -\c@ALG@storecount=\count393 -\c@ALG@tmpcounter=\count394 -\ALG@tmplength=\skip84 -) -Document Style - pseudocode environments for use with the `algorithmicx' style -) (D:\Programme\Miktex\tex/latex/algorithms\algorithm.sty -Package: algorithm 2009/08/24 v0.1 Document Style `algorithm' - floating enviro -nment - -(D:\Programme\Miktex\tex/latex/float\float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count395 -\float@exts=\toks63 -\float@box=\box102 -\@float@everytoks=\toks64 -\@floatcapt=\box103 -) -\@float@every@algorithm=\toks65 -\c@algorithm=\count396 -) -(D:\Programme\Miktex\tex/latex/was\gensymb.sty -Package: gensymb 2003/07/02 v1.0 (WaS) -) -(D:\Programme\Miktex\tex/latex/mathtools\mathtools.sty -Package: mathtools 2022/02/07 v1.28a mathematical typesetting tools - -(D:\Programme\Miktex\tex/latex/tools\calc.sty -Package: calc 2017/05/25 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count397 -\calc@Bcount=\count398 -\calc@Adimen=\dimen366 -\calc@Bdimen=\dimen367 -\calc@Askip=\skip85 -\calc@Bskip=\skip86 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count399 -\calc@Cskip=\skip87 -) -(D:\Programme\Miktex\tex/latex/mathtools\mhsetup.sty -Package: mhsetup 2021/03/18 v1.4 programming setup (MH) -) -\g_MT_multlinerow_int=\count400 -\l_MT_multwidth_dim=\dimen368 -\origjot=\skip88 -\l_MT_shortvdotswithinadjustabove_dim=\dimen369 -\l_MT_shortvdotswithinadjustbelow_dim=\dimen370 -\l_MT_above_intertext_sep=\dimen371 -\l_MT_below_intertext_sep=\dimen372 -\l_MT_above_shortintertext_sep=\dimen373 -\l_MT_below_shortintertext_sep=\dimen374 -\xmathstrut@box=\box104 -\xmathstrut@dim=\dimen375 -) -(D:\Programme\Miktex\tex/latex/tcolorbox\tcolorbox.sty -Package: tcolorbox 2022/01/07 version 5.0.2 text color boxes -\tcb@titlebox=\box105 -\tcb@upperbox=\box106 -\tcb@lowerbox=\box107 -\tcb@phantombox=\box108 -\c@tcbbreakpart=\count401 -\c@tcblayer=\count402 -\c@tcolorbox@number=\count403 -\tcb@temp=\box109 -\tcb@temp=\box110 -\tcb@temp=\box111 -\tcb@temp=\box112 - -(D:\Programme\Miktex\tex/latex/tcolorbox\tcbraster.code.tex -Library (tcolorbox): 'tcbraster.code.tex' version '5.0.2' -\c@tcbrastercolumn=\count404 -\c@tcbrasterrow=\count405 -\c@tcbrasternum=\count406 -\c@tcbraster=\count407 -) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '5.0.2' -\tcb@waterbox=\box113 -(D:\Programme\Miktex\tex/latex/tcolorbox\tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '5.0.2' -)) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '5.0.2' -(D:\Programme\Miktex\tex/generic/oberdiek\pdfcol.sty -Package: pdfcol 2019/12/29 v1.6 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box114 -\tcb@totalupperbox=\box115 -\tcb@totallowerbox=\box116 -) -(D:\Programme\Miktex\tex/latex/tcolorbox\tcbhooks.code.tex -Library (tcolorbox): 'tcbhooks.code.tex' version '5.0.2' -) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbtheorems.code.tex -Library (tcolorbox): 'tcbtheorems.code.tex' version '5.0.2' -) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbfitting.code.tex -Library (tcolorbox): 'tcbfitting.code.tex' version '5.0.2' -\tcbfitdim=\dimen376 -\tcb@lowerfitdim=\dimen377 -\tcb@upperfitdim=\dimen378 -\tcb@cur@hbadness=\count408 -) (D:\Programme\Miktex\tex/latex/tcolorbox\tcbxparse.code.tex -Library (tcolorbox): 'tcbxparse.code.tex' version '5.0.2' -(D:\Programme\Miktex\tex/latex/l3packages/xparse\xparse.sty -Package: xparse 2022-01-12 L3 Experimental document command parser -))) -(D:\Programme\Miktex\tex/latex/incgraph\incgraph.sty -Package: incgraph 2021/10/20 version 1.2.0 LaTeX special graphics inclusion - -(D:\Programme\Miktex\tex/latex/bookmark\bookmark.sty -Package: bookmark 2020-11-06 v1.29 PDF bookmarks (HO) - -(D:\Programme\Miktex\tex/latex/bookmark\bkm-pdftex.def -File: bkm-pdftex.def 2020-11-06 v1.29 bookmark driver for pdfTeX (HO) -\BKM@id=\count409 -)) -\igrbox=\box117 -\igr@length=\dimen379 -\c@igrtarget=\count410 -) (common/lststyles.tex (D:\Programme\Miktex\tex/latex/listings\listings.sty -\lst@mode=\count411 -\lst@gtempboxa=\box118 -\lst@token=\toks66 -\lst@length=\count412 -\lst@currlwidth=\dimen380 -\lst@column=\count413 -\lst@pos=\count414 -\lst@lostspace=\dimen381 -\lst@width=\dimen382 -\lst@newlines=\count415 -\lst@lineno=\count416 -\lst@maxwidth=\dimen383 - -(D:\Programme\Miktex\tex/latex/listings\lstmisc.sty -File: lstmisc.sty 2020/03/24 1.8d (Carsten Heinz) -\c@lstnumber=\count417 -\lst@skipnumbers=\count418 -\lst@framebox=\box119 -) -(D:\Programme\Miktex\tex/latex/listings\listings.cfg -File: listings.cfg 2020/03/24 1.8d listings configuration -)) -Package: listings 2020/03/24 1.8d (Carsten Heinz) -) -(D:\Programme\Miktex\tex/latex/caption\caption.sty -Package: caption 2022/03/01 v3.6b Customizing captions (AR) - -(D:\Programme\Miktex\tex/latex/caption\caption3.sty -Package: caption3 2022/03/17 v2.3b caption3 kernel (AR) -\caption@tempdima=\dimen384 -\captionmargin=\dimen385 -\caption@leftmargin=\dimen386 -\caption@rightmargin=\dimen387 -\caption@width=\dimen388 -\caption@indent=\dimen389 -\caption@parindent=\dimen390 -\caption@hangindent=\dimen391 -Package caption Info: Standard document class detected. -) -\c@caption@flags=\count419 -\c@continuedfloat=\count420 -Package caption Info: float package is loaded. -Package caption Info: hyperref package is loaded. -Package caption Info: listings package is loaded. -Package caption Info: subfigure package is loaded. -) -(D:\Programme\Miktex\tex/latex/standalone\standalone.sty -Package: standalone 2018/03/26 v1.3a Package to include TeX sub-files with prea -mbles - -(D:\Programme\Miktex\tex/latex/tools\shellesc.sty -Package: shellesc 2019/11/08 v1.0c unified shell escape interface for LaTeX -Package shellesc Info: Restricted shell escape enabled on input line 77. -) -(D:\Programme\Miktex\tex/latex/xkeyval\xkeyval.sty -Package: xkeyval 2020/11/20 v2.8 package option processing (HA) - -(D:\Programme\Miktex\tex/generic/xkeyval\xkeyval.tex -(D:\Programme\Miktex\tex/generic/xkeyval\xkvutils.tex -\XKV@toks=\toks67 -\XKV@tempa@toks=\toks68 -) -\XKV@depth=\count421 -File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA) -)) -(D:\Programme\Miktex\tex/latex/currfile\currfile.sty -Package: currfile 2020/09/29 v0.7d Provides the file path elements of the curre -nt input file - -(D:\Programme\Miktex\tex/latex/filehook\filehook.sty -Package: filehook 2020/09/29 v0.8a Hooks for input files - -(D:\Programme\Miktex\tex/latex/filehook\filehook-2020.sty -Package: filehook-2020 2020/09/29 v0.8a Hooks for input files -)) -\c@currfiledepth=\count422 -) -(D:\Programme\Miktex\tex/latex/gincltex\gincltex.sty -(D:\Programme\Miktex\tex/latex/svn-prov\svn-prov.sty -Package: svn-prov 2010/04/24 v3.1862 Package Date/Version from SVN Keywords -) -Package: gincltex 2011/09/04 v0.3 Include external LaTeX files like graphics - -(D:\Programme\Miktex\tex/latex/adjustbox\adjustbox.sty -Package: adjustbox 2020/08/19 v1.3 Adjusting TeX boxes (trim, clip, ...) - -(D:\Programme\Miktex\tex/latex/adjustbox\adjcalc.sty -Package: adjcalc 2012/05/16 v1.1 Provides advanced setlength with multiple back --ends (calc, etex, pgfmath) -) -(D:\Programme\Miktex\tex/latex/adjustbox\trimclip.sty -Package: trimclip 2020/08/19 v1.2 Trim and clip general TeX material - -(D:\Programme\Miktex\tex/latex/collectbox\collectbox.sty -Package: collectbox 2012/05/17 v0.4b Collect macro arguments as boxes -\collectedbox=\box120 -) -\tc@llx=\dimen392 -\tc@lly=\dimen393 -\tc@urx=\dimen394 -\tc@ury=\dimen395 -Package trimclip Info: Using driver 'tc-pdftex.def'. - -(D:\Programme\Miktex\tex/latex/adjustbox\tc-pdftex.def -File: tc-pdftex.def 2019/01/04 v2.2 Clipping driver for pdftex -)) -\adjbox@Width=\dimen396 -\adjbox@Height=\dimen397 -\adjbox@Depth=\dimen398 -\adjbox@Totalheight=\dimen399 -\adjbox@pwidth=\dimen400 -\adjbox@pheight=\dimen401 -\adjbox@pdepth=\dimen402 -\adjbox@ptotalheight=\dimen403 - -(D:\Programme\Miktex\tex/latex/ifoddpage\ifoddpage.sty -Package: ifoddpage 2016/04/23 v1.1 Conditionals for odd/even page detection -\c@checkoddpage=\count423 -) -(D:\Programme\Miktex\tex/latex/varwidth\varwidth.sty -Package: varwidth 2009/03/30 ver 0.92; Variable-width minipages -\@vwid@box=\box121 -\sift@deathcycles=\count424 -\@vwid@loff=\dimen404 -\@vwid@roff=\dimen405 -)) -\gincltex@box=\box122 -) -(D:\Programme\Miktex\tex/latex/filemod\filemod-expmin.sty -Package: filemod-expmin 2011/09/19 v1.2 Get and compare file modification times - (expandable; minimal) -)) -(D:\Programme\Miktex\tex/latex/biblatex\biblatex.sty -Package: biblatex 2022/02/02 v3.17 programmable bibliographies (PK/MW) - -(D:\Programme\Miktex\tex/latex/logreq\logreq.sty -Package: logreq 2010/08/04 v1.0 xml request logger -\lrq@indent=\count425 - -(D:\Programme\Miktex\tex/latex/logreq\logreq.def -File: logreq.def 2010/08/04 v1.0 logreq spec v1.0 -)) -\c@tabx@nest=\count426 -\c@listtotal=\count427 -\c@listcount=\count428 -\c@liststart=\count429 -\c@liststop=\count430 -\c@citecount=\count431 -\c@citetotal=\count432 -\c@multicitecount=\count433 -\c@multicitetotal=\count434 -\c@instcount=\count435 -\c@maxnames=\count436 -\c@minnames=\count437 -\c@maxitems=\count438 -\c@minitems=\count439 -\c@citecounter=\count440 -\c@maxcitecounter=\count441 -\c@savedcitecounter=\count442 -\c@uniquelist=\count443 -\c@uniquename=\count444 -\c@refsection=\count445 -\c@refsegment=\count446 -\c@maxextratitle=\count447 -\c@maxextratitleyear=\count448 -\c@maxextraname=\count449 -\c@maxextradate=\count450 -\c@maxextraalpha=\count451 -\c@abbrvpenalty=\count452 -\c@highnamepenalty=\count453 -\c@lownamepenalty=\count454 -\c@maxparens=\count455 -\c@parenlevel=\count456 -\blx@tempcnta=\count457 -\blx@tempcntb=\count458 -\blx@tempcntc=\count459 -\c@blx@maxsection=\count460 -\c@blx@maxsegment@0=\count461 -\blx@notetype=\count462 -\blx@parenlevel@text=\count463 -\blx@parenlevel@foot=\count464 -\c@blx@sectionciteorder@0=\count465 -\blx@entrysetcounter=\count466 -\blx@biblioinstance=\count467 -\labelnumberwidth=\skip89 -\labelalphawidth=\skip90 -\biblabelsep=\skip91 -\bibitemsep=\skip92 -\bibnamesep=\skip93 -\bibinitsep=\skip94 -\bibparsep=\skip95 -\bibhang=\skip96 -\blx@bcfin=\read7 -\blx@bcfout=\write5 -\blx@langwohyphens=\language80 -\c@mincomprange=\count468 -\c@maxcomprange=\count469 -\c@mincompwidth=\count470 -Package biblatex Info: Trying to load biblatex default data model... -Package biblatex Info: ... file 'blx-dm.def' found. - -(D:\Programme\Miktex\tex/latex/biblatex\blx-dm.def -File: blx-dm.def 2022/02/02 v3.17 biblatex localization (PK/MW) -) -Package biblatex Info: Trying to load biblatex custom data model... -Package biblatex Info: ... file 'biblatex-dm.cfg' not found. -\c@afterword=\count471 -\c@savedafterword=\count472 -\c@annotator=\count473 -\c@savedannotator=\count474 -\c@author=\count475 -\c@savedauthor=\count476 -\c@bookauthor=\count477 -\c@savedbookauthor=\count478 -\c@commentator=\count479 -\c@savedcommentator=\count480 -\c@editor=\count481 -\c@savededitor=\count482 -\c@editora=\count483 -\c@savededitora=\count484 -\c@editorb=\count485 -\c@savededitorb=\count486 -\c@editorc=\count487 -\c@savededitorc=\count488 -\c@foreword=\count489 -\c@savedforeword=\count490 -\c@holder=\count491 -\c@savedholder=\count492 -\c@introduction=\count493 -\c@savedintroduction=\count494 -\c@namea=\count495 -\c@savednamea=\count496 -\c@nameb=\count497 -\c@savednameb=\count498 -\c@namec=\count499 -\c@savednamec=\count500 -\c@translator=\count501 -\c@savedtranslator=\count502 -\c@shortauthor=\count503 -\c@savedshortauthor=\count504 -\c@shorteditor=\count505 -\c@savedshorteditor=\count506 -\c@labelname=\count507 -\c@savedlabelname=\count508 -\c@institution=\count509 -\c@savedinstitution=\count510 -\c@lista=\count511 -\c@savedlista=\count512 -\c@listb=\count513 -\c@savedlistb=\count514 -\c@listc=\count515 -\c@savedlistc=\count516 -\c@listd=\count517 -\c@savedlistd=\count518 -\c@liste=\count519 -\c@savedliste=\count520 -\c@listf=\count521 -\c@savedlistf=\count522 -\c@location=\count523 -\c@savedlocation=\count524 -\c@organization=\count525 -\c@savedorganization=\count526 -\c@origlocation=\count527 -\c@savedoriglocation=\count528 -\c@origpublisher=\count529 -\c@savedorigpublisher=\count530 -\c@publisher=\count531 -\c@savedpublisher=\count532 -\c@language=\count533 -\c@savedlanguage=\count534 -\c@origlanguage=\count535 -\c@savedoriglanguage=\count536 -\c@pageref=\count537 -\c@savedpageref=\count538 -\shorthandwidth=\skip97 -\shortjournalwidth=\skip98 -\shortserieswidth=\skip99 -\shorttitlewidth=\skip100 -\shortauthorwidth=\skip101 -\shorteditorwidth=\skip102 -\locallabelnumberwidth=\skip103 -\locallabelalphawidth=\skip104 -\localshorthandwidth=\skip105 -\localshortjournalwidth=\skip106 -\localshortserieswidth=\skip107 -\localshorttitlewidth=\skip108 -\localshortauthorwidth=\skip109 -\localshorteditorwidth=\skip110 -Package biblatex Info: Trying to load compatibility code... -Package biblatex Info: ... file 'blx-compat.def' found. - -(D:\Programme\Miktex\tex/latex/biblatex\blx-compat.def -File: blx-compat.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) -) -Package biblatex Info: Trying to load BibTeX backend compatibility... -Package biblatex Info: ... file 'blx-bibtex.def' found. - -(D:\Programme\Miktex\tex/latex/biblatex\blx-bibtex.def -File: blx-bibtex.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) - - -Package biblatex Warning: Using fall-back BibTeX(8) backend: -(biblatex) functionality may be reduced/unavailable. - -) -Package biblatex Info: Trying to load generic definitions... -Package biblatex Info: ... file 'biblatex.def' found. - (D:\Programme\Miktex\tex/latex/biblatex\biblatex.def -File: biblatex.def 2022/02/02 v3.17 biblatex compatibility (PK/MW) -\c@textcitecount=\count539 -\c@textcitetotal=\count540 -\c@textcitemaxnames=\count541 -\c@biburlbigbreakpenalty=\count542 -\c@biburlbreakpenalty=\count543 -\c@biburlnumpenalty=\count544 -\c@biburlucpenalty=\count545 -\c@biburllcpenalty=\count546 -\biburlbigskip=\muskip18 -\biburlnumskip=\muskip19 -\biburlucskip=\muskip20 -\biburllcskip=\muskip21 -\c@smartand=\count547 -) -Package biblatex Info: Trying to load bibliography style 'numeric'... -Package biblatex Info: ... file 'numeric.bbx' found. - -(D:\Programme\Miktex\tex/latex/biblatex/bbx\numeric.bbx -File: numeric.bbx 2022/02/02 v3.17 biblatex bibliography style (PK/MW) -Package biblatex Info: Trying to load bibliography style 'standard'... -Package biblatex Info: ... file 'standard.bbx' found. - -(D:\Programme\Miktex\tex/latex/biblatex/bbx\standard.bbx -File: standard.bbx 2022/02/02 v3.17 biblatex bibliography style (PK/MW) -\c@bbx:relatedcount=\count548 -\c@bbx:relatedtotal=\count549 -)) -Package biblatex Info: Trying to load citation style 'numeric'... -Package biblatex Info: ... file 'numeric.cbx' found. - -(D:\Programme\Miktex\tex/latex/biblatex/cbx\numeric.cbx -File: numeric.cbx 2022/02/02 v3.17 biblatex citation style (PK/MW) -Package biblatex Info: Redefining '\cite'. -Package biblatex Info: Redefining '\parencite'. -Package biblatex Info: Redefining '\footcite'. -Package biblatex Info: Redefining '\footcitetext'. -Package biblatex Info: Redefining '\smartcite'. -Package biblatex Info: Redefining '\supercite'. -Package biblatex Info: Redefining '\textcite'. -Package biblatex Info: Redefining '\textcites'. -Package biblatex Info: Redefining '\cites'. -Package biblatex Info: Redefining '\parencites'. -Package biblatex Info: Redefining '\smartcites'. -) -Package biblatex Info: Trying to load configuration file... -Package biblatex Info: ... file 'biblatex.cfg' found. - -(D:\Programme\Miktex\tex/latex/biblatex\biblatex.cfg -File: biblatex.cfg -) -Package biblatex Info: Input encoding 'utf8' detected. -Package biblatex Info: Document encoding is UTF8 .... -Package biblatex Info: ... and expl3 -(biblatex) 2022-02-24 L3 programming layer (loader) -(biblatex) is new enough (at least 2020/04/06), -(biblatex) setting 'casechanger=expl3'. - -(D:\Programme\Miktex\tex/latex/biblatex\blx-case-expl3.sty -Package: blx-case-expl3 2022/02/02 v3.17 expl3 case changing code for biblatex -))) -(papers/common/addpackages.tex (papers/000template/packages.tex) -(papers/lambertw/packages.tex) (papers/fm/packages.tex) -(papers/parzyl/packages.tex) (papers/fresnel/packages.tex) -(papers/kreismembran/packages.tex) (papers/sturmliouville/packages.tex) -(papers/laguerre/packages.tex) -(D:\Programme\Miktex\tex/latex/derivative\derivative.sty -Package: derivative 2021/06/03 v1.1 Nice and easy derivatives and differentials - for LaTeX -\l__deriv_vmo_int=\count550 -\l__deriv_tmpa_int=\count551 -\l__deriv_tmpb_int=\count552 -\l__deriv_numerical_int=\count553 -\l__deriv_sort_counter_int=\count554 -\l__deriv_sort_max_int=\count555 -\l__deriv_position_int=\count556 -\l__deriv_rebuild_int=\count557 -) -(papers/zeta/packages.tex) (papers/0f1/packages.tex) (papers/nav/packages.tex) -(papers/transfer/packages.tex) (papers/kra/packages.tex) -(papers/kugel/packages.tex) (papers/hermite/packages.tex) -(papers/ellfilter/packages.tex) (papers/dreieck/packages.tex)) -(papers/common/addbibresources.tex) -\@indexfile=\write6 -\openout6 = `buch.idx'. - - -Writing index file buch.idx -LaTeX Font Info: Trying to load font information for T1+txr on input line 35 -. -(D:\Programme\Miktex\tex/latex/txfonts\t1txr.fd -File: t1txr.fd 2000/12/15 v3.1 -) (buch.aux) -\openout1 = `buch.aux'. - -LaTeX Font Info: Checking defaults for OML/txmi/m/it on input line 35. -LaTeX Font Info: Trying to load font information for OML+txmi on input line -35. - -(D:\Programme\Miktex\tex/latex/txfonts\omltxmi.fd -File: omltxmi.fd 2000/12/15 v3.1 -) -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for OMS/txsy/m/n on input line 35. -LaTeX Font Info: Trying to load font information for OMS+txsy on input line -35. - -(D:\Programme\Miktex\tex/latex/txfonts\omstxsy.fd -File: omstxsy.fd 2000/12/15 v3.1 -) -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 35. -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 35. -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 35. -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for OMX/txex/m/n on input line 35. -LaTeX Font Info: Trying to load font information for OMX+txex on input line -35. - -(D:\Programme\Miktex\tex/latex/txfonts\omxtxex.fd -File: omxtxex.fd 2000/12/15 v3.1 -) -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for U/txexa/m/n on input line 35. -LaTeX Font Info: Trying to load font information for U+txexa on input line 3 -5. - -(D:\Programme\Miktex\tex/latex/txfonts\utxexa.fd -File: utxexa.fd 2000/12/15 v3.1 -) -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 35. -LaTeX Font Info: ... okay on input line 35. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 35. -LaTeX Font Info: ... okay on input line 35. - -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* bindingoffset: 28.45274pt -* modes: twoside -* h-part:(L,W,R)=(22.7622pt, 398.33858pt, 34.14331pt) -* v-part:(T,H,B)=(59.75078pt, 569.05511pt, 54.06024pt) -* \paperwidth=483.69684pt -* \paperheight=682.86613pt -* \textwidth=398.33858pt -* \textheight=569.05511pt -* \oddsidemargin=-21.05504pt -* \evensidemargin=-38.12668pt -* \topmargin=-42.5867pt -* \headheight=15.0pt -* \headsep=18.06749pt -* \topskip=10.0pt -* \footskip=25.29494pt -* \marginparwidth=125.0pt -* \marginparsep=7.0pt -* \columnsep=10.0pt -* \skip\footins=9.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidetrue -* \@mparswitchtrue -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(D:\Programme\Miktex\tex/context/base/mkii\supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count558 -\scratchdimen=\dimen406 -\scratchbox=\box123 -\nofMPsegments=\count559 -\nofMParguments=\count560 -\everyMPshowfont=\toks69 -\MPscratchCnt=\count561 -\MPscratchDim=\dimen407 -\MPnumerator=\count562 -\makeMPintoPDFobject=\count563 -\everyMPtoPDFconversion=\toks70 -) (D:\Programme\Miktex\tex/latex/epstopdf-pkg\epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(D:\Programme\Miktex\tex/latex/00miktex\epstopdf-sys.cfg -File: epstopdf-sys.cfg 2021/03/18 v2.0 Configuration of epstopdf for MiKTeX -)) -Package hyperref Info: Link coloring OFF on input line 35. - -(D:\Programme\Miktex\tex/latex/hyperref\nameref.sty -Package: nameref 2021-04-02 v2.47 Cross-referencing by name of section - -(D:\Programme\Miktex\tex/latex/refcount\refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(D:\Programme\Miktex\tex/generic/gettitlestring\gettitlestring.sty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) -) -\c@section@level=\count564 -) -LaTeX Info: Redefining \ref on input line 35. -LaTeX Info: Redefining \pageref on input line 35. -LaTeX Info: Redefining \nameref on input line 35. - - -Package pgfplots Warning: running in backwards compatibility mode (unsuitable t -ick labels; missing features). Consider writing \pgfplotsset{compat=1.18} into -your preamble. - on input line 35. - -LaTeX Font Info: Trying to load font information for OT1+txr on input line 3 -5. -(D:\Programme\Miktex\tex/latex/txfonts\ot1txr.fd -File: ot1txr.fd 2000/12/15 v3.1 -) -LaTeX Font Info: Trying to load font information for U+txsya on input line 3 -5. - -(D:\Programme\Miktex\tex/latex/txfonts\utxsya.fd -File: utxsya.fd 2000/12/15 v3.1 -) -LaTeX Font Info: Trying to load font information for U+txsyb on input line 3 -5. - -(D:\Programme\Miktex\tex/latex/txfonts\utxsyb.fd -File: utxsyb.fd 2000/12/15 v3.1 -) -LaTeX Font Info: Trying to load font information for U+txmia on input line 3 -5. - -(D:\Programme\Miktex\tex/latex/txfonts\utxmia.fd -File: utxmia.fd 2000/12/15 v3.1 -) -LaTeX Font Info: Trying to load font information for U+txsyc on input line 3 -5. - -(D:\Programme\Miktex\tex/latex/txfonts\utxsyc.fd -File: utxsyc.fd 2000/12/15 v3.1 -) -LaTeX Font Info: Trying to load font information for U+rsfs on input line 35 -. - -(D:\Programme\Miktex\tex/latex/jknappen\ursfs.fd -File: ursfs.fd 1998/03/24 rsfs font definition file (jk) -) -LaTeX Font Info: Trying to load font information for U+wasy on input line 35 -. - -(D:\Programme\Miktex\tex/latex/wasysym\uwasy.fd -File: uwasy.fd 2020/01/19 v2.4 Wasy-2 symbol font definitions -) -Package xypdf Info: Line width: 0.56pt on input line 35. - -(D:\Programme\Miktex\tex/latex/translations/dicts\translations-basic-dictionary --german.trsl -File: translations-basic-dictionary-german.trsl (german translation file `trans -lations-basic-dictionary') -) -Package translations Info: loading dictionary `translations-basic-dictionary' f -or `german'. on input line 35. - -(D:\Programme\Miktex\tex/latex/translations/dicts\translations-basic-dictionary --english.trsl -File: translations-basic-dictionary-english.trsl (english translation file `tra -nslations-basic-dictionary') -) -Package translations Info: loading dictionary `translations-basic-dictionary' f -or `english'. on input line 35. -\symgns@font=\mathgroup12 -LaTeX Font Info: Overwriting symbol font `gns@font' in version `bold' -(Font) TS1/txr/m/n --> TS1/txr/b/n on input line 35. -Package gensymb Info: Math companion symbols declared on input line 35. -LaTeX Info: Redefining \degree on input line 35. -LaTeX Info: Redefining \celsius on input line 35. -Package gensymb Info: Using text companion symbols for \degree, \celsius and \p -erthousand on input line 35. -LaTeX Info: Redefining \ohm on input line 35. -Package gensymb Info: Using \textohm for \ohm on input line 35. -LaTeX Info: Redefining \micro on input line 35. -Package gensymb Info: Using \textmu for \micro on input line 35. -\c@lstlisting=\count565 -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: End \AtBeginDocument code. -Package biblatex Info: Trying to load language 'ngerman'... -Package biblatex Info: ... file 'ngerman.lbx' found. - (D:\Programme\Miktex\tex/latex/biblatex/lbx\ngerman.lbx -File: ngerman.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) -Package biblatex Info: Trying to load language 'german'... -Package biblatex Info: ... file 'german.lbx' found. - -(D:\Programme\Miktex\tex/latex/biblatex/lbx\german.lbx -File: german.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) -) -Package biblatex Info: Trying to load language 'german'... -Package biblatex Info: ... file 'german.lbx' found. - -(D:\Programme\Miktex\tex/latex/biblatex/lbx\german.lbx -File: german.lbx 2022/02/02 v3.17 biblatex localization (PK/MW) - -Runaway definition? --> -! TeX capacity exceeded, sorry [main memory size=3000000]. - \XKV@resb - -l.575 } - -If you really absolutely need more capacity, -you can ask a wizard to enlarge me. - - -Here is how much of TeX's memory you used: - 81845 strings out of 478582 - 2061696 string characters out of 2856069 - 3000001 words of memory out of 3000000 - 98832 multiletter control sequences out of 15000+600000 - 484206 words of font info for 75 fonts, out of 8000000 for 9000 - 1143 hyphenation exceptions out of 8191 - 105i,3n,99p,3369b,2422s stack positions out of 10000i,1000n,20000p,200000b,80000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/buch/papers/nav/images/dreieck3d5.pdf b/buch/papers/nav/images/dreieck3d5.pdf index 6848331..0c86d36 100644 Binary files a/buch/papers/nav/images/dreieck3d5.pdf and b/buch/papers/nav/images/dreieck3d5.pdf differ -- cgit v1.2.1 From 93bdfca3b41397e43537ee334e57883a9ef79279 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:30:12 +0200 Subject: fix nav/makefile.inc --- buch/papers/nav/Makefile.inc | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/Makefile.inc b/buch/papers/nav/Makefile.inc index b30377e..24ab4ee 100644 --- a/buch/papers/nav/Makefile.inc +++ b/buch/papers/nav/Makefile.inc @@ -6,9 +6,11 @@ dependencies-nav = \ papers/nav/packages.tex \ papers/nav/main.tex \ - papers/nav/references.bib \ - papers/nav/teil0.tex \ - papers/nav/teil1.tex \ - papers/nav/teil2.tex \ - papers/nav/teil3.tex + papers/nav/einleitung.tex \ + papers/nav/flatearth.tex \ + papers/nav/geschichte.tex \ + papers/nav/nautischesdreieck.tex \ + papers/nav/sincos.tex \ + papers/nav/trigo.tex \ + papers/nav/references.bib -- cgit v1.2.1 From 88cc6d9775114c70d8723a52a869179ce806d2f7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:43:23 +0200 Subject: fix paper offset --- buch/splitpapers | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/splitpapers b/buch/splitpapers index 9ae5aae..e1b6834 100755 --- a/buch/splitpapers +++ b/buch/splitpapers @@ -16,7 +16,7 @@ then fi awk 'BEGIN { - offsetpage = 10 + offsetpage = 12 startpage = 0 identifier = "" chapterno = 0 -- cgit v1.2.1 From b37f9519bbfd57b3a7d25cca887ff44ff2253921 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Thu, 19 May 2022 14:40:25 +0200 Subject: Korrektur von Feedback --- buch/papers/nav/bilder/dreieck.pdf | Bin 0 -> 107370 bytes buch/papers/nav/bilder/ephe.png | Bin 0 -> 184799 bytes buch/papers/nav/einleitung.tex | 6 +- buch/papers/nav/flatearth.tex | 12 ++- buch/papers/nav/geschichte.tex | 22 ---- buch/papers/nav/nautischesdreieck.tex | 190 ++++++++++++++++------------------ buch/papers/nav/sincos.tex | 21 ++-- buch/papers/nav/trigo.tex | 57 +++++++--- 8 files changed, 158 insertions(+), 150 deletions(-) create mode 100644 buch/papers/nav/bilder/dreieck.pdf create mode 100644 buch/papers/nav/bilder/ephe.png delete mode 100644 buch/papers/nav/geschichte.tex (limited to 'buch') diff --git a/buch/papers/nav/bilder/dreieck.pdf b/buch/papers/nav/bilder/dreieck.pdf new file mode 100644 index 0000000..9d630aa Binary files /dev/null and b/buch/papers/nav/bilder/dreieck.pdf differ diff --git a/buch/papers/nav/bilder/ephe.png b/buch/papers/nav/bilder/ephe.png new file mode 100644 index 0000000..0aeef6f Binary files /dev/null and b/buch/papers/nav/bilder/ephe.png differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index e24f294..8d8c5c1 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -1,9 +1,9 @@ \section{Einleitung} -Heut zu Tage ist die Navigation ein Teil des Lebens. -Man versendet dem Kollegen seinen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein um sich die Sucherei zu schenken. +Heutzutage ist die Navigation ein Teil des Lebens. +Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? -In diesem Kapitel werden genau diese Fragen mithilfe des Nautischen Dreiecks, der Sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file +In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index fbabbde..bec242e 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -2,7 +2,7 @@ \section{Warum ist die Erde nicht flach?} -\begin{figure}[h] +\begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/projektion.png} \caption[Mercator Projektion]{Mercator Projektion} @@ -14,10 +14,14 @@ Die Fotos von unserem Planeten oder die Berichte der Astronauten. Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. -Mithilfe der Geometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. +Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. + Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. +Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. +Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. + +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/geschichte.tex b/buch/papers/nav/geschichte.tex deleted file mode 100644 index a20eb6d..0000000 --- a/buch/papers/nav/geschichte.tex +++ /dev/null @@ -1,22 +0,0 @@ -\documentclass[12pt]{scrartcl} -\usepackage{ucs} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{graphicx} - -\begin{document} -\section{Geschichte der sphärischen Navigation} -Die Orientierung mit Hilfe der Sterne und der sphärischen Trigonometrie bewegt die Menschheit schon seit mehreren tausend Jahren. -Nach Hinweisen und Schätzungen von Forscher haben schon vor 4000 Jahren die Ägypter und Gelehrten aus Babylon mit Hilfe der Astronomie den Lauf der Gestirne (Himmelskörper) zu berechnen versucht, jedoch ohne Erfolg. -Etwa 350 vor Christus waren es die Griechen, welche den damaligen Astronomen Hilfestellungen mittels Kugel-Geometrien leisten konnten. -Aus diesen Geometrien wurden erste mathematische Sätze aufgestellt und ein paar Jahrhunderte später kamen zu diesem Thema auch Berechnungen dazu. -Ebenso wurden Kartenmaterial mit Sternenbilder angefertigt. -Die Sinusfunktion war noch nicht bekannt, jedoch kamen zu dieser Zeit die ersten Ansätze der Cosinusfunktion aus Indien. -Von diesen Hilfen darauf aufbauend konnte um 900 die Araber der Sinussatz entwickeln. -Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde. -Dies aus dem Grund, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung vermehrt an Wichtigkeit gewann. -Auch die Verwendung der Tangens- und Sinusfunktion sowie der neu entwickelte Seitencosinussatz trugen zu einer Verbesserung der Orientierung herbei. -Im 16. Jahrhundert wurde dann ein weiterer trigonometrischer Satz, der Winkelcosinussatz hergeleitet. Stück für Stück wurden infolge der Entdeckung des Logarithmus im 17. Jahrhundert viele neue Methoden entwickelt. -Auch eine Verbesserung der kartographischen Verwendung der Kugelgeometrie wurde vorgenommen. -Es folgten weitere Entwicklungen in nicht euklidische Geometrien und im 19. Jahrhundert sowie auch im 20. Jahrhundert wurde zudem für die Relativitätstheorie auch die sphärische Trigonometrie beigezogen. -\end{document} \ No newline at end of file diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index b61e908..a85b119 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,17 +1,13 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der \textbf{Himmelskugel}. -Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient.\\ -Das Nautische Dreieck definiert sich durch folgende Ecken: -\begin{itemize} - \item Zenit - \item Gestirn - \item Himmelspol -\end{itemize} +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel}. +Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. + Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -\\ + Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: \begin{itemize} \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ @@ -21,34 +17,30 @@ Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfach \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ \end{itemize} Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: - -$\alpha \ \widehat{=} \ Rektaszension $ - -$\delta \ \widehat{=} \ Deklination =$ Breitengrad des Gestirns - -$\theta \ \widehat{=} \ Sternzeit\ von\ Greenwich$ - -$\phi \ \widehat{=} \ Geographische \ Breite $ - -$\tau = \theta-\alpha \ \widehat{=} \ Stundenwinkel =$ Längengrad des Gestirns - -$a \ \widehat{=} \ Azimut $ - -$h \ \widehat{=} \ Hoehe$ - - - -\newpage -\subsection{Zusammenhang des Nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} -\begin{figure}[h] +\begin{center} + \begin{tabular}{ c c c } + Winkel && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} + +\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\begin{figure} \begin{center} - \includegraphics[height=5cm,width=5cm]{papers/nav/bilder/kugel3.png} + \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} -Wie man im oberen Bild sieht und auch am Anfang dieses Kapitels bereits erwähnt wurde, liegt das Nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projezieren und hat dann die Ecken Standort, Bildpunkt und Nordpol. +Wie man im oberen Bild sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren und es hat dann die Ecken Standort, Bildpunkt und Nordpol. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. @@ -56,9 +48,9 @@ Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -\begin{figure}[h] +\begin{figure} \begin{center} - \includegraphics[width=6cm]{papers/nav/bilder/dreieck.png} + \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} @@ -66,75 +58,76 @@ Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann di -\subsection{Ecke P - Unser Standort} -Unser eigener Standort ist der gesuchte Punkt A. - -\subsection{Ecke A - Nordpol} -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol (in der Himmelskugel der Himmelsnordpol) ist. +\subsection{Ecke $P$ und $A$} +Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. +Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. -\newpage -\subsection{Ecke B und C - Bildpunkt X und Y} + +\subsection{Ecke $B$ und $C$ - Bildpunkt X und Y} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. -\\ -Es gibt diverse Gestirne, die man nutzen kann. -\begin{itemize} - \item Sonne - \item Mond - \item Die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn -\end{itemize} +Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mond oder die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn. + +\subsection{Ephemeriden} +Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. +In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Da diese Angaben in Stundenabständen gegeben sind, muss man für die minutengenaue Bestimmung zwischen den Stunden interpolieren. +Was diese Begriffe bedeuten, wird in den kommenden beiden Abschnitten erklärt. -Zu all diesen Gestirnen gibt es Ephemeriden (Jahrbücher). -Dort findet man unter Anderem die Rektaszension und Deklination, welche für jeden Tag und Stunde beschrieben ist. Für Minuten genaue Angaben muss man dann zwischen den Stunden interpolieren. -Mithilfe dieser beiden Angaben kann man die Längen- und Breitengrade diverser Gestirne berechnen. +\begin{figure} + \begin{center} + \includegraphics[width=18cm]{papers/nav/bilder/ephe.png} + \caption[Astrodienst - Ephemeriden Januar 2022]{Astrodienst - Ephemeriden Januar 2022} + \end{center} +\end{figure} + +\subsubsection{Deklination} +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. \subsubsection{Sternzeit und Rektaszension} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich -\\ -\\ -$T_{Greenwich} = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. -\\ -\\ -Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit bestimmen. -Dies gilt analog auch für das zweite Gestirn. -\subsubsection{Deklination} -Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +$\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Dies gilt analog auch für das zweite Gestirn. -\newpage \subsection{Bestimmung des eigenen Standortes P} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. -Somit können wir ein erstes Kugeldreieck auf der Erde aufspannen. - +Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. +Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trigonometrie anwenden und benötigen lediglich ein Ephemeride zu den Gestirnen und einen Sextant. -\begin{figure}[h] +\begin{figure} \begin{center} - \includegraphics[width=4.5cm]{papers/nav/bilder/dreieck.png} + \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} -\subsubsection{Bestimmung des ersten Dreiecks} - -$A=$ Nordpol +\subsubsection{Dreieck $ABC$} -$B=$ Bildpunkt des Gestirns X +\begin{center} + \begin{tabular}{ c c c } + Ecke && Name \\ + \hline + $A$ && Nordpol \\ + $B$ && Bildpunkt des Gestirns $X$ \\ + $C$&& Bildpunkt des Gestirns $Y$ + \end{tabular} +\end{center} -$C=$ Bildpunkt des Gestirns Y -\\ -\\ Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. @@ -145,24 +138,24 @@ Dann ist $b = \frac{\pi}{2} - \delta_2$. Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. -\\ -\\ -mit - -$\delta_1 =$ Deklination Bildpunkt X -$\delta_2 =$ Deklination Bildpunk Y - -$\lambda_1 =$ Längengrad Bildpunkt X - -$\lambda_2 =$ Längengrad Bildpunkt Y +mit +\begin{center} + \begin{tabular}{ c c c } + Ecke && Name \\ + \hline + $\delta_1$ && Deklination Bildpunkt $X$ \\ + $\delta_2$ && Deklination Bildpunk $Y$ \\ + $\lambda_1 $&& Längengrad Bildpunkt $X$\\ + $\lambda_2$ && Längengrad Bildpunkt $Y$ + \end{tabular} +\end{center} Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! -\\ -\\ + Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes -$cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ +$\cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. @@ -174,7 +167,7 @@ Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. -\subsubsection{Bestimmung des zweiten Dreiecks} +\subsubsection{Dreieck $BPC$} Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. Die dritte Ecke ist der eigene Standort P. Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. @@ -183,24 +176,23 @@ Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. -\\ +Zum Schluss müssen wir noch den Winkel $\beta1$ mithilfe des Seiten-Kosinussatzes mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. +\subsubsection{Dreieck $ABP$} Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. -Für den Seiten-Kosinussatz benötigt es noch $\kappa$. -Da wir aber $pc$, $pb$ und $a$ kennen, kann man mit dem Seiten-Kosinussatz den Winkel $\beta1$ berechnen und anschliessend $\beta + \beta1 =\kappa$. +Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta1$. -Somit ist $cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ +Somit ist $\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ und -$\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]$. -\\ +\[ +\delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]. +\] Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. -\\ -Somit ist $\omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}]$ und unsere gesuchte geographische Länge schlussendlich -$\lambda=\lambda_1 - \omega$ mit $\lambda_1$=Längengrad Bildpunkt XXX. -\newpage -\listoffigures \ No newline at end of file +Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich +\[\lambda=\lambda_1 - \omega\] +mit $\lambda_1$=Längengrad Bildpunkt XXX. diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index 23e3303..bb7f1e4 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -1,16 +1,19 @@ -\section{Warum sind die Sinus- und Kosinusfunktionen spezielle Funktionen?} -Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen (Himmelskörper) zu berechnen. -Jedoch konnten sie sie nicht lösen. -Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und wurde zu einer Hilfswissenschaft der Astronomen. -In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen zu diesem Thema angestellt. +\section{Sphärische Navigation und Winkelfunktionen} +Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren sich mit Problemen der sphärischen Trigonometrie beschäftigt haben um den Lauf von Gestirnen zu berechnen. +Jedoch konnten sie dieses Problem nicht lösen. + +Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. +In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen mithilfe des Sternkataloges von Hipparchos angestellt und darauffolgend Kartenmaterial erstellt. In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. -Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um 900 den Sinussatz. -Zur Zeit der großen Entdeckungsreisen im 15. Jahrhundert wurden die Forschungen in sphärischer Trigonometrie wieder forciert. -Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet. -Im nächsten Jahrhundert folgte der Winkelkosinussatz. +Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. +Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. +Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. + + Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index 8b4634f..cf2f242 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,18 +1,38 @@ -\setlength{\parindent}{0em} + \section{Sphärische Trigonometrie} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. +Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: +\begin{center} + + +\begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ +\end{tabular} +\end{center} + \subsection{Das Kugeldreieck} -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck ABC. -A, B und C sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. + +Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite c der Winkel AMB. -Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. +Laut dieser Definition ist die Seite $c$ der Winkel $AMB$. + Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. -\begin{figure}[h] + +\begin{figure} \begin{center} - %\includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} + \includegraphics[width=6cm]{papers/nav/bilder/kugel1.png} \caption[Das Kugeldreieck]{Das Kugeldreieck} \end{center} @@ -21,12 +41,12 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. -\newpage -\subsection{Winkelangabe} -\begin{figure}[h] + +\subsection{Winkelsumme} +\begin{figure} \begin{center} - %\includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel2.png} \caption[Winkelangabe im Kugeldreieck]{Winkelangabe im Kugeldreieck} \end{center} \end{figure} @@ -37,13 +57,15 @@ Für die Summe der Innenwinkel gilt \begin{align} \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber \end{align} - +\subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} \epsilon = \alpha+\beta+\gamma - \pi \nonumber \end{align} beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. +\subsubsection{Flächeninnhalt} +Der Flächeninhalt $A$ lässt sich aus den Winkeln $\alpha,\ \beta, \ \gamma$ und dem Kugelradius $r$ berechnen. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. @@ -53,7 +75,16 @@ Das bedeutet, dass \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} \end{align} +\subsection{Sphärischer Kosinussätze} +Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz +\begin{align} + cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber +\end{align} %Seitenkosinussatz +und den Winkelkosinussatz +\begin{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c \nonumber +\end{align} \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. @@ -62,6 +93,6 @@ In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Se Es gilt nämlich: \begin{align} \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \lor \beta =\frac{\pi}{2} \lor \gamma = \frac{\pi}{2}.\nonumber + \alpha = \frac{\pi}{2} \nonumber \end{align} \ No newline at end of file -- cgit v1.2.1 From b3283eb05091a88841668c39d422da53d66e1cdd Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Thu, 19 May 2022 14:51:50 +0200 Subject: update korrektur --- buch/papers/nav/main.tex | 5 ++--- buch/papers/nav/nautischesdreieck.tex | 4 ++-- 2 files changed, 4 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index de8d1d6..47764e8 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -6,14 +6,13 @@ \chapter{Spährische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} -\chapterauthor{Enez Erdem, Marc Kühne} +\chapterauthor{Enez Erdem und Marc Kühne} \input{papers/nav/einleitung.tex} -\input{papers/nav/sincos.tex} -\input{papers/nav/geschichte.tex} \input{papers/nav/flatearth.tex} +\input{papers/nav/sincos.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index a85b119..0a498f0 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,6 +1,6 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel}. +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel. Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. @@ -195,4 +195,4 @@ Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Wink Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt XXX. +mit $\lambda_1$=Längengrad Bildpunkt $X -- cgit v1.2.1 From 32f1a1d818f0fe28b2ae97071e31a773ee2d028a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 19 May 2022 17:28:33 +0200 Subject: some local changes --- buch/papers/fresnel/Makefile | 14 -- buch/papers/fresnel/eulerspirale.m | 61 --------- buch/papers/fresnel/eulerspirale.pdf | Bin 22592 -> 0 bytes buch/papers/fresnel/eulerspirale.tex | 41 ------ buch/papers/fresnel/fresnelgraph.pdf | Bin 30018 -> 0 bytes buch/papers/fresnel/fresnelgraph.tex | 46 ------- buch/papers/fresnel/images/Makefile | 38 ++++++ buch/papers/fresnel/images/apfel.jpg | Bin 0 -> 139884 bytes buch/papers/fresnel/images/apfel.pdf | Bin 0 -> 157895 bytes buch/papers/fresnel/images/apfel.tex | 49 +++++++ buch/papers/fresnel/images/eulerspirale.m | 61 +++++++++ buch/papers/fresnel/images/eulerspirale.pdf | Bin 0 -> 22592 bytes buch/papers/fresnel/images/eulerspirale.tex | 41 ++++++ buch/papers/fresnel/images/fresnelgraph.pdf | Bin 0 -> 30018 bytes buch/papers/fresnel/images/fresnelgraph.tex | 46 +++++++ buch/papers/fresnel/images/kruemmung.pdf | Bin 0 -> 10179 bytes buch/papers/fresnel/images/kruemmung.tex | 51 ++++++++ buch/papers/fresnel/images/pfad.pdf | Bin 0 -> 19264 bytes buch/papers/fresnel/images/pfad.tex | 37 ++++++ buch/papers/fresnel/images/schale.pdf | Bin 0 -> 352570 bytes buch/papers/fresnel/images/schale.pov | 191 ++++++++++++++++++++++++++++ buch/papers/fresnel/images/schale.tex | 77 +++++++++++ buch/papers/fresnel/main.tex | 5 + buch/papers/fresnel/pfad.pdf | Bin 19126 -> 0 bytes buch/papers/fresnel/pfad.tex | 34 ----- buch/papers/fresnel/references.bib | 6 + buch/papers/fresnel/teil0.tex | 6 +- buch/papers/fresnel/teil1.tex | 11 +- buch/papers/fresnel/teil2.tex | 161 ++++++++++++++++++++++- buch/papers/fresnel/teil3.tex | 4 +- 30 files changed, 772 insertions(+), 208 deletions(-) delete mode 100644 buch/papers/fresnel/eulerspirale.m delete mode 100644 buch/papers/fresnel/eulerspirale.pdf delete mode 100644 buch/papers/fresnel/eulerspirale.tex delete mode 100644 buch/papers/fresnel/fresnelgraph.pdf delete mode 100644 buch/papers/fresnel/fresnelgraph.tex create mode 100644 buch/papers/fresnel/images/Makefile create mode 100644 buch/papers/fresnel/images/apfel.jpg create mode 100644 buch/papers/fresnel/images/apfel.pdf create mode 100644 buch/papers/fresnel/images/apfel.tex create mode 100644 buch/papers/fresnel/images/eulerspirale.m create mode 100644 buch/papers/fresnel/images/eulerspirale.pdf create mode 100644 buch/papers/fresnel/images/eulerspirale.tex create mode 100644 buch/papers/fresnel/images/fresnelgraph.pdf create mode 100644 buch/papers/fresnel/images/fresnelgraph.tex create mode 100644 buch/papers/fresnel/images/kruemmung.pdf create mode 100644 buch/papers/fresnel/images/kruemmung.tex create mode 100644 buch/papers/fresnel/images/pfad.pdf create mode 100644 buch/papers/fresnel/images/pfad.tex create mode 100644 buch/papers/fresnel/images/schale.pdf create mode 100644 buch/papers/fresnel/images/schale.pov create mode 100644 buch/papers/fresnel/images/schale.tex delete mode 100644 buch/papers/fresnel/pfad.pdf delete mode 100644 buch/papers/fresnel/pfad.tex (limited to 'buch') diff --git a/buch/papers/fresnel/Makefile b/buch/papers/fresnel/Makefile index 11af3a7..ed74861 100644 --- a/buch/papers/fresnel/Makefile +++ b/buch/papers/fresnel/Makefile @@ -3,20 +3,6 @@ # # (c) 2022 Prof Dr Andreas Mueller # -all: fresnelgraph.pdf eulerspirale.pdf pfad.pdf - images: @echo "no images to be created in fresnel" -eulerpath.tex: eulerspirale.m - octave eulerspirale.m - -fresnelgraph.pdf: fresnelgraph.tex eulerpath.tex - pdflatex fresnelgraph.tex - -eulerspirale.pdf: eulerspirale.tex eulerpath.tex - pdflatex eulerspirale.tex - -pfad.pdf: pfad.tex - pdflatex pfad.tex - diff --git a/buch/papers/fresnel/eulerspirale.m b/buch/papers/fresnel/eulerspirale.m deleted file mode 100644 index 84e3696..0000000 --- a/buch/papers/fresnel/eulerspirale.m +++ /dev/null @@ -1,61 +0,0 @@ -# -# eulerspirale.m -# -# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue -# -global n; -n = 1000; -global tmax; -tmax = 10; -global N; -N = round(n*5/tmax); - -function retval = f(x, t) - x = pi * t^2 / 2; - retval = [ cos(x); sin(x) ]; -endfunction - -x0 = [ 0; 0 ]; -t = tmax * (0:n) / n; - -c = lsode(@f, x0, t); - -fn = fopen("eulerpath.tex", "w"); - -fprintf(fn, "\\def\\fresnela{ (0,0)"); -for i = (2:n) - fprintf(fn, "\n\t-- (%.4f,%.4f)", c(i,1), c(i,2)); -end -fprintf(fn, "\n}\n\n"); - -fprintf(fn, "\\def\\fresnelb{ (0,0)"); -for i = (2:n) - fprintf(fn, "\n\t-- (%.4f,%.4f)", -c(i,1), -c(i,2)); -end -fprintf(fn, "\n}\n\n"); - -fprintf(fn, "\\def\\Cplotright{ (0,0)"); -for i = (2:N) - fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,1)); -end -fprintf(fn, "\n}\n\n"); - -fprintf(fn, "\\def\\Cplotleft{ (0,0)"); -for i = (2:N) - fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,1)); -end -fprintf(fn, "\n}\n\n"); - -fprintf(fn, "\\def\\Splotright{ (0,0)"); -for i = (2:N) - fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,2)); -end -fprintf(fn, "\n}\n\n"); - -fprintf(fn, "\\def\\Splotleft{ (0,0)"); -for i = (2:N) - fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,2)); -end -fprintf(fn, "\n}\n\n"); - -fclose(fn); diff --git a/buch/papers/fresnel/eulerspirale.pdf b/buch/papers/fresnel/eulerspirale.pdf deleted file mode 100644 index 4a85a50..0000000 Binary files a/buch/papers/fresnel/eulerspirale.pdf and /dev/null differ diff --git a/buch/papers/fresnel/eulerspirale.tex b/buch/papers/fresnel/eulerspirale.tex deleted file mode 100644 index 38ef756..0000000 --- a/buch/papers/fresnel/eulerspirale.tex +++ /dev/null @@ -1,41 +0,0 @@ -% -% eulerspirale.tex -- Darstellung der Eulerspirale -% -% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\definecolor{darkgreen}{rgb}{0,0.6,0} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\input{eulerpath.tex} - -\def\s{8} - -\begin{scope}[scale=\s] -\draw[color=blue] (-0.5,-0.5) rectangle (0.5,0.5); -\draw[color=darkgreen,line width=1.4pt] \fresnela; -\draw[color=darkgreen,line width=1.4pt] \fresnelb; -\fill[color=blue] (0.5,0.5) circle[radius={0.1/\s}]; -\fill[color=blue] (-0.5,-0.5) circle[radius={0.1/\s}]; -\draw (-0.5,{-0.05/\s}) -- (-0.5,{0.05/\s}); -\draw (0.5,{-0.05/\s}) -- (0.5,{-0.05/\s}); -\node at (-0.5,0) [above left] {$\frac12$}; -\node at (0.5,0) [below right] {$\frac12$}; -\node at (0,-0.5) [below right] {$\frac12$}; -\node at (0,0.5) [above left] {$\frac12$}; -\end{scope} - -\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$C(x)$}];; -\draw[->] (0,-5.8) -- (0,6.1) coordinate[label={left:$S(x)$}];; - -\end{tikzpicture} -\end{document} - diff --git a/buch/papers/fresnel/fresnelgraph.pdf b/buch/papers/fresnel/fresnelgraph.pdf deleted file mode 100644 index 9ccad56..0000000 Binary files a/buch/papers/fresnel/fresnelgraph.pdf and /dev/null differ diff --git a/buch/papers/fresnel/fresnelgraph.tex b/buch/papers/fresnel/fresnelgraph.tex deleted file mode 100644 index 20df951..0000000 --- a/buch/papers/fresnel/fresnelgraph.tex +++ /dev/null @@ -1,46 +0,0 @@ -% -% fresnelgraph.tex -- Graphs of the fresnel functions -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\input{eulerpath.tex} -\def\dx{1.3} -\def\dy{2.6} - -\draw[color=gray] (0,{0.5*\dy}) -- ({5*\dx},{0.5*\dy}); -\draw[color=gray] (0,{-0.5*\dy}) -- ({-5*\dx},{-0.5*\dy}); - -\draw[color=blue,line width=1.4pt] \Splotright; -\draw[color=blue,line width=1.4pt] \Splotleft; - -\draw[color=red,line width=1.4pt] \Cplotright; -\draw[color=red,line width=1.4pt] \Cplotleft; - -\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$x$}]; -\draw[->] (0,-2.3) -- (0,2.3) coordinate[label={$y$}]; - -\foreach \x in {1,2,3,4,5}{ - \draw ({\x*\dx},-0.05) -- ({\x*\dx},0.05); - \draw ({-\x*\dx},-0.05) -- ({-\x*\dx},0.05); - \node at ({\x*\dx},-0.05) [below] {$\x$}; - \node at ({-\x*\dx},0.05) [above] {$-\x$}; -} -\draw (-0.05,{0.5*\dy}) -- (0.05,{0.5*\dy}); -\node at (-0.05,{0.5*\dy}) [left] {$\frac12$}; -\draw (-0.05,{-0.5*\dy}) -- (0.05,{-0.5*\dy}); -\node at (0.05,{-0.5*\dy}) [right] {$-\frac12$}; - -\end{tikzpicture} -\end{document} - diff --git a/buch/papers/fresnel/images/Makefile b/buch/papers/fresnel/images/Makefile new file mode 100644 index 0000000..eb7dc57 --- /dev/null +++ b/buch/papers/fresnel/images/Makefile @@ -0,0 +1,38 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: schale.pdf \ + fresnelgraph.pdf \ + eulerspirale.pdf \ + pfad.pdf \ + apfel.pdf \ + kruemmung.pdf + +schale.png: schale.pov + povray +A0.1 -W1920 -H1080 -Oschale.png schale.pov + +schale.jpg: schale.png Makefile + convert -extract 1240x1080+340 schale.png -density 300 -units PixelsPerInch schale.jpg + +schale.pdf: schale.tex schale.jpg + pdflatex schale.tex + +eulerpath.tex: eulerspirale.m + octave eulerspirale.m + +fresnelgraph.pdf: fresnelgraph.tex eulerpath.tex + pdflatex fresnelgraph.tex + +eulerspirale.pdf: eulerspirale.tex eulerpath.tex + pdflatex eulerspirale.tex + +pfad.pdf: pfad.tex + pdflatex pfad.tex + +apfel.pdf: apfel.tex apfel.jpg eulerpath.tex + pdflatex apfel.tex + +kruemmung.pdf: kruemmung.tex + pdflatex kruemmung.tex diff --git a/buch/papers/fresnel/images/apfel.jpg b/buch/papers/fresnel/images/apfel.jpg new file mode 100644 index 0000000..76e48e7 Binary files /dev/null and b/buch/papers/fresnel/images/apfel.jpg differ diff --git a/buch/papers/fresnel/images/apfel.pdf b/buch/papers/fresnel/images/apfel.pdf new file mode 100644 index 0000000..69e5092 Binary files /dev/null and b/buch/papers/fresnel/images/apfel.pdf differ diff --git a/buch/papers/fresnel/images/apfel.tex b/buch/papers/fresnel/images/apfel.tex new file mode 100644 index 0000000..754886b --- /dev/null +++ b/buch/papers/fresnel/images/apfel.tex @@ -0,0 +1,49 @@ +% +% apfel.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{7} +\def\hoehe{4} + +\input{eulerpath.tex} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\begin{scope} +\clip(-0.6,-0.6) rectangle (7,6); +\node at (3.1,2.2) [rotate=-3] {\includegraphics[width=9.4cm]{apfel.jpg}}; +\end{scope} + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\draw[color=gray!50] (0,0) rectangle (4,4); +\draw[->] (-0.5,0) -- (7.5,0) coordinate[label={$C(t)$}]; +\draw[->] (0,-0.5) -- (0,6.0) coordinate[label={left:$S(t)$}]; +\begin{scope}[scale=8] +\draw[color=red,opacity=0.5,line width=1.4pt] \fresnela; +\end{scope} + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/fresnel/images/eulerspirale.m b/buch/papers/fresnel/images/eulerspirale.m new file mode 100644 index 0000000..84e3696 --- /dev/null +++ b/buch/papers/fresnel/images/eulerspirale.m @@ -0,0 +1,61 @@ +# +# eulerspirale.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +# +global n; +n = 1000; +global tmax; +tmax = 10; +global N; +N = round(n*5/tmax); + +function retval = f(x, t) + x = pi * t^2 / 2; + retval = [ cos(x); sin(x) ]; +endfunction + +x0 = [ 0; 0 ]; +t = tmax * (0:n) / n; + +c = lsode(@f, x0, t); + +fn = fopen("eulerpath.tex", "w"); + +fprintf(fn, "\\def\\fresnela{ (0,0)"); +for i = (2:n) + fprintf(fn, "\n\t-- (%.4f,%.4f)", c(i,1), c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\fresnelb{ (0,0)"); +for i = (2:n) + fprintf(fn, "\n\t-- (%.4f,%.4f)", -c(i,1), -c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Cplotright{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,1)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Cplotleft{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,1)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Splotright{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fprintf(fn, "\\def\\Splotleft{ (0,0)"); +for i = (2:N) + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,2)); +end +fprintf(fn, "\n}\n\n"); + +fclose(fn); diff --git a/buch/papers/fresnel/images/eulerspirale.pdf b/buch/papers/fresnel/images/eulerspirale.pdf new file mode 100644 index 0000000..db74e4b Binary files /dev/null and b/buch/papers/fresnel/images/eulerspirale.pdf differ diff --git a/buch/papers/fresnel/images/eulerspirale.tex b/buch/papers/fresnel/images/eulerspirale.tex new file mode 100644 index 0000000..38ef756 --- /dev/null +++ b/buch/papers/fresnel/images/eulerspirale.tex @@ -0,0 +1,41 @@ +% +% eulerspirale.tex -- Darstellung der Eulerspirale +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{eulerpath.tex} + +\def\s{8} + +\begin{scope}[scale=\s] +\draw[color=blue] (-0.5,-0.5) rectangle (0.5,0.5); +\draw[color=darkgreen,line width=1.4pt] \fresnela; +\draw[color=darkgreen,line width=1.4pt] \fresnelb; +\fill[color=blue] (0.5,0.5) circle[radius={0.1/\s}]; +\fill[color=blue] (-0.5,-0.5) circle[radius={0.1/\s}]; +\draw (-0.5,{-0.05/\s}) -- (-0.5,{0.05/\s}); +\draw (0.5,{-0.05/\s}) -- (0.5,{-0.05/\s}); +\node at (-0.5,0) [above left] {$\frac12$}; +\node at (0.5,0) [below right] {$\frac12$}; +\node at (0,-0.5) [below right] {$\frac12$}; +\node at (0,0.5) [above left] {$\frac12$}; +\end{scope} + +\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$C(x)$}];; +\draw[->] (0,-5.8) -- (0,6.1) coordinate[label={left:$S(x)$}];; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/images/fresnelgraph.pdf b/buch/papers/fresnel/images/fresnelgraph.pdf new file mode 100644 index 0000000..c658901 Binary files /dev/null and b/buch/papers/fresnel/images/fresnelgraph.pdf differ diff --git a/buch/papers/fresnel/images/fresnelgraph.tex b/buch/papers/fresnel/images/fresnelgraph.tex new file mode 100644 index 0000000..20df951 --- /dev/null +++ b/buch/papers/fresnel/images/fresnelgraph.tex @@ -0,0 +1,46 @@ +% +% fresnelgraph.tex -- Graphs of the fresnel functions +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\input{eulerpath.tex} +\def\dx{1.3} +\def\dy{2.6} + +\draw[color=gray] (0,{0.5*\dy}) -- ({5*\dx},{0.5*\dy}); +\draw[color=gray] (0,{-0.5*\dy}) -- ({-5*\dx},{-0.5*\dy}); + +\draw[color=blue,line width=1.4pt] \Splotright; +\draw[color=blue,line width=1.4pt] \Splotleft; + +\draw[color=red,line width=1.4pt] \Cplotright; +\draw[color=red,line width=1.4pt] \Cplotleft; + +\draw[->] (-6.7,0) -- (6.9,0) coordinate[label={$x$}]; +\draw[->] (0,-2.3) -- (0,2.3) coordinate[label={$y$}]; + +\foreach \x in {1,2,3,4,5}{ + \draw ({\x*\dx},-0.05) -- ({\x*\dx},0.05); + \draw ({-\x*\dx},-0.05) -- ({-\x*\dx},0.05); + \node at ({\x*\dx},-0.05) [below] {$\x$}; + \node at ({-\x*\dx},0.05) [above] {$-\x$}; +} +\draw (-0.05,{0.5*\dy}) -- (0.05,{0.5*\dy}); +\node at (-0.05,{0.5*\dy}) [left] {$\frac12$}; +\draw (-0.05,{-0.5*\dy}) -- (0.05,{-0.5*\dy}); +\node at (0.05,{-0.5*\dy}) [right] {$-\frac12$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/images/kruemmung.pdf b/buch/papers/fresnel/images/kruemmung.pdf new file mode 100644 index 0000000..1180116 Binary files /dev/null and b/buch/papers/fresnel/images/kruemmung.pdf differ diff --git a/buch/papers/fresnel/images/kruemmung.tex b/buch/papers/fresnel/images/kruemmung.tex new file mode 100644 index 0000000..af0a1a9 --- /dev/null +++ b/buch/papers/fresnel/images/kruemmung.tex @@ -0,0 +1,51 @@ +% +% kruemmung.tex -- Krümmung einer ebenen Kurve +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\begin{scope} +\clip (-1,-1) rectangle (4,4); + +\def\r{3} +\def\winkel{30} + +\fill[color=blue!20] (0,0) -- (0:{0.6*\r}) arc (0:\winkel:{0.6*\r}) -- cycle; +\fill[color=blue!20] (\winkel:\r) + -- ($(\winkel:\r)+(0,{0.6*\r})$) arc (90:{90+\winkel}:{0.6*\r}) -- cycle; +\node[color=blue] at ({0.5*\winkel}:{0.45*\r}) {$\Delta\varphi$}; + +\node[color=blue] at ($(\winkel:\r)+({90+0.5*\winkel}:{0.45*\r})$) + {$\Delta\varphi$}; + +\draw[line width=0.3pt] (0,0) circle[radius=\r]; + +\draw[->] (0,0) -- (0:\r); +\draw[->] (0,0) -- (\winkel:\r); + +\draw[->] (0:\r) -- ($(0:\r)+(90:0.7*\r)$); +\draw[->] (\winkel:\r) -- ($(\winkel:\r)+({90+\winkel}:0.7*\r)$); +\draw[->,color=gray] (\winkel:\r) -- ($(\winkel:\r)+(0,0.7*\r)$); + +\draw[color=red,line width=1.4pt] (0:\r) arc (0:\winkel:\r); +\node[color=red] at ({0.5*\winkel}:\r) [left] {$\Delta s$}; +\fill[color=red] (0:\r) circle[radius=0.05]; +\fill[color=red] (\winkel:\r) circle[radius=0.05]; + +\node at (\winkel:{0.5*\r}) [above] {$r$}; +\node at (0:{0.5*\r}) [below] {$r$}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/images/pfad.pdf b/buch/papers/fresnel/images/pfad.pdf new file mode 100644 index 0000000..df3c7af Binary files /dev/null and b/buch/papers/fresnel/images/pfad.pdf differ diff --git a/buch/papers/fresnel/images/pfad.tex b/buch/papers/fresnel/images/pfad.tex new file mode 100644 index 0000000..680cd78 --- /dev/null +++ b/buch/papers/fresnel/images/pfad.tex @@ -0,0 +1,37 @@ +% +% pfad.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\fill[color=gray!40] (0,0) -- (2,0) arc (0:45:2) -- cycle; +\node at (22.5:1.4) {$\displaystyle\frac{\pi}4$}; + +\draw[->] (-1,0) -- (9,0) coordinate[label={$\operatorname{Re}$}]; +\draw[->] (0,-1) -- (0,6) coordinate[label={left:$\operatorname{Im}$}]; + +\draw[->,color=red,line width=1.4pt] (0,0) -- (7,0); +\draw[->,color=blue,line width=1.4pt] (7,0) arc (0:45:7); +\draw[->,color=darkgreen,line width=1.4pt] (45:7) -- (0,0); + +\node[color=red] at (3.5,0) [below] {$\gamma_1(t) = tR$}; +\node[color=blue] at (25:7) [right] {$\gamma_2(t) = Re^{it}$}; +\node[color=darkgreen] at (45:3.5) [above left] {$\gamma_3(t) = te^{i\pi/4}$}; + +\node at (7,0) [below] {$R$}; +\node at (45:7) [above] {$Re^{i\pi/4}$}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/fresnel/images/schale.pdf b/buch/papers/fresnel/images/schale.pdf new file mode 100644 index 0000000..9c21951 Binary files /dev/null and b/buch/papers/fresnel/images/schale.pdf differ diff --git a/buch/papers/fresnel/images/schale.pov b/buch/papers/fresnel/images/schale.pov new file mode 100644 index 0000000..085a6a4 --- /dev/null +++ b/buch/papers/fresnel/images/schale.pov @@ -0,0 +1,191 @@ +// +// schale.pov -- +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +#declare O = <0,0,0>; + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.036; + +camera { + location <40, 20, -20> + look_at <0, 0.5, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +sphere { + <0, 0, 0>, 1 + pigment { + color rgb<0.8,0.8,0.8> + } + finish { + specular 0.95 + metallic + } +} + +#declare stripcolor = rgb<0.2,0.2,0.8>; + +#declare R = 1.002; + +#macro punkt(phi,theta) +R * < cos(phi) * cos(theta), sin(theta), sin(phi) * cos(theta) > +#end + +#declare N = 24; +#declare thetaphi = 0.01; +#declare thetawidth = pi * 0.008; +#declare theta = function(phi) { phi * thetaphi } + +#declare axisdiameter = 0.007; + +cylinder { + < 0, -2, 0>, < 0, 2, 0>, axisdiameter + pigment { + color White + } + finish { + specular 0.95 + metallic + } +} + +#declare curvaturecircle = 0.008; +#declare curvaturecirclecolor = rgb<0.4,0.8,0.4>; + +#declare phit = 12.8 * 2 * pi; +#declare P = punkt(phit, theta(phit)); +#declare Q = <0, R / sin(theta(phit)), 0>; + +#declare e1 = vnormalize(P - Q) / tan(theta(phit)); +#declare e2 = vnormalize(vcross(e1, <0,1,0>)) / tan(theta(phit)); +#declare psimin = -0.1 * pi; +#declare psimax = 0.1 * pi; +#declare psistep = (psimax - psimin) / 30; + +union { + #declare psi = psimin; + #declare K = Q + cos(psi) * e1 + sin(psi) * e2; + #while (psi < psimax - psistep/2) + sphere { K, curvaturecircle } + #declare psi = psi + psistep; + #declare K2 = Q + cos(psi) * e1 + sin(psi) * e2; + cylinder { K, K2, curvaturecircle } + #declare K = K2; + #end + sphere { K, curvaturecircle } + pigment { + color curvaturecirclecolor + } + finish { + specular 0.95 + metallic + } +} + +object { + mesh { + #declare psi = psimin; + #declare K = Q + cos(psi) * e1 + sin(psi) * e2; + #while (psi < psimax - psistep/2) + #declare psi = psi + psistep; + #declare K2 = Q + cos(psi) * e1 + sin(psi) * e2; + triangle { K, K2, Q } + #declare K = K2; + #end + } + pigment { + color rgbt<0.4,0.8,0.4,0.5> + } + finish { + specular 0.95 + metallic + } +} + +union { + sphere { P, 0.02 } + sphere { Q, 0.02 } + cylinder { P, Q, 0.01 } + pigment { + color Red + } + finish { + specular 0.95 + metallic + } +} + +#declare phisteps = 300; +#declare phistep = 2 * pi / phisteps; +#declare phimin = 0; +#declare phimax = N * 2 * pi; + +object { + mesh { + #declare phi = phimin; + #declare Poben = punkt(phi, theta(phi) + thetawidth); + #declare Punten = punkt(phi, theta(phi) - thetawidth); + triangle { O, Punten, Poben } + #while (phi < phimax - phistep/2) + #declare phi = phi + phistep; + #declare Poben2 = punkt(phi, theta(phi) + thetawidth); + #declare Punten2 = punkt(phi, theta(phi) - thetawidth); + triangle { O, Punten, Punten2 } + triangle { O, Poben, Poben2 } + triangle { Punten, Punten2, Poben } + triangle { Punten2, Poben2, Poben } + #declare Poben = Poben2; + #declare Punten = Punten2; + #end + triangle { O, Punten, Poben } + } + pigment { + color stripcolor + } + finish { + specular 0.8 + metallic + } +} + +union { + #declare phi = phimin; + #declare P = punkt(phi, theta(phi)); + #while (phi < phimax - phistep/2) + sphere { P, 0.003 } + #declare phi = phi + phistep; + #declare P2 = punkt(phi, theta(phi)); + cylinder { P, P2, 0.003 } + #declare P = P2; + #end + sphere { P, 0.003 } + pigment { + color stripcolor + } + finish { + specular 0.8 + metallic + } +} diff --git a/buch/papers/fresnel/images/schale.tex b/buch/papers/fresnel/images/schale.tex new file mode 100644 index 0000000..577ede4 --- /dev/null +++ b/buch/papers/fresnel/images/schale.tex @@ -0,0 +1,77 @@ +% +% schlange.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math,calc} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} +\def\a{47} +\def\r{3.3} +\def\skala{0.95} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\begin{scope}[xshift=-7.4cm,yshift=-1.2cm] + \clip (-3.6,-2.2) rectangle (3.6,5.1); + + \fill[color=blue!20] (0,0) + -- ({180-\a}:{0.4*\r}) arc ({180-\a}:180:{0.4*\r}) + -- cycle; + \node[color=blue] at ({180-\a/2}:{0.3*\r}) {$\vartheta$}; + + \fill[color=blue!20] (0,{\r/sin(\a)}) + -- ($(0,{\r/sin(\a)})+({270-\a}:{0.3*\r})$) + arc ({270-\a}:270:{0.3*\r}) + -- cycle; + \node[color=blue] at ($(0,{\r/sin(\a)})+({270-\a/2}:{0.2*\r})$) + {$\vartheta$}; + + + \draw (0,0) circle[radius=\r]; + \draw[->] (0,-3.0) -- (0,5); + \draw ({-\r-0.2},0) -- ({\r+0.2},0); + \fill (0,0) circle[radius=0.06]; + + \draw (0,0) -- ({180-\a}:\r); + \node at ({180-\a+3}:{0.65*\r}) [above right] {$1$}; + + \draw[color=red,line width=1.4pt] + ({180-\a}:\r) -- (0,{\r/cos(90-\a)}); + \fill[color=red] ({180-\a}:\r) circle[radius=0.08]; + \fill[color=red] (0,{\r/cos(90-\a)}) circle[radius=0.08]; + \node[color=red] at (-1.0,3.7) [left] {$r=\cot\vartheta$}; + \node[color=red] at ({180-\a}:\r) [above left] {$P$}; + \node[color=red] at (0,{\r/sin(\a)}) [right] {$Q$}; +\end{scope} + +% Povray Bild +\node at (0,0) {\includegraphics[width=7.6cm]{schale.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node[color=red] at (-1.4,1.4) {$r$}; +\node[color=red] at (-2.2,-0.2) {$P$}; +\node[color=red] at (0,3.3) [right] {$Q$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/fresnel/main.tex b/buch/papers/fresnel/main.tex index e6ee3b5..2050fd4 100644 --- a/buch/papers/fresnel/main.tex +++ b/buch/papers/fresnel/main.tex @@ -8,6 +8,11 @@ \begin{refsection} \chapterauthor{Andreas Müller} +{\parindent0pt Die} Fresnel-Integrale tauchen in der Untersuchung der Beugung +in paraxialer Näherung auf, auch bekannt als die Fresnel-Approximation. +In diesem Kapitel betrachen wir jedoch nur die geometrische +Anwendung der Fresnel-Integrale als Parametrisierung der Euler-Spirale +und zeigen, dass letztere eine Klothoide ist. \input{papers/fresnel/teil0.tex} \input{papers/fresnel/teil1.tex} diff --git a/buch/papers/fresnel/pfad.pdf b/buch/papers/fresnel/pfad.pdf deleted file mode 100644 index ff514cc..0000000 Binary files a/buch/papers/fresnel/pfad.pdf and /dev/null differ diff --git a/buch/papers/fresnel/pfad.tex b/buch/papers/fresnel/pfad.tex deleted file mode 100644 index 5439a71..0000000 --- a/buch/papers/fresnel/pfad.tex +++ /dev/null @@ -1,34 +0,0 @@ -% -% pfad.tex -- template for standalon tikz images -% -% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -% -\documentclass[tikz]{standalone} -\usepackage{amsmath} -\usepackage{times} -\usepackage{txfonts} -\usepackage{pgfplots} -\usepackage{csvsimple} -\usetikzlibrary{arrows,intersections,math} -\begin{document} -\def\skala{1} -\definecolor{darkgreen}{rgb}{0,0.6,0} -\begin{tikzpicture}[>=latex,thick,scale=\skala] - -\draw[->] (-1,0) -- (9,0) coordinate[label={$\operatorname{Re}$}]; -\draw[->] (0,-1) -- (0,6) coordinate[label={left:$\operatorname{Im}$}]; - -\draw[->,color=red,line width=1.4pt] (0,0) -- (7,0); -\draw[->,color=blue,line width=1.4pt] (7,0) arc (0:45:7); -\draw[->,color=darkgreen,line width=1.4pt] (45:7) -- (0,0); - -\node[color=red] at (3.5,0) [below] {$\gamma_1(t) = tR$}; -\node[color=blue] at (25:7) [right] {$\gamma_2(t) = Re^{it}$}; -\node[color=darkgreen] at (45:3.5) [above left] {$\gamma_3(t) = te^{i\pi/4}$}; - -\node at (7,0) [below] {$R$}; -\node at (45:7) [above] {$Re^{i\pi/4}$}; - -\end{tikzpicture} -\end{document} - diff --git a/buch/papers/fresnel/references.bib b/buch/papers/fresnel/references.bib index 58e9242..cf8fb21 100644 --- a/buch/papers/fresnel/references.bib +++ b/buch/papers/fresnel/references.bib @@ -44,3 +44,9 @@ title = { Fresnel Integral }, date = { 2022-05-13 } } + +@online{fresnel:schale, + url = { https://www.youtube.com/watch?v=D3tdW9l1690 }, + title = { A Strange Map Projection (Euler Spiral) - Numberphile }, + date = { 2022-05-14 } +} diff --git a/buch/papers/fresnel/teil0.tex b/buch/papers/fresnel/teil0.tex index 253e2f3..85b8bf7 100644 --- a/buch/papers/fresnel/teil0.tex +++ b/buch/papers/fresnel/teil0.tex @@ -20,7 +20,7 @@ C(x) &= \int_0^x \cos\biggl(\frac{\pi}2 t^2\biggr)\,dt \\ S(x) &= \int_0^x \sin\biggl(\frac{\pi}2 t^2\biggr)\,dt \end{align*} -heissen die Fesnel-Integrale. +heissen die Fresnel-Integrale. \end{definition} Der Faktor $\frac{\pi}2$ ist einigermassen willkürlich, man könnte @@ -39,7 +39,7 @@ C(x) &= C_{\frac{\pi}2}(x), S(x) &= S_{\frac{\pi}2}(x). \end{aligned} \] -Durch eine Substution $t=bs$ erhält man +Durch eine Substitution $t=bs$ erhält man \begin{align*} C_a(x) &= @@ -91,7 +91,7 @@ $C_1(x)$ und $S_1(x)$ betrachten, da in diesem Fall die Formeln einfacher werden. \begin{figure} \centering -\includegraphics{papers/fresnel/fresnelgraph.pdf} +\includegraphics{papers/fresnel/images/fresnelgraph.pdf} \caption{Graph der Funktionen $C(x)$ ({\color{red}rot}) und $S(x)$ ({\color{blue}blau}) \label{fresnel:figure:plot}} diff --git a/buch/papers/fresnel/teil1.tex b/buch/papers/fresnel/teil1.tex index a41ddb7..c716cd7 100644 --- a/buch/papers/fresnel/teil1.tex +++ b/buch/papers/fresnel/teil1.tex @@ -8,7 +8,7 @@ \rhead{Euler-Spirale} \begin{figure} \centering -\includegraphics{papers/fresnel/eulerspirale.pdf} +\includegraphics{papers/fresnel/images/eulerspirale.pdf} \caption{Die Eulerspirale ist die Kurve mit der Parameterdarstellung $x\mapsto (C(x),S(x))$, sie ist rot dargestellt. Sie windet sich unendlich oft um die beiden Punkte $(\pm\frac12,\pm\frac12)$. @@ -25,7 +25,7 @@ $(\pm\frac12,\pm\frac12)$ zu winden. \begin{figure} \centering -\includegraphics{papers/fresnel/pfad.pdf} +\includegraphics{papers/fresnel/images/pfad.pdf} \caption{Pfad zur Berechnung der Grenzwerte $C_1(\infty)$ und $S_1(\infty)$ mit Hilfe des Cauchy-Integralsatzes \label{fresnel:figure:pfad}} @@ -182,7 +182,7 @@ muss, folgt $C_1(\infty)=S_1(\infty)$. Nach Multlikation mit $\sqrt{2}$ folgt aus der Tatsache, dass auch der Realteil verschwinden muss \[ -\frac{\sqrt{\pi}}{\sqrt{2}} = C_1(\infty)+S_1(\infty) +\sqrt{\frac{\pi}{2}} = C_1(\infty)+S_1(\infty) \qquad \Rightarrow \qquad @@ -190,7 +190,10 @@ C_1(\infty) = S_1(\infty) = -\frac{\sqrt{\pi}}{2\sqrt{2}}. +\frac12 +\sqrt{ +\frac{\pi}{2} +}. \] Aus \eqref{fresnel:equation:arg} diff --git a/buch/papers/fresnel/teil2.tex b/buch/papers/fresnel/teil2.tex index 22d2a89..ec8c896 100644 --- a/buch/papers/fresnel/teil2.tex +++ b/buch/papers/fresnel/teil2.tex @@ -15,10 +15,165 @@ Eine ebene Kurve, deren Krümmung proportionale zur Kurvenlänge ist, heisst {\em Klothoide}. \end{definition} -Die Klothoide wird zum Beispiel im Strassenbau bei Autobahnkurven -angewendet. -Fährt man mit konstanter Geschwindigkeit mit entlang einer Klothoide, +Die Klothoide wird zum Beispiel im Strassenbau für Autobahnkurven +verwendet. +Fährt man mit konstanter Geschwindigkeit entlang einer Klothoide, muss man die Krümmung mit konstaner Geschwindigkeit ändern, also das Lenkrad mit konstanter Geschwindigkeit drehen. Dies ermöglicht eine ruhige Fahrweise. +\subsection{Krümmung einer ebenen Kurve} +\begin{figure} +\centering +\includegraphics{papers/fresnel/images/kruemmung.pdf} +\caption{Berechnung der Krümmung einer ebenen Kurve. +\label{fresnel:figure:kruemmung}} +\end{figure} +Abbildung~\ref{fresnel:figure:kruemmung} erinnert daran, dass der +Bogen eines Kreises vom Radius $r$, entlang dem sich die Richtung +der Tangente um $\Delta\varphi$ ändert, die Länge +$\Delta s = r\Delta\varphi$. +Die Krümmung ist der Kehrwert des Krümmungsradius, daraus kann +man ablesen, dass +\[ +\kappa = \frac{1}{r} = \frac{\Delta \varphi}{\Delta s}. +\] +Für eine beliebige ebene Kurve ist daher die Krümmung +\[ +\kappa = \frac{d\varphi}{ds}. +\] + +\subsection{Krümmung der Euler-Spirale} +Wir betrachten jetzt die Euler-Spirale mit der Parametrisierung +$\gamma(s) = (C_1(s),S_1(s))$. +Zunächst stellen wir fest, dass die Länge der Tangente +\[ +\dot{\gamma}(s) += +\frac{d\gamma}{ds} += +\begin{pmatrix} +\dot{C}_1(s)\\ +\dot{S}_1(s) +\end{pmatrix} += +\begin{pmatrix} +\cos s^2\\ +\sin s^2 +\end{pmatrix} +\qquad\Rightarrow\qquad +|\dot{\gamma}(s)| += +\sqrt{\cos^2s^2+\sin^2s^2} += +1. +\] +Insbesondere ist der Parameter $s$ der Kurve $\gamma(s)$ die +Bogenlänge. + +Der zu $\dot{\gamma}(s)$ gehörige Polarwinkel kann aus dem Vergleich +mit einem Vektor mit bekanntem Polarwinkel $\varphi$ abgelesen werden: +\[ +\begin{pmatrix} +\cos \varphi\\ +\sin \varphi +\end{pmatrix} += +\dot{\gamma}(s) += +\begin{pmatrix} +\cos s^2\\\sin s^2 +\end{pmatrix}, +\] +der Polarwinkel +ist daher $\varphi = s^2$. +Die Krümmung ist die Ableitung des Polarwinkels nach $s$, also +\[ +\kappa += +\frac{d\varphi}{ds} += +\frac{ds^2}{ds} += +2s, +\] +sie ist somit proportional zur Bogenlänge $s$. +Damit folgt, dass die Euler-Spirale eine Klothoide ist. + +\subsection{Eine Kugel schälen} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{papers/fresnel/images/schale.pdf} +\caption{Schält man eine einen Streifen konstanter Breite beginnend am +Äquator von einer Kugel ab und breitet ihn in der Ebene aus, entsteht +eine Klothoide. +\label{fresnel:figure:schale}} +\end{figure} +\begin{figure} +\centering +\includegraphics{papers/fresnel/images/apfel.pdf} +\caption{Klothoide erhalten durch Abschälen eines Streifens von einem +Apfel (vgl.~Abbildung~\ref{fresnel:figure:schale}) +\label{fresnel:figure:apfel}} +\end{figure} +Schält man einen Streifen konstanter Breite beginnend parallel zum Äquator +von einer Kugel ab und breitet ihn in die Ebene aus, entsteht eine +Approximation einer Klothoide. +Abbildung~\ref{fresnel:figure:schale} zeigt blau den abgeschälten Streifen, +Abbildung~\ref{fresnel:figure:apfel} zeigt das Resultat dieses Versuches +an einem Apfel, das Youtube-Video \cite{fresnel:schale} des +Numberphile-Kanals illustriert das Problem anhand eines aufblasbaren +Globus. + +Windet sich die Kurve in Abbildung~\ref{fresnel:figure:schale} $n$ +mal um die vertikale Achse, bevor sie den Nordpol erreicht, dann kann +die Kurve mit der Funktion +\[ +\gamma(t) += +\begin{pmatrix} +\cos(t) \cos(t/n) \\ +\sin(t) \cos(t/n) \\ +\sin(t/n) +\end{pmatrix} +\] +parametrisiert werden. +Der Tangentialvektor +\[ +\dot{\gamma}(t) += +\begin{pmatrix} +-\sin(t)\cos(t/n) - \cos(t)\sin(t/n)/n \\ +\cos(t)\cos(t/n) - \sin(t)\sin(t/n)/n \\ +\cos(t/n)/n +\end{pmatrix} +\] +hat die Länge +\[ +| \dot{\gamma}(t) |^2 += +\frac{1}{n^2} ++ +\cos^2\frac{t}{n}. +\] +Die Ableitung der Bogenlänge ist daher +\[ +\dot{s}(t) += +\sqrt{ +\frac{1}{n^2} ++ +\cos^2\frac{t}{n} +}. +\] + + +Der Krümmungsradius des blauen Streifens, der die Kugel im Punkt $P$ bei +geographischer $\vartheta$ berührt, hat die Länge der Tangente, die +die Kugel im Punkt $P$ berührt und im Punkt $Q$ durch die Achse der +Kugel geht (Abbildung~\ref{fresnel:figure:schale}). +Die Krümmung in Abhängigkeit von $\vartheta$ ist daher $\tan\vartheta$. + + + + diff --git a/buch/papers/fresnel/teil3.tex b/buch/papers/fresnel/teil3.tex index 37e6bee..ceddbe0 100644 --- a/buch/papers/fresnel/teil3.tex +++ b/buch/papers/fresnel/teil3.tex @@ -42,8 +42,8 @@ C'(x) = \cos \biggl(\frac{\pi}2 x^2\biggr) \qquad\text{und}\qquad S'(x) = \sin \biggl(\frac{\pi}2 x^2\biggr) \] -erfüllen, kann man eine Methode zur Lösung von Differentialgleichung -verwenden. +erfüllen, kann man eine Methode zur numerischen Lösung von +Differentialgleichung verwenden. Die Abbildungen~\ref{fresnel:figure:plot} und \ref{fresnel:figure:eulerspirale} wurden auf diese Weise erzeugt. -- cgit v1.2.1 From 0fe9bb56da147bf7986852e6f657149206d967a4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 19 May 2022 17:31:23 +0200 Subject: fixes --- buch/papers/nav/Makefile.inc | 1 - buch/papers/nav/nautischesdreieck.tex | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/Makefile.inc b/buch/papers/nav/Makefile.inc index 24ab4ee..5e86543 100644 --- a/buch/papers/nav/Makefile.inc +++ b/buch/papers/nav/Makefile.inc @@ -8,7 +8,6 @@ dependencies-nav = \ papers/nav/main.tex \ papers/nav/einleitung.tex \ papers/nav/flatearth.tex \ - papers/nav/geschichte.tex \ papers/nav/nautischesdreieck.tex \ papers/nav/sincos.tex \ papers/nav/trigo.tex \ diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 0a498f0..c1ad38a 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -195,4 +195,4 @@ Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Wink Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt $X +mit $\lambda_1$=Längengrad Bildpunkt $X$ -- cgit v1.2.1 From f0a6f930187eb0226ddd4735feba1d93667b8a58 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 19 May 2022 22:12:27 +0200 Subject: add dreieck3d9.pov --- buch/papers/nav/images/Makefile | 7 ++++ buch/papers/nav/images/common.inc | 60 +++++++++++++++++++------------ buch/papers/nav/images/dreieck3d9.pov | 66 +++++++++++++++++++++++++++++++++++ 3 files changed, 111 insertions(+), 22 deletions(-) create mode 100644 buch/papers/nav/images/dreieck3d9.pov (limited to 'buch') diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile index bbdea2f..da4defa 100644 --- a/buch/papers/nav/images/Makefile +++ b/buch/papers/nav/images/Makefile @@ -114,3 +114,10 @@ dreieck3d8.jpg: dreieck3d8.png dreieck3d8.pdf: dreieck3d8.tex dreieck3d8.jpg pdflatex dreieck3d8.tex +dreieck3d9.png: dreieck3d9.pov common.inc + povray +A0.1 $(POVRAYOPTIONS) -Odreieck3d9.png dreieck3d9.pov +dreieck3d9.jpg: dreieck3d9.png + convert dreieck3d9.png -density 300 -units PixelsPerInch dreieck3d9.jpg +dreieck3d9.pdf: dreieck3d9.tex dreieck3d9.jpg + pdflatex dreieck3d9.tex + diff --git a/buch/papers/nav/images/common.inc b/buch/papers/nav/images/common.inc index e2a1ed0..2c0ae6e 100644 --- a/buch/papers/nav/images/common.inc +++ b/buch/papers/nav/images/common.inc @@ -12,6 +12,7 @@ global_settings { #declare imagescale = 0.034; +#declare O = <0, 0, 0>; #declare A = vnormalize(< 0, 1, 0>); #declare B = vnormalize(< 1, 2, -8>); #declare C = vnormalize(< 5, 1, 0>); @@ -102,8 +103,8 @@ union { #declare pp = vnormalize(p - vdot(n, p) * n); #declare qq = vnormalize(q - vdot(n, q) * n); intersection { - sphere { <0, 0, 0>, 1 + staerke } - cone { <0, 0, 0>, 0, 1.2 * vnormalize(w), r } + sphere { O, 1 + staerke } + cone { O, 0, 1.2 * vnormalize(w), r } plane { -vcross(n, qq) * vdot(vcross(n, qq), pp), 0 } plane { -vcross(n, pp) * vdot(vcross(n, pp), qq), 0 } } @@ -132,6 +133,35 @@ union { } #end +#macro ebenerwinkel(a, p, q, s, r, farbe) + #declare n = vnormalize(-vcross(p, q)); + #declare np = vnormalize(-vcross(p, n)); + #declare nq = -vnormalize(-vcross(q, n)); +// arrow(a, a + n, 0.02, White) +// arrow(a, a + np, 0.01, Red) +// arrow(a, a + nq, 0.01, Blue) + intersection { + cylinder { a - (s/2) * n, a + (s/2) * n, r } + plane { np, vdot(np, a) } + plane { nq, vdot(nq, a) } + pigment { + farbe + } + finish { + metallic + specular 0.5 + } + } +#end + +#macro komplement(a, p, q, s, r, farbe) + #declare n = vnormalize(-vcross(p, q)); +// arrow(a, a + n, 0.015, Orange) + #declare m = vnormalize(-vcross(q, n)); +// arrow(a, a + m, 0.015, Pink) + ebenerwinkel(a, p, m, s, r, farbe) +#end + #declare fett = 0.015; #declare fein = 0.010; @@ -143,29 +173,15 @@ union { #declare gruen = rgb<0,0.6,0>; #declare blau = rgb<0.2,0.2,0.8>; +#declare kugelfarbe = rgb<0.8,0.8,0.8>; +#declare kugeltransparent = rgbt<0.8,0.8,0.8,0.5>; + +#macro kugel(farbe) sphere { <0, 0, 0>, 1 pigment { - color rgb<0.8,0.8,0.8> + color farbe } } +#end -//union { -// sphere { A, 0.02 } -// sphere { B, 0.02 } -// sphere { C, 0.02 } -// sphere { P, 0.02 } -// pigment { -// color Red -// } -//} - -//union { -// winkel(A, B, C) -// winkel(B, P, C) -// seite(B, C, 0.01) -// seite(B, P, 0.01) -// pigment { -// color rgb<0,0.6,0> -// } -//} diff --git a/buch/papers/nav/images/dreieck3d9.pov b/buch/papers/nav/images/dreieck3d9.pov new file mode 100644 index 0000000..24d3843 --- /dev/null +++ b/buch/papers/nav/images/dreieck3d9.pov @@ -0,0 +1,66 @@ +// +// dreiecke3d8.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +//union { +// seite(A, B, fein) +// seite(B, C, fein) +// seite(A, C, fein) +// seite(A, P, fein) +// seite(B, P, fett) +// seite(C, P, fett) +// punkt(A, fein) +// punkt(B, fett) +// punkt(C, fett) +// punkt(P, fett) +// pigment { +// color dreieckfarbe +// } +// finish { +// specular 0.95 +// metallic +// } +//} + +//dreieck(A, B, C, White) + +kugel(kugeltransparent) + +ebenerwinkel(O, C, P, 0.01, 1.001, rot) +ebenerwinkel(P, C, P, 0.01, 0.3, rot) +komplement(P, C, P, 0.01, 0.3, Yellow) + +ebenerwinkel(O, B, P, 0.01, 1.001, blau) +ebenerwinkel(P, B, P, 0.01, 0.3, blau) +komplement(P, B, P, 0.01, 0.3, Green) + +arrow(B, 1.5 * B, 0.015, White) +arrow(C, 1.5 * C, 0.015, White) +arrow(P, 1.5 * P, 0.015, White) + +union { + cylinder { O, P, 0.7 * fein } + + cylinder { P, P + 3 * B, 0.7 * fein } + cylinder { O, B + 3 * B, 0.7 * fein } + + cylinder { P, P + 3 * C, 0.7 * fein } + cylinder { O, C + 3 * C, 0.7 * fein } + + pigment { + color White + } +} + +#declare imagescale = 0.044; + +camera { + location <40, 20, -20> + look_at <0, 0.24, -0.20> + right x * imagescale + up y * imagescale +} + -- cgit v1.2.1 From 5d1cd4306966a5433bcc8375d627989aade53a3c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 21 May 2022 07:21:47 +0200 Subject: add new script for risch part --- buch/chapters/060-integral/experiments/rxy.maxima | 9 +++++++++ 1 file changed, 9 insertions(+) create mode 100644 buch/chapters/060-integral/experiments/rxy.maxima (limited to 'buch') diff --git a/buch/chapters/060-integral/experiments/rxy.maxima b/buch/chapters/060-integral/experiments/rxy.maxima new file mode 100644 index 0000000..0d5a56d --- /dev/null +++ b/buch/chapters/060-integral/experiments/rxy.maxima @@ -0,0 +1,9 @@ +y: sqrt(a*x^2+b*x+c); + +F: log(x + b/(2 * a) + y/sqrt(a))/sqrt(a); + +f: diff(F, x); + +ratsimp(f); + +ratsimp(y*f); -- cgit v1.2.1 From eceae67b3a13bc28acc446288429a90be2efa99d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 21 May 2022 12:45:42 +0200 Subject: curvature graph --- buch/papers/kugel/images/Makefile | 13 ++++++ buch/papers/kugel/images/curvature.pov | 72 +++++++++++++++++++++++++++++ buch/papers/kugel/images/curvgraph.m | 83 ++++++++++++++++++++++++++++++++++ 3 files changed, 168 insertions(+) create mode 100644 buch/papers/kugel/images/Makefile create mode 100644 buch/papers/kugel/images/curvature.pov create mode 100644 buch/papers/kugel/images/curvgraph.m (limited to 'buch') diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/images/Makefile new file mode 100644 index 0000000..8efa228 --- /dev/null +++ b/buch/papers/kugel/images/Makefile @@ -0,0 +1,13 @@ +# +# Makefile -- build images +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: curvature.png + +curvature.inc: curvgraph.m + octave curvgraph.m + +curvature.png: curvature.pov curvature.inc + povray +A0.1 +W1920 +H1080 +Ocurvature.png curvature.pov + diff --git a/buch/papers/kugel/images/curvature.pov b/buch/papers/kugel/images/curvature.pov new file mode 100644 index 0000000..3535488 --- /dev/null +++ b/buch/papers/kugel/images/curvature.pov @@ -0,0 +1,72 @@ +// +// curvature.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// + +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.1; + +camera { + location <40, 10, -20> + look_at <0, 0, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-3.1,0,0>, <3.1,0,0>, 0.01, White) +arrow(<0,-1,0>, <0,1,0>, 0.01, White) +arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) + +#include "curvature.inc" diff --git a/buch/papers/kugel/images/curvgraph.m b/buch/papers/kugel/images/curvgraph.m new file mode 100644 index 0000000..96ca4b1 --- /dev/null +++ b/buch/papers/kugel/images/curvgraph.m @@ -0,0 +1,83 @@ +# +# curvature.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +global N; +N = 10; + +global sigma2; +sigma2 = 1; + +global s; +s = 1; + +xmin = -3; +xmax = 3; +xsteps = 1000; +hx = (xmax - xmin) / xsteps; + +ymin = -2; +ymax = 2; +ysteps = 1000; +hy = (ymax - ymin) / ysteps; + +function retval = f0(r) + global sigma2; + retval = exp(-r^2/sigma2)/sigma2 - exp(-r^2/(2*sigma2))/(sqrt(2)*sigma2); +end + +global N0; +N0 = f0(0); + +function retval = f1(x,y) + global N0; + retval = f0(hypot(x, y)) / N0; +endfunction + +function retval = f(x, y) + global s; + retval = f1(x+s, y) - f1(x-s, y); +endfunction + +function retval = curvature0(r) + global sigma2; + retval = ( + (2*sigma2-r^2)*exp(-r^2/(2*sigma2)) + + + 4*(r^2-sigma2)*exp(-r^2/sigma2) + ) / (sigma2^2); +endfunction + +function retval = curvature1(x, y) + retval = curvature0(hypot(x, y)); +endfunction + +function retval = curvature(x, y) + global s; + retval = curvature1(x+s, y) + curvature1(x-s, y); +endfunction + +function retval = farbe(x, y) + c = curvature(x, y); + retval = c * ones(1,3); +endfunction + +fn = fopen("curvature.inc", "w"); + +for ix = (0:xsteps) + x = xmin + ix * hx; + for iy = (0:ysteps) + y = ymin + iy * hy; + fprintf(fn, "sphere { <%.4f, %.4f, %.4f>, 0.01\n", + x, f(x, y), y); + color = farbe(x, y); + fprintf(fn, "pigment { color rgb<%.4f,%.4f,%.4f> }\n", + color(1,1), color(1,2), color(1,3)); + fprintf(fn, "finish { metallic specular 0.5 }\n"); + fprintf(fn, "}\n"); + end +end + +fclose(fn); -- cgit v1.2.1 From 411fb410f790fcc1bb3da381c17119ebb5130032 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Sat, 21 May 2022 18:56:21 +0200 Subject: Korrektur 21.05 --- buch/papers/nav/bilder/ephe.png | Bin 184799 -> 543515 bytes buch/papers/nav/bilder/recht.jpg | Bin 0 -> 42889 bytes buch/papers/nav/bilder/sextant.jpg | Bin 0 -> 8280 bytes buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 15 +++-- buch/papers/nav/main.tex | 2 +- buch/papers/nav/nautischesdreieck.tex | 123 +++++++++++++++++----------------- buch/papers/nav/sincos.tex | 6 +- buch/papers/nav/trigo.tex | 66 ++++++++++-------- 9 files changed, 114 insertions(+), 100 deletions(-) create mode 100644 buch/papers/nav/bilder/recht.jpg create mode 100644 buch/papers/nav/bilder/sextant.jpg (limited to 'buch') diff --git a/buch/papers/nav/bilder/ephe.png b/buch/papers/nav/bilder/ephe.png index 0aeef6f..3f99a36 100644 Binary files a/buch/papers/nav/bilder/ephe.png and b/buch/papers/nav/bilder/ephe.png differ diff --git a/buch/papers/nav/bilder/recht.jpg b/buch/papers/nav/bilder/recht.jpg new file mode 100644 index 0000000..3f60370 Binary files /dev/null and b/buch/papers/nav/bilder/recht.jpg differ diff --git a/buch/papers/nav/bilder/sextant.jpg b/buch/papers/nav/bilder/sextant.jpg new file mode 100644 index 0000000..53dd784 Binary files /dev/null and b/buch/papers/nav/bilder/sextant.jpg differ diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 8d8c5c1..aafa107 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -4,6 +4,6 @@ Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. -Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf kleineren Schiffen benötigt wird im Falle eines Stromausfalls. +Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index bec242e..5bfc1b7 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -9,19 +9,20 @@ \end{center} \end{figure} -Es gibt heut zu Tage viele Beweise dafür, dass die Erde eine Kugel ist. +Es gibt heutzutage viele Beweise dafür, dass die Erde eine Kugel ist. Die Fotos von unserem Planeten oder die Berichte der Astronauten. -Aber schon vor ca. 2300 Jahren hat Aristotoles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist oder der Erdschatten bei einer Mondfinsternis immer rund ist. +Aber schon vor ca. 2300 Jahren hat Aristoteles bemerkt, dass Schiffe im Horizont verschwinden und die einzige Erklärung dafür die Kugelgestalt der Erde ist. +Auch der Erdschatten bei einer Mondfinsternis ist immer rund. Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Auch in der Navigation würden grobe Fehler passieren, wenn man davon ausgeht, dass die Erde eine Scheibe ist. -Man sieht es zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. +Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + +Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. Das liegt daran, das man die 3D – Weltkarte nicht einfach auslegen kann. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. -Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. -Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. \ No newline at end of file diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 47764e8..e16dc2a 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -3,7 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Spährische Navigation\label{chapter:nav}} +\chapter{Sphärische Navigation\label{chapter:nav}} \lhead{Sphärische Navigation} \begin{refsection} \chapterauthor{Enez Erdem und Marc Kühne} diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c1ad38a..c239d64 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -1,22 +1,14 @@ \section{Das Nautische Dreieck} \subsection{Definition des Nautischen Dreiecks} -Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel. Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter umgibt und als Rechenfläche für Koordinaten in der Astronomie und Geodäsie dient. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. - Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. -Zur Anwendung der Formeln der sphärischen Trigonometrie gelten folgende einfache Zusammenhänge: -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} -Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: +Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. + +Für die Definition gilt: \begin{center} \begin{tabular}{ c c c } Winkel && Name / Beziehung \\ @@ -31,6 +23,15 @@ Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: \end{tabular} \end{center} +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} + + \subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure} \begin{center} @@ -39,15 +40,13 @@ Um mit diesen Zusammenhängen zu rechnen benötigt man folgende Legende: \end{center} \end{figure} -Wie man im oberen Bild sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren und es hat dann die Ecken Standort, Bildpunkt und Nordpol. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. - +Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} -Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion Nautische Dreieck auf der Erdkugel zur Hilfe genommen. -Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. - +Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. +Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. +Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -60,31 +59,30 @@ Mithilfe einiger Hilfsmittel und der Sphärischen Trigonometrie kann man dann di \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des Nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. -\subsection{Ecke $B$ und $C$ - Bildpunkt X und Y} +\subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. Damit das trigonometrische Rechnen einfacher wird, werden hier zwei Gestirne zur Hilfe genommen. Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mond oder die vier Navigationsplaneten Venus, Mars, Jupiter und Saturn. +Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. -Da diese Angaben in Stundenabständen gegeben sind, muss man für die minutengenaue Bestimmung zwischen den Stunden interpolieren. -Was diese Begriffe bedeuten, wird in den kommenden beiden Abschnitten erklärt. \begin{figure} \begin{center} - \includegraphics[width=18cm]{papers/nav/bilder/ephe.png} - \caption[Astrodienst - Ephemeriden Januar 2022]{Astrodienst - Ephemeriden Januar 2022} + \includegraphics[width=\textwidth]{papers/nav/bilder/ephe.png} + \caption[Nautical Almanac Mai 2002]{Nautical Almanac Mai 2002} \end{center} \end{figure} \subsubsection{Deklination} -Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und ergibt schlussendlich den Breitengrad. +Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. -\subsubsection{Sternzeit und Rektaszension} +\subsubsection{Rektaszension und Sternzeit} Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. @@ -98,19 +96,28 @@ Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich -$\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3$. +\[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn mann die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. Dies gilt analog auch für das zweite Gestirn. +\subsubsection{Sextant} +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. -\subsection{Bestimmung des eigenen Standortes P} +\begin{figure} + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/sextant.jpg} + \caption[Sextant]{Sextant} + \end{center} +\end{figure} + +\subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trigonometrie anwenden und benötigen lediglich ein Ephemeride zu den Gestirnen und einen Sextant. \begin{figure} \begin{center} - \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} + \includegraphics[width=8cm]{papers/nav/bilder/dreieck.pdf} \caption[Dreieck für die Standortbestimmung]{Dreieck für die Standortbestimmung} \end{center} \end{figure} @@ -128,15 +135,15 @@ Mithilfe dieser Dreiecken können wir die einfachen Sätze der sphärischen Trig \end{tabular} \end{center} -Mithilfe des sphärischen Trigonometrie und den darausfolgenden Zusammenhängen des Nautischen Dreiecks können wir nun alle Seiten des Dreiecks $ABC$ berechnen. +Mit unserem erlangten Wissen können wir nun alle Seiten des Dreiecks $ABC$ berechnen. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt X" sei $c$. +Die Seite vom Nordpol zum Bildpunkt $X$ sei $c$. Dann ist $c = \frac{\pi}{2} - \delta_1$. -Die Seitenlänge der Seite "Nordpol zum Bildpunkt Y" sei $b$. +Die Seite vom Nordpol zum Bildpunkt $Y$ sei $b$. Dann ist $b = \frac{\pi}{2} - \delta_2$. -Der Innenwinkel beim der Ecke "Nordpol" sei $\alpha$. +Der Innenwinkel bei der Ecke, wo der Nordpol ist sei $\alpha$. Dann ist $ \alpha = |\lambda_1 - \lambda_2|$. mit @@ -144,55 +151,49 @@ mit \begin{tabular}{ c c c } Ecke && Name \\ \hline - $\delta_1$ && Deklination Bildpunkt $X$ \\ - $\delta_2$ && Deklination Bildpunk $Y$ \\ - $\lambda_1 $&& Längengrad Bildpunkt $X$\\ - $\lambda_2$ && Längengrad Bildpunkt $Y$ + $\delta_1$ && Deklination vom Bildpunkt $X$ \\ + $\delta_2$ && Deklination vom Bildpunk $Y$ \\ + $\lambda_1 $&& Längengrad vom Bildpunkt $X$\\ + $\lambda_2$ && Längengrad vom Bildpunkt $Y$ \end{tabular} \end{center} -Wichtig ist: Die Differenz der Längengrade ist gleich der Innenwinkel Alpha, deswegen der Betrag! - -Nun haben wir die beiden Seiten $c\ und\ b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. +Nun haben wir die beiden Seiten $c$ und $b$ und den Winkel $\alpha$, der sich zwischen diesen Seiten befindet. Mithilfe des Seiten-Kosinussatzes $\cos(a) = \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha)$ können wir nun die dritte Seitenlänge bestimmen. Es ist darauf zu achten, dass hier natürlich die Seitenlängen in Bogenmass sind und dementsprechend der Kosinus und Sinus verwendet wird. -Jetzt fehlen noch die beiden anderen Innenwinkel $\beta \ und\ \gamma$. -Diese bestimmen wir mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$. +Jetzt fehlen noch die beiden anderen Innenwinkel $\beta$ und\ $\gamma$. +Diese bestimmen wir mithilfe des Sinussatzes \[\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}.\] Hier muss man aufpassen, dass man Seite von Winkel unterscheiden kann. Im Zähler sind die Seiten, im Nenner die Winkel. -Somit ist $\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}] $. +Somit ist \[\beta =\sin^{-1} [\sin(b) \cdot \frac{\sin(\alpha)}{\sin(a)}].\] -Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha, \beta \ und \ \gamma$ bestimmt und somit das ganze erste Kugeldreieck berechnet. +Schlussendlich haben wir die Seiten $a,b\ und \ c$, die Ecken A,B und C und die Winkel $\alpha$, $\beta$ und $\gamma$ bestimmt und somit das ganze Kugeldreieck $ABC$ berechnet. \subsubsection{Dreieck $BPC$} -Wir bilden nun ein zweites Dreieck, welches die Ecken B und C des ersten Dreiecks besitzt. -Die dritte Ecke ist der eigene Standort P. +Wir bilden nun ein zweites Dreieck, welches die Ecken $B$ und $C$ des ersten Dreiecks besitzt. +Die dritte Ecke ist der eigene Standort $P$. Unser Standort definiere sich aus einer geographischen Breite $\delta$ und einer geographischen Länge $\lambda$. -Die Seite von P zu B sei $pb$ und die Seite von P zu C sei $pc$. +Die Seite von $P$ zu $B$ sei $pb$ und die Seite von $P$ zu $C$ sei $pc$. Die beiden Seitenlängen kann man mit dem Sextant messen und durch eine einfache Formel bestimmen, nämlich $pb=\frac{\pi}{2} - h_{B}$ und $pc=\frac{\pi}{2} - h_{C}$ -mit $h_B=$ Höhe von Gestirn in B und $h_C=$ Höhe von Gestirn in C mit Sextant gemessen. +mit $h_B=$ Höhe von Gestirn in $B$ und $h_C=$ Höhe von Gestirn in $C$ mit Sextant gemessen. -Zum Schluss müssen wir noch den Winkel $\beta1$ mithilfe des Seiten-Kosinussatzes mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. +Zum Schluss müssen wir noch den Winkel $\beta_1$ mithilfe des Seiten-Kosinussatzes \[\cos(pb)=\cos(pc)\cdot\cos(a)+\sin(pc)\cdot\sin(a)\cdot\cos(\beta_1)\] mit den bekannten Seiten $pc$, $pb$ und $a$ bestimmen. \subsubsection{Dreieck $ABP$} -Nun muss man eine Verbindungslinie ziehen zwischen P und A. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c\ und \ pb$ und des Seiten-Kosinussatzes berechnen. - -Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta1$. - -Somit ist $\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)$ - +Nun muss man eine Verbindungslinie ziehen zwischen $P$ und $A$. Die Länge $l$ dieser Linie entspricht der gesuchten geographischen Breite $\delta$. Diese lässt sich mithilfe des Dreiecks $ABP$, den bekannten Seiten $c$ und $pb$ und des Seiten-Kosinussatzes berechnen. +Für den Seiten-Kosinussatz benötigt es noch $\kappa=\beta + \beta_1$. +Somit ist \[\cos(l) = \cos(c)\cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)\] und - \[ \delta =\cos^{-1} [\cos(c) \cdot \cos(pb) + \sin(c) \cdot \sin(pb) \cdot \cos(\kappa)]. \] -Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet mithilfe des Sinussatzes $\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}$ bestimmen. - +Für die Geographische Länge $\lambda$ des eigenen Standortes muss man den Winkel $\omega$, welcher sich im Dreieck $ACP$ in der Ecke bei $A$ befindet. +Mithilfe des Sinussatzes \[\frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)}\] können wir das bestimmen. Somit ist \[ \omega=\sin^{-1}[\sin(pc) \cdot \frac{\sin(\gamma)}{\sin(l)}] \]und unsere gesuchte geographische Länge schlussendlich \[\lambda=\lambda_1 - \omega\] -mit $\lambda_1$=Längengrad Bildpunkt $X$ +wobei $\lambda_1$ die Länge des Bildpunktes $X$ von $C$ ist. diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index bb7f1e4..d56d482 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -6,14 +6,16 @@ Es gibt Hinweise, dass sich schon die Babylonier und Ägypter vor 4000 Jahren si Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. -In Folge werden auch die ersten Sätze aufgestellt und wenige Jahrhunderte später wurden Berechnungen mithilfe des Sternkataloges von Hipparchos angestellt und darauffolgend Kartenmaterial erstellt. +Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. + Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. - Durch weitere mathematische Entwicklungen wie den Logarithmus wurden im Laufe des nächsten Jahrhunderts viele neue Methoden und kartographische Anwendungen der Kugelgeometrie entdeckt. Im 19. und 20. Jahrhundert wurden weitere nicht-euklidische Geometrien entwickelt und die sphärische Trigonometrie fand auch ihre Anwendung in der Relativitätstheorie. \ No newline at end of file diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index cf2f242..ce367f6 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -2,33 +2,35 @@ \section{Sphärische Trigonometrie} In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: -\begin{center} - - -\begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ -\end{tabular} -\end{center} \subsection{Das Kugeldreieck} +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. +Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. +Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. -$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. -Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. +$A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). -Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. Da die Länge der Grosskreisbögen wegen der Abhängigkeit vom Kugelradius ungeeignet ist, wird die Grösse einer Seite mit dem zugehörigen Mittelpunktwinkel des Grosskreisbogens angegeben. -Laut dieser Definition ist die Seite $c$ der Winkel $AMB$. +Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ die Erdmitte ist. Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersche Dreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. + +Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: +\begin{center} + \begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ + \end{tabular} +\end{center} \begin{figure} \begin{center} @@ -38,9 +40,16 @@ Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha \end{figure} -\subsection{Rechtwinkliges Dreieck und Rechtseitiges Dreieck} -Wie auch im uns bekannten Dreieck gibt es beim Kugeldreieck auch ein Rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. +\subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +\begin{figure} + + \begin{center} + \includegraphics[width=10cm]{papers/nav/bilder/recht.jpg} + \caption[Rechtseitiges Kugeldreieck]{Rechtseitiges Kugeldreieck} + \end{center} +\end{figure} \subsection{Winkelsumme} \begin{figure} @@ -55,8 +64,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{A}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi. \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber \end{align} +wobei F der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -65,31 +75,31 @@ Der sphärische Exzess beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zum Flächeninhalt des Kugeldreiecks. \subsubsection{Flächeninnhalt} -Der Flächeninhalt $A$ lässt sich aus den Winkeln $\alpha,\ \beta, \ \gamma$ und dem Kugelradius $r$ berechnen. +Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt +\[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. \subsection{Sphärischer Sinussatz} In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. - Das bedeutet, dass \begin{align} - \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \ \text{auch beim Kugeldreieck gilt.} + \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} +auch beim Kugeldreieck gilt. -\subsection{Sphärischer Kosinussätze} +\subsection{Sphärische Kosinussätze} Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} - cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber + \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c \nonumber + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber \end{align} \subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks in eine Beziehung bringt. - +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. Es gilt nämlich: \begin{align} \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & -- cgit v1.2.1 From ab62c3937cc111ce1d61d76f0bdf396a4a5a9297 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 21 May 2022 20:36:01 +0200 Subject: add image code --- buch/papers/kugel/images/Makefile | 4 +- buch/papers/kugel/images/curvature.maxima | 6 ++ buch/papers/kugel/images/curvature.pov | 72 +++++++++++++++++++++++- buch/papers/kugel/images/curvgraph.m | 93 +++++++++++++++++++++++++------ 4 files changed, 153 insertions(+), 22 deletions(-) create mode 100644 buch/papers/kugel/images/curvature.maxima (limited to 'buch') diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/images/Makefile index 8efa228..e8bf919 100644 --- a/buch/papers/kugel/images/Makefile +++ b/buch/papers/kugel/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: curvature.png +all: curvature.jpg curvature.inc: curvgraph.m octave curvgraph.m @@ -11,3 +11,5 @@ curvature.inc: curvgraph.m curvature.png: curvature.pov curvature.inc povray +A0.1 +W1920 +H1080 +Ocurvature.png curvature.pov +curvature.jpg: curvature.png + convert curvature.png -density 300 -units PixelsPerInch curvature.jpg diff --git a/buch/papers/kugel/images/curvature.maxima b/buch/papers/kugel/images/curvature.maxima new file mode 100644 index 0000000..6313642 --- /dev/null +++ b/buch/papers/kugel/images/curvature.maxima @@ -0,0 +1,6 @@ + +f: exp(-r^2/sigma^2)/sigma; +laplacef: ratsimp(diff(r * diff(f,r), r) / r); +f: exp(-r^2/(2*sigma^2))/(sqrt(2)*sigma); +laplacef: ratsimp(diff(r * diff(f,r), r) / r); + diff --git a/buch/papers/kugel/images/curvature.pov b/buch/papers/kugel/images/curvature.pov index 3535488..9dbaa86 100644 --- a/buch/papers/kugel/images/curvature.pov +++ b/buch/papers/kugel/images/curvature.pov @@ -11,17 +11,17 @@ global_settings { assumed_gamma 1 } -#declare imagescale = 0.1; +#declare imagescale = 0.09; camera { - location <40, 10, -20> + location <10, 10, -40> look_at <0, 0, 0> right 16/9 * x * imagescale up y * imagescale } light_source { - <10, 10, -40> color White + <-10, 10, -40> color White area_light <1,0,0> <0,0,1>, 10, 10 adaptive 1 jitter @@ -70,3 +70,69 @@ arrow(<0,-1,0>, <0,1,0>, 0.01, White) arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) #include "curvature.inc" + +#declare sigma = 1; +#declare N0 = 0.5; +#declare funktion = function(r) { + (exp(-r*r/(sigma*sigma)) / sigma + - + exp(-r*r/(2*sigma*sigma)) / (sqrt(2)*sigma)) / N0 +}; +#declare hypot = function(xx, yy) { sqrt(xx*xx+yy*yy) }; + +#declare Funktion = function(x,y) { funktion(hypot(x+1,y)) - funktion(hypot(x-1,y)) }; +#macro punkt(xx,yy) + +#end + +#declare griddiameter = 0.006; +union { + #declare xmin = -3; + #declare xmax = 3; + #declare ymin = -2; + #declare ymax = 2; + + + #declare xstep = 0.2; + #declare ystep = 0.02; + #declare xx = xmin; + #while (xx < xmax + xstep/2) + #declare yy = ymin; + #declare P = punkt(xx, yy); + #while (yy < ymax - ystep/2) + #declare yy = yy + ystep; + #declare Q = punkt(xx, yy); + sphere { P, griddiameter } + cylinder { P, Q, griddiameter } + #declare P = Q; + #end + sphere { P, griddiameter } + #declare xx = xx + xstep; + #end + + #declare xstep = 0.02; + #declare ystep = 0.2; + #declare yy = ymin; + #while (yy < ymax + ystep/2) + #declare xx = xmin; + #declare P = punkt(xx, yy); + #while (xx < xmax - xstep/2) + #declare xx = xx + xstep; + #declare Q = punkt(xx, yy); + sphere { P, griddiameter } + cylinder { P, Q, griddiameter } + #declare P = Q; + #end + sphere { P, griddiameter } + #declare yy = yy + ystep; + #end + + pigment { + color rgb<0.8,0.8,0.8> + } + finish { + metallic + specular 0.8 + } +} + diff --git a/buch/papers/kugel/images/curvgraph.m b/buch/papers/kugel/images/curvgraph.m index 96ca4b1..b83c877 100644 --- a/buch/papers/kugel/images/curvgraph.m +++ b/buch/papers/kugel/images/curvgraph.m @@ -13,23 +13,34 @@ sigma2 = 1; global s; s = 1; +global cmax; +cmax = 0.9; +global cmin; +cmin = -0.9; + +global Cmax; +global Cmin; +Cmax = 0; +Cmin = 0; + xmin = -3; xmax = 3; -xsteps = 1000; +xsteps = 200; hx = (xmax - xmin) / xsteps; ymin = -2; ymax = 2; -ysteps = 1000; +ysteps = 200; hy = (ymax - ymin) / ysteps; function retval = f0(r) global sigma2; - retval = exp(-r^2/sigma2)/sigma2 - exp(-r^2/(2*sigma2))/(sqrt(2)*sigma2); + retval = exp(-r^2/sigma2)/sqrt(sigma2) - exp(-r^2/(2*sigma2))/(sqrt(2*sigma2)); end global N0; -N0 = f0(0); +N0 = f0(0) +N0 = 0.5; function retval = f1(x,y) global N0; @@ -44,10 +55,10 @@ endfunction function retval = curvature0(r) global sigma2; retval = ( - (2*sigma2-r^2)*exp(-r^2/(2*sigma2)) + -4*(sigma2-r^2)*exp(-r^2/sigma2) + - 4*(r^2-sigma2)*exp(-r^2/sigma2) - ) / (sigma2^2); + (2*sigma2-r^2)*exp(-r^2/(2*sigma2)) + ) / (sigma2^(5/2)); endfunction function retval = curvature1(x, y) @@ -56,28 +67,74 @@ endfunction function retval = curvature(x, y) global s; - retval = curvature1(x+s, y) + curvature1(x-s, y); + retval = curvature1(x+s, y) - curvature1(x-s, y); endfunction function retval = farbe(x, y) + global Cmax; + global Cmin; + global cmax; + global cmin; c = curvature(x, y); - retval = c * ones(1,3); + if (c < Cmin) + Cmin = c + endif + if (c > Cmax) + Cmax = c + endif + u = (c - cmin) / (cmax - cmin); + if (u > 1) + u = 1; + endif + if (u < 0) + u = 0; + endif + color = [ u, 0.5, 1-u ]; + color = color/max(color); + color(1,4) = c/2; + retval = color; endfunction -fn = fopen("curvature.inc", "w"); +function dreieck(fn, A, B, C) + fprintf(fn, "\ttriangle {\n"); + fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", A(1,1), A(1,3), A(1,2)); + fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", B(1,1), B(1,3), B(1,2)); + fprintf(fn, "\t <%.4f,%.4f,%.4f>\n", C(1,1), C(1,3), C(1,2)); + fprintf(fn, "\t}\n"); +endfunction +function viereck(fn, punkte) + color = farbe(mean(punkte(:,1)), mean(punkte(:,2))); + fprintf(fn, " mesh {\n"); + dreieck(fn, punkte(1,:), punkte(2,:), punkte(3,:)); + dreieck(fn, punkte(2,:), punkte(3,:), punkte(4,:)); + fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> } // %.4f\n", + color(1,1), color(1,2), color(1,3), color(1,4)); + fprintf(fn, " }\n"); +endfunction + +fn = fopen("curvature.inc", "w"); +punkte = zeros(4,3); for ix = (0:xsteps) x = xmin + ix * hx; + punkte(1,1) = x; + punkte(2,1) = x; + punkte(3,1) = x + hx; + punkte(4,1) = x + hx; for iy = (0:ysteps) y = ymin + iy * hy; - fprintf(fn, "sphere { <%.4f, %.4f, %.4f>, 0.01\n", - x, f(x, y), y); - color = farbe(x, y); - fprintf(fn, "pigment { color rgb<%.4f,%.4f,%.4f> }\n", - color(1,1), color(1,2), color(1,3)); - fprintf(fn, "finish { metallic specular 0.5 }\n"); - fprintf(fn, "}\n"); + punkte(1,2) = y; + punkte(2,2) = y + hy; + punkte(3,2) = y; + punkte(4,2) = y + hy; + for i = (1:4) + punkte(i,3) = f(punkte(i,1), punkte(i,2)); + endfor + viereck(fn, punkte); end end - +#fprintf(fn, " finish { metallic specular 0.5 }\n"); fclose(fn); + +printf("Cmax = %.4f\n", Cmax); +printf("Cmin = %.4f\n", Cmin); -- cgit v1.2.1 From d8d6a61a2ab45d9171a93e4a72d254a3ed5ef87f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 21 May 2022 20:42:47 +0200 Subject: fix some bugs --- buch/papers/kugel/images/curvature.pov | 5 +++-- buch/papers/kugel/images/curvgraph.m | 8 ++++---- 2 files changed, 7 insertions(+), 6 deletions(-) (limited to 'buch') diff --git a/buch/papers/kugel/images/curvature.pov b/buch/papers/kugel/images/curvature.pov index 9dbaa86..3b15d77 100644 --- a/buch/papers/kugel/images/curvature.pov +++ b/buch/papers/kugel/images/curvature.pov @@ -72,7 +72,8 @@ arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) #include "curvature.inc" #declare sigma = 1; -#declare N0 = 0.5; +#declare s = 1.4; +#declare N0 = 0.4; #declare funktion = function(r) { (exp(-r*r/(sigma*sigma)) / sigma - @@ -80,7 +81,7 @@ arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) }; #declare hypot = function(xx, yy) { sqrt(xx*xx+yy*yy) }; -#declare Funktion = function(x,y) { funktion(hypot(x+1,y)) - funktion(hypot(x-1,y)) }; +#declare Funktion = function(x,y) { funktion(hypot(x+s,y)) - funktion(hypot(x-s,y)) }; #macro punkt(xx,yy) #end diff --git a/buch/papers/kugel/images/curvgraph.m b/buch/papers/kugel/images/curvgraph.m index b83c877..75effd6 100644 --- a/buch/papers/kugel/images/curvgraph.m +++ b/buch/papers/kugel/images/curvgraph.m @@ -11,7 +11,7 @@ global sigma2; sigma2 = 1; global s; -s = 1; +s = 1.4; global cmax; cmax = 0.9; @@ -40,7 +40,7 @@ end global N0; N0 = f0(0) -N0 = 0.5; +N0 = 0.4; function retval = f1(x,y) global N0; @@ -115,13 +115,13 @@ endfunction fn = fopen("curvature.inc", "w"); punkte = zeros(4,3); -for ix = (0:xsteps) +for ix = (0:xsteps-1) x = xmin + ix * hx; punkte(1,1) = x; punkte(2,1) = x; punkte(3,1) = x + hx; punkte(4,1) = x + hx; - for iy = (0:ysteps) + for iy = (0:ysteps-1) y = ymin + iy * hy; punkte(1,2) = y; punkte(2,2) = y + hy; -- cgit v1.2.1 From 53aea87685ea9f37f982f1ec90a82ce168d6d7cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 23 May 2022 11:34:57 +0200 Subject: rewriting the risch algorithm stuff --- buch/chapters/060-integral/Makefile.inc | 7 + buch/chapters/060-integral/differentialkoerper.tex | 1957 +------------------- .../chapters/060-integral/differentialkoerper2.tex | 1953 +++++++++++++++++++ buch/chapters/060-integral/diffke.tex | 20 + buch/chapters/060-integral/elementar.tex | 7 + buch/chapters/060-integral/erweiterungen.tex | 12 + buch/chapters/060-integral/iproblem.tex | 93 + buch/chapters/060-integral/irat.tex | 140 ++ buch/chapters/060-integral/logexp.tex | 27 + buch/chapters/060-integral/rational.tex | 8 + buch/chapters/060-integral/risch.tex | 3 +- buch/chapters/060-integral/sqrat.tex | 8 + 12 files changed, 2286 insertions(+), 1949 deletions(-) create mode 100644 buch/chapters/060-integral/differentialkoerper2.tex create mode 100644 buch/chapters/060-integral/diffke.tex create mode 100644 buch/chapters/060-integral/elementar.tex create mode 100644 buch/chapters/060-integral/erweiterungen.tex create mode 100644 buch/chapters/060-integral/iproblem.tex create mode 100644 buch/chapters/060-integral/irat.tex create mode 100644 buch/chapters/060-integral/logexp.tex create mode 100644 buch/chapters/060-integral/rational.tex create mode 100644 buch/chapters/060-integral/sqrat.tex (limited to 'buch') diff --git a/buch/chapters/060-integral/Makefile.inc b/buch/chapters/060-integral/Makefile.inc index d85caad..e0dfc21 100644 --- a/buch/chapters/060-integral/Makefile.inc +++ b/buch/chapters/060-integral/Makefile.inc @@ -8,5 +8,12 @@ CHAPTERFILES += \ chapters/060-integral/fehlerfunktion.tex \ chapters/060-integral/eulertransformation.tex \ chapters/060-integral/differentialkoerper.tex \ + chapters/060-integral/rational.tex \ + chapters/060-integral/erweiterungen.tex \ + chapters/060-integral/diffke.tex \ + chapters/060-integral/irat.tex \ + chapters/060-integral/sqratrat.tex \ chapters/060-integral/risch.tex \ + chapters/060-integral/logexp.tex \ + chapters/060-integral/elementar.tex \ chapters/060-integral/chapter.tex diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex index f41d3ba..66bb0c1 100644 --- a/buch/chapters/060-integral/differentialkoerper.tex +++ b/buch/chapters/060-integral/differentialkoerper.tex @@ -1,1953 +1,14 @@ % -% differentialalgebren.tex +% differentialkoerper.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\section{Differentialkörper und der Satz von Liouville +\section{Differentialkörper \label{buch:integrale:section:dkoerper}} -\rhead{Differentialkörper und der Satz von Liouville} -Das Problem der Darstellbarkeit eines Integrals in geschlossener -Form verlangt zunächst einmal nach einer Definition dessen, was man -als ``geschlossene Form'' akzeptieren will. -Die sogenannten {\em elementaren Funktionen} von -Abschnitt~\ref{buch:integrale:section:elementar} -bilden dafür den theoretischen Rahmen. -Das Problem ist dann die Frage zu beantworten, ob ein Integral eine -Stammfunktion hat, die eine elementare Funktion ist. -Der Satz von Liouville von Abschnitt~\ref{buch:integrale:section:liouville} -löst das Problem. - -\subsection{Eine Analogie -\label{buch:integrale:section:analogie}} -% XXX Analogie: Formel für Polynom-Nullstellen -% XXX Stammfunktion als elementare Funktion -Das Analysis-Problem, eine Stammfunktion zu finden, ist analog zum -wohlbekannten algebraischen Problem, Nullstellen von Polynomen zu finden. -Wir entwickeln diese Analogie in etwas mehr Detail, um zu sehen, ob man -aus dem algebraischen Problem etwas über das Problem der Analysis -lernen kann. - -Für ein Polynom $p(X) = a_nX^n+a_{n-1}X^{n-1}+\dots+a_1X+a_0\in\mathbb{C}[X]$ -mit Koeffizienten $a_k\in\mathbb{C}$ ist es sehr einfach, für jede beliebige -komplexe Zahl $z\in\mathbb{C}$ den Wert $p(z)$ des Polynoms auszurechnen. -Ein paar wenige Rechenregeln genügen dazu, man kann leicht einem Kind -beibringen, mit einem Taschenrechner so einen Wert auszurechnen. - -Ähnlich sieht es mit der Ableitungsoperation aus. -Einige wenige Ableitungsregeln, die man in der Analysis~I lernt, -erlauben, auf mehr oder weniger mechanische Art und Weise, jede -beliebige Funktion abzuleiten. -Man kann auch leicht einen Computer dazu programmieren, solche Ableitungen -symbolisch zu berechnen. - -Aus dem Fundamentalsatz der Algebra, der von Gauss vollständig bewiesen -wurde, ist bekannt, dass jedes Polynom mit Koeffizienten in $\mathbb{C}$ -genau so viele Lösungen in $\mathbb{C}$, wie der Grad des Polynoms angibt. -Dies ist aber ein Existenzsatz, er sagt nichts darüber aus, wie man diese -Lösungen finden kann. -In Spezialfällen, wie zum Beispiel für quadratische Polynome, gibt -es spezialsierte Lösungsverfahren, mit denen man Lösungen angeben kann. -Natürlich existieren numerische Methoden wie zum Beispiel das -Newton-Verfahren, mit dem man Nullstellen von Polynomen beliebig genau -bestimmen kann. - -Der Fundamentalsatz der Integralrechnung besagt, dass jede stetige -Funktion eine Stammfunktion hat, die bis auf eine Konstante eindeutig -bestimmt ist. -Auch dieser Existenzsatz gibt keinerlei Hinweise darauf, wie man die -Stammfunktion finden kann. -In der Analysis-Vorlesung lernt man viele Tricks, die in einer -beindruckenden Zahl von Spezialfällen ermöglichen, ein passende -Funktion anzugeben. -Man lernt auch numerische Verfahren kennen, mit denen sich Werte der -Stammfunktion, also bestimmte Integrale, mit beliebiger Genauigkeit -finden kann. - -Die numerische Lösung des Nullstellenproblems ist insofern unbefriedigend, -als sie nur schwer eine Diskussion der Abhängigkeit der Nullstellen von -den Koeffizienten des Polynoms ermöglichen. -Eine Formel wie die Lösungsformel für die quadratische Gleichung -stellt genau für solche Fälle ein ideales Werkzeug bereit. -Was man sich also wünscht ist nicht nur einfach eine Lösung, sondern eine -einfache Formel zur Bestimmung aller Lösungen. -Im Zusammenhang mit algebraischen Gleichungen erwartet man eine Formel, -in der nur arithmetische Operationen und Wurzeln vorkommen. -Für quadratische Gleichungen ist so eine Formel seit dem Altertum bekannt, -Formeln für die kubische Gleichung und die Gleichung vierten Grades wurden -im 16.~Jahrhundert von Cardano bzw.~Ferrari gefunden. -Erst viel später haben Abel und Ruffini gezeigt, dass so eine allgemeine -Formel für Polynome höheren Grades als 4 nicht existiert. -Die Galois-Theorie, die auf den Ideen von Évariste Galois beruht, -stellt eine vollständige Theorie unter anderem für die Lösbarkeit -von Gleichungen durch Wurzelausdrücke dar. - -Numerische Integralwerte haben ebenfalls den Nachteil, dass damit -Diskussionen wie die Abhängigkeit von Parametern eines Integranden -nur schwer möglich sind. -Was man sich daher wünscht ist eine Formel für die Stammfunktion, -die Werte als Zusammensetzung gut bekannter Funktionen wie der Exponential- -und Logarithmus-Funktionen oder der trigonometrischen Funktionen -sowie Wurzeln, Potenzen und den arithmetischen Operationen. -Man sagt, man möchte die Stammfunktion in ``geschlossener Form'' -dargestellt haben. -Tatsächlich ist dieses Problem auch zu Beginn des 19.~Jahrhunderts -von Joseph Liouville genauer untersucht worden. -Er hat zunächst eine Klasse von ``elementaren Funktionen'' definiert, -die als Darstellungen einer Stammfunktion in Frage kommen. -Der Satz von Liouville besagt dann, dass nur Funktionen mit einer -ganz speziellen Form eine elementare Stammfunktion haben. -Damit wird es möglich, zu entscheiden, ob ein Integrand wie $e^{-x^2}$ -eine elementare Stammfunktion hat. -Seit dieser Zeit weiss man zum Beispiel, dass die Fehlerfunktion nicht -mit den bekannten Funktionen dargestellt werden kann. - -Mit dem Aufkommen der Computer und vor allem der Computer-Algebra-System (CAS) -wurde die Frage nach der Bestimmung einer Stammfunktion erneut aktuell. -Die ebenfalls weiter entwickelte abstrakte Algebra hat ermöglicht, die -Ideen von Liouville in eine erweiterte, sogenannte differentielle -Galois-Theorie zu verpacken, die eine vollständige Lösung des Problems -darstellt. -Robert Henry Risch hat in den Sechzigerjahren auf dieser Basis -einen Algorithmus entwickelt, mit dem es möglich wird, zu entscheiden, -ob eine Funktion eine elementare Stammfunktion hat und diese -gegebenenfalls auch zu finden. -Moderne CAS implementieren diesen Algorithmus -in Teilen, besonders weit zu gehen scheint das quelloffene System -Axiom. - -Der Risch-Algorithmus hat allerdings eine Achillesferse: er benötigt -eine Method zu entscheiden, ob zwei Ausdrücke übereinstimmen. -Dies ist jedoch ein im Allgemeinen nicht entscheidbares Problem. -Moderne CAS treiben einigen Aufwand, um die -Gleichheit von Ausdrücken zu entscheiden, sie können das Problem -aber grundsätzlich nicht vollständig lösen. -Damit kann der Risch-Algorithmus in praktischen Anwendungen das -Stammfunktionsproblem ebenfalls nur mit Einschränkungen lösen, -die durch die Fähigkeiten des Ausdrucksvergleichs in einem CAS -gesetzt werden. - -Im Folgenden sollen elementare Funktionen definiert werden, es sollen -die Grundideen der differentiellen Galois-Theorie zusammengetragen werden -und der Satz von Liouvill vorgestellt werden. -An Hand der Fehler-Funktion soll dann gezeigt werden, wie man jetzt -einsehen kann, dass die Fehlerfunktion nicht elementar darstellbar ist. -Im nächsten Abschnitt dann soll der Risch-Algorithmus skizziert werden. - -\subsection{Elementare Funktionen -\label{buch:integrale:section:elementar}} -Es soll die Frage beantwortet werden, welche Stammfunktionen sich -in ``geschlossener Form'' oder durch ``wohlbekannte Funktionen'' -ausdrücken lassen. -Welche Funktionen dabei als ``wohlbekannt'' gelten dürfen ist -ziemlich willkürlich. -Sicher möchte man Potenzen und Wurzeln, Logarithmus und Exponentialfunktion, -aber auch die trigonometrischen Funktionen dazu zählen dürfen. -Ausserdem will man beliebig mit den arithmetischen Operationen -rechnen. -So entsteht die Menge der Funktionen, die man ``elementar'' nennen -will. - -In der Menge der elementaren Funktionen möchte man jetzt -Stammfunktionen ausgewählter Funktionen suchen. -Dazu muss man von jeder Funktion ihre Ableitung kennen. -Die Ableitungsoperation macht aus der Funktionenmenge eine -differentielle Algebra. -Der Satz von Liouville (Satz~\ref{buch:integrale:satz:liouville1}) -liefert Bedingungen, die erfüllt sein müssen, wenn eine Funktion -eine elementare Stammfunktion hat. -Sind diese Bedingungen nicht erfüllbar, ist auch keine -elementare Stammfunktion möglich. - -In den folgenden Abschnitten soll die differentielle Algebra -der elementaren Funktionen konstruiert werden. - -\subsubsection{Körper} -Die einfachsten Funktionen sind die die Konstanten, für die wir -für die nachfolgenden Betrachtungen fast immer die komplexen Zahlen -$\mathbb{C}$ -zu Grunde legen wollen. -Dabei ist vor allem wichtig, dass sich darin alle arithmetischen -Operationen durchführen lassen mit der einzigen Ausnahme, dass -nicht durch $0$ dividiert werden darf. -Man nennt $\mathbb{C}$ daher ein {\em Körper}. -\index{Körper}% -\label{buch:integrale:def:koerper} - -\subsubsection{Polynome und rationale Funktionen} -Die Polynome einer Variablen beschreiben eine Menge von -Funktionen, in der Addition, Subtraktion, Multiplikation -von Funktionen und Multiplikation mit komplexen Zahlen -uneingeschränkt möglich ist. -Wir bezeichen wie früher die Menge der Polynome in $z$ mit -$\mathbb{C}[z]$. - -Die Division ist erst möglich, wenn man beliebige Brüche -zulässt, deren Zähler und Nenner Polynome sind. -Die Menge -\[ -\mathbb{C}(z) -= -\biggl\{ -\frac{p(z)}{q(z)} -\;\bigg|\; -p,q\in \mathbb{C}[z] -\biggr\} -\] -heisst die Menge der {\em rationalen Funktionen}. -\label{buch:integrale:def:rationalefunktion} -\index{Funktion, rationale}% -\index{rationale Funktion}% -In ihr sind jetzt alle arithmetischen Operationen ausführbar -ausser natürlich die Division durch die Nullfunktion. -Die rationalen Funktionen bilden also wieder eine Körper. - -Die Tatsache, dass die rationalen Funktionen einen Körper -bilden bedeutet auch, dass die Konstruktion erneut durchgeführt -werden kann. -Ausgehend von einem beliebigen Körper $K$ können wieder zunächst -die Polynome $K[X]$ und anschliesen die rationalen Funktionen $K[X]$ -in der neuen Variablen, jetzt aber mit Koeffizienten in $K$ -gebildet werden. -So entstehen Funktionen von mehreren Variablen und, indem -wir für die neue Variable $X$ zum Beispiel die im übernächsten -Abschnitt betrachtete Wurzel $X=\sqrt{z}$ -einsetzen, rationale Funktionen in $z$ und $\sqrt{z}$. - -Solche Funktionenkörper werden im folgenden mit geschweiften -Buchstaben $\mathscr{D}$ bezeichnet. -\index{Funktionenkörper}% - -\subsubsection{Ableitungsoperation} -In allen Untersuchungen soll immer die Ableitungsoperation -mit berücksichtigt werden. -In unserer Betrachtungsweise spielt es keine Rolle, dass die -Ableitung aus einem Grenzwert entsteht, es sind nur die algebraischen -Eigenschaften wichtig. -Diese sind in der folgenden Definition zusammengefasst. - -\begin{definition} -\label{buch:integrale:def:derivation} -Ein {\em Ableitungsoperator} oder eine {\em Derivation} einer Algebra -$\mathscr{D}$ von Funktionen ist eine lineare Abbildung -\[ -\frac{d}{dz} -\colon \mathscr{D} \to \mathscr{D} -: -f \mapsto \frac{df}{dz} = f', -\] -die zusätzlich die Produktregel -\begin{equation} -\frac{d}{dz} (fg) -= -\frac{df}{dz} \cdot g + f \cdot \frac{dg}{dz} -\qquad\Leftrightarrow\qquad -(fg)' = f' g + fg' -\label{buch:integrale:eqn:produktregel} -\end{equation} -\index{Produktregel}% -erfüllt. -Die Funktion $f'\in \mathscr{D}$ heisst auch die {\em Ableitung} -von $f\in\mathscr{D}$. -\index{Derivation}% -\index{Ableitungsoperator}% -\index{Ableitung}% -\end{definition} - -Die Produktregel hat zum Beispiel auch die bekannten Quotientenregel -zur Folge. -Dazu betrachten wir das Produkt $f= (f/g)\cdot g$ und leiten es mit -Hilfe der Produktregel ab: -\[ -\frac{d}{dz}f -= -\frac{d}{dz} -\biggl( -\frac{f}{g}\cdot g -\biggr) -= -{\color{darkred} -\frac{d}{dz} -\biggl( -\frac{f}{g} -\biggr)} -\cdot g -+ -\frac{f}{g}\cdot \frac{d}{dz}g. -\] -Jetzt lösen wir nach der {\color{darkred}roten} Ableitung des Quotienten -auf und erhalten -\begin{equation} -\biggl(\frac{f}{g}\biggr)' -= -\frac{d}{dz}\biggl(\frac{f}{g}\biggr) -= -\frac1g\biggl( -\frac{d}{dz}f - \frac{f}{g}\cdot \frac{d}{dz}g -\biggr) -= -\frac{1}{g} -\biggl( -f'-\frac{fg'}{g} -\biggr) -= -\frac{f'g-fg'}{g^2}. -\label{buch:integrale:eqn:quotientenregel} -\end{equation} -Dies ist die Quotientenregel. - -Aus der Produktregel folgt natürlich sofort auch die Potenzregel -für die Ableitung der $n$ten Potenz einer Funktion $f\in\mathscr{D}$, -sie lautet: -\begin{equation} -\frac{d}{dz} f^n -= -\underbrace{ -f'f^{n-1} + ff'f^{n-2} + f^2f'f^{n-3}+\dots f^{n-1}f' -}_{\displaystyle \text{$n$ Terme}} -= -nf^{n-1}f'. -\label{buch:integrale:eqn:potenzregel} -\end{equation} -In dieser Form versteckt sich natürlich auch die Kettenregel, die -Potenzfunktion ist die äussere Funktion, $f$ die innere, $f'$ ist also -die Ableitung er inneren Funktion, wie in der Kettenregel verlangt. -Falls $f$ ein Element von $\mathscr{D}$ ist mit der Eigenschaft -$df/dz=1$, dann entsteht die übliche Produktregel. - -\begin{definition} -Eine Algebra $\mathscr{D}$ von Funktionen mit einem Ableitungsoperator -$d/dz$ heisst eine {\em differentielle Algebra}. -\index{differentielle Algebra}% -\index{Algebra, differentielle}% -In einer differentiellen Algebra gelten die üblichen -Ableitungsregeln. -\end{definition} - -Die Potenzregel war in der Form~\eqref{buch:integrale:eqn:potenzregel} -geschrieben worden, nicht als die Ableitung von $z$. -Der Grund dafür ist, dass wir gar nicht voraussetzen wollen, dass in -unserer differentiellen Algebra eine Funktion existiert, die die -Rolle von $z$ hat. -Dies ist gar nicht nötig, wie das folgende Beispiel zeigt. - -\begin{beispiel} -Als Funktionenmenge $\mathscr{D}$ nehmen wir rationale Funktionen -in zwei Variablen, die wir $\cos x $ und $\sin x$ nennen. -Diese Menge bezeichnen wir mit -$\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ -Der Ableitungsoperator ist -\begin{align*} -\frac{d}{dx} \cos x &= -\sin x -\\ -\frac{d}{dx} \sin x &= \phantom{-}\cos x. -\end{align*} -Die Funktionen von $\mathbb{Q}(\cos x,\sin x)$ sind also Brüche, -deren Zähler und Nenner Polynome in $\cos x$ und $\sin x$ sind. -Aus den Produkt- und Quotientenregeln und den Ableitungsregeln für -$\cos x$ und $\sin x$ folgt, dass die Ableitung einer Funktion in -$\mathscr{D}$ wieder in $\mathscr{D}$ ist, $\mathscr{D}$ ist eine -differentielle Algebra. -\end{beispiel} - -Die konstanten Funktionen spielen eine besondere Rolle. -Da wir bei der Ableitung nicht von der Vorstellung einer -Funktion mit einem variablen Argument ausgehen wollten und -die Ableitung nicht als Grenzwert definieren wollten, müssen -wir auch bei der Definition der ``Konstanten'' einen neuen -Weg gehen. -In der Analysis sind die Konstanten genau die Funktionen, -deren Ableitung $0$ ist. - -\begin{definition} -\label{buch:integrale:def:konstante} -Ein Element $f\in \mathscr{D}$ mit $df/dz=f'=0$ heissen -{\em Konstante} in $\mathscr{D}$. -\index{Konstante}% -\end{definition} - -Die in der Potenzregel~\eqref{buch:integrale:eqn:potenzregel} -vermisste Funktion $z$ kann man ähnlich zu den Konstanten -zu definieren versuchen. -$z$ müsste ein Element von $\mathscr{D}$ mit $z' = 1$ sein. -Allerdings gibt es viele solche Elemente, ist $c$ eine Konstanten -und $z'=1$, dann ist auch $(z+c)'=1$, $(z+c)$ hat also für -die Zwecke unserer Untersuchung die gleichen Eigenschaften wie -$z$. -Dies deckt sich natürlich auch mit der Erwartung, dass Stammfunktionen -nur bis auf eine Konstante bestimmt sind. -Eine differentielle Algebra muss allerdings kein Element $z$ mit der -Eigenschaft $z'=1$ enthalten. - -\begin{beispiel} -In $\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ gibt es kein Element $x$. -Ein solches wäre von der Form -\[ -x = \frac{p(\cos x,\sin x)}{q(\cos x,\sin x)}. -\] -Eine solche goniometrische Beziehung würde für $x=\frac{\pi}4$ bedeuten, -dass -\[ -\frac{\pi}4 -= -\frac{p(\sqrt{2}/2,\sqrt{2}/2)}{q(\sqrt{2}/2,\sqrt{2}/2)}. -\] -Auf der rechten Seite steht ein Quotient von Polynome, in dessen -Argument nur rationale Zahlen und $\sqrt{2}$ steht. -So ein Ausdruck kann immer in die Form -\[ -\pi -= -4\frac{a\sqrt{2}+b}{c\sqrt{2}+d} -= -\frac{4(a\sqrt{2}+b)(c\sqrt{2}-d)}{2c^2+d^2} -= -r\sqrt{2}+s -\] -gebracht werden. -Die Zahl auf der rechten Seite ist zwar irrational, aber sie ist Nullstelle -des quadratischen Polynoms -\[ -p(x) -= -(x-r\sqrt{2}-s)(x+r\sqrt{2}-s) -= -x^2 --2sx --2r^2+s^2 -\] -mit rationalen Koeffizienten, wie man mit der Lösungsformel für die -quadratische Gleichung nachprüfen kann. -Es ist bekannt, dass $\pi$ als transzendente Zahl nicht Nullstelle -eines Polynoms mit rationalen Koeffizienten ist. -Dieser Widerspruch zeigt, dass $x$ nicht in $\mathbb{Q}(\cos x, \sin x)$ -vorkommen kann. -\end{beispiel} - -In einer differentiellen Algebra kann jetzt die Frage nach der -Existenz einer Stammfunktion gestellt werden. - -\begin{aufgabe} -\label{buch:integrale:aufgabe:existenz-stammfunktion} -Gegeben eine differentielle Algebra $\mathscr{D}$ und ein Element -$f\in\mathscr{D}$, entscheide, ob es ein Element $F\in\mathscr{D}$ -gibt mit der Eigenschaft $F'=f$. -Ein solches $F\in\mathscr{D}$ heisst {\em Stammfunktion} von $f$. -\end{aufgabe} - -\begin{satz} -In einer differentiellen Algebra $\mathscr{D}$ mit $z\in\mathscr{D}$ -hat die Potenzfunktion $f=z^n$ für $n\in\mathbb{N}\setminus\{-1\}$ -ein Stammfunktion, nämlich -\[ -F = \frac{1}{n+1} z^{n+1}. -\] -\label{buch:integrale:satz:potenzstammfunktion} -\end{satz} - -\begin{proof}[Beweis] -Tatsächlich kann man dies sofort nachrechnen, muss allerdings die -Fälle $n+1 >0$ und $n+1<0$ unterscheiden, da die Potenzregel -\eqref{buch:integrale:eqn:potenzregel} nur für natürliche Exponenten -gilt. -Man erhält -\begin{align*} -n+1&>0\colon -& -\frac{d}{dz}\frac{1}{n+1}z^{n+1} -&= -\frac{1}{n+1}(n+1)z^{n+1-1} -= -z^n, -\\ -n+1&<0\colon -& -\frac{d}{dz}\frac{1}{n+1}\frac{1}{z^{-(n+1)}} -&= -\frac{1}{n+1}\frac{1'z^{-(n+1)}-1(-(n+1))z^{-n-1-1}}{z^{-2n-2}} -\\ -&& -&= -\frac{1}{n+1} -\frac{(n+1)z^n{-n-2}}{z^{-2n-2}} -\\ -&& -&= -\frac{1}{z^{-n}}=z^n. -\end{align*} -Man beachte, dass in dieser Rechnung nichts anderes als die -algebraischen Eigenschaften der Produkt- und Quotientenregel -verwendet wurden. -\end{proof} - -\subsubsection{Wurzeln} -Die Wurzelfunktionen sollen natürlich als elementare Funktionen -erlaubt sein. -Es ist bekannt, dass $\sqrt{z}\not\in \mathscr{D}=\mathbb{C}(z)$ -ist, ein solches Element müsste also erst noch hinzugefügt werden. -Dabei muss auch seine Ableitung definiert werden. -Auch dabei dürfen wir nicht auf eine Grenzwertüberlegung zurückgreifen, -vielmehr müssen wir die Ableitung auf vollständig algebraische -Weise bestimmen. - -Wir schreiben $f=\sqrt{z}$ und leiten die Gleichung $f^2=z$ nach $z$ ab. -Dabei ergibt sich nach der Potenzregel -\[ -\frac{d}{dz}f^2 = 2f'f = \frac{d}{dz}z=1 -\qquad\Rightarrow\qquad f' = \frac{1}{2f}. -\] -Diese Rechnung lässt sich auch auf $n$-Wurzeln $g=\root{n}\of{z}$ mit -der Gleichung $g^n = z$ verallgemeinern. -Die Ableitung der $n$-ten Wurzel ist -\begin{equation} -\frac{d}{dz}g^n -= -ng^{n-1} = \frac{d}{dz}z=1 -\qquad\Rightarrow\qquad -\frac{d}{dz}g = \frac{1}{ng^{n-1}}. -\end{equation} -Es ist also möglich, eine differentielle Algebra $\mathscr{D}$ mit einer -$n$-ten Wurzel $g$ zu einer grösseren differentiellen Algebra $\mathscr{D}(g)$ -zu erweitern, in der wieder alle Regeln für das Rechnen mit Ableitungen -erfüllt sind. - -\subsubsection{Algebraische Elemente} -Die Charakterisierung der Wurzelfunktionen passt zwar zum verlangten -algebraischen Vorgehen, ist aber zu spezielle und nicht gut für die -nachfolgenden Untersuchengen geeignet. -Etwas allgemeiner ist der Begriff der algebraischen Elemente. - -\begin{definition} -\label{buch:integrale:def:algebraisches-element} -Seien $K\subset L$ zwei Körper. -Ein Element $\alpha \in L$ heisst {\em algebraisch} über $K$, -wenn $\alpha$ Nullstelle eines Polynoms $p\in K[X]$ mit Koeffizienten -in $K$ ist. -\index{algebraisch}% -\end{definition} - -Jedes Element $\alpha\in K$ ist algebraisch, da $\alpha$ Nullstelle -von $X-\alpha\in K[X]$ ist. -Die $n$tem Wurzeln eines Elemente $\alpha\in K$ sind ebenfalls algebraisch, -da sie Nullstellen des Polynoms $p(X) = X^n - \alpha$ sind. -Allerdings ist nicht klar, dass diese Wurzeln überhaupt existieren. -Nach dem Satz von Abel~\ref{buch:potenzen:satz:abel} gibt es aber -Nullstellen von Polynomen, die sich nicht als Wurzelausdrücke schreiben -lassen. -Der Begriff der algebraischen Elemente ist also allgemeiner als der -Begriff der Wurzel. - -\begin{definition} -\label{buch:integrale:def:algebraisch-abgeschlossen} -Ein Körper $K$ heisst {\em algebraisch abgeschlossen}, wenn jedes Polynom mit -Koeffizienten in $K$ eine Nullstelle in $K$ hat. -\end{definition} - -Der Körper $\mathbb{C}$ ist nach dem -Fundamentalsatz~\label{buch:potenzen:satz:fundamentalsatz} -der Algebra algebraisch abgeschlossen. -Da wir aber mit Funktionen arbeiten, müssen wir auch Wurzeln -von Funktionen finden können. -Dies ist nicht selbstverständlich, wie das folgende Beispiel zeigt. - -\begin{beispiel} -Es gibt keine stetige Funktion $f\colon \mathbb{C}\to\mathbb{C}$, die -die Gleichung $f(z)^2 = z$ und $f(1)=1$ erfüllt. -Für die Argumente $z(t)= e^{it}$ folgt, dass $f(z(t)) = e^{it/2}$ sein -muss. -Setzt man aber $t=\pm \pi$ ein, ergeben sich die Werte -$f(z(\pm\pi))=e^{\pm i\pi/2}=\pm 1$, die beiden Grenzwerte -für $t\to\pm\pi$ sind also verschieden. -\end{beispiel} - -Die Mathematik hat verschiedene ``Tricks'' entwickelt, wie mit diesem -Problem umgegangen werden kann: Funktionskeime, Garben, Riemannsche -Flächen. -Sie sind alle gleichermassen gut geeignet, das Problem zu lösen. -Für die vorliegende Aufgabe genügt es aber, dass es tatsächlich -immer ein wie auch immer geartetes Element gibt, welches Nullstelle -des Polynoms ist. - -Ist $f$ eine Nullstelle des Polynoms $p(X)$ mit Koeffizienten in -$\mathscr{D}$, dann kann man die Ableitung wie folgt berechnen. -Zunächst leitet man $p(f)$ ab: -\begin{align} -0&= -\frac{d}{dz}(a_nf^n + a_{n-1}f^{n-1}+\ldots+a_1f+a_0) -\notag -\\ -&= -a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0' -+ -na_nf^{n-1}f' -+ -(n-1)a_nf^{n-2}f' -+ -\ldots -+ -a_2ff' -+ -a_1f' -\notag -\\ -&= -a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0' -+ -( -na_nf^{n-1} -+ -(n-1)a_nf^{n-2} -+ -\ldots -+ -a_2f -+ -a_1 -)f' -\notag -\\ -\Rightarrow -\qquad -f'&=\frac{ -a_n'f^n + a_{n-1}'f^{n-1}+\dots+a_1'f+a_0' -}{ -na_nf^{n-1} -+ -(n-1)a_nf^{n-2} -+ -\dots -+ -a_1 -}. -\label{buch:integrale:eqn:algabl} -\end{align} -Das einzige, was dabei schief gehen könnte ist, dass der Nenner ebenfalls -verschwindet. -Dieses Problem kann man dadurch lösen, dass man als Polynom das -sogenannte Minimalpolynom verwendet. - -\begin{definition} -Das {\em Minimalpolynome} $m(X)$ eines algebraischen Elementes $\alpha$ ist -das Polynom kleinsten Grades, welches $m(\alpha)=0$ erfüllt. -\end{definition} - -Da das Minimalpolynom den kleinstmöglichen Grad hat, kann der Nenner -von~\eqref{buch:integrale:eqn:algabl}, -der noch kleineren Grad hat, unmöglich verschwinden. -Das Minimalpolynom ist auch im wesentlichen eindeutig. -Gäbe es nämlich zwei verschiedene Minimalpolynome $m_1$ und $m_2$, -dann müsste $\alpha$ auch eine Nullstelle des grössten gemeinsamen -Teilers $m_3=\operatorname{ggT}(m_1,m_2)$ sein. -Wären die beiden Polynome wesentlich verschieden, dann hätte $m_3$ -kleineren Grad, im Widerspruch zur Definition des Minimalpolynoms. -Also unterscheiden sich die beiden Polynome $m_1$ und $m_2$ nur um -einen skalaren Faktor. - -\subsubsection{Konjugation, Spur und Norm} -% Konjugation, Spur und Norm -Das Minimalpolynom eines algebraischen Elementes ist nicht -eindeutig bestimmt. -Zum Beispiel ist $\sqrt{2}$ algebraisch über $\mathbb{Q}$, das -Minimalpolynom ist $m(X)=X^2-2\in\mathbb{Q}[X]$. -Es hat aber noch eine zweite Nullstelle $-\sqrt{2}$. -Mit rein algebraischen Mitteln sind die beiden Nullstellen $\pm\sqrt{2}$ -nicht zu unterscheiden, erst die Verwendung der Vergleichsrelation -ermöglicht, sie zu unterscheiden. - -Dasselbe gilt für die imaginäre Einheit $i$, die das Minimalpolynom -$m(X)=X^2+1\in\mathbb{R}[X]$ hat. -Hier gibt es nicht einmal mehr eine Vergleichsrelation, mit der man -die beiden Nullstellen unterscheiden könnte. -In der Tat ändert sich aus algebraischer Sicht nichts, wenn man in -allen Formeln $i$ durch $-i$ ersetzt. - -Etwas komplizierter wird es bei $\root{3}\of{2}$. -Das Polynom $m=x^3-2\in\mathbb{Q}[X]$ hat $\root{3}\of{2}$ als -Nullstelle und dies ist auch tatsächlich das Minimalpolynom. -Das Polynom hat noch zwei weitere Nullstellen -\[ -\alpha_+ = \frac{-1+i\sqrt{3}}{2}\root{3}\of{2} -\qquad\text{und}\qquad -\alpha_- = \frac{-1-i\sqrt{3}}{2}\root{3}\of{2}. -\] -Die beiden Lösungen gehen durch die Vertauschung von $i$ und $-i$ -auseinander hervor. -Betrachtet man dasselbe Polynom aber als Polynom in $\mathbb{R}[X]$, -dann ist es nicht mehr das Minimalpolynom von $\root{3}\of{2}$, da -$X-\root{3}\of{2}\in\mathbb{R}[X]$ kleineren Grad und $\root{3}\of{2}$ -als Nullstelle hat. -Indem man -\[ -m(X)/(X-\root{3}\of{2})=X^2+\root{3}\of{2}X+\root{3}\of{2}^2=m_2(X) -\] -rechnet, bekommt man das Minimalpolynom der beiden Nullstellen $\alpha_+$ -und $\alpha_-$. -Wir lernen aus diesen Beispielen, dass das Minimalpolynom vom Grundkörper -abhängig ist (Die Faktorisierung $(X-\root{3}\of{2})\cdot m_2(X)$ von -$m(X)$ ist in $\mathbb{Q}[X]$ nicht möglich) und dass wir keine -algebraische Möglichkeit haben, die verschiedenen Nullstellen des -Minimalpolynoms zu unterscheiden. - -Die beiden Nullstellen $\alpha_+$ und $\alpha_-$ des Polynoms $m_2(X)$ -erlauben, $m_2(X)=(X-\alpha_+)(X-\alpha_-)$ zu faktorisieren. -Durch Ausmultiplizieren -\[ -(X-\alpha_+)(X-\alpha_-) -= -X^2 -(\alpha_++\alpha_-)X+\alpha_+\alpha_- -\] -und Koeffizientenvergleich mit $m_2(X)$ findet man die symmetrischen -Formeln -\[ -\alpha_+ + \alpha_- = \root{3}\of{2} -\qquad\text{und}\qquad -\alpha_+ \alpha_ = \root{3}\of{2}. -\] -Diese Ausdrücke sind nicht mehr abhängig von einer speziellen Wahl -der Nullstellen. - -Das Problem verschärft sich nocheinmal, wenn wir Funktionen betrachten. -Das Polynom $m(X)=X^3-z$ ist das Minimalpolynom der Funktion $\root{3}\of{z}$. -Die komplexe Zahl $z=re^{i\varphi}$ hat aber drei die algebraisch nicht -unterscheidbaren Nullstellen -\[ -\alpha_0(z)=\root{3}\of{r}e^{i\varphi/3}, -\quad -\alpha_1(z)=\root{3}\of{r}e^{i\varphi/3+2\pi/3} -\qquad\text{und}\qquad -\alpha_2(z)=\root{3}\of{r}e^{i\varphi/3+4\pi/3}. -\] -Aus der Faktorisierung $ (X-\alpha_0(z)) (X-\alpha_1(z)) (X-\alpha_2(z))$ -und dem Koeffizientenvergleich mit dem Minimalpolynom kann man wieder -schliessen, dass die Relationen -\[ -\alpha_0(z) + \alpha_1(z) + \alpha_2(z)=0 -\qquad\text{und}\qquad -\alpha_0(z) \alpha_1(z) \alpha_2(z) = z -\] -gelten. - -Wir können also oft keine Aussagen über individuelle Nullstellen -eines Minimalpolynoms machen, sondern nur über deren Summe oder -Produkt. - -\begin{definition} -\index{buch:integrale:def:spur-und-norm} -Sie $m(X)\in K[X]$ das Minimalpolynom eines über $K$ algebraischen -Elements und -\[ -m(X) = a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0. -\] -Dann heissen -\[ -\operatorname{Tr}(\alpha) = -a_{n-1} -\qquad\text{und}\qquad -\operatorname{Norm}(\alpha) = (-1)^n a_0 -\] -die {\em Spur} und die {\em Norm} des Elementes $\alpha$. -\index{Spur eines algebraischen Elementes}% -\index{Norm eines algebraischen Elementes}% -\end{definition} - -Die Spur und die Norm können als Spur und Determinante einer Matrix -verstanden werden, diese allgemeineren Definitionen, die man in der -Fachliteratur, z.~B.~in~\cite{buch:lang} nachlesen kann, führen aber -für unsere Zwecke zu weit. - -\begin{hilfssatz} -Die Ableitungen von Spur und Norm sind -\[ -\operatorname{Tr}(\alpha)' -= -\operatorname{Tr}(\alpha') -\qquad\text{und}\qquad -\operatorname{Norm}(\alpha)' -= -\operatorname{Tr}(\alpha)' -\] -XXX Wirklich? -\end{hilfssatz} - -\subsubsection{Logarithmen und Exponentialfunktionen} -Die Funktion $z^{-1}$ musste im -Satz~\ref{buch:integrale:satz:potenzstammfunktion} -ausgeschlossen werden, sie hat keine Stammfunktion in $\mathbb{C}(z)$. -Aus der Analysis ist bekannt, dass die Logarithmusfunktion $\log z$ -eine Stammfunktion ist. -Der Logarithmus von $z$ aber auch der Logarithmus $\log f(z)$ -einer beliebigen Funktion $f(z)$ oder die Exponentialfunktion $e^{f(z)}$ -sollen ebenfalls elementare Funktionen sein. -Da wir aber auch hier nicht auf die analytischen Eigenschaften zurückgreifen -wollen, brauchen wir ein rein algebraische Definition. - -\begin{definition} -\label{buch:integrale:def:logexp} -Sei $\mathscr{D}$ ein differentielle Algebra und $f\in\mathscr{D}$. -Ein Element $\vartheta\in\mathscr{D}$ heisst ein {\em Logarithmus} -von $f$, geschrieben $\vartheta = \log f$, wenn $f\vartheta' = f'$ gilt. -$\vartheta$ heisst eine Exponentialfunktion von $f$ wenn -$\vartheta'=\vartheta f'$ gilt. -\end{definition} - -Die Formel für die Exponentialfunktion ist etwas vertrauter, sie ist -die bekannte Kettenregel -\begin{equation} -\vartheta' -= -\frac{d}{dz} e^f -= -e^f \cdot \frac{d}{dz} f -= -\vartheta \cdot f'. -\label{buch:integrale:eqn:exponentialableitung} -\end{equation} -Da wir uns vorstellen, dass Logarithmen Umkehrfunktionen von -Exponentialfunktionen sein sollen, -muss die definierende Gleichung genau wie -\eqref{buch:integrale:eqn:exponentialableitung} -aussehen, allerdings mit vertauschten Plätzen von $f$ und $\vartheta$, -also -\begin{equation} -\vartheta' = \vartheta\cdot f' -\qquad -\rightarrow -\qquad -f' = f\cdot \vartheta' -\;\Leftrightarrow\; -\vartheta' = (\log f)' = \frac{f'}{f}. -\label{buch:integrale:eqn:logarithmischeableitung} -\end{equation} -Dies ist die aus der Analysis bekannte Formel für die logarithmische -Ableitung. - -Der Logarithmus von $f$ und die Exponentialfunktion von $f$ sollen -also ebenfalls als elementare Funktionen betrachtet werden. - -\subsubsection{Die trigonometrischen Funktionen} -Die bekannten trigonometrischen Funktionen und ihre Umkehrfunktionen -sollten natürlich auch elementare Funktionen sein. -Dabei kommt uns zur Hilfe, dass sie sich mit Hilfe der Exponentialfunktion -als -\[ -\cos f = \frac{e^{if}+e^{-if}}2 -\qquad\text{und}\qquad -\sin f = \frac{e^{if}-e^{-if}}{2i} -\] -schreiben lassen. -Eine differentielle Algebra, die die Exponentialfunktionen von $if$ und -$-if$ enthält, enthält also automatisch auch die trigonometrischen -Funktionen. -Im Folgenden ist es daher nicht mehr nötig, die trigonometrischen -Funktionen speziell zu untersuchen. - -\subsubsection{Elementare Funktionen} -Damit sind wir nun in der Lage, den Begriff der elementaren Funktion -genau zu fassen. - -\begin{definition} -\label{buch:integrale:def:einfache-elementare-funktion} -Sie $\mathscr{D}$ eine differentielle Algebra über $\mathbb{C}$ und -$\mathscr{D}(\vartheta)$ eine Erweiterung von $\mathscr{D}$ um eine -neue Funktion $\vartheta$, dann heissen $\vartheta$ und die Elemente -von $\mathscr{D}(\vartheta)$ einfach elementar, wenn eine der folgenden -Bedingungen erfüllt ist: -\begin{enumerate} -\item $\vartheta$ ist algebraisch über $\mathscr{D}$, d.~h.~$\vartheta$ -ist eine ``Wurzel''. -\item $\vartheta$ ist ein Logarithmus einer Funktion in $\mathscr{D}$, -d.~h.~es gibt $f\in \mathscr{D}$ mit $f'=f\vartheta'$ -(Definition~\ref{buch:integrale:def:logexp}). -\item $\vartheta$ ist eine Exponentialfunktion einer Funktion in $\mathscr{D}$, -d.~h.~es bit $f\in\mathscr{D}$ mit $\vartheta'=\vartheta f'$ -(Definition~\ref{buch:integrale:def:logexp}). -\end{enumerate} -\end{definition} - -Einfache elementare Funktionen entstehen also ausgehend von einer -differentiellen Algebra, indem man genau einmal eine Wurzel, einen -Logarithmus oder eine Exponentialfunktion hinzufügt. -So etwas wie die zusammengesetzte Funktion $e^{\sqrt{z}}$ ist -damit noch nicht möglich. -Daher erlauben wir, dass man die gesuchten Funktionen in mehreren -Schritten aufbauen kann. - -\begin{definition} -Sei $\mathscr{F}$ eine differentielle Algebra, die die differentielle -Algebra $\mathscr{D}$ enthält, also $\mathscr{D}\subset\mathscr{F}$. -$\mathscr{F}$ und die Elemente von $\mathscr{F}$ heissen einfach, -wenn es endlich viele Elemente $\vartheta_1,\dots,\vartheta_n$ gibt -derart, dass -\[ -\renewcommand{\arraycolsep}{2pt} -\begin{array}{ccccccccccccc} -\mathscr{D} -&\subset& -\mathscr{D}(\vartheta_1) -&\subset& -\mathscr{D}(\vartheta_1,\vartheta_2) -&\subset& -\; -\cdots -\; -&\subset& -\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1}) -&\subset& -\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1},\vartheta_n) -&=& -\mathscr{F} -\\ -\| -&& -\| -&& -\| -&& -&& -\| -&& -\| -&& -\\ -\mathscr{F}_0 -&\subset& -\mathscr{F}_1 -&\subset& -\mathscr{F}_2 -&\subset& -\cdots -&\subset& -\mathscr{F}_{n-1} -&\subset& -\mathscr{F}_{n\mathstrut} -&& -\end{array} -\] -gilt so, dass jedes $\vartheta_{i+1}$ einfach ist über -$\mathscr{F}_i=\mathscr{D}(\vartheta_1,\dots,\vartheta_i)$. -\end{definition} - -In Worten bedeutet dies, dass man den Funktionen von $\mathscr{D}$ -nacheinander Wurzeln, Logarithmen oder Exponentialfunktionen einzelner -Funktionen hinzufügt. -Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion} kann -jetzt so formuliert werden. - -\begin{aufgabe} -\label{buch:integrale:aufgabe:existenz-stammfunktion-dalg} -Gegeben ist eine Differentielle Algebra $\mathscr{D}$ und eine -Funktion $f\in \mathscr{D}$. -Gibt es eine Folge $\vartheta_1,\dots,\vartheta_n$ und eine Funktion -$F\in\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ derart, dass -$F'=f$. -\end{aufgabe} - -Das folgende Beispiel zeigt, wie man möglicherweise mehrere -Erweiterungsschritte vornehmen muss, um zu einer Stammfunktion -zu kommen. -Es illustriert auch die zentrale Rolle, die der Partialbruchzerlegung -in der weiteren Entwicklung zukommen wird. - -\begin{beispiel} -\label{buch:integrale:beispiel:nichteinfacheelementarefunktion} -Es soll eine Stammfunktion der Funktion -\[ -f(z) -= -\frac{z}{(az+b)(cz+d)} -\in -\mathbb{C}(z) -\] -gefunden werden. -In der Analysis lernt man, dass solche Integrale mit der -Partialbruchzerlegung -\[ -\frac{z}{(az+b)(cz+d)} -= -\frac{A_1}{az+b}+\frac{A_2}{cz+d} -= -\frac{A_1cz+A_1d+A_2az+A_2b}{(az+b)(cz+d)} -\quad\Rightarrow\quad -\left\{ -\renewcommand{\arraycolsep}{2pt} -\begin{array}{rcrcr} -cA_1&+&aA_2&=&1\\ -dA_1&+&bA_2&=&0 -\end{array} -\right. -\] -bestimmt werden. -Die Lösung des Gleichungssystems ergibt -$A_1=b/(bc-ad)$ und $A_2=d/(ad-bc)$. -Die Stammfunktion kann dann aus -\begin{align*} -\int f(z)\,dz -&= -\int\frac{A_1}{az+b}\,dz -+ -\int\frac{A_2}{cz+d}\,dz -= -\frac{A_1}{a}\int\frac{a}{az+b}\,dz -+ -\frac{A_2}{c}\int\frac{c}{cz+d}\,dz -\end{align*} -bestimmt werden. -In den Integralen auf der rechten Seite ist der Zähler jeweils die -Ableitung des Nenners, der Integrand hat also die Form $g'/g$. -Genau diese Form tritt in der Definition eines Logarithmus auf. -Die Stammfunktion ist jetzt -\[ -F(z) -= -\int f(z)\,dz -= -\frac{A_1}{a}\log(az+b) -+ -\frac{A_2}{c}\log(cz+d) -= -\frac{b\log(az+b)}{a(bc-ad)} -+ -\frac{d\log(cz+d)}{c(ad-bc)}. -\] -Die beiden Logarithmen kann man nicht durch rein rationale Operationen -ineinander überführen. -Sie müssen daher beide der Algebra $\mathscr{D}$ hinzugefügt werden. -\[ -\left. -\begin{aligned} -\vartheta_1&=\log(az+b)\\ -\vartheta_2&=\log(cz+d) -\end{aligned} -\quad -\right\} -\qquad\Rightarrow\qquad -F(z) \in \mathscr{F}=\mathscr{D}(\vartheta_1,\vartheta_2). -\] -Die Stammfunktion $F(z)$ ist also keine einfache elementare Funktion, -aber $F$ ist immer noch eine elementare Funktion. -\end{beispiel} - -\subsection{Partialbruchzerlegung -\label{buch:integrale:section:partialbruchzerlegung}} -Die Konstruktionen des letzten Abschnitts haben gezeigt, -wie man die Funktionen, die man als Stammfunktionen einer Funktion -zulassen möchte, schrittweise konstruieren kann. -Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg} -ist eine rein algebraische Formulierung der ursprünglichen -Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion}. -Schliesslich hat das Beispiel auf -Seite~\pageref{buch:integrale:beispiel:nichteinfacheelementarefunktion} -gezeigt, dass es im allgemeinen mehrere Schritte braucht, um zu einer -elementaren Stammfunktion zu gelangen. -Die Lösung setzt sich aus den Termen der Partialbruchzerlegung. -In diesem Abschnitt soll diese genauer studiert werden. - -In diesem Abschnitt gehen wir immer von einer differentiellen -Algebra über den komplexen Zahlen aus und verlangen, dass die -Konstanten in allen betrachteten differentiellen Algebren -$\mathbb{C}$ sind. - -\subsubsection{Monome} -Die beiden Funktionen $\vartheta-1=\log(az+b)$ und $\vartheta_2=(cz+d)$, -die im Beispiel hinzugefügt werden mussten, verhalten sich ich algebraischer -Hinsicht wie ein Monom: man kann es nicht faktorisieren oder bereits -bekannte Summanden aufspalten. -Solchen Funktionen kommt eine besondere Bedeutung zu. - -\begin{definition} -\label{buch:integrale:def:monom} -Die Funktion $\vartheta$ heisst ein Monom, wenn $\vartheta$ nicht -algebraisch ist über $\mathscr{D}$ und $\mathscr{D}(\vartheta)$ die -gleichen Konstanten enthält wie $\mathscr{D}$. -\end{definition} - -\begin{beispiel} -Als Beispiel beginnen wir mit den komplexen Zahlen $\mathbb{C}$ -und fügen die Funktion $\vartheta_1=z$ hinzu und erhalten -$\mathscr{D}=\mathbb{C}(z)$. -Die Funktionen $z^k$ sind für alle $k$ linear unabhängig, d.~h.~es -gibt keinen Ausdruck -\[ -a_nz^n + a_{n-1}z^{n-1}+\cdots+a_1z+a_0=0. -\] -Dies ist gleichbedeutend damit, dass $z$ nicht algebraisch ist. -Das Monom $z$ ist also auch ein Monom im Sinne der -Definition~\ref{buch:integrale:def:monom}. -\end{beispiel} - -\begin{beispiel} -Wir beginnen wieder mit $\mathbb{C}$ und fügen die Funktion -$e^z$ hinzu. -Gäbe es eine Beziehung -\[ -b_m(e^z)^m + b_{m-1}(e^z)^{m-1}+\dots+b_1e^z + b_0=0 -\] -mit komplexen Koeffizienten $b_i\in\mathbb{C}$, -dann würde daraus durch Einsetzen von $z=1$ die Relation -\[ -b_me^m + b_{m-1}e^{m-1} + \dots + b_1e + b_0=0, -\] -die zeigen würde, dass $e$ eine algebraische Zahl ist. -Es ist aber bekannt, dass $e$ transzendent ist. -Dieser Widersprich zeigt, dass $e^z$ ein Monom ist. -\end{beispiel} - -\begin{beispiel} -Jetzt fügen wir die Exponentialfunktion $\vartheta_2=e^z$ -der differentiellen Algebra $\mathscr{D}=\mathbb{C}(z)$ hinzu -und erhalten $\mathscr{F}_1=\mathscr{D}(e^z) = \mathbb{C}(z,e^z)$. -Gäbe es das Minimalpolynom -\begin{equation} -b_m(z)(e^z)^m + b_{m-1}(z)(e^z)^{m-1}+\dots+b_1(z)e^z + b_0(z)=0 -\label{buch:integrale:beweis:exp-analytisch} -\end{equation} -mit Koeffizienten $b_i\in\mathbb{C}(z)$, dann könnte man mit dem -gemeinsamen Nenner der Koeffizienten durchmultiplizieren und erhielte -eine Relation~\eqref{buch:integrale:beweis:exp-analytisch} mit -Koeffizienten in $\mathbb{C}[z]$. -Dividiert man durch $e^{mz}$ erhält man -\[ -b_m(z) + b_{m-1}(z)\frac{1}{e^z} + \dots + b_1(z)\frac{1}{(e^z)^{m-1}} + b_0(z)\frac{1}{(e^z)^m}=0. -\] -Aus der Analysis weiss man, dass die Exponentialfunktion schneller -anwächst als jedes Polynom, alle Terme auf der rechten Seite -konvergieren daher gegen 0 für $z\to\infty$. -Das bedeutet, dass $b_m(z)\to0$ für $z\to \infty$. -Das Polynom~\eqref{buch:integrale:beweis:exp-analytisch} wäre also gar -nicht das Minimalpolynom. -Dieser Widerspruch zeigt, dass $e^z$ nicht algebraisch ist über -$\mathbb{C}(z)$ und damit ein Monom ist\footnote{Etwas unbefriedigend -an diesem Argument ist, dass man hier wieder rein analytische statt -algebraische Eigenschaften von $e^z$ verwendet. -Gäbe es aber eine minimale Relation wie -\eqref{buch:integrale:beweis:exp-analytisch} -mit Polynomkoeffizienten, dann wäre sie von der Form -\[ -P(z,e^z)=p(z)(e^z)^m + q(z,e^z)=0, -\] -wobei Grad von $e^z$ in $q$ höchstens $m-1$ ist. -Die Ableitung wäre dann -\[ -Q(z,e^z) -= -mp(z)(e^z)^m + p'(z)(e^z)^m + r(z,e^z) -= -(mp(z) + p'(z))(e^z)^m + r(z,e^z) -=0, -\] -wobei der Grad von $e^z$ in $r$ wieder höchstens $m-1$ ist. -Bildet man $mP(z,e^z) - Q(z,e^z) = 0$ ensteht eine Relation, -in der der Grad des Koeffizienten von $(e^z)^m$ um eins abgenommen hat. -Wiederholt man dies $m$ mal, verschwindet der Term $(e^z)^m$, die -Relation~\eqref{buch:integrale:beweis:exp-analytisch} -war also gar nicht minimal. -Dieser Widerspruch zeigt wieder, dass $e^z$ nicht algebraisch ist, -verwendet aber nur die algebraischen Eigenschaften der differentiellen -Algebra. -}. -\end{beispiel} - -\begin{beispiel} -Wir hätten auch in $\mathbb{Q}$ arbeiten können und $\mathbb{Q}$ -erst die Exponentialfunktion $e^z$ und dann den Logarithmus $z$ von $e^z$ -hinzufügen können. -Es gibt aber noch weitere Logarithmen von $e^z$ zum Beispiel $z+2\pi i$. -Offenbar ist $\psi=z+2\pi i\not\in \mathbb{Q}(z,e^z)$, wir könnten also -auch noch $\psi$ hinzufügen. -Zwar ist $\psi$ auch nicht algebraisch, aber wenn wir $\psi$ hinzufügen, -dann wird aber die Menge der Konstanten grösser, sie umfasst jetzt -$\mathbb{Q}(2\pi i)$. -Die Bedingung in der Definition~\ref{buch:integrale:def:monom}, -dass die Menge der Konstanten nicht grösser werden darf, ist also -verletzt. - -Hätte man mit $\mathbb{Q}(e^z, z+2\pi i)$ begonnen, wäre $z$ aus -dem gleichen Grund kein Monom, aber $z+2\pi i$ wäre eines im Sinne -der Definition~\ref{buch:integrale:def:monom}. -In allen Rechnungen könnte man $\psi=z+2\pi i$ nicht weiter aufteilen, -da $\pi$ oder seine Potenzen keine Elemente von $\mathbb{Q}(e^z)$ sind. -\end{beispiel} - -Da wir im Folgenden davon ausgehen, dass die Konstanten unserer -differentiellen Körper immer $\mathbb{C}$ sind, wird es jeweils -genügen zu untersuchen, ob eine neu hinzuzufügende Funktion algebraisch -ist oder nicht. - -\subsubsection{Ableitungen von Polynomen und rationalen Funktionen von Monomen} -Fügt man einer differentiellen Algebra ein Monom hinzu, dann lässt -sich etwas mehr über Ableitungen von Polynomen oder Brüchen in diesen -Monomen sagen. -Diese Eigenschaften werden später bei der Auflösung der Partialbruchzerlegung -nützlich sein. - -\begin{satz} -\label{buch:integrale:satz:polynom-ableitung-grad} -Sei -\[ -P -= -A_nX^n + A_{n-1}X^{n-1} + \dots A_1X+A_0 -\in\mathscr{D}[X] -\] -ein Polynom mit Koeffizienten in einer differentiellen Algebra $\mathscr{D}$ -und $\vartheta$ ein Monom über $\mathscr{D}$. -Dann gilt -\begin{enumerate} -\item -\label{buch:integrale:satz:polynom-ableitung-grad-log} -Falls $\vartheta=\log f$ ist, ist $P(\vartheta)'$ ein -Polynom vom Grad $n$ in $\vartheta$, wenn der Leitkoeffizient $A_n$ -nicht konstant ist, andernfalls ein Polynom vom Grad $n-1$. -\item -\label{buch:integrale:satz:polynom-ableitung-grad-exp} -Falls $\vartheta = \exp f$ ist, dann ist $P(\vartheta)'$ ein Polynom -in $\vartheta$ vom Grad $n$. -\end{enumerate} -\end{satz} - -Der Satz macht also genaue Aussagen darüber, wie sich der Grad eines -Polynoms in $\vartheta$ beim Ableiten ändert. - -\begin{proof}[Beweis] -Für Exponentialfunktion ist $\vartheta'=\vartheta f'$, die Ableitung -fügt also einfach einen Faktor $f'$ hinzu. -Terme der Form $A_k\vartheta^k$ haben die Ableitung -\[ -(A_k\vartheta^k) -= -A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta' -= -A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta f' -= -(A'_k + kA_k f)\vartheta^k. -\] -Damit wird die Ableitung des Polynoms -\begin{equation} -P(\vartheta)' -= -\underbrace{(A'_n+nA_nf')\vartheta^n}_{\displaystyle=(A_n\vartheta^n)'} -+ -(A'_{n-1}+(n-1)A_{n-1}f')\vartheta^{n-1} -+ \dots + -(A'_1+A_1f')\vartheta + A_0'. -\label{buch:integrale:ableitung:polynom} -\end{equation} -Der Grad der Ableitung kann sich also nur ändern, wenn $A_n'+nA_nf'=0$ ist. -Dies bedeutet aber wegen -\( -(A_n\vartheta^n)' -= -0 -\), dass $A_n\vartheta^n=c$ eine Konstante ist. -Da alle Konstanten bereits in $\mathscr{D}$ sind, folgt, dass -\[ -\vartheta^n=\frac{c}{A_n} -\qquad\Rightarrow\qquad -\vartheta^n - \frac{c}{A_n}=0, -\] -also wäre $\vartheta$ algebraisch über $\mathscr{D}$, also auch kein Monom. -Dieser Widerspruch zeigt, dass der Leitkoeffizient nicht verschwinden kann. - -Für die erste Aussage ist die Ableitung der einzelnen Terme des Polynoms -\[ -(A_k\vartheta^k)' -= -A_k'\vartheta^k + A_kk\vartheta^{k-1}\vartheta' -= -A_k'\vartheta^k + A_kk\vartheta^{k-1}\frac{f'}{f} -= -\biggl(A_k'\vartheta + kA_k\frac{f'}{f}\biggr)\vartheta^{k-1}. -\] -Die Ableitung des Polynoms ist daher -\[ -P(\vartheta)' -= -A_n'\vartheta^n + \biggl(nA_n\frac{f'}{f}+ A'_{n-1}\biggr)\vartheta^{n-1}+\dots -\] -Wenn $A_n$ keine Konstante ist, ist $A_n'\ne 0$ und der Grad von -$P(\vartheta)'$ ist $n$. -Wenn $A_n$ eine Konstante ist, müssen wir noch zeigen, dass der nächste -Koeffizient nicht verschwinden kann. -Wäre der zweite Koeffizient $=0$, dann wäre die Ableitung -\[ -(nA_n\vartheta+A_{n-1})' -= -nA_n\vartheta'+A'_{n-1} -= -nA_n\frac{f'}{f}+A'_{n-1} -= -0, -\] -d.h. $nA_n\vartheta+A_{n-1}=c$ wäre eine Konstante. -Da alle Konstanten schon in $\mathscr{D}$ sind, müsste auch -\[ -\vartheta = \frac{c-A_{n-1}}{nA_n} \in \mathscr{D} -\] -sein, wieder wäre $\vartheta$ kein Monom. -\end{proof} - -Der nächste Satz gibt Auskunft über den führenden Term in -$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$. - -\begin{satz} -\label{buch:integrale:satz:log-polynom-ableitung-grad} -Sei $P$ ein Polynom vom Grad $n$ wie in -\label{buch:integrale:satz:log-polynom-ableitung} -welches zusätzlich normiert ist, also $A_n=1$. -\begin{enumerate} -\item -\label{buch:integrale:satz:log-polynom-ableitung-log} -Ist $\vartheta=\log f$, dann ist -$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$ und $P(\vartheta)'$ -hat Grad $n-1$. -\item -\label{buch:integrale:satz:log-polynom-ableitung-exp} -Ist $\vartheta=\exp f$, dann gibt es ein Polynom $N(\vartheta)$ so, dass -$(\log P(\vartheta))' -= -P(\vartheta)'/P(\vartheta) -= -N(\vartheta)/P(\vartheta)+nf'$ -ist. -Falls $P(\vartheta)=\vartheta$ ist $N=0$, andernfalls ist $N(\vartheta)$ -ein Polynom vom Grad $0$ das kleinste $k$ so, dass $p<(k+1)q$. -Insbesondere ist dann $kq\le p$. -Nach dem euklidischen Satz für die Division von $P(X)$ durch $Q(X)^k$ -gibt es ein Polynom $P_k(X)$ vom Grad $\le p-qk$ derart, dass -\[ -P(X) = P_k(X)Q(X)^k + R_k(X) -\] -mit einem Rest $R_k(X)$ vom Grad $1$ können mit der Potenzregel -integriert werden, aber für eine Stammfunktion $1/(z-1)$ muss -der Logarithmus $\log(z-1)$ hinzugefügt werden. -Die Stammfunktion -\[ -\int f(z)\,dz -= -\int -\frac{1}{z-1} -\,dz -+ -\int -\frac{4}{(z-1)^2} -\,dz -+ -\int -\frac{4}{(z-1)^3} -\,dz -= -\log(z-1) -- -\underbrace{\frac{4z-2}{(z-1)^2}}_{\displaystyle\in\mathscr{D}} -\in \mathscr{D}(\log(z-1)) = \mathscr{F} -\] -hat eine sehr spezielle Form. -Sie besteht aus einem Term in $\mathscr{D}$ und einem Logarithmus -einer Funktion von $\mathscr{D}$, also einem Monom über $\mathscr{D}$. - -\subsubsection{Einfach elementare Stammfunktionen} -Der in diesem Abschnitt zu beweisende Satz von Liouville zeigt, -dass die im einführenden Beispiel konstruierte Form der Stammfunktion -eine allgemeine Eigenschaft elementar integrierbarer -Funktionen ist. -Zunächst aber soll dieses Bespiel etwas verallgemeinert werden. - -\begin{satz}[Liouville-Vorstufe für Monome] -\label{buch:integrale:satz:liouville-vorstufe-1} -Sei $\vartheta$ ein Monom über $\mathscr{D}$ und $g\in\mathscr{D}(\vartheta)$ -mit $g'\in\mathscr{D}$. -Dann hat $g$ die Form $v_0 + c_1\vartheta$ mit $v_0\in\mathscr{D}$ und -$c_1\in\mathbb{C}$. -\end{satz} - -\begin{proof}[Beweis] -In Anlehnung an das einführende Beispiel nehmen wir an, dass die -Stammfunktion $g\in\mathscr{D}[\vartheta]$ für ein Monom $\vartheta$ -über $\mathscr{D}$ ist. -Dann hat $g$ die Partialbruchzerlegung -\[ -g -= -H(\vartheta) -+ -\sum_{j\le r(i)} \frac{P_{ij}(\vartheta)}{Q_i(\vartheta)^j} -\] -mit irreduziblen normierten Polynomen $Q_i(\vartheta)$ und -Polynomen $P_{ij}(\vartheta)$ vom Grad kleiner als $\deg Q_i(\vartheta)$. -Ausserdem ist $H(\vartheta)$ ein Polynom. -Die Ableitung von $g$ muss jetzt aber wieder in $\mathscr{D}$ sein. -Zu ihrer Berechnung können die Sätze -\ref{buch:integrale:satz:polynom-ableitung-grad}, -\ref{buch:integrale:satz:log-polynom-ableitung-grad} -und -\ref{buch:integrale:satz:partialbruch-monom} -verwendet werden. -Diese besagen, dass in der Partialbruchzerlegung die Exponenten der -Nenner die Quotienten in der Summe nicht kleiner werden. -Die Ableitung $g'\in\mathscr{D}$ darf aber gar keine Nenner mit -$\vartheta$ enthalten, also dürfen die Quotienten gar nicht erst -vorkommen. -$g=H(\vartheta)$ muss also ein Polynom in $\vartheta$ sein. -Die Ableitung des Polynoms darf wegen $g'\in\mathscr{d}$ das Monom -$\vartheta$ ebenfalls nicht mehr enthalten, daher kann es höchstens vom -Grad $1$ sein. -Nach Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad} -muss ausserdem der Leitkoeffizient von $g$ eine Konstante sein, -das Polynom hat also genau die behauptete Form. -\end{proof} - -\begin{satz}[Liouville-Vorstufe für algebraische Elemente] -\label{buch:integrale:satz:liouville-vorstufe-2} -Sei $\vartheta$ algebraische über $\mathscr{D}$ und -$g\in\mathscr{D}(\vartheta)$ mit $g'\in\mathscr{D}$. -\end{satz} - -\subsubsection{Elementare Stammfunktionen} -Nach den Vorbereitungen über einfach elementare Stammfunktionen -in den Sätzen~\label{buch:integrale:satz:liouville-vorstufe-1} -und -\label{buch:integrale:satz:liouville-vorstufe-2} sind wir jetzt -in der Lage, den allgemeinen Satz von Liouville zu formulieren -und zu beweisen. - -\begin{satz}[Liouville] -Sei $\mathscr{D}$ ein Differentialkörper, $\mathscr{F}$ einfach über -$\mathscr{D}$ mit gleichem Konstantenkörper $\mathbb{C}$. -Wenn $g\in \mathscr{F}$ eine Stammfunktion von $f\in\mathscr{D}$ ist, -also $g'=f$, dann gibt es Zahlen $c_i\in\mathbb{C}$ und -$v_0,v_i\in\mathscr{D}$ derart, dass -\begin{equation} -g = v_0 + \sum_{i=1}^k c_i \log v_i -\qquad\Rightarrow\qquad -g' = v_0' + \sum_{i=1}^k c_i \frac{v_i'}{v_i} = f -\label{buch:integrale:satz:liouville-fform} -\end{equation} -gilt. -\end{satz} - -Der Satz hat zur Folge, dass eine elementare Stammfunktion für $f$ -nur dann existieren kann, wenn sich $f$ in der speziellen Form -\eqref{buch:integrale:satz:liouville-fform} -schreiben lässt. -Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg} -lässt sich damit jetzt lösen. - - -\begin{proof}[Beweis] -Wenn die Stammfunktion $g\in\mathscr{D}$ ist, dann hat $g$ die Form -\eqref{buch:integrale:satz:liouville-fform} mit $v_0=g$, die Summe -wird nicht benötigt. - -Wir verwenden Induktion nach der Anzahl der Elemente, die zu $\mathscr{D}$ -hinzugefügt werden müssen, um einen Differentialkörper -$\mathscr{F}=\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ zu konstruieren, -der $g$ enthält. -Da $f\in\mathscr{D}\subset\mathscr{D}(\vartheta_1)$ ist, können wir die -Induktionsannahme auf die Erweiterung -\[ -\mathscr{D}(\vartheta_1)\subset\mathscr{D}(\vartheta_1,\vartheta_2) -\subset\cdots\subset \mathscr{D}(\vartheta_1,\cdots,\vartheta_n)=\mathscr{F} -\] -anwenden, die durch Hinzufügen von nur $n-1$ Elemente -$\vartheta_2,\dots,\vartheta_n$ aus $\mathscr{D}(\vartheta_1)$ den -Differentialkörper $\mathscr{F}$ erreicht, der $g$ enthält. -Sie besagt, dass sich $g$ schreiben lässt als -\[ -g = w_0 + \sum_{i=1}^{k_1} c_i\log w_i -\qquad\text{mit $c_i\in\mathbb{C}$ und $w_0,w_i\in\mathscr{D}(\vartheta_1)$.} -\] -Wir müssen jetzt zeigen, dass sich dieser Ausdruck umformen lässt -in den Ausdruck der Form~\eqref{buch:integrale:satz:liouville-fform}. - -Der Term $w_0\in\mathscr{D}(\vartheta_1)$ hat eine Partialbruchzerlegung -\[ -H(\vartheta_1) -+ -\sum_{j\le r(l)} \frac{P_{lj}(\vartheta_1)}{Q_l(\vartheta_1)^j} -\] -in der Variablen $\vartheta_1$. - -Da $w_i\in\mathscr{D}(\vartheta_1)$ ist, kann man Zähler und Nenner -von $w_i$ als Produkt irreduzibler normierter Polynome schreiben: -\[ -w_i -= -\frac{h_i Z_{i1}(\vartheta_1)^{s_{i1}}\cdots Z_{im(i)}^{s_{im(i)}} -}{ -N_{i1}(\vartheta_1)^{t_{i1}}\cdots N_{in(i)}(\vartheta_1)^{t_{in(i)}} -} -\] -Der Logarithmus hat die Form -\begin{align*} -\log w_i -&= \log h_i + -s_{i1} -\log Z_{i1}(\vartheta_1) -+ -\cdots -+ -s_{im(i)} -\log Z_{im(i)} -- -t_{i1} -\log -N_{i1}(\vartheta_1) -- -\cdots -- -t_{in(i)} -\log -N_{in(i)}(\vartheta_1). -\end{align*} -$g$ kann also geschrieben werden als eine Summe von Polynomen, Brüchen, -wie sie in der Partialbruchzerlegung vorkommen, Logarithmen von irreduziblen -normierten Polynomen und Logarithmen von Elementen von $\mathscr{D}$. - -Die Ableitung $g'$ muss jetzt aber wieder in $\mathscr{D}$ sein, beim -Ableiten müssen also alle Terme verschwinden, die $\vartheta_1$ enthalten. -Dabei spielt es eine Rolle, ob $\vartheta_1$ ein Monom oder algebraisch ist. -\begin{enumerate} -\item -Wenn $\vartheta_1$ ein Monom ist, dann kann man wie im Beweis des -Satzes~\ref{buch:integrale:satz:liouville-vorstufe-1} argumentieren, -dass die Brüchterme gar nicht vorkommen und -$H(\vartheta_1)=v_0+c_1\vartheta_1$ sein muss. -Die Ableitung Termen der Form $\log Z(\vartheta_1)$ ist ein Bruchterm -mit dem irreduziblen Nenner $Z(\vartheta_1)$, die ebenfalls verschwinden -müssen. -Ist $\vartheta_1$ eine Exponentialfunktion, dann ist -$\vartheta_1' \in \mathscr{D}(\vartheta_1)\setminus\mathscr{D}$, also muss -$c_1=0$ sein. -Ist $\vartheta_1$ ein Logarithmus, also $\vartheta_1=\log v_1$, dann -kommen nur noch Terme der in -\eqref{buch:integrale:satz:liouville-fform} -erlaubten Form vor. - -\item -Wenn $\vartheta_1$ algebraisch vom Grad $m$ ist, dann ist -\[ -g' = w_0' + \sum_{i=1}^{k_1} d_i\frac{w_i'}{w_i} = f. -\] -Weder $w_0$ noch $\log w_i$ sind in $\mathscr{D}(\vartheta_1)$. -Aber wenn man $\vartheta_1$ durch die $m$ konjugierten Elemente -ersetzt und alle summiert, dann ist -\[ -mf -= -\operatorname{Tr}(w_0) + \sum_{i=1}^{k_1} d_i \log\operatorname{Norm}(w_i). -\] -Da die Spur und die Norm in $\mathscr{D}$ sind, folgt, dass -\[ -f -= -\underbrace{\frac{1}{m} -\operatorname{Tr}(w_0)}_{\displaystyle= v_0} -+ -\sum_{i=1}^{k_1} \underbrace{\frac{d_i}{m}}_{\displaystyle=c_i} -\log -\underbrace{ \operatorname{Norm}(w_i)}_{\displaystyle=v_i} -= -v_0 + \sum_{i=1}^{k_1} c_i\log v_i -\] -die verlangte Form hat. -\qedhere -\end{enumerate} -\end{proof} - -\subsection{Die Fehlerfunktion ist keine elementare Funktion -\label{buch:integrale:section:fehlernichtelementar}} -% \url{https://youtu.be/bIdPQTVF5n4} -Mit Hilfe des Satzes von Liouville kann man jetzt beweisen, dass -die Fehlerfunktion keine elementare Funktion ist. -Dazu braucht man die folgende spezielle Form des Satzes. - -\begin{satz} -\label{buch:integrale:satz:elementarestammfunktion} -Wenn $f(x)$ und $g(x)$ rationale Funktionen von $x$ sind, dann -ist die Stammfunktion von $f(x)e^{g(x)}$ genau dann eine -elementare Funktion, wenn es eine rationale Funktion gibt, die -Lösung der Differentialgleichung -\[ -r'(x) + g'(x)r(x)=f(x) -\] -ist. -\end{satz} - -\begin{satz} -Die Funktion $x\mapsto e^{-x^2}$ hat keine elementare Stammfunktion. -\label{buch:iintegrale:satz:expx2} -\end{satz} - -\begin{proof}[Beweis] -Unter Anwendung des Satzes~\ref{buch:integrale:satz:elementarestammfunktion} -auf $f(x)=1$ und $g(x)=-x^2$ folgt, $e^{-x^2}$ genau dann eine rationale -Stammfunktion hat, wenn es eine rationale Funktion $r(x)$ gibt, die -Lösung der Differentialgleichung -\begin{equation} -r'(x) -2xr(x)=1 -\label{buch:integrale:expx2dgl} -\end{equation} -ist. - -Zunächst halten wir fest, dass $r(x)$ kein Polynom sein kann. -Wäre nämlich -\[ -r(x) -= -a_0 + a_1x + \dots + a_nx^n -= -\sum_{k=0}^n a_kx^k -\quad\Rightarrow\quad -r'(x) -= -a_1 + 2a_2x + \dots + na_nx^{n-1} -= -\sum_{k=1}^n -ka_kx^{k-1} -\] -ein Polynom, dann ergäbe sich beim Einsetzen in die Differentialgleichung -\begin{align*} -1 -&= -r'(x)-2xr(x) -\\ -&= -a_1 + 2a_2x + 3a_3x^2 + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1} -\\ -&\qquad -- -2a_0x -2a_1x^2 -2a_2x^3 - \dots - 2a_{n-1}x^n - 2a_nx^{n+1} -\\ -& -\hspace{0.7pt} -\renewcommand{\arraycolsep}{1.8pt} -\begin{array}{crcrcrcrcrcrcrcr} -=&a_1&+&2a_2x&+&3a_3x^2&+&\dots&+&(n-1)a_{n-1}x^{n-2}&+&na_{n }x^{n-1}& & & & \\ - & &-&2a_0x&-&2a_1x^2&-&\dots&-& 2a_{n-3}x^{n-2}&-&2a_{n-2}x^{n-1}&-&2a_{n-1}x^n&-&2a_nx^{n+1} -\end{array} -\\ -&= -a_1 -+ -(2a_2-2a_0)x -+ -(3a_3-2a_1)x^2 -%+ -%(4a_4-2a_2)x^3 -+ -\dots -+ -(na_n-2a_{n-2})x^{n-1} -- -2a_{n-1}x^n -- -2a_nx^{n+1}. -\end{align*} -Koeffizientenvergleich zeigt, dass $a_1=1$ sein muss. -Aus den letzten zwei Termen liest man ebenfalls mittels Koeffizientenvergleich -ab, dass $a_n=0$ und $a_{n-1}=0$ sein müssen. -Aus den Koeffizienten $(ka_k-2a_{k-2})=0$ folgt, dass -$a_{k-2}=\frac{k}{2}a_k$ für alle $k>1$ sein muss, diese Koeffizienten -verschwinden also auch, inklusive $a_1=0$. -Dies ist allerdings im Widerspruch zu $a_1=1$. -Es folgt, dass $r(x)$ kein Polynom sein kann. - -Der Nenner der rationalen Funktion $r(x)$ hat also mindestens eine Nullstelle -$\alpha$, man kann daher $r(x)$ auch schreiben als -\[ -r(x) = \frac{s(x)}{(x-\alpha)^n}, -\] -wobei die rationale Funktion $s(x)$ keine Nullstellen und keine Pole hat. -Einsetzen in die Differentialgleichung ergibt: -\[ -1 -= -r'(x) -2xr(x) -= -\frac{s'(x)}{(x-\alpha)^n} --n -\frac{s(x)}{(x-\alpha)^{n+1}} -- -\frac{2xs(x)}{(x-\alpha)^n}. -\] -Multiplizieren mit $(x-\alpha)^{n+1}$ gibt -\[ -(x-\alpha)^{n+1} -= -s'(x)(x-\alpha) -- -ns(x) -- -2xs(x)(x-\alpha) -\] -Setzt man $x=\alpha$ ein, verschwinden alle Terme ausser dem mittleren -auf der rechten Seite, es bleibt -\[ -ns(\alpha) = 0. -\] -Dies widerspricht aber der Wahl der rationalen Funktion $s(x)$, für die -$\alpha$ keine Nullstelle ist. - -Somit kann es keine rationale Funktion $r(x)$ geben, die eine Lösung der -Differentialgleichung~\eqref{buch:integrale:expx2dgl} ist und -die Funktion $e^{-x^2}$ hat keine elementare Stammfunktion. -\end{proof} - -Der Satz~\ref{buch:iintegrale:satz:expx2} rechtfertigt die Einführung -der Fehlerfunktion $\operatorname{erf}(x)$ als neue spezielle Funktion, -mit deren Hilfe die Funktion $e^{-x^2}$ integriert werden kann. - - - +\rhead{Differentialkörper} +\input{chapters/060-integral/rational.tex} +\input{chapters/060-integral/erweiterungen.tex} +\input{chapters/060-integral/diffke.tex} +\input{chapters/060-integral/iproblem.tex} +\input{chapters/060-integral/irat.tex} +\input{chapters/060-integral/sqrat.tex} diff --git a/buch/chapters/060-integral/differentialkoerper2.tex b/buch/chapters/060-integral/differentialkoerper2.tex new file mode 100644 index 0000000..f41d3ba --- /dev/null +++ b/buch/chapters/060-integral/differentialkoerper2.tex @@ -0,0 +1,1953 @@ +% +% differentialalgebren.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Differentialkörper und der Satz von Liouville +\label{buch:integrale:section:dkoerper}} +\rhead{Differentialkörper und der Satz von Liouville} +Das Problem der Darstellbarkeit eines Integrals in geschlossener +Form verlangt zunächst einmal nach einer Definition dessen, was man +als ``geschlossene Form'' akzeptieren will. +Die sogenannten {\em elementaren Funktionen} von +Abschnitt~\ref{buch:integrale:section:elementar} +bilden dafür den theoretischen Rahmen. +Das Problem ist dann die Frage zu beantworten, ob ein Integral eine +Stammfunktion hat, die eine elementare Funktion ist. +Der Satz von Liouville von Abschnitt~\ref{buch:integrale:section:liouville} +löst das Problem. + +\subsection{Eine Analogie +\label{buch:integrale:section:analogie}} +% XXX Analogie: Formel für Polynom-Nullstellen +% XXX Stammfunktion als elementare Funktion +Das Analysis-Problem, eine Stammfunktion zu finden, ist analog zum +wohlbekannten algebraischen Problem, Nullstellen von Polynomen zu finden. +Wir entwickeln diese Analogie in etwas mehr Detail, um zu sehen, ob man +aus dem algebraischen Problem etwas über das Problem der Analysis +lernen kann. + +Für ein Polynom $p(X) = a_nX^n+a_{n-1}X^{n-1}+\dots+a_1X+a_0\in\mathbb{C}[X]$ +mit Koeffizienten $a_k\in\mathbb{C}$ ist es sehr einfach, für jede beliebige +komplexe Zahl $z\in\mathbb{C}$ den Wert $p(z)$ des Polynoms auszurechnen. +Ein paar wenige Rechenregeln genügen dazu, man kann leicht einem Kind +beibringen, mit einem Taschenrechner so einen Wert auszurechnen. + +Ähnlich sieht es mit der Ableitungsoperation aus. +Einige wenige Ableitungsregeln, die man in der Analysis~I lernt, +erlauben, auf mehr oder weniger mechanische Art und Weise, jede +beliebige Funktion abzuleiten. +Man kann auch leicht einen Computer dazu programmieren, solche Ableitungen +symbolisch zu berechnen. + +Aus dem Fundamentalsatz der Algebra, der von Gauss vollständig bewiesen +wurde, ist bekannt, dass jedes Polynom mit Koeffizienten in $\mathbb{C}$ +genau so viele Lösungen in $\mathbb{C}$, wie der Grad des Polynoms angibt. +Dies ist aber ein Existenzsatz, er sagt nichts darüber aus, wie man diese +Lösungen finden kann. +In Spezialfällen, wie zum Beispiel für quadratische Polynome, gibt +es spezialsierte Lösungsverfahren, mit denen man Lösungen angeben kann. +Natürlich existieren numerische Methoden wie zum Beispiel das +Newton-Verfahren, mit dem man Nullstellen von Polynomen beliebig genau +bestimmen kann. + +Der Fundamentalsatz der Integralrechnung besagt, dass jede stetige +Funktion eine Stammfunktion hat, die bis auf eine Konstante eindeutig +bestimmt ist. +Auch dieser Existenzsatz gibt keinerlei Hinweise darauf, wie man die +Stammfunktion finden kann. +In der Analysis-Vorlesung lernt man viele Tricks, die in einer +beindruckenden Zahl von Spezialfällen ermöglichen, ein passende +Funktion anzugeben. +Man lernt auch numerische Verfahren kennen, mit denen sich Werte der +Stammfunktion, also bestimmte Integrale, mit beliebiger Genauigkeit +finden kann. + +Die numerische Lösung des Nullstellenproblems ist insofern unbefriedigend, +als sie nur schwer eine Diskussion der Abhängigkeit der Nullstellen von +den Koeffizienten des Polynoms ermöglichen. +Eine Formel wie die Lösungsformel für die quadratische Gleichung +stellt genau für solche Fälle ein ideales Werkzeug bereit. +Was man sich also wünscht ist nicht nur einfach eine Lösung, sondern eine +einfache Formel zur Bestimmung aller Lösungen. +Im Zusammenhang mit algebraischen Gleichungen erwartet man eine Formel, +in der nur arithmetische Operationen und Wurzeln vorkommen. +Für quadratische Gleichungen ist so eine Formel seit dem Altertum bekannt, +Formeln für die kubische Gleichung und die Gleichung vierten Grades wurden +im 16.~Jahrhundert von Cardano bzw.~Ferrari gefunden. +Erst viel später haben Abel und Ruffini gezeigt, dass so eine allgemeine +Formel für Polynome höheren Grades als 4 nicht existiert. +Die Galois-Theorie, die auf den Ideen von Évariste Galois beruht, +stellt eine vollständige Theorie unter anderem für die Lösbarkeit +von Gleichungen durch Wurzelausdrücke dar. + +Numerische Integralwerte haben ebenfalls den Nachteil, dass damit +Diskussionen wie die Abhängigkeit von Parametern eines Integranden +nur schwer möglich sind. +Was man sich daher wünscht ist eine Formel für die Stammfunktion, +die Werte als Zusammensetzung gut bekannter Funktionen wie der Exponential- +und Logarithmus-Funktionen oder der trigonometrischen Funktionen +sowie Wurzeln, Potenzen und den arithmetischen Operationen. +Man sagt, man möchte die Stammfunktion in ``geschlossener Form'' +dargestellt haben. +Tatsächlich ist dieses Problem auch zu Beginn des 19.~Jahrhunderts +von Joseph Liouville genauer untersucht worden. +Er hat zunächst eine Klasse von ``elementaren Funktionen'' definiert, +die als Darstellungen einer Stammfunktion in Frage kommen. +Der Satz von Liouville besagt dann, dass nur Funktionen mit einer +ganz speziellen Form eine elementare Stammfunktion haben. +Damit wird es möglich, zu entscheiden, ob ein Integrand wie $e^{-x^2}$ +eine elementare Stammfunktion hat. +Seit dieser Zeit weiss man zum Beispiel, dass die Fehlerfunktion nicht +mit den bekannten Funktionen dargestellt werden kann. + +Mit dem Aufkommen der Computer und vor allem der Computer-Algebra-System (CAS) +wurde die Frage nach der Bestimmung einer Stammfunktion erneut aktuell. +Die ebenfalls weiter entwickelte abstrakte Algebra hat ermöglicht, die +Ideen von Liouville in eine erweiterte, sogenannte differentielle +Galois-Theorie zu verpacken, die eine vollständige Lösung des Problems +darstellt. +Robert Henry Risch hat in den Sechzigerjahren auf dieser Basis +einen Algorithmus entwickelt, mit dem es möglich wird, zu entscheiden, +ob eine Funktion eine elementare Stammfunktion hat und diese +gegebenenfalls auch zu finden. +Moderne CAS implementieren diesen Algorithmus +in Teilen, besonders weit zu gehen scheint das quelloffene System +Axiom. + +Der Risch-Algorithmus hat allerdings eine Achillesferse: er benötigt +eine Method zu entscheiden, ob zwei Ausdrücke übereinstimmen. +Dies ist jedoch ein im Allgemeinen nicht entscheidbares Problem. +Moderne CAS treiben einigen Aufwand, um die +Gleichheit von Ausdrücken zu entscheiden, sie können das Problem +aber grundsätzlich nicht vollständig lösen. +Damit kann der Risch-Algorithmus in praktischen Anwendungen das +Stammfunktionsproblem ebenfalls nur mit Einschränkungen lösen, +die durch die Fähigkeiten des Ausdrucksvergleichs in einem CAS +gesetzt werden. + +Im Folgenden sollen elementare Funktionen definiert werden, es sollen +die Grundideen der differentiellen Galois-Theorie zusammengetragen werden +und der Satz von Liouvill vorgestellt werden. +An Hand der Fehler-Funktion soll dann gezeigt werden, wie man jetzt +einsehen kann, dass die Fehlerfunktion nicht elementar darstellbar ist. +Im nächsten Abschnitt dann soll der Risch-Algorithmus skizziert werden. + +\subsection{Elementare Funktionen +\label{buch:integrale:section:elementar}} +Es soll die Frage beantwortet werden, welche Stammfunktionen sich +in ``geschlossener Form'' oder durch ``wohlbekannte Funktionen'' +ausdrücken lassen. +Welche Funktionen dabei als ``wohlbekannt'' gelten dürfen ist +ziemlich willkürlich. +Sicher möchte man Potenzen und Wurzeln, Logarithmus und Exponentialfunktion, +aber auch die trigonometrischen Funktionen dazu zählen dürfen. +Ausserdem will man beliebig mit den arithmetischen Operationen +rechnen. +So entsteht die Menge der Funktionen, die man ``elementar'' nennen +will. + +In der Menge der elementaren Funktionen möchte man jetzt +Stammfunktionen ausgewählter Funktionen suchen. +Dazu muss man von jeder Funktion ihre Ableitung kennen. +Die Ableitungsoperation macht aus der Funktionenmenge eine +differentielle Algebra. +Der Satz von Liouville (Satz~\ref{buch:integrale:satz:liouville1}) +liefert Bedingungen, die erfüllt sein müssen, wenn eine Funktion +eine elementare Stammfunktion hat. +Sind diese Bedingungen nicht erfüllbar, ist auch keine +elementare Stammfunktion möglich. + +In den folgenden Abschnitten soll die differentielle Algebra +der elementaren Funktionen konstruiert werden. + +\subsubsection{Körper} +Die einfachsten Funktionen sind die die Konstanten, für die wir +für die nachfolgenden Betrachtungen fast immer die komplexen Zahlen +$\mathbb{C}$ +zu Grunde legen wollen. +Dabei ist vor allem wichtig, dass sich darin alle arithmetischen +Operationen durchführen lassen mit der einzigen Ausnahme, dass +nicht durch $0$ dividiert werden darf. +Man nennt $\mathbb{C}$ daher ein {\em Körper}. +\index{Körper}% +\label{buch:integrale:def:koerper} + +\subsubsection{Polynome und rationale Funktionen} +Die Polynome einer Variablen beschreiben eine Menge von +Funktionen, in der Addition, Subtraktion, Multiplikation +von Funktionen und Multiplikation mit komplexen Zahlen +uneingeschränkt möglich ist. +Wir bezeichen wie früher die Menge der Polynome in $z$ mit +$\mathbb{C}[z]$. + +Die Division ist erst möglich, wenn man beliebige Brüche +zulässt, deren Zähler und Nenner Polynome sind. +Die Menge +\[ +\mathbb{C}(z) += +\biggl\{ +\frac{p(z)}{q(z)} +\;\bigg|\; +p,q\in \mathbb{C}[z] +\biggr\} +\] +heisst die Menge der {\em rationalen Funktionen}. +\label{buch:integrale:def:rationalefunktion} +\index{Funktion, rationale}% +\index{rationale Funktion}% +In ihr sind jetzt alle arithmetischen Operationen ausführbar +ausser natürlich die Division durch die Nullfunktion. +Die rationalen Funktionen bilden also wieder eine Körper. + +Die Tatsache, dass die rationalen Funktionen einen Körper +bilden bedeutet auch, dass die Konstruktion erneut durchgeführt +werden kann. +Ausgehend von einem beliebigen Körper $K$ können wieder zunächst +die Polynome $K[X]$ und anschliesen die rationalen Funktionen $K[X]$ +in der neuen Variablen, jetzt aber mit Koeffizienten in $K$ +gebildet werden. +So entstehen Funktionen von mehreren Variablen und, indem +wir für die neue Variable $X$ zum Beispiel die im übernächsten +Abschnitt betrachtete Wurzel $X=\sqrt{z}$ +einsetzen, rationale Funktionen in $z$ und $\sqrt{z}$. + +Solche Funktionenkörper werden im folgenden mit geschweiften +Buchstaben $\mathscr{D}$ bezeichnet. +\index{Funktionenkörper}% + +\subsubsection{Ableitungsoperation} +In allen Untersuchungen soll immer die Ableitungsoperation +mit berücksichtigt werden. +In unserer Betrachtungsweise spielt es keine Rolle, dass die +Ableitung aus einem Grenzwert entsteht, es sind nur die algebraischen +Eigenschaften wichtig. +Diese sind in der folgenden Definition zusammengefasst. + +\begin{definition} +\label{buch:integrale:def:derivation} +Ein {\em Ableitungsoperator} oder eine {\em Derivation} einer Algebra +$\mathscr{D}$ von Funktionen ist eine lineare Abbildung +\[ +\frac{d}{dz} +\colon \mathscr{D} \to \mathscr{D} +: +f \mapsto \frac{df}{dz} = f', +\] +die zusätzlich die Produktregel +\begin{equation} +\frac{d}{dz} (fg) += +\frac{df}{dz} \cdot g + f \cdot \frac{dg}{dz} +\qquad\Leftrightarrow\qquad +(fg)' = f' g + fg' +\label{buch:integrale:eqn:produktregel} +\end{equation} +\index{Produktregel}% +erfüllt. +Die Funktion $f'\in \mathscr{D}$ heisst auch die {\em Ableitung} +von $f\in\mathscr{D}$. +\index{Derivation}% +\index{Ableitungsoperator}% +\index{Ableitung}% +\end{definition} + +Die Produktregel hat zum Beispiel auch die bekannten Quotientenregel +zur Folge. +Dazu betrachten wir das Produkt $f= (f/g)\cdot g$ und leiten es mit +Hilfe der Produktregel ab: +\[ +\frac{d}{dz}f += +\frac{d}{dz} +\biggl( +\frac{f}{g}\cdot g +\biggr) += +{\color{darkred} +\frac{d}{dz} +\biggl( +\frac{f}{g} +\biggr)} +\cdot g ++ +\frac{f}{g}\cdot \frac{d}{dz}g. +\] +Jetzt lösen wir nach der {\color{darkred}roten} Ableitung des Quotienten +auf und erhalten +\begin{equation} +\biggl(\frac{f}{g}\biggr)' += +\frac{d}{dz}\biggl(\frac{f}{g}\biggr) += +\frac1g\biggl( +\frac{d}{dz}f - \frac{f}{g}\cdot \frac{d}{dz}g +\biggr) += +\frac{1}{g} +\biggl( +f'-\frac{fg'}{g} +\biggr) += +\frac{f'g-fg'}{g^2}. +\label{buch:integrale:eqn:quotientenregel} +\end{equation} +Dies ist die Quotientenregel. + +Aus der Produktregel folgt natürlich sofort auch die Potenzregel +für die Ableitung der $n$ten Potenz einer Funktion $f\in\mathscr{D}$, +sie lautet: +\begin{equation} +\frac{d}{dz} f^n += +\underbrace{ +f'f^{n-1} + ff'f^{n-2} + f^2f'f^{n-3}+\dots f^{n-1}f' +}_{\displaystyle \text{$n$ Terme}} += +nf^{n-1}f'. +\label{buch:integrale:eqn:potenzregel} +\end{equation} +In dieser Form versteckt sich natürlich auch die Kettenregel, die +Potenzfunktion ist die äussere Funktion, $f$ die innere, $f'$ ist also +die Ableitung er inneren Funktion, wie in der Kettenregel verlangt. +Falls $f$ ein Element von $\mathscr{D}$ ist mit der Eigenschaft +$df/dz=1$, dann entsteht die übliche Produktregel. + +\begin{definition} +Eine Algebra $\mathscr{D}$ von Funktionen mit einem Ableitungsoperator +$d/dz$ heisst eine {\em differentielle Algebra}. +\index{differentielle Algebra}% +\index{Algebra, differentielle}% +In einer differentiellen Algebra gelten die üblichen +Ableitungsregeln. +\end{definition} + +Die Potenzregel war in der Form~\eqref{buch:integrale:eqn:potenzregel} +geschrieben worden, nicht als die Ableitung von $z$. +Der Grund dafür ist, dass wir gar nicht voraussetzen wollen, dass in +unserer differentiellen Algebra eine Funktion existiert, die die +Rolle von $z$ hat. +Dies ist gar nicht nötig, wie das folgende Beispiel zeigt. + +\begin{beispiel} +Als Funktionenmenge $\mathscr{D}$ nehmen wir rationale Funktionen +in zwei Variablen, die wir $\cos x $ und $\sin x$ nennen. +Diese Menge bezeichnen wir mit +$\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ +Der Ableitungsoperator ist +\begin{align*} +\frac{d}{dx} \cos x &= -\sin x +\\ +\frac{d}{dx} \sin x &= \phantom{-}\cos x. +\end{align*} +Die Funktionen von $\mathbb{Q}(\cos x,\sin x)$ sind also Brüche, +deren Zähler und Nenner Polynome in $\cos x$ und $\sin x$ sind. +Aus den Produkt- und Quotientenregeln und den Ableitungsregeln für +$\cos x$ und $\sin x$ folgt, dass die Ableitung einer Funktion in +$\mathscr{D}$ wieder in $\mathscr{D}$ ist, $\mathscr{D}$ ist eine +differentielle Algebra. +\end{beispiel} + +Die konstanten Funktionen spielen eine besondere Rolle. +Da wir bei der Ableitung nicht von der Vorstellung einer +Funktion mit einem variablen Argument ausgehen wollten und +die Ableitung nicht als Grenzwert definieren wollten, müssen +wir auch bei der Definition der ``Konstanten'' einen neuen +Weg gehen. +In der Analysis sind die Konstanten genau die Funktionen, +deren Ableitung $0$ ist. + +\begin{definition} +\label{buch:integrale:def:konstante} +Ein Element $f\in \mathscr{D}$ mit $df/dz=f'=0$ heissen +{\em Konstante} in $\mathscr{D}$. +\index{Konstante}% +\end{definition} + +Die in der Potenzregel~\eqref{buch:integrale:eqn:potenzregel} +vermisste Funktion $z$ kann man ähnlich zu den Konstanten +zu definieren versuchen. +$z$ müsste ein Element von $\mathscr{D}$ mit $z' = 1$ sein. +Allerdings gibt es viele solche Elemente, ist $c$ eine Konstanten +und $z'=1$, dann ist auch $(z+c)'=1$, $(z+c)$ hat also für +die Zwecke unserer Untersuchung die gleichen Eigenschaften wie +$z$. +Dies deckt sich natürlich auch mit der Erwartung, dass Stammfunktionen +nur bis auf eine Konstante bestimmt sind. +Eine differentielle Algebra muss allerdings kein Element $z$ mit der +Eigenschaft $z'=1$ enthalten. + +\begin{beispiel} +In $\mathscr{D}=\mathbb{Q}(\cos x,\sin x)$ gibt es kein Element $x$. +Ein solches wäre von der Form +\[ +x = \frac{p(\cos x,\sin x)}{q(\cos x,\sin x)}. +\] +Eine solche goniometrische Beziehung würde für $x=\frac{\pi}4$ bedeuten, +dass +\[ +\frac{\pi}4 += +\frac{p(\sqrt{2}/2,\sqrt{2}/2)}{q(\sqrt{2}/2,\sqrt{2}/2)}. +\] +Auf der rechten Seite steht ein Quotient von Polynome, in dessen +Argument nur rationale Zahlen und $\sqrt{2}$ steht. +So ein Ausdruck kann immer in die Form +\[ +\pi += +4\frac{a\sqrt{2}+b}{c\sqrt{2}+d} += +\frac{4(a\sqrt{2}+b)(c\sqrt{2}-d)}{2c^2+d^2} += +r\sqrt{2}+s +\] +gebracht werden. +Die Zahl auf der rechten Seite ist zwar irrational, aber sie ist Nullstelle +des quadratischen Polynoms +\[ +p(x) += +(x-r\sqrt{2}-s)(x+r\sqrt{2}-s) += +x^2 +-2sx +-2r^2+s^2 +\] +mit rationalen Koeffizienten, wie man mit der Lösungsformel für die +quadratische Gleichung nachprüfen kann. +Es ist bekannt, dass $\pi$ als transzendente Zahl nicht Nullstelle +eines Polynoms mit rationalen Koeffizienten ist. +Dieser Widerspruch zeigt, dass $x$ nicht in $\mathbb{Q}(\cos x, \sin x)$ +vorkommen kann. +\end{beispiel} + +In einer differentiellen Algebra kann jetzt die Frage nach der +Existenz einer Stammfunktion gestellt werden. + +\begin{aufgabe} +\label{buch:integrale:aufgabe:existenz-stammfunktion} +Gegeben eine differentielle Algebra $\mathscr{D}$ und ein Element +$f\in\mathscr{D}$, entscheide, ob es ein Element $F\in\mathscr{D}$ +gibt mit der Eigenschaft $F'=f$. +Ein solches $F\in\mathscr{D}$ heisst {\em Stammfunktion} von $f$. +\end{aufgabe} + +\begin{satz} +In einer differentiellen Algebra $\mathscr{D}$ mit $z\in\mathscr{D}$ +hat die Potenzfunktion $f=z^n$ für $n\in\mathbb{N}\setminus\{-1\}$ +ein Stammfunktion, nämlich +\[ +F = \frac{1}{n+1} z^{n+1}. +\] +\label{buch:integrale:satz:potenzstammfunktion} +\end{satz} + +\begin{proof}[Beweis] +Tatsächlich kann man dies sofort nachrechnen, muss allerdings die +Fälle $n+1 >0$ und $n+1<0$ unterscheiden, da die Potenzregel +\eqref{buch:integrale:eqn:potenzregel} nur für natürliche Exponenten +gilt. +Man erhält +\begin{align*} +n+1&>0\colon +& +\frac{d}{dz}\frac{1}{n+1}z^{n+1} +&= +\frac{1}{n+1}(n+1)z^{n+1-1} += +z^n, +\\ +n+1&<0\colon +& +\frac{d}{dz}\frac{1}{n+1}\frac{1}{z^{-(n+1)}} +&= +\frac{1}{n+1}\frac{1'z^{-(n+1)}-1(-(n+1))z^{-n-1-1}}{z^{-2n-2}} +\\ +&& +&= +\frac{1}{n+1} +\frac{(n+1)z^n{-n-2}}{z^{-2n-2}} +\\ +&& +&= +\frac{1}{z^{-n}}=z^n. +\end{align*} +Man beachte, dass in dieser Rechnung nichts anderes als die +algebraischen Eigenschaften der Produkt- und Quotientenregel +verwendet wurden. +\end{proof} + +\subsubsection{Wurzeln} +Die Wurzelfunktionen sollen natürlich als elementare Funktionen +erlaubt sein. +Es ist bekannt, dass $\sqrt{z}\not\in \mathscr{D}=\mathbb{C}(z)$ +ist, ein solches Element müsste also erst noch hinzugefügt werden. +Dabei muss auch seine Ableitung definiert werden. +Auch dabei dürfen wir nicht auf eine Grenzwertüberlegung zurückgreifen, +vielmehr müssen wir die Ableitung auf vollständig algebraische +Weise bestimmen. + +Wir schreiben $f=\sqrt{z}$ und leiten die Gleichung $f^2=z$ nach $z$ ab. +Dabei ergibt sich nach der Potenzregel +\[ +\frac{d}{dz}f^2 = 2f'f = \frac{d}{dz}z=1 +\qquad\Rightarrow\qquad f' = \frac{1}{2f}. +\] +Diese Rechnung lässt sich auch auf $n$-Wurzeln $g=\root{n}\of{z}$ mit +der Gleichung $g^n = z$ verallgemeinern. +Die Ableitung der $n$-ten Wurzel ist +\begin{equation} +\frac{d}{dz}g^n += +ng^{n-1} = \frac{d}{dz}z=1 +\qquad\Rightarrow\qquad +\frac{d}{dz}g = \frac{1}{ng^{n-1}}. +\end{equation} +Es ist also möglich, eine differentielle Algebra $\mathscr{D}$ mit einer +$n$-ten Wurzel $g$ zu einer grösseren differentiellen Algebra $\mathscr{D}(g)$ +zu erweitern, in der wieder alle Regeln für das Rechnen mit Ableitungen +erfüllt sind. + +\subsubsection{Algebraische Elemente} +Die Charakterisierung der Wurzelfunktionen passt zwar zum verlangten +algebraischen Vorgehen, ist aber zu spezielle und nicht gut für die +nachfolgenden Untersuchengen geeignet. +Etwas allgemeiner ist der Begriff der algebraischen Elemente. + +\begin{definition} +\label{buch:integrale:def:algebraisches-element} +Seien $K\subset L$ zwei Körper. +Ein Element $\alpha \in L$ heisst {\em algebraisch} über $K$, +wenn $\alpha$ Nullstelle eines Polynoms $p\in K[X]$ mit Koeffizienten +in $K$ ist. +\index{algebraisch}% +\end{definition} + +Jedes Element $\alpha\in K$ ist algebraisch, da $\alpha$ Nullstelle +von $X-\alpha\in K[X]$ ist. +Die $n$tem Wurzeln eines Elemente $\alpha\in K$ sind ebenfalls algebraisch, +da sie Nullstellen des Polynoms $p(X) = X^n - \alpha$ sind. +Allerdings ist nicht klar, dass diese Wurzeln überhaupt existieren. +Nach dem Satz von Abel~\ref{buch:potenzen:satz:abel} gibt es aber +Nullstellen von Polynomen, die sich nicht als Wurzelausdrücke schreiben +lassen. +Der Begriff der algebraischen Elemente ist also allgemeiner als der +Begriff der Wurzel. + +\begin{definition} +\label{buch:integrale:def:algebraisch-abgeschlossen} +Ein Körper $K$ heisst {\em algebraisch abgeschlossen}, wenn jedes Polynom mit +Koeffizienten in $K$ eine Nullstelle in $K$ hat. +\end{definition} + +Der Körper $\mathbb{C}$ ist nach dem +Fundamentalsatz~\label{buch:potenzen:satz:fundamentalsatz} +der Algebra algebraisch abgeschlossen. +Da wir aber mit Funktionen arbeiten, müssen wir auch Wurzeln +von Funktionen finden können. +Dies ist nicht selbstverständlich, wie das folgende Beispiel zeigt. + +\begin{beispiel} +Es gibt keine stetige Funktion $f\colon \mathbb{C}\to\mathbb{C}$, die +die Gleichung $f(z)^2 = z$ und $f(1)=1$ erfüllt. +Für die Argumente $z(t)= e^{it}$ folgt, dass $f(z(t)) = e^{it/2}$ sein +muss. +Setzt man aber $t=\pm \pi$ ein, ergeben sich die Werte +$f(z(\pm\pi))=e^{\pm i\pi/2}=\pm 1$, die beiden Grenzwerte +für $t\to\pm\pi$ sind also verschieden. +\end{beispiel} + +Die Mathematik hat verschiedene ``Tricks'' entwickelt, wie mit diesem +Problem umgegangen werden kann: Funktionskeime, Garben, Riemannsche +Flächen. +Sie sind alle gleichermassen gut geeignet, das Problem zu lösen. +Für die vorliegende Aufgabe genügt es aber, dass es tatsächlich +immer ein wie auch immer geartetes Element gibt, welches Nullstelle +des Polynoms ist. + +Ist $f$ eine Nullstelle des Polynoms $p(X)$ mit Koeffizienten in +$\mathscr{D}$, dann kann man die Ableitung wie folgt berechnen. +Zunächst leitet man $p(f)$ ab: +\begin{align} +0&= +\frac{d}{dz}(a_nf^n + a_{n-1}f^{n-1}+\ldots+a_1f+a_0) +\notag +\\ +&= +a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0' ++ +na_nf^{n-1}f' ++ +(n-1)a_nf^{n-2}f' ++ +\ldots ++ +a_2ff' ++ +a_1f' +\notag +\\ +&= +a_n'f^n + a_{n-1}'f^{n-1}+\ldots+a_1'f+a_0' ++ +( +na_nf^{n-1} ++ +(n-1)a_nf^{n-2} ++ +\ldots ++ +a_2f ++ +a_1 +)f' +\notag +\\ +\Rightarrow +\qquad +f'&=\frac{ +a_n'f^n + a_{n-1}'f^{n-1}+\dots+a_1'f+a_0' +}{ +na_nf^{n-1} ++ +(n-1)a_nf^{n-2} ++ +\dots ++ +a_1 +}. +\label{buch:integrale:eqn:algabl} +\end{align} +Das einzige, was dabei schief gehen könnte ist, dass der Nenner ebenfalls +verschwindet. +Dieses Problem kann man dadurch lösen, dass man als Polynom das +sogenannte Minimalpolynom verwendet. + +\begin{definition} +Das {\em Minimalpolynome} $m(X)$ eines algebraischen Elementes $\alpha$ ist +das Polynom kleinsten Grades, welches $m(\alpha)=0$ erfüllt. +\end{definition} + +Da das Minimalpolynom den kleinstmöglichen Grad hat, kann der Nenner +von~\eqref{buch:integrale:eqn:algabl}, +der noch kleineren Grad hat, unmöglich verschwinden. +Das Minimalpolynom ist auch im wesentlichen eindeutig. +Gäbe es nämlich zwei verschiedene Minimalpolynome $m_1$ und $m_2$, +dann müsste $\alpha$ auch eine Nullstelle des grössten gemeinsamen +Teilers $m_3=\operatorname{ggT}(m_1,m_2)$ sein. +Wären die beiden Polynome wesentlich verschieden, dann hätte $m_3$ +kleineren Grad, im Widerspruch zur Definition des Minimalpolynoms. +Also unterscheiden sich die beiden Polynome $m_1$ und $m_2$ nur um +einen skalaren Faktor. + +\subsubsection{Konjugation, Spur und Norm} +% Konjugation, Spur und Norm +Das Minimalpolynom eines algebraischen Elementes ist nicht +eindeutig bestimmt. +Zum Beispiel ist $\sqrt{2}$ algebraisch über $\mathbb{Q}$, das +Minimalpolynom ist $m(X)=X^2-2\in\mathbb{Q}[X]$. +Es hat aber noch eine zweite Nullstelle $-\sqrt{2}$. +Mit rein algebraischen Mitteln sind die beiden Nullstellen $\pm\sqrt{2}$ +nicht zu unterscheiden, erst die Verwendung der Vergleichsrelation +ermöglicht, sie zu unterscheiden. + +Dasselbe gilt für die imaginäre Einheit $i$, die das Minimalpolynom +$m(X)=X^2+1\in\mathbb{R}[X]$ hat. +Hier gibt es nicht einmal mehr eine Vergleichsrelation, mit der man +die beiden Nullstellen unterscheiden könnte. +In der Tat ändert sich aus algebraischer Sicht nichts, wenn man in +allen Formeln $i$ durch $-i$ ersetzt. + +Etwas komplizierter wird es bei $\root{3}\of{2}$. +Das Polynom $m=x^3-2\in\mathbb{Q}[X]$ hat $\root{3}\of{2}$ als +Nullstelle und dies ist auch tatsächlich das Minimalpolynom. +Das Polynom hat noch zwei weitere Nullstellen +\[ +\alpha_+ = \frac{-1+i\sqrt{3}}{2}\root{3}\of{2} +\qquad\text{und}\qquad +\alpha_- = \frac{-1-i\sqrt{3}}{2}\root{3}\of{2}. +\] +Die beiden Lösungen gehen durch die Vertauschung von $i$ und $-i$ +auseinander hervor. +Betrachtet man dasselbe Polynom aber als Polynom in $\mathbb{R}[X]$, +dann ist es nicht mehr das Minimalpolynom von $\root{3}\of{2}$, da +$X-\root{3}\of{2}\in\mathbb{R}[X]$ kleineren Grad und $\root{3}\of{2}$ +als Nullstelle hat. +Indem man +\[ +m(X)/(X-\root{3}\of{2})=X^2+\root{3}\of{2}X+\root{3}\of{2}^2=m_2(X) +\] +rechnet, bekommt man das Minimalpolynom der beiden Nullstellen $\alpha_+$ +und $\alpha_-$. +Wir lernen aus diesen Beispielen, dass das Minimalpolynom vom Grundkörper +abhängig ist (Die Faktorisierung $(X-\root{3}\of{2})\cdot m_2(X)$ von +$m(X)$ ist in $\mathbb{Q}[X]$ nicht möglich) und dass wir keine +algebraische Möglichkeit haben, die verschiedenen Nullstellen des +Minimalpolynoms zu unterscheiden. + +Die beiden Nullstellen $\alpha_+$ und $\alpha_-$ des Polynoms $m_2(X)$ +erlauben, $m_2(X)=(X-\alpha_+)(X-\alpha_-)$ zu faktorisieren. +Durch Ausmultiplizieren +\[ +(X-\alpha_+)(X-\alpha_-) += +X^2 -(\alpha_++\alpha_-)X+\alpha_+\alpha_- +\] +und Koeffizientenvergleich mit $m_2(X)$ findet man die symmetrischen +Formeln +\[ +\alpha_+ + \alpha_- = \root{3}\of{2} +\qquad\text{und}\qquad +\alpha_+ \alpha_ = \root{3}\of{2}. +\] +Diese Ausdrücke sind nicht mehr abhängig von einer speziellen Wahl +der Nullstellen. + +Das Problem verschärft sich nocheinmal, wenn wir Funktionen betrachten. +Das Polynom $m(X)=X^3-z$ ist das Minimalpolynom der Funktion $\root{3}\of{z}$. +Die komplexe Zahl $z=re^{i\varphi}$ hat aber drei die algebraisch nicht +unterscheidbaren Nullstellen +\[ +\alpha_0(z)=\root{3}\of{r}e^{i\varphi/3}, +\quad +\alpha_1(z)=\root{3}\of{r}e^{i\varphi/3+2\pi/3} +\qquad\text{und}\qquad +\alpha_2(z)=\root{3}\of{r}e^{i\varphi/3+4\pi/3}. +\] +Aus der Faktorisierung $ (X-\alpha_0(z)) (X-\alpha_1(z)) (X-\alpha_2(z))$ +und dem Koeffizientenvergleich mit dem Minimalpolynom kann man wieder +schliessen, dass die Relationen +\[ +\alpha_0(z) + \alpha_1(z) + \alpha_2(z)=0 +\qquad\text{und}\qquad +\alpha_0(z) \alpha_1(z) \alpha_2(z) = z +\] +gelten. + +Wir können also oft keine Aussagen über individuelle Nullstellen +eines Minimalpolynoms machen, sondern nur über deren Summe oder +Produkt. + +\begin{definition} +\index{buch:integrale:def:spur-und-norm} +Sie $m(X)\in K[X]$ das Minimalpolynom eines über $K$ algebraischen +Elements und +\[ +m(X) = a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0. +\] +Dann heissen +\[ +\operatorname{Tr}(\alpha) = -a_{n-1} +\qquad\text{und}\qquad +\operatorname{Norm}(\alpha) = (-1)^n a_0 +\] +die {\em Spur} und die {\em Norm} des Elementes $\alpha$. +\index{Spur eines algebraischen Elementes}% +\index{Norm eines algebraischen Elementes}% +\end{definition} + +Die Spur und die Norm können als Spur und Determinante einer Matrix +verstanden werden, diese allgemeineren Definitionen, die man in der +Fachliteratur, z.~B.~in~\cite{buch:lang} nachlesen kann, führen aber +für unsere Zwecke zu weit. + +\begin{hilfssatz} +Die Ableitungen von Spur und Norm sind +\[ +\operatorname{Tr}(\alpha)' += +\operatorname{Tr}(\alpha') +\qquad\text{und}\qquad +\operatorname{Norm}(\alpha)' += +\operatorname{Tr}(\alpha)' +\] +XXX Wirklich? +\end{hilfssatz} + +\subsubsection{Logarithmen und Exponentialfunktionen} +Die Funktion $z^{-1}$ musste im +Satz~\ref{buch:integrale:satz:potenzstammfunktion} +ausgeschlossen werden, sie hat keine Stammfunktion in $\mathbb{C}(z)$. +Aus der Analysis ist bekannt, dass die Logarithmusfunktion $\log z$ +eine Stammfunktion ist. +Der Logarithmus von $z$ aber auch der Logarithmus $\log f(z)$ +einer beliebigen Funktion $f(z)$ oder die Exponentialfunktion $e^{f(z)}$ +sollen ebenfalls elementare Funktionen sein. +Da wir aber auch hier nicht auf die analytischen Eigenschaften zurückgreifen +wollen, brauchen wir ein rein algebraische Definition. + +\begin{definition} +\label{buch:integrale:def:logexp} +Sei $\mathscr{D}$ ein differentielle Algebra und $f\in\mathscr{D}$. +Ein Element $\vartheta\in\mathscr{D}$ heisst ein {\em Logarithmus} +von $f$, geschrieben $\vartheta = \log f$, wenn $f\vartheta' = f'$ gilt. +$\vartheta$ heisst eine Exponentialfunktion von $f$ wenn +$\vartheta'=\vartheta f'$ gilt. +\end{definition} + +Die Formel für die Exponentialfunktion ist etwas vertrauter, sie ist +die bekannte Kettenregel +\begin{equation} +\vartheta' += +\frac{d}{dz} e^f += +e^f \cdot \frac{d}{dz} f += +\vartheta \cdot f'. +\label{buch:integrale:eqn:exponentialableitung} +\end{equation} +Da wir uns vorstellen, dass Logarithmen Umkehrfunktionen von +Exponentialfunktionen sein sollen, +muss die definierende Gleichung genau wie +\eqref{buch:integrale:eqn:exponentialableitung} +aussehen, allerdings mit vertauschten Plätzen von $f$ und $\vartheta$, +also +\begin{equation} +\vartheta' = \vartheta\cdot f' +\qquad +\rightarrow +\qquad +f' = f\cdot \vartheta' +\;\Leftrightarrow\; +\vartheta' = (\log f)' = \frac{f'}{f}. +\label{buch:integrale:eqn:logarithmischeableitung} +\end{equation} +Dies ist die aus der Analysis bekannte Formel für die logarithmische +Ableitung. + +Der Logarithmus von $f$ und die Exponentialfunktion von $f$ sollen +also ebenfalls als elementare Funktionen betrachtet werden. + +\subsubsection{Die trigonometrischen Funktionen} +Die bekannten trigonometrischen Funktionen und ihre Umkehrfunktionen +sollten natürlich auch elementare Funktionen sein. +Dabei kommt uns zur Hilfe, dass sie sich mit Hilfe der Exponentialfunktion +als +\[ +\cos f = \frac{e^{if}+e^{-if}}2 +\qquad\text{und}\qquad +\sin f = \frac{e^{if}-e^{-if}}{2i} +\] +schreiben lassen. +Eine differentielle Algebra, die die Exponentialfunktionen von $if$ und +$-if$ enthält, enthält also automatisch auch die trigonometrischen +Funktionen. +Im Folgenden ist es daher nicht mehr nötig, die trigonometrischen +Funktionen speziell zu untersuchen. + +\subsubsection{Elementare Funktionen} +Damit sind wir nun in der Lage, den Begriff der elementaren Funktion +genau zu fassen. + +\begin{definition} +\label{buch:integrale:def:einfache-elementare-funktion} +Sie $\mathscr{D}$ eine differentielle Algebra über $\mathbb{C}$ und +$\mathscr{D}(\vartheta)$ eine Erweiterung von $\mathscr{D}$ um eine +neue Funktion $\vartheta$, dann heissen $\vartheta$ und die Elemente +von $\mathscr{D}(\vartheta)$ einfach elementar, wenn eine der folgenden +Bedingungen erfüllt ist: +\begin{enumerate} +\item $\vartheta$ ist algebraisch über $\mathscr{D}$, d.~h.~$\vartheta$ +ist eine ``Wurzel''. +\item $\vartheta$ ist ein Logarithmus einer Funktion in $\mathscr{D}$, +d.~h.~es gibt $f\in \mathscr{D}$ mit $f'=f\vartheta'$ +(Definition~\ref{buch:integrale:def:logexp}). +\item $\vartheta$ ist eine Exponentialfunktion einer Funktion in $\mathscr{D}$, +d.~h.~es bit $f\in\mathscr{D}$ mit $\vartheta'=\vartheta f'$ +(Definition~\ref{buch:integrale:def:logexp}). +\end{enumerate} +\end{definition} + +Einfache elementare Funktionen entstehen also ausgehend von einer +differentiellen Algebra, indem man genau einmal eine Wurzel, einen +Logarithmus oder eine Exponentialfunktion hinzufügt. +So etwas wie die zusammengesetzte Funktion $e^{\sqrt{z}}$ ist +damit noch nicht möglich. +Daher erlauben wir, dass man die gesuchten Funktionen in mehreren +Schritten aufbauen kann. + +\begin{definition} +Sei $\mathscr{F}$ eine differentielle Algebra, die die differentielle +Algebra $\mathscr{D}$ enthält, also $\mathscr{D}\subset\mathscr{F}$. +$\mathscr{F}$ und die Elemente von $\mathscr{F}$ heissen einfach, +wenn es endlich viele Elemente $\vartheta_1,\dots,\vartheta_n$ gibt +derart, dass +\[ +\renewcommand{\arraycolsep}{2pt} +\begin{array}{ccccccccccccc} +\mathscr{D} +&\subset& +\mathscr{D}(\vartheta_1) +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2) +&\subset& +\; +\cdots +\; +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1}) +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1},\vartheta_n) +&=& +\mathscr{F} +\\ +\| +&& +\| +&& +\| +&& +&& +\| +&& +\| +&& +\\ +\mathscr{F}_0 +&\subset& +\mathscr{F}_1 +&\subset& +\mathscr{F}_2 +&\subset& +\cdots +&\subset& +\mathscr{F}_{n-1} +&\subset& +\mathscr{F}_{n\mathstrut} +&& +\end{array} +\] +gilt so, dass jedes $\vartheta_{i+1}$ einfach ist über +$\mathscr{F}_i=\mathscr{D}(\vartheta_1,\dots,\vartheta_i)$. +\end{definition} + +In Worten bedeutet dies, dass man den Funktionen von $\mathscr{D}$ +nacheinander Wurzeln, Logarithmen oder Exponentialfunktionen einzelner +Funktionen hinzufügt. +Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion} kann +jetzt so formuliert werden. + +\begin{aufgabe} +\label{buch:integrale:aufgabe:existenz-stammfunktion-dalg} +Gegeben ist eine Differentielle Algebra $\mathscr{D}$ und eine +Funktion $f\in \mathscr{D}$. +Gibt es eine Folge $\vartheta_1,\dots,\vartheta_n$ und eine Funktion +$F\in\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ derart, dass +$F'=f$. +\end{aufgabe} + +Das folgende Beispiel zeigt, wie man möglicherweise mehrere +Erweiterungsschritte vornehmen muss, um zu einer Stammfunktion +zu kommen. +Es illustriert auch die zentrale Rolle, die der Partialbruchzerlegung +in der weiteren Entwicklung zukommen wird. + +\begin{beispiel} +\label{buch:integrale:beispiel:nichteinfacheelementarefunktion} +Es soll eine Stammfunktion der Funktion +\[ +f(z) += +\frac{z}{(az+b)(cz+d)} +\in +\mathbb{C}(z) +\] +gefunden werden. +In der Analysis lernt man, dass solche Integrale mit der +Partialbruchzerlegung +\[ +\frac{z}{(az+b)(cz+d)} += +\frac{A_1}{az+b}+\frac{A_2}{cz+d} += +\frac{A_1cz+A_1d+A_2az+A_2b}{(az+b)(cz+d)} +\quad\Rightarrow\quad +\left\{ +\renewcommand{\arraycolsep}{2pt} +\begin{array}{rcrcr} +cA_1&+&aA_2&=&1\\ +dA_1&+&bA_2&=&0 +\end{array} +\right. +\] +bestimmt werden. +Die Lösung des Gleichungssystems ergibt +$A_1=b/(bc-ad)$ und $A_2=d/(ad-bc)$. +Die Stammfunktion kann dann aus +\begin{align*} +\int f(z)\,dz +&= +\int\frac{A_1}{az+b}\,dz ++ +\int\frac{A_2}{cz+d}\,dz += +\frac{A_1}{a}\int\frac{a}{az+b}\,dz ++ +\frac{A_2}{c}\int\frac{c}{cz+d}\,dz +\end{align*} +bestimmt werden. +In den Integralen auf der rechten Seite ist der Zähler jeweils die +Ableitung des Nenners, der Integrand hat also die Form $g'/g$. +Genau diese Form tritt in der Definition eines Logarithmus auf. +Die Stammfunktion ist jetzt +\[ +F(z) += +\int f(z)\,dz += +\frac{A_1}{a}\log(az+b) ++ +\frac{A_2}{c}\log(cz+d) += +\frac{b\log(az+b)}{a(bc-ad)} ++ +\frac{d\log(cz+d)}{c(ad-bc)}. +\] +Die beiden Logarithmen kann man nicht durch rein rationale Operationen +ineinander überführen. +Sie müssen daher beide der Algebra $\mathscr{D}$ hinzugefügt werden. +\[ +\left. +\begin{aligned} +\vartheta_1&=\log(az+b)\\ +\vartheta_2&=\log(cz+d) +\end{aligned} +\quad +\right\} +\qquad\Rightarrow\qquad +F(z) \in \mathscr{F}=\mathscr{D}(\vartheta_1,\vartheta_2). +\] +Die Stammfunktion $F(z)$ ist also keine einfache elementare Funktion, +aber $F$ ist immer noch eine elementare Funktion. +\end{beispiel} + +\subsection{Partialbruchzerlegung +\label{buch:integrale:section:partialbruchzerlegung}} +Die Konstruktionen des letzten Abschnitts haben gezeigt, +wie man die Funktionen, die man als Stammfunktionen einer Funktion +zulassen möchte, schrittweise konstruieren kann. +Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg} +ist eine rein algebraische Formulierung der ursprünglichen +Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion}. +Schliesslich hat das Beispiel auf +Seite~\pageref{buch:integrale:beispiel:nichteinfacheelementarefunktion} +gezeigt, dass es im allgemeinen mehrere Schritte braucht, um zu einer +elementaren Stammfunktion zu gelangen. +Die Lösung setzt sich aus den Termen der Partialbruchzerlegung. +In diesem Abschnitt soll diese genauer studiert werden. + +In diesem Abschnitt gehen wir immer von einer differentiellen +Algebra über den komplexen Zahlen aus und verlangen, dass die +Konstanten in allen betrachteten differentiellen Algebren +$\mathbb{C}$ sind. + +\subsubsection{Monome} +Die beiden Funktionen $\vartheta-1=\log(az+b)$ und $\vartheta_2=(cz+d)$, +die im Beispiel hinzugefügt werden mussten, verhalten sich ich algebraischer +Hinsicht wie ein Monom: man kann es nicht faktorisieren oder bereits +bekannte Summanden aufspalten. +Solchen Funktionen kommt eine besondere Bedeutung zu. + +\begin{definition} +\label{buch:integrale:def:monom} +Die Funktion $\vartheta$ heisst ein Monom, wenn $\vartheta$ nicht +algebraisch ist über $\mathscr{D}$ und $\mathscr{D}(\vartheta)$ die +gleichen Konstanten enthält wie $\mathscr{D}$. +\end{definition} + +\begin{beispiel} +Als Beispiel beginnen wir mit den komplexen Zahlen $\mathbb{C}$ +und fügen die Funktion $\vartheta_1=z$ hinzu und erhalten +$\mathscr{D}=\mathbb{C}(z)$. +Die Funktionen $z^k$ sind für alle $k$ linear unabhängig, d.~h.~es +gibt keinen Ausdruck +\[ +a_nz^n + a_{n-1}z^{n-1}+\cdots+a_1z+a_0=0. +\] +Dies ist gleichbedeutend damit, dass $z$ nicht algebraisch ist. +Das Monom $z$ ist also auch ein Monom im Sinne der +Definition~\ref{buch:integrale:def:monom}. +\end{beispiel} + +\begin{beispiel} +Wir beginnen wieder mit $\mathbb{C}$ und fügen die Funktion +$e^z$ hinzu. +Gäbe es eine Beziehung +\[ +b_m(e^z)^m + b_{m-1}(e^z)^{m-1}+\dots+b_1e^z + b_0=0 +\] +mit komplexen Koeffizienten $b_i\in\mathbb{C}$, +dann würde daraus durch Einsetzen von $z=1$ die Relation +\[ +b_me^m + b_{m-1}e^{m-1} + \dots + b_1e + b_0=0, +\] +die zeigen würde, dass $e$ eine algebraische Zahl ist. +Es ist aber bekannt, dass $e$ transzendent ist. +Dieser Widersprich zeigt, dass $e^z$ ein Monom ist. +\end{beispiel} + +\begin{beispiel} +Jetzt fügen wir die Exponentialfunktion $\vartheta_2=e^z$ +der differentiellen Algebra $\mathscr{D}=\mathbb{C}(z)$ hinzu +und erhalten $\mathscr{F}_1=\mathscr{D}(e^z) = \mathbb{C}(z,e^z)$. +Gäbe es das Minimalpolynom +\begin{equation} +b_m(z)(e^z)^m + b_{m-1}(z)(e^z)^{m-1}+\dots+b_1(z)e^z + b_0(z)=0 +\label{buch:integrale:beweis:exp-analytisch} +\end{equation} +mit Koeffizienten $b_i\in\mathbb{C}(z)$, dann könnte man mit dem +gemeinsamen Nenner der Koeffizienten durchmultiplizieren und erhielte +eine Relation~\eqref{buch:integrale:beweis:exp-analytisch} mit +Koeffizienten in $\mathbb{C}[z]$. +Dividiert man durch $e^{mz}$ erhält man +\[ +b_m(z) + b_{m-1}(z)\frac{1}{e^z} + \dots + b_1(z)\frac{1}{(e^z)^{m-1}} + b_0(z)\frac{1}{(e^z)^m}=0. +\] +Aus der Analysis weiss man, dass die Exponentialfunktion schneller +anwächst als jedes Polynom, alle Terme auf der rechten Seite +konvergieren daher gegen 0 für $z\to\infty$. +Das bedeutet, dass $b_m(z)\to0$ für $z\to \infty$. +Das Polynom~\eqref{buch:integrale:beweis:exp-analytisch} wäre also gar +nicht das Minimalpolynom. +Dieser Widerspruch zeigt, dass $e^z$ nicht algebraisch ist über +$\mathbb{C}(z)$ und damit ein Monom ist\footnote{Etwas unbefriedigend +an diesem Argument ist, dass man hier wieder rein analytische statt +algebraische Eigenschaften von $e^z$ verwendet. +Gäbe es aber eine minimale Relation wie +\eqref{buch:integrale:beweis:exp-analytisch} +mit Polynomkoeffizienten, dann wäre sie von der Form +\[ +P(z,e^z)=p(z)(e^z)^m + q(z,e^z)=0, +\] +wobei Grad von $e^z$ in $q$ höchstens $m-1$ ist. +Die Ableitung wäre dann +\[ +Q(z,e^z) += +mp(z)(e^z)^m + p'(z)(e^z)^m + r(z,e^z) += +(mp(z) + p'(z))(e^z)^m + r(z,e^z) +=0, +\] +wobei der Grad von $e^z$ in $r$ wieder höchstens $m-1$ ist. +Bildet man $mP(z,e^z) - Q(z,e^z) = 0$ ensteht eine Relation, +in der der Grad des Koeffizienten von $(e^z)^m$ um eins abgenommen hat. +Wiederholt man dies $m$ mal, verschwindet der Term $(e^z)^m$, die +Relation~\eqref{buch:integrale:beweis:exp-analytisch} +war also gar nicht minimal. +Dieser Widerspruch zeigt wieder, dass $e^z$ nicht algebraisch ist, +verwendet aber nur die algebraischen Eigenschaften der differentiellen +Algebra. +}. +\end{beispiel} + +\begin{beispiel} +Wir hätten auch in $\mathbb{Q}$ arbeiten können und $\mathbb{Q}$ +erst die Exponentialfunktion $e^z$ und dann den Logarithmus $z$ von $e^z$ +hinzufügen können. +Es gibt aber noch weitere Logarithmen von $e^z$ zum Beispiel $z+2\pi i$. +Offenbar ist $\psi=z+2\pi i\not\in \mathbb{Q}(z,e^z)$, wir könnten also +auch noch $\psi$ hinzufügen. +Zwar ist $\psi$ auch nicht algebraisch, aber wenn wir $\psi$ hinzufügen, +dann wird aber die Menge der Konstanten grösser, sie umfasst jetzt +$\mathbb{Q}(2\pi i)$. +Die Bedingung in der Definition~\ref{buch:integrale:def:monom}, +dass die Menge der Konstanten nicht grösser werden darf, ist also +verletzt. + +Hätte man mit $\mathbb{Q}(e^z, z+2\pi i)$ begonnen, wäre $z$ aus +dem gleichen Grund kein Monom, aber $z+2\pi i$ wäre eines im Sinne +der Definition~\ref{buch:integrale:def:monom}. +In allen Rechnungen könnte man $\psi=z+2\pi i$ nicht weiter aufteilen, +da $\pi$ oder seine Potenzen keine Elemente von $\mathbb{Q}(e^z)$ sind. +\end{beispiel} + +Da wir im Folgenden davon ausgehen, dass die Konstanten unserer +differentiellen Körper immer $\mathbb{C}$ sind, wird es jeweils +genügen zu untersuchen, ob eine neu hinzuzufügende Funktion algebraisch +ist oder nicht. + +\subsubsection{Ableitungen von Polynomen und rationalen Funktionen von Monomen} +Fügt man einer differentiellen Algebra ein Monom hinzu, dann lässt +sich etwas mehr über Ableitungen von Polynomen oder Brüchen in diesen +Monomen sagen. +Diese Eigenschaften werden später bei der Auflösung der Partialbruchzerlegung +nützlich sein. + +\begin{satz} +\label{buch:integrale:satz:polynom-ableitung-grad} +Sei +\[ +P += +A_nX^n + A_{n-1}X^{n-1} + \dots A_1X+A_0 +\in\mathscr{D}[X] +\] +ein Polynom mit Koeffizienten in einer differentiellen Algebra $\mathscr{D}$ +und $\vartheta$ ein Monom über $\mathscr{D}$. +Dann gilt +\begin{enumerate} +\item +\label{buch:integrale:satz:polynom-ableitung-grad-log} +Falls $\vartheta=\log f$ ist, ist $P(\vartheta)'$ ein +Polynom vom Grad $n$ in $\vartheta$, wenn der Leitkoeffizient $A_n$ +nicht konstant ist, andernfalls ein Polynom vom Grad $n-1$. +\item +\label{buch:integrale:satz:polynom-ableitung-grad-exp} +Falls $\vartheta = \exp f$ ist, dann ist $P(\vartheta)'$ ein Polynom +in $\vartheta$ vom Grad $n$. +\end{enumerate} +\end{satz} + +Der Satz macht also genaue Aussagen darüber, wie sich der Grad eines +Polynoms in $\vartheta$ beim Ableiten ändert. + +\begin{proof}[Beweis] +Für Exponentialfunktion ist $\vartheta'=\vartheta f'$, die Ableitung +fügt also einfach einen Faktor $f'$ hinzu. +Terme der Form $A_k\vartheta^k$ haben die Ableitung +\[ +(A_k\vartheta^k) += +A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta' += +A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta f' += +(A'_k + kA_k f)\vartheta^k. +\] +Damit wird die Ableitung des Polynoms +\begin{equation} +P(\vartheta)' += +\underbrace{(A'_n+nA_nf')\vartheta^n}_{\displaystyle=(A_n\vartheta^n)'} ++ +(A'_{n-1}+(n-1)A_{n-1}f')\vartheta^{n-1} ++ \dots + +(A'_1+A_1f')\vartheta + A_0'. +\label{buch:integrale:ableitung:polynom} +\end{equation} +Der Grad der Ableitung kann sich also nur ändern, wenn $A_n'+nA_nf'=0$ ist. +Dies bedeutet aber wegen +\( +(A_n\vartheta^n)' += +0 +\), dass $A_n\vartheta^n=c$ eine Konstante ist. +Da alle Konstanten bereits in $\mathscr{D}$ sind, folgt, dass +\[ +\vartheta^n=\frac{c}{A_n} +\qquad\Rightarrow\qquad +\vartheta^n - \frac{c}{A_n}=0, +\] +also wäre $\vartheta$ algebraisch über $\mathscr{D}$, also auch kein Monom. +Dieser Widerspruch zeigt, dass der Leitkoeffizient nicht verschwinden kann. + +Für die erste Aussage ist die Ableitung der einzelnen Terme des Polynoms +\[ +(A_k\vartheta^k)' += +A_k'\vartheta^k + A_kk\vartheta^{k-1}\vartheta' += +A_k'\vartheta^k + A_kk\vartheta^{k-1}\frac{f'}{f} += +\biggl(A_k'\vartheta + kA_k\frac{f'}{f}\biggr)\vartheta^{k-1}. +\] +Die Ableitung des Polynoms ist daher +\[ +P(\vartheta)' += +A_n'\vartheta^n + \biggl(nA_n\frac{f'}{f}+ A'_{n-1}\biggr)\vartheta^{n-1}+\dots +\] +Wenn $A_n$ keine Konstante ist, ist $A_n'\ne 0$ und der Grad von +$P(\vartheta)'$ ist $n$. +Wenn $A_n$ eine Konstante ist, müssen wir noch zeigen, dass der nächste +Koeffizient nicht verschwinden kann. +Wäre der zweite Koeffizient $=0$, dann wäre die Ableitung +\[ +(nA_n\vartheta+A_{n-1})' += +nA_n\vartheta'+A'_{n-1} += +nA_n\frac{f'}{f}+A'_{n-1} += +0, +\] +d.h. $nA_n\vartheta+A_{n-1}=c$ wäre eine Konstante. +Da alle Konstanten schon in $\mathscr{D}$ sind, müsste auch +\[ +\vartheta = \frac{c-A_{n-1}}{nA_n} \in \mathscr{D} +\] +sein, wieder wäre $\vartheta$ kein Monom. +\end{proof} + +Der nächste Satz gibt Auskunft über den führenden Term in +$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$. + +\begin{satz} +\label{buch:integrale:satz:log-polynom-ableitung-grad} +Sei $P$ ein Polynom vom Grad $n$ wie in +\label{buch:integrale:satz:log-polynom-ableitung} +welches zusätzlich normiert ist, also $A_n=1$. +\begin{enumerate} +\item +\label{buch:integrale:satz:log-polynom-ableitung-log} +Ist $\vartheta=\log f$, dann ist +$(\log P(\vartheta))' = P(\vartheta)'/P(\vartheta)$ und $P(\vartheta)'$ +hat Grad $n-1$. +\item +\label{buch:integrale:satz:log-polynom-ableitung-exp} +Ist $\vartheta=\exp f$, dann gibt es ein Polynom $N(\vartheta)$ so, dass +$(\log P(\vartheta))' += +P(\vartheta)'/P(\vartheta) += +N(\vartheta)/P(\vartheta)+nf'$ +ist. +Falls $P(\vartheta)=\vartheta$ ist $N=0$, andernfalls ist $N(\vartheta)$ +ein Polynom vom Grad $0$ das kleinste $k$ so, dass $p<(k+1)q$. +Insbesondere ist dann $kq\le p$. +Nach dem euklidischen Satz für die Division von $P(X)$ durch $Q(X)^k$ +gibt es ein Polynom $P_k(X)$ vom Grad $\le p-qk$ derart, dass +\[ +P(X) = P_k(X)Q(X)^k + R_k(X) +\] +mit einem Rest $R_k(X)$ vom Grad $1$ können mit der Potenzregel +integriert werden, aber für eine Stammfunktion $1/(z-1)$ muss +der Logarithmus $\log(z-1)$ hinzugefügt werden. +Die Stammfunktion +\[ +\int f(z)\,dz += +\int +\frac{1}{z-1} +\,dz ++ +\int +\frac{4}{(z-1)^2} +\,dz ++ +\int +\frac{4}{(z-1)^3} +\,dz += +\log(z-1) +- +\underbrace{\frac{4z-2}{(z-1)^2}}_{\displaystyle\in\mathscr{D}} +\in \mathscr{D}(\log(z-1)) = \mathscr{F} +\] +hat eine sehr spezielle Form. +Sie besteht aus einem Term in $\mathscr{D}$ und einem Logarithmus +einer Funktion von $\mathscr{D}$, also einem Monom über $\mathscr{D}$. + +\subsubsection{Einfach elementare Stammfunktionen} +Der in diesem Abschnitt zu beweisende Satz von Liouville zeigt, +dass die im einführenden Beispiel konstruierte Form der Stammfunktion +eine allgemeine Eigenschaft elementar integrierbarer +Funktionen ist. +Zunächst aber soll dieses Bespiel etwas verallgemeinert werden. + +\begin{satz}[Liouville-Vorstufe für Monome] +\label{buch:integrale:satz:liouville-vorstufe-1} +Sei $\vartheta$ ein Monom über $\mathscr{D}$ und $g\in\mathscr{D}(\vartheta)$ +mit $g'\in\mathscr{D}$. +Dann hat $g$ die Form $v_0 + c_1\vartheta$ mit $v_0\in\mathscr{D}$ und +$c_1\in\mathbb{C}$. +\end{satz} + +\begin{proof}[Beweis] +In Anlehnung an das einführende Beispiel nehmen wir an, dass die +Stammfunktion $g\in\mathscr{D}[\vartheta]$ für ein Monom $\vartheta$ +über $\mathscr{D}$ ist. +Dann hat $g$ die Partialbruchzerlegung +\[ +g += +H(\vartheta) ++ +\sum_{j\le r(i)} \frac{P_{ij}(\vartheta)}{Q_i(\vartheta)^j} +\] +mit irreduziblen normierten Polynomen $Q_i(\vartheta)$ und +Polynomen $P_{ij}(\vartheta)$ vom Grad kleiner als $\deg Q_i(\vartheta)$. +Ausserdem ist $H(\vartheta)$ ein Polynom. +Die Ableitung von $g$ muss jetzt aber wieder in $\mathscr{D}$ sein. +Zu ihrer Berechnung können die Sätze +\ref{buch:integrale:satz:polynom-ableitung-grad}, +\ref{buch:integrale:satz:log-polynom-ableitung-grad} +und +\ref{buch:integrale:satz:partialbruch-monom} +verwendet werden. +Diese besagen, dass in der Partialbruchzerlegung die Exponenten der +Nenner die Quotienten in der Summe nicht kleiner werden. +Die Ableitung $g'\in\mathscr{D}$ darf aber gar keine Nenner mit +$\vartheta$ enthalten, also dürfen die Quotienten gar nicht erst +vorkommen. +$g=H(\vartheta)$ muss also ein Polynom in $\vartheta$ sein. +Die Ableitung des Polynoms darf wegen $g'\in\mathscr{d}$ das Monom +$\vartheta$ ebenfalls nicht mehr enthalten, daher kann es höchstens vom +Grad $1$ sein. +Nach Satz~\ref{buch:integrale:satz:log-polynom-ableitung-grad} +muss ausserdem der Leitkoeffizient von $g$ eine Konstante sein, +das Polynom hat also genau die behauptete Form. +\end{proof} + +\begin{satz}[Liouville-Vorstufe für algebraische Elemente] +\label{buch:integrale:satz:liouville-vorstufe-2} +Sei $\vartheta$ algebraische über $\mathscr{D}$ und +$g\in\mathscr{D}(\vartheta)$ mit $g'\in\mathscr{D}$. +\end{satz} + +\subsubsection{Elementare Stammfunktionen} +Nach den Vorbereitungen über einfach elementare Stammfunktionen +in den Sätzen~\label{buch:integrale:satz:liouville-vorstufe-1} +und +\label{buch:integrale:satz:liouville-vorstufe-2} sind wir jetzt +in der Lage, den allgemeinen Satz von Liouville zu formulieren +und zu beweisen. + +\begin{satz}[Liouville] +Sei $\mathscr{D}$ ein Differentialkörper, $\mathscr{F}$ einfach über +$\mathscr{D}$ mit gleichem Konstantenkörper $\mathbb{C}$. +Wenn $g\in \mathscr{F}$ eine Stammfunktion von $f\in\mathscr{D}$ ist, +also $g'=f$, dann gibt es Zahlen $c_i\in\mathbb{C}$ und +$v_0,v_i\in\mathscr{D}$ derart, dass +\begin{equation} +g = v_0 + \sum_{i=1}^k c_i \log v_i +\qquad\Rightarrow\qquad +g' = v_0' + \sum_{i=1}^k c_i \frac{v_i'}{v_i} = f +\label{buch:integrale:satz:liouville-fform} +\end{equation} +gilt. +\end{satz} + +Der Satz hat zur Folge, dass eine elementare Stammfunktion für $f$ +nur dann existieren kann, wenn sich $f$ in der speziellen Form +\eqref{buch:integrale:satz:liouville-fform} +schreiben lässt. +Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg} +lässt sich damit jetzt lösen. + + +\begin{proof}[Beweis] +Wenn die Stammfunktion $g\in\mathscr{D}$ ist, dann hat $g$ die Form +\eqref{buch:integrale:satz:liouville-fform} mit $v_0=g$, die Summe +wird nicht benötigt. + +Wir verwenden Induktion nach der Anzahl der Elemente, die zu $\mathscr{D}$ +hinzugefügt werden müssen, um einen Differentialkörper +$\mathscr{F}=\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ zu konstruieren, +der $g$ enthält. +Da $f\in\mathscr{D}\subset\mathscr{D}(\vartheta_1)$ ist, können wir die +Induktionsannahme auf die Erweiterung +\[ +\mathscr{D}(\vartheta_1)\subset\mathscr{D}(\vartheta_1,\vartheta_2) +\subset\cdots\subset \mathscr{D}(\vartheta_1,\cdots,\vartheta_n)=\mathscr{F} +\] +anwenden, die durch Hinzufügen von nur $n-1$ Elemente +$\vartheta_2,\dots,\vartheta_n$ aus $\mathscr{D}(\vartheta_1)$ den +Differentialkörper $\mathscr{F}$ erreicht, der $g$ enthält. +Sie besagt, dass sich $g$ schreiben lässt als +\[ +g = w_0 + \sum_{i=1}^{k_1} c_i\log w_i +\qquad\text{mit $c_i\in\mathbb{C}$ und $w_0,w_i\in\mathscr{D}(\vartheta_1)$.} +\] +Wir müssen jetzt zeigen, dass sich dieser Ausdruck umformen lässt +in den Ausdruck der Form~\eqref{buch:integrale:satz:liouville-fform}. + +Der Term $w_0\in\mathscr{D}(\vartheta_1)$ hat eine Partialbruchzerlegung +\[ +H(\vartheta_1) ++ +\sum_{j\le r(l)} \frac{P_{lj}(\vartheta_1)}{Q_l(\vartheta_1)^j} +\] +in der Variablen $\vartheta_1$. + +Da $w_i\in\mathscr{D}(\vartheta_1)$ ist, kann man Zähler und Nenner +von $w_i$ als Produkt irreduzibler normierter Polynome schreiben: +\[ +w_i += +\frac{h_i Z_{i1}(\vartheta_1)^{s_{i1}}\cdots Z_{im(i)}^{s_{im(i)}} +}{ +N_{i1}(\vartheta_1)^{t_{i1}}\cdots N_{in(i)}(\vartheta_1)^{t_{in(i)}} +} +\] +Der Logarithmus hat die Form +\begin{align*} +\log w_i +&= \log h_i + +s_{i1} +\log Z_{i1}(\vartheta_1) ++ +\cdots ++ +s_{im(i)} +\log Z_{im(i)} +- +t_{i1} +\log +N_{i1}(\vartheta_1) +- +\cdots +- +t_{in(i)} +\log +N_{in(i)}(\vartheta_1). +\end{align*} +$g$ kann also geschrieben werden als eine Summe von Polynomen, Brüchen, +wie sie in der Partialbruchzerlegung vorkommen, Logarithmen von irreduziblen +normierten Polynomen und Logarithmen von Elementen von $\mathscr{D}$. + +Die Ableitung $g'$ muss jetzt aber wieder in $\mathscr{D}$ sein, beim +Ableiten müssen also alle Terme verschwinden, die $\vartheta_1$ enthalten. +Dabei spielt es eine Rolle, ob $\vartheta_1$ ein Monom oder algebraisch ist. +\begin{enumerate} +\item +Wenn $\vartheta_1$ ein Monom ist, dann kann man wie im Beweis des +Satzes~\ref{buch:integrale:satz:liouville-vorstufe-1} argumentieren, +dass die Brüchterme gar nicht vorkommen und +$H(\vartheta_1)=v_0+c_1\vartheta_1$ sein muss. +Die Ableitung Termen der Form $\log Z(\vartheta_1)$ ist ein Bruchterm +mit dem irreduziblen Nenner $Z(\vartheta_1)$, die ebenfalls verschwinden +müssen. +Ist $\vartheta_1$ eine Exponentialfunktion, dann ist +$\vartheta_1' \in \mathscr{D}(\vartheta_1)\setminus\mathscr{D}$, also muss +$c_1=0$ sein. +Ist $\vartheta_1$ ein Logarithmus, also $\vartheta_1=\log v_1$, dann +kommen nur noch Terme der in +\eqref{buch:integrale:satz:liouville-fform} +erlaubten Form vor. + +\item +Wenn $\vartheta_1$ algebraisch vom Grad $m$ ist, dann ist +\[ +g' = w_0' + \sum_{i=1}^{k_1} d_i\frac{w_i'}{w_i} = f. +\] +Weder $w_0$ noch $\log w_i$ sind in $\mathscr{D}(\vartheta_1)$. +Aber wenn man $\vartheta_1$ durch die $m$ konjugierten Elemente +ersetzt und alle summiert, dann ist +\[ +mf += +\operatorname{Tr}(w_0) + \sum_{i=1}^{k_1} d_i \log\operatorname{Norm}(w_i). +\] +Da die Spur und die Norm in $\mathscr{D}$ sind, folgt, dass +\[ +f += +\underbrace{\frac{1}{m} +\operatorname{Tr}(w_0)}_{\displaystyle= v_0} ++ +\sum_{i=1}^{k_1} \underbrace{\frac{d_i}{m}}_{\displaystyle=c_i} +\log +\underbrace{ \operatorname{Norm}(w_i)}_{\displaystyle=v_i} += +v_0 + \sum_{i=1}^{k_1} c_i\log v_i +\] +die verlangte Form hat. +\qedhere +\end{enumerate} +\end{proof} + +\subsection{Die Fehlerfunktion ist keine elementare Funktion +\label{buch:integrale:section:fehlernichtelementar}} +% \url{https://youtu.be/bIdPQTVF5n4} +Mit Hilfe des Satzes von Liouville kann man jetzt beweisen, dass +die Fehlerfunktion keine elementare Funktion ist. +Dazu braucht man die folgende spezielle Form des Satzes. + +\begin{satz} +\label{buch:integrale:satz:elementarestammfunktion} +Wenn $f(x)$ und $g(x)$ rationale Funktionen von $x$ sind, dann +ist die Stammfunktion von $f(x)e^{g(x)}$ genau dann eine +elementare Funktion, wenn es eine rationale Funktion gibt, die +Lösung der Differentialgleichung +\[ +r'(x) + g'(x)r(x)=f(x) +\] +ist. +\end{satz} + +\begin{satz} +Die Funktion $x\mapsto e^{-x^2}$ hat keine elementare Stammfunktion. +\label{buch:iintegrale:satz:expx2} +\end{satz} + +\begin{proof}[Beweis] +Unter Anwendung des Satzes~\ref{buch:integrale:satz:elementarestammfunktion} +auf $f(x)=1$ und $g(x)=-x^2$ folgt, $e^{-x^2}$ genau dann eine rationale +Stammfunktion hat, wenn es eine rationale Funktion $r(x)$ gibt, die +Lösung der Differentialgleichung +\begin{equation} +r'(x) -2xr(x)=1 +\label{buch:integrale:expx2dgl} +\end{equation} +ist. + +Zunächst halten wir fest, dass $r(x)$ kein Polynom sein kann. +Wäre nämlich +\[ +r(x) += +a_0 + a_1x + \dots + a_nx^n += +\sum_{k=0}^n a_kx^k +\quad\Rightarrow\quad +r'(x) += +a_1 + 2a_2x + \dots + na_nx^{n-1} += +\sum_{k=1}^n +ka_kx^{k-1} +\] +ein Polynom, dann ergäbe sich beim Einsetzen in die Differentialgleichung +\begin{align*} +1 +&= +r'(x)-2xr(x) +\\ +&= +a_1 + 2a_2x + 3a_3x^2 + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1} +\\ +&\qquad +- +2a_0x -2a_1x^2 -2a_2x^3 - \dots - 2a_{n-1}x^n - 2a_nx^{n+1} +\\ +& +\hspace{0.7pt} +\renewcommand{\arraycolsep}{1.8pt} +\begin{array}{crcrcrcrcrcrcrcr} +=&a_1&+&2a_2x&+&3a_3x^2&+&\dots&+&(n-1)a_{n-1}x^{n-2}&+&na_{n }x^{n-1}& & & & \\ + & &-&2a_0x&-&2a_1x^2&-&\dots&-& 2a_{n-3}x^{n-2}&-&2a_{n-2}x^{n-1}&-&2a_{n-1}x^n&-&2a_nx^{n+1} +\end{array} +\\ +&= +a_1 ++ +(2a_2-2a_0)x ++ +(3a_3-2a_1)x^2 +%+ +%(4a_4-2a_2)x^3 ++ +\dots ++ +(na_n-2a_{n-2})x^{n-1} +- +2a_{n-1}x^n +- +2a_nx^{n+1}. +\end{align*} +Koeffizientenvergleich zeigt, dass $a_1=1$ sein muss. +Aus den letzten zwei Termen liest man ebenfalls mittels Koeffizientenvergleich +ab, dass $a_n=0$ und $a_{n-1}=0$ sein müssen. +Aus den Koeffizienten $(ka_k-2a_{k-2})=0$ folgt, dass +$a_{k-2}=\frac{k}{2}a_k$ für alle $k>1$ sein muss, diese Koeffizienten +verschwinden also auch, inklusive $a_1=0$. +Dies ist allerdings im Widerspruch zu $a_1=1$. +Es folgt, dass $r(x)$ kein Polynom sein kann. + +Der Nenner der rationalen Funktion $r(x)$ hat also mindestens eine Nullstelle +$\alpha$, man kann daher $r(x)$ auch schreiben als +\[ +r(x) = \frac{s(x)}{(x-\alpha)^n}, +\] +wobei die rationale Funktion $s(x)$ keine Nullstellen und keine Pole hat. +Einsetzen in die Differentialgleichung ergibt: +\[ +1 += +r'(x) -2xr(x) += +\frac{s'(x)}{(x-\alpha)^n} +-n +\frac{s(x)}{(x-\alpha)^{n+1}} +- +\frac{2xs(x)}{(x-\alpha)^n}. +\] +Multiplizieren mit $(x-\alpha)^{n+1}$ gibt +\[ +(x-\alpha)^{n+1} += +s'(x)(x-\alpha) +- +ns(x) +- +2xs(x)(x-\alpha) +\] +Setzt man $x=\alpha$ ein, verschwinden alle Terme ausser dem mittleren +auf der rechten Seite, es bleibt +\[ +ns(\alpha) = 0. +\] +Dies widerspricht aber der Wahl der rationalen Funktion $s(x)$, für die +$\alpha$ keine Nullstelle ist. + +Somit kann es keine rationale Funktion $r(x)$ geben, die eine Lösung der +Differentialgleichung~\eqref{buch:integrale:expx2dgl} ist und +die Funktion $e^{-x^2}$ hat keine elementare Stammfunktion. +\end{proof} + +Der Satz~\ref{buch:iintegrale:satz:expx2} rechtfertigt die Einführung +der Fehlerfunktion $\operatorname{erf}(x)$ als neue spezielle Funktion, +mit deren Hilfe die Funktion $e^{-x^2}$ integriert werden kann. + + + diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex new file mode 100644 index 0000000..53b46ad --- /dev/null +++ b/buch/chapters/060-integral/diffke.tex @@ -0,0 +1,20 @@ +% +% diffke.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Differentialkörper und ihre Erweiterungen +\label{buch:integral:subsection:diffke}} +% +\subsubsection{Derivation} +% Ableitungsaxiome + +\subsubsection{Ableitungsregeln} +% Ableitungsregeln + +\subsubsection{Konstantenkörper} +% Konstantenkörper + +\subsubsection{Logarithmus und Exponentialfunktion} +% Logarithmus und Exponentialfunktion + diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex new file mode 100644 index 0000000..2962178 --- /dev/null +++ b/buch/chapters/060-integral/elementar.tex @@ -0,0 +1,7 @@ +% +% elementar.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Elementare Funktionen +\label{buch:integral:subsection:elementar}} diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex new file mode 100644 index 0000000..f88f6e3 --- /dev/null +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -0,0 +1,12 @@ +% +% erweiterungen.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Körpererweiterungen +\label{buch:integral:subsection:koerpererweiterungen}} +% +% algebraische Zahl-Erweiterungen +% rationale Funktionen als Körpererweiterungen +% Erweiterungen mit algebraischen Funktionen +% diff --git a/buch/chapters/060-integral/iproblem.tex b/buch/chapters/060-integral/iproblem.tex new file mode 100644 index 0000000..85db464 --- /dev/null +++ b/buch/chapters/060-integral/iproblem.tex @@ -0,0 +1,93 @@ +% +% iproblem.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Das Integrationsproblem +\label{buch:integral:subsection:integrationsproblem}} +\index{Integrationsproblem}% +Die Ableitung ist ein einem Differentialkörper mit Hilfe der Ableitungsregeln +immer ausführbar, ganz ähnlich wie die Berechnung von Potenzen in einem Körper +immer ausführbar ist. +Die Umkehrung, also eine sogenannte Stammfunktion zu finden, ist dagegen +deutlich schwieriger. + +\begin{definition} +\index{Stammfunktion} +Eine {\em Stammfunktion} einer Funktion $f\in\mathscr{K}$ im Funktionenkörper +$\mathscr{K}$ ist eine Funktion $F\in\mathscr{K}$ derart, dass $F'=f$. +Wir schreiben auch $F=\int f$. +\end{definition} + +Zwei Stammfunktionen $F_1$ und $F_2$ einer Funktion $f\in\mathscr{K}$ +haben die Eigenschaft +\[ +\left.\begin{aligned} +F_1' &= f \\ +F_2' &= f +\end{aligned}\quad\right\} +\qquad +\Rightarrow +\qquad +(F_1-F_2)' = 0 +\qquad\Rightarrow\qquad +F_1-F_2\in\mathscr{C}, +\] +die beiden Stammfunktionen unterscheiden sich daher nur durch eine +Konstante. + +\subsubsection{Stammfunktion von Polynomen} +Für Polynome ist das Problem leicht lösbar. +Aus der Ableitungsregel +\[ +\frac{d}{dx} x^n = nx^{n-1} +\] +folgt, dass +\[ +\int x^n = \frac{1}{n+1} x^{n+1} +\] +eine Stammfunktion von $x^n$ ist. +Da $\int$ linear ist, ergibt sich damit auch eine Stammfunktion für +ein beliebiges Polynom +\[ +g(x) += +g_0 + g_1x + g_2x^2 + \dots g_nx^n += +\sum_{k=0}^n g_kx^k +\in\mathbb{Q}(x) +\] +angeben: +\begin{equation} +\int g(x) += +g_0x + \frac12g_1x^2 + \frac13g_2x^3 + \dots \frac{1}{n+1}g_nx^{n+1} += +\sum_{k=0}^n +\frac{g_k}{k+1}x^{k+1}. +\label{buch:integral:iproblem:eqn:polyintegral} +\end{equation} + +\subsubsection{Körpererweiterungen} +Obwohl die Ableitung in einem Differentialkörper immer ausgeführt werden +kann, gibt es keine Garantie, dass es eine Stammfunktion im gleichen +Körper gibt. +Im kleinsten denkbaren Funktionenkörper $\mathbb{Q}(x)$ +haben die negativen Potenzen linearer Funktionen die Stammfunktionen +\[ +\int +\frac{1}{(x-\alpha)^k} += +\frac{1}{(-k+1)(x-\alpha)^{k-1}} +\] +für $k\ne 1$, sind also wieder in $\mathbb{Q}(x)$. +Für $k=1$ ist aber +\[ +\int \frac{1}{x-\alpha} += +\log(x-\alpha), +\] +es braucht also eine Körpererweiterung um $\log(x-\alpha)$, damit +$(x-\alpha)^{-1}$ eine Stammfunktion in $\mathbb{Q}(x,\log(x-\alpha))$ +hat. + diff --git a/buch/chapters/060-integral/irat.tex b/buch/chapters/060-integral/irat.tex new file mode 100644 index 0000000..2d03b7b --- /dev/null +++ b/buch/chapters/060-integral/irat.tex @@ -0,0 +1,140 @@ +% +% irat.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Integration rationaler Funktionen +\label{buch:integral:subsection:rationalefunktionen}} +Für die Integration der rationalen Funktionen lernt man in einem +Analysis-Kurs üblicherweise ein Lösungsverfahren. +Dies zeigt zunächst, dass rationale Funktionen immer eine Stammfunktion +in einem geeigneten Erweiterungskörper haben. +Es deutet aber auch an, dass Stammfunktionen eine ziemlich spezielle +Form haben, die später als +Satz von Liouville~\ref{buch:integral:satz:liouville} +ein besondere Rolle spielen wird. + +% +% Aufgabenstellung +% +\subsubsection{Aufgabenstellung} +In diesem Abschnitt ist eine rationale Funktion $f(x)\in\mathbb{Q}(x)$ +gegeben, deren Stammfunktion bestimmt werden soll. +Als rationale Funktion kann sie als Bruch +\begin{equation} +f(x) = \frac{p(x)}{q(x)} +\label{buch:integral:irat:eqn:quotient} +\end{equation} +mit Polynomen $p(x),q(x)\in\mathbb{Q}[x]$ geschrieben werden. +Gesucht ist ein Erweiterungskörper $\mathscr{K}\supset \mathbb{Q}(x)$ +derart und eine Stammfunktion $F\in\mathscr{K}$ von $f$, also $F'=f$. + +% +% Polynomdivision +% +\subsubsection{Polynomdivision} +Der Quotient~\eqref{buch:integral:irat:eqn:quotient} kann durch Polynomdivision +mit Rest vereinfacht werden in einen polynomialen Teil und einen echten +Bruch: +\begin{equation} +f(x) += +g(x) ++ +\frac{a(x)}{b(x)} +\label{buch:integral:irat:eqn:polydiv} +\end{equation} +mit Polynomen $g(x),a(x),b(x)\in\mathbb[Q](x)$ und $\deg a(x) < \deg b(x)$. +Für den ersten Summanden liefert +\eqref{buch:integral:iproblem:eqn:polyintegral} eine Stammfunktion. +Im Folgenden bleibt also nur noch der zweite Term zu behandeln. + +% +% Partialbruchzerlegung +% +\subsubsection{Partialbruchzerlegung} +Zur Berechnung des Integral des Bruchs +in~\eqref{buch:integral:irat:eqn:polydiv} wird die Partialbruchzerlegung +benötigt. +Der Einfachheit halber nehmen wir an, dass wir den Körper $\mathbb{Q}(x)$ +mit alle Nullstellen $\beta_i$ des Nenner-Polynoms $b(x)$ zu einem Körper +$\mathscr{K}$ erweitert haben, in dem Nenner in Linearfaktoren zerfällt. +Unter diesen Voraussetzungen hat die Partialbruchzerlegung die Form +\begin{equation} +\frac{a(x)}{b(x)} += +\sum_{i=1}^m +\sum_{k=1}^{k_i} +\frac{A_{ik}}{(x-\beta_i)^k}, +\label{buch:integral:irat:eqn:partialbruch} +\end{equation} +wobei $k_i$ die Vielfachheit der Nullstelle $\beta_i$ ist. +Die Koeffizienten $A_{ik}$ können zum Beispiel mit Hilfe eines linearen +Gleichungssystems bestimmt werden. + +Um eine Stammfunktion zu finden, muss man also Stammfunktionen für +jeden einzelnen Summanden bestimmen. +Für Exponenten $k>1$ im Nenner eines Terms der +Partialbruchzerlegung~\eqref{buch:integral:irat:eqn:partialbruch} +kann dazu die Regel +\[ +\int \frac{A_{ik}}{(x-\beta_i)^k} += +\frac{A_{ik}}{(-k+1)(x-\beta_i)^{k-1}} +\] +verwendet werden. +Diese Stammfunktion liegt wieder in $\mathbb{Q}(x)$ liegt. + +% +% Körpererweiterungen +% +\subsubsection{Körpererweiterung} +Für $k=1$ ist eine logarithmische Erweiterung um die Funktion +\begin{equation} +\int \frac{A_{i1}}{x-\alpha_i} += +A_{i1} +\log(x-\alpha_i) +\label{buch:integral:irat:eqn:logs} +\end{equation} +nötig. +Es gibt also eine Stammfunktion in einem Erweiterungskörper, sofern +er zusätzlich alle logarithmischen Funktionen +in~\ref{buch:integral:irat:eqn:logs} enthält. +Sie hat die Form +\[ +\sum_{i=1}^m A_{i1} \log(x-\beta_i), +\] +wobei $A_{i1}\in\mathbb{Q}$ ist. + +Setzt man alle vorher schon gefundenen Teile der Stammfunktion zusammen, +kann man sehen, dass die Stammfunktion die Form +\begin{equation} +F(x) = v_0(x) + \sum_{i=1}^m c_i \log v_i(x) +\label{buch:integral:irat:eqn:liouvillstammfunktion} +\end{equation} +haben muss. +Dabei ist $v_0(x)\in\mathbb{Q}(x)$ und besteht aus der Stammfunktion +des polynomiellen Teils und den Stammfunktionen der Terme der Partialbruchzerlegung mit Exponenten $k>1$. +Die logarithmischen Terme bestehen aus den Konstanten $c_i=A_{i1}$ +und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathbb{Q}(x)$. +Die Funktion $f(x)$ muss daher die Form +\[ +f(x) += +v_0'(x) ++ +\sum_{i=1}^m c_i\frac{v'_i(x)}{v_i(x)} +\] +gehabt haben. +Die Form~\eqref{buch:integral:irat:eqn:liouvillstammfunktion} +der Stammfunktion ist nicht eine Spezialität der rationalen Funktionen. +Sie wird auch bei grösseren Funktionenkörpern immer wieder auftreten +und ist als Satz von Liouville bekannt. + +% +% Minimale algebraische Erweiterung +% +\subsubsection{Minimale algebraische Erweiterung} +XXX Rothstein-Trager + diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex new file mode 100644 index 0000000..7cbb906 --- /dev/null +++ b/buch/chapters/060-integral/logexp.tex @@ -0,0 +1,27 @@ +% +% logexp.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Log-Exp-Notation für elementare Funktionen +\label{buch:integral:subsection:logexp}} +Die Integration rationaler Funktionen hat bereits gezeigt, dass +eine Stammfunktion nicht immer im Körper der rationalen Funktionen +existiert. +Es kann notwendig sein, dem Körper logarithmische Erweiterungen der Form +$\log(x-\alpha)$ hinzuzufügen. + +Es können jedoch noch ganz andere neue Funktionen auftreten, wie die +folgende Zusammenstellung einiger Stammfunktionen zeigt: +\begin{align*} +\int\frac{dx}{1+x^2} +&= +\arctan x +\\ +\end{align*} + + + + + + diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex new file mode 100644 index 0000000..19f2ad9 --- /dev/null +++ b/buch/chapters/060-integral/rational.tex @@ -0,0 +1,8 @@ +% +% rational.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Rationale Funktionen und Funktionenkörper +\label{buch:integral:subsection:rational}} + diff --git a/buch/chapters/060-integral/risch.tex b/buch/chapters/060-integral/risch.tex index 6c8ff96..1ba746a 100644 --- a/buch/chapters/060-integral/risch.tex +++ b/buch/chapters/060-integral/risch.tex @@ -6,7 +6,8 @@ \section{Der Risch-Algorithmus \label{buch:integral:section:risch}} \rhead{Risch-Algorithmus} - +\input{chapters/060-integral/logexp.tex} +\input{chapters/060-integral/elementar.tex} diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex new file mode 100644 index 0000000..71eb39b --- /dev/null +++ b/buch/chapters/060-integral/sqrat.tex @@ -0,0 +1,8 @@ +% +% sqrat.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Integranden der Form $R(x,\sqrt{ax^2+bx+c})$ +\label{buch:integral:subsection:rxy}} + -- cgit v1.2.1 From a5b447ef1ab21d9dcb88d696862c75b81e994a32 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 23 May 2022 12:36:40 +0200 Subject: more rational integration stuff --- buch/chapters/060-integral/irat.tex | 8 +-- buch/chapters/060-integral/sqrat.tex | 110 +++++++++++++++++++++++++++++++++++ 2 files changed, 114 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/irat.tex b/buch/chapters/060-integral/irat.tex index 2d03b7b..4c472ea 100644 --- a/buch/chapters/060-integral/irat.tex +++ b/buch/chapters/060-integral/irat.tex @@ -83,7 +83,7 @@ kann dazu die Regel \frac{A_{ik}}{(-k+1)(x-\beta_i)^{k-1}} \] verwendet werden. -Diese Stammfunktion liegt wieder in $\mathbb{Q}(x)$ liegt. +Diese Stammfunktion liegt wieder in $\mathscr{K}(x)$ liegt. % % Körpererweiterungen @@ -105,7 +105,7 @@ Sie hat die Form \[ \sum_{i=1}^m A_{i1} \log(x-\beta_i), \] -wobei $A_{i1}\in\mathbb{Q}$ ist. +wobei $A_{i1}\in\mathscr{K}$ ist. Setzt man alle vorher schon gefundenen Teile der Stammfunktion zusammen, kann man sehen, dass die Stammfunktion die Form @@ -114,10 +114,10 @@ F(x) = v_0(x) + \sum_{i=1}^m c_i \log v_i(x) \label{buch:integral:irat:eqn:liouvillstammfunktion} \end{equation} haben muss. -Dabei ist $v_0(x)\in\mathbb{Q}(x)$ und besteht aus der Stammfunktion +Dabei ist $v_0(x)\in\mathscr{K}(x)$ und besteht aus der Stammfunktion des polynomiellen Teils und den Stammfunktionen der Terme der Partialbruchzerlegung mit Exponenten $k>1$. Die logarithmischen Terme bestehen aus den Konstanten $c_i=A_{i1}$ -und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathbb{Q}(x)$. +und den Logarithmusfunktionen $v_i(x)=x-\beta_i\in\mathscr{K}(x)$. Die Funktion $f(x)$ muss daher die Form \[ f(x) diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index 71eb39b..38b1504 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -5,4 +5,114 @@ % \subsection{Integranden der Form $R(x,\sqrt{ax^2+bx+c})$ \label{buch:integral:subsection:rxy}} +Für rationale Funktionen lässt sich immer eine Stammfunktion in einem +Erweiterungskörper angeben, der durch hinzufügen einzelner logarithmischer +Funktionen entsteht. +Die dabei verwendeten Techniken lassen sich verallgemeinern. +Zur Illustration und Motivation des später beschriebenen Risch-Algorithmus +stellen wir uns in diesem Abschnitt der Aufgabe, Integrale +mit einem Integranden zu berechnen, der eine rationale Funktion von $x$ +und $\sqrt{ax^2+bx+c}$ ist. + +% +% Aufgabenstellung +% +\subsubsection{Aufgabenstellung} +Eine rationale Funktion von $x$ und $\sqrt{ax^2+bx+c}$ ist ein +Element des Differentialkörpers, den man aus $\mathbb{Q}(x)$ durch +hinzufügen des Elementes +\[ +y=\sqrt{ax^2+bx+c} +\] +erhält. +Eine Funktion $f\in\mathbb{Q}(x,y)$ kann geschrieben werden als Bruch +\begin{equation} +f += +\frac{ +\tilde{p}_0 + \tilde{p}_1y + \dots + \tilde{p}_n y^n +}{ +\tilde{q}_0 + \tilde{q}_1y + \dots + \tilde{q}_m y^m +} +\label{buch:integral:sqrat:eqn:ftilde} +\end{equation} +mit rationalen Koeffizienten $\tilde{p}_i,\tilde{q}_i\in\mathbb{Q}(x)$. +Gesucht ist eine Stammfunktion von $f$. + +% +% Algebraische Vereinfachungen +% +\subsubsection{Algebraische Vereinfachungen} +Da $x^2=ax^2+bx+c$ ein Polynom ist, sind auch alle geraden Potenzen +von $y$ Polynome in $\mathbb{Q}(x)$, +und die ungeraden Potenzen von $y$ lassen sich als Produkt aus einem +Polynom und dem Faktor $y$ schreiben. +Der Integrand~\eqref{buch:integral:sqrat:eqn:ftilde} +lässt sich daher vereinfachen zu einem Bruch der Form +\begin{equation} +f(x) += +\frac{p_0+p_1y}{q_0+q_1y}, +\label{buch:integral:sqrat:eqn:moebius} +\end{equation} +wobei $p_i$ und $q_i$ rationale Funktionen in $\mathbb{Q}(x)$ sind. + +% +% Rationalisieren +% +\subsubsection{Rationalisieren} +Unschön an der Form~\eqref{buch:integral:sqrat:eqn:moebius} ist die +Tatsache, dass $y$ sowohl im Nenner wie auch im Zähler auftreten kann. +Da aber $y$ die quadratische Identität $y^2=ax^2+bx+c$ erfüllt, +kann das $y$ im Nenner durch Erweitern mit $q_0-q_1y$ zum verschwinden +gebracht werden. +Die Rechnung ergibt +\begin{align*} +\frac{p_0+p_1y}{q_0+q_1y} +&= +\frac{p_0+p_1y}{q_0+q_1y} +\cdot +\frac{q_0-q_1y}{q_0-q_1y} += +\frac{(p_0+p_1y)(q_0-q_1y)}{q_0^2-q_1^2y^2} +\\ +&= +\frac{p_0q_0-p_1q_1(ax^2+bx+c)}{q_0^2-q_1^2(ax^2+bx+c)} ++ +\frac{q_0p_1-q_1p_0}{q_0^2-q_1^2(ax^2+bx+c)} y. +\end{align*} +Die Quotienten enthalten $y$ nicht mehr, sind also in $\mathbb{Q}(x)$. +In der späteren Rechnung stellt sich heraus, dass es praktischer ist, +das $y$ im Nenner zu haben, was man durch erweitern mit $y$ wieder +unter Ausnützung von $y^2=ax^2+bx+c$ erreichen kann. +Die zu integrierende Funktion kann also in der Form +\begin{equation} +f(x) += +W_1 + W_2\frac{1}{y} +\end{equation} +geschrieben werden mit rationalen Funktionen +$W_1,W_2\in\mathbb{Q}(x)$. +Eine Stammfunktion von $W_1$ kann mit der Methode von +Abschnitt~\ref{buch:integral:subsection:rationalefunktionen} +gefunden werden. +Im Folgenden kümmern wir uns daher nur noch um $W_1$. + +\subsubsection{Polynomdivision} + +\subsubsection{Integranden der Form $p(x)/y$} + +\subsubsection{Partialbruchzerlegung} + +\begin{equation} +\int +\frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}} +\label{buch:integral:sqrat:eqn:2teart} +\end{equation} + +\subsubsection{Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}} + + + + -- cgit v1.2.1 From e8bb3fd399f2261c9b430ffa319626950499d4c1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 23 May 2022 23:06:11 +0200 Subject: new spherical graph --- buch/papers/kugel/images/Makefile | 12 ++- buch/papers/kugel/images/spherecurve.m | 160 ++++++++++++++++++++++++++++ buch/papers/kugel/images/spherecurve.maxima | 13 +++ buch/papers/kugel/images/spherecurve.pov | 73 +++++++++++++ 4 files changed, 257 insertions(+), 1 deletion(-) create mode 100644 buch/papers/kugel/images/spherecurve.m create mode 100644 buch/papers/kugel/images/spherecurve.maxima create mode 100644 buch/papers/kugel/images/spherecurve.pov (limited to 'buch') diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/images/Makefile index e8bf919..6187fed 100644 --- a/buch/papers/kugel/images/Makefile +++ b/buch/papers/kugel/images/Makefile @@ -3,7 +3,7 @@ # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: curvature.jpg +all: curvature.jpg spherecurve.jpg curvature.inc: curvgraph.m octave curvgraph.m @@ -13,3 +13,13 @@ curvature.png: curvature.pov curvature.inc curvature.jpg: curvature.png convert curvature.png -density 300 -units PixelsPerInch curvature.jpg + +spherecurve.inc: spherecurve.m + octave spherecurve.m + +spherecurve.png: spherecurve.pov spherecurve.inc + povray +A0.1 +W1920 +H1080 +Ospherecurve.png spherecurve.pov + +spherecurve.jpg: spherecurve.png + convert spherecurve.png -density 300 -units PixelsPerInch spherecurve.jpg + diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/images/spherecurve.m new file mode 100644 index 0000000..ea9c901 --- /dev/null +++ b/buch/papers/kugel/images/spherecurve.m @@ -0,0 +1,160 @@ +# +# spherecurv.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global a; +a = 5; +global A; +A = 10; + +phisteps = 400; +hphi = 2 * pi / phisteps; +thetasteps = 200; +htheta = pi / thetasteps; + +function retval = f(z) + global a; + global A; + retval = A * exp(a * (z^2 - 1)); +endfunction + +function retval = g(z) + global a; + retval = -f(z) * 2 * a * (2 * a * z^4 + (3 - 2*a) * z^2 - 1); + # 2 + # - a 2 4 2 2 a z + #(%o6) - %e (4 a z + (6 a - 4 a ) z - 2 a) %e +endfunction + +phi = (1 + sqrt(5)) / 2; + +global axes; +axes = [ + 0, 0, 1, -1, phi, -phi; + 1, -1, phi, phi, 0, 0; + phi, phi, 0, 0, 1, 1; +]; +axes = axes / (sqrt(phi^2+1)); + +function retval = kugel(theta, phi) + retval = [ + cos(phi) * sin(theta); + sin(phi) * sin(theta); + cos(theta) + ]; +endfunction + +function retval = F(v) + global axes; + s = 0; + for i = (1:6) + z = axes(:,i)' * v; + s = s + f(z); + endfor + retval = s / 6; +endfunction + +function retval = F2(theta, phi) + v = kugel(theta, phi); + retval = F(v); +endfunction + +function retval = G(v) + global axes; + s = 0; + for i = (1:6) + s = s + g(axes(:,i)' * v); + endfor + retval = s / 6; +endfunction + +function retval = G2(theta, phi) + v = kugel(theta, phi); + retval = G(v); +endfunction + +function retval = cnormalize(u) + utop = 11; + ubottom = -30; + retval = (u - ubottom) / (utop - ubottom); + if (retval > 1) + retval = 1; + endif + if (retval < 0) + retval = 0; + endif +endfunction + +global umin; +umin = 0; +global umax; +umax = 0; + +function color = farbe(v) + global umin; + global umax; + u = G(v); + if (u < umin) + umin = u; + endif + if (u > umax) + umax = u; + endif + u = cnormalize(u); + color = [ u, 0.5, 1-u ]; + color = color/max(color); +endfunction + +function dreieck(fn, v0, v1, v2) + fprintf(fn, " mesh {\n"); + c = (v0 + v1 + v2) / 3; + c = c / norm(c); + color = farbe(c); + v0 = v0 * (1 + F(v0)); + v1 = v1 * (1 + F(v1)); + v2 = v2 * (1 + F(v2)); + fprintf(fn, "\ttriangle {\n"); + fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v0(1,1), v0(3,1), v0(2,1)); + fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v1(1,1), v1(3,1), v1(2,1)); + fprintf(fn, "\t <%.6f,%.6f,%.6f>\n", v2(1,1), v2(3,1), v2(2,1)); + fprintf(fn, "\t}\n"); + fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", + color(1,1), color(1,2), color(1,3)); + fprintf(fn, "\tfinish { metallic specular 0.5 }\n"); + fprintf(fn, " }\n"); +endfunction + +fn = fopen("spherecurve.inc", "w"); + + for i = (1:phisteps) + # Polkappe nord + v0 = [ 0; 0; 1 ]; + v1 = kugel(htheta, (i-1) * hphi); + v2 = kugel(htheta, i * hphi); + fprintf(fn, " // i = %d\n", i); + dreieck(fn, v0, v1, v2); + + # Polkappe sued + v0 = [ 0; 0; -1 ]; + v1 = kugel(pi-htheta, (i-1) * hphi); + v2 = kugel(pi-htheta, i * hphi); + dreieck(fn, v0, v1, v2); + endfor + + for j = (1:thetasteps-2) + for i = (1:phisteps) + v0 = kugel( j * htheta, (i-1) * hphi); + v1 = kugel((j+1) * htheta, (i-1) * hphi); + v2 = kugel( j * htheta, i * hphi); + v3 = kugel((j+1) * htheta, i * hphi); + fprintf(fn, " // i = %d, j = %d\n", i, j); + dreieck(fn, v0, v1, v2); + dreieck(fn, v1, v2, v3); + endfor + endfor + +fclose(fn); + +umin +umax diff --git a/buch/papers/kugel/images/spherecurve.maxima b/buch/papers/kugel/images/spherecurve.maxima new file mode 100644 index 0000000..1e9077c --- /dev/null +++ b/buch/papers/kugel/images/spherecurve.maxima @@ -0,0 +1,13 @@ +/* + * spherecurv.maxima + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +f: exp(-a * sin(theta)^2); + +g: ratsimp(diff(sin(theta) * diff(f, theta), theta)/sin(theta)); +g: subst(z, cos(theta), g); +g: subst(sqrt(1-z^2), sin(theta), g); +ratsimp(g); + +f: ratsimp(subst(sqrt(1-z^2), sin(theta), f)); diff --git a/buch/papers/kugel/images/spherecurve.pov b/buch/papers/kugel/images/spherecurve.pov new file mode 100644 index 0000000..86c3745 --- /dev/null +++ b/buch/papers/kugel/images/spherecurve.pov @@ -0,0 +1,73 @@ +// +// curvature.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// + +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.14; + +camera { + location <10, 10, -40> + look_at <0, 0, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <-10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-2.7,0,0>, <2.7,0,0>, 0.03, White) +arrow(<0,-2.7,0>, <0,2.7,0>, 0.03, White) +arrow(<0,0,-2.7>, <0,0,2.7>, 0.03, White) + +#include "spherecurve.inc" + -- cgit v1.2.1 From 6ee6a7b0cf91469c7a79827293b8e3b880a6a0aa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 May 2022 11:45:50 +0200 Subject: add C++ program to compute the surface --- buch/papers/kugel/images/Makefile | 9 +- buch/papers/kugel/images/spherecurve.cpp | 292 +++++++++++++++++++++++++++++++ buch/papers/kugel/images/spherecurve.m | 4 +- buch/papers/kugel/images/spherecurve.pov | 4 +- 4 files changed, 303 insertions(+), 6 deletions(-) create mode 100644 buch/papers/kugel/images/spherecurve.cpp (limited to 'buch') diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/images/Makefile index 6187fed..4226dab 100644 --- a/buch/papers/kugel/images/Makefile +++ b/buch/papers/kugel/images/Makefile @@ -14,12 +14,17 @@ curvature.png: curvature.pov curvature.inc curvature.jpg: curvature.png convert curvature.png -density 300 -units PixelsPerInch curvature.jpg -spherecurve.inc: spherecurve.m +spherecurve2.inc: spherecurve.m octave spherecurve.m spherecurve.png: spherecurve.pov spherecurve.inc - povray +A0.1 +W1920 +H1080 +Ospherecurve.png spherecurve.pov + povray +A0.1 +W1080 +H1080 +Ospherecurve.png spherecurve.pov spherecurve.jpg: spherecurve.png convert spherecurve.png -density 300 -units PixelsPerInch spherecurve.jpg +spherecurve: spherecurve.cpp + g++ -o spherecurve -g -Wall -O spherecurve.cpp + +spherecurve.inc: spherecurve + ./spherecurve diff --git a/buch/papers/kugel/images/spherecurve.cpp b/buch/papers/kugel/images/spherecurve.cpp new file mode 100644 index 0000000..eff8c33 --- /dev/null +++ b/buch/papers/kugel/images/spherecurve.cpp @@ -0,0 +1,292 @@ +/* + * spherecurve.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include +#include +#include +#include +#include + +inline double sqr(double x) { return x * x; } + +/** + * \brief Class for 3d vectors (also used as colors) + */ +class vector { + double X[3]; +public: + vector() { X[0] = X[1] = X[2] = 0; } + vector(double a) { X[0] = X[1] = X[2] = a; } + vector(double x, double y, double z) { + X[0] = x; X[1] = y; X[2] = z; + } + vector(double theta, double phi) { + double s = sin(theta); + X[0] = cos(phi) * s; + X[1] = sin(phi) * s; + X[2] = cos(theta); + } + vector(const vector& other) { + for (int i = 0; i < 3; i++) { + X[i] = other.X[i]; + } + } + vector operator+(const vector& other) const { + return vector(X[0] + other.X[0], + X[1] + other.X[1], + X[2] + other.X[2]); + } + vector operator*(double l) const { + return vector(X[0] * l, X[1] * l, X[2] * l); + } + double operator*(const vector& other) const { + double s = 0; + for (int i = 0; i < 3; i++) { + s += X[i] * other.X[i]; + } + return s; + } + double norm() const { + double s = 0; + for (int i = 0; i < 3; i++) { + s += sqr(X[i]); + } + return sqrt(s); + } + vector normalize() const { + double l = norm(); + return vector(X[0]/l, X[1]/l, X[2]/l); + } + double max() const { + return std::max(X[0], std::max(X[1], X[2])); + } + double l0norm() const { + double l = 0; + for (int i = 0; i < 3; i++) { + if (fabs(X[i]) > l) { + l = fabs(X[i]); + } + } + return l; + } + vector l0normalize() const { + double l = l0norm(); + vector result(X[0]/l, X[1]/l, X[2]/l); + return result; + } + const double& operator[](int i) const { return X[i]; } + double& operator[](int i) { return X[i]; } +}; + +/** + * \brief Derived 3d vector class implementing color + * + * The constructor in this class converts a single value into a + * color on a suitable gradient. + */ +class color : public vector { +public: + static double utop; + static double ubottom; + static double green; +public: + color(double u) { + u = (u - ubottom) / (utop - ubottom); + if (u > 1) { + u = 1; + } + if (u < 0) { + u = 0; + } + u = pow(u,2); + (*this)[0] = u; + (*this)[1] = green; + (*this)[2] = 1-u; + double l = l0norm(); + for (int i = 0; i < 3; i++) { + (*this)[i] /= l; + } + } +}; + +double color::utop = 12; +double color::ubottom = -31; +double color::green = 0.5; + +/** + * \brief Surface model + * + * This class contains the definitions of the functions to plot + * and the parameters to + */ +class surfacefunction { + static vector axes[6]; + + double _a; + double _A; + + double _umin; + double _umax; +public: + double a() const { return _a; } + double A() const { return _A; } + + double umin() const { return _umin; } + double umax() const { return _umax; } + + surfacefunction(double a, double A) : _a(a), _A(A), _umin(0), _umax(0) { + } + + double f(double z) { + return A() * exp(a() * (sqr(z) - 1)); + } + + double g(double z) { + return -f(z) * 2*a() * ((2*a()*sqr(z) + (3-2*a()))*sqr(z) - 1); + } + + double F(const vector& v) { + double s = 0; + for (int i = 0; i < 6; i++) { + s += f(axes[i] * v); + } + return s / 6; + } + + double G(const vector& v) { + double s = 0; + for (int i = 0; i < 6; i++) { + s += g(axes[i] * v); + } + return s / 6; + } +protected: + color farbe(const vector& v) { + double u = G(v); + if (u < _umin) { + _umin = u; + } + if (u > _umax) { + _umax = u; + } + return color(u); + } +}; + +static double phi = (1 + sqrt(5)) / 2; +static double sl = sqrt(sqr(phi) + 1); +vector surfacefunction::axes[6] = { + vector( 0. , -1./sl, phi/sl ), + vector( 0. , 1./sl, phi/sl ), + vector( 1./sl, phi/sl, 0. ), + vector( -1./sl, phi/sl, 0. ), + vector( phi/sl, 0. , 1./sl ), + vector( -phi/sl, 0. , 1./sl ) +}; + +/** + * \brief Class to construct the plot + */ +class surface : public surfacefunction { + FILE *outfile; + + int _phisteps; + int _thetasteps; + double _hphi; + double _htheta; +public: + int phisteps() const { return _phisteps; } + int thetasteps() const { return _thetasteps; } + double hphi() const { return _hphi; } + double htheta() const { return _htheta; } + void phisteps(int s) { _phisteps = s; _hphi = 2 * M_PI / s; } + void thetasteps(int s) { _thetasteps = s; _htheta = M_PI / s; } + + surface(const std::string& filename, double a, double A) + : surfacefunction(a, A) { + outfile = fopen(filename.c_str(), "w"); + phisteps(400); + thetasteps(200); + } + + ~surface() { + fclose(outfile); + } + +private: + void triangle(const vector& v0, const vector& v1, const vector& v2) { + fprintf(outfile, " mesh {\n"); + vector c = (v0 + v1 + v2) * (1./3.); + vector color = farbe(c.normalize()); + vector V0 = v0 * (1 + F(v0)); + vector V1 = v1 * (1 + F(v1)); + vector V2 = v2 * (1 + F(v2)); + fprintf(outfile, "\ttriangle {\n"); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", + V0[0], V0[2], V0[1]); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", + V1[0], V1[2], V1[1]); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>\n", + V2[0], V2[2], V2[1]); + fprintf(outfile, "\t}\n"); + fprintf(outfile, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", + color[0], color[1], color[2]); + fprintf(outfile, "\tfinish { metallic specular 0.5 }\n"); + fprintf(outfile, " }\n"); + } + + void northcap() { + vector v0(0, 0, 1); + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // northcap i = %d\n", i); + vector v1(htheta(), (i - 1) * hphi()); + vector v2(htheta(), i * hphi()); + triangle(v0, v1, v2); + } + } + + void southcap() { + vector v0(0, 0, -1); + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // southcap i = %d\n", i); + vector v1(M_PI - htheta(), (i - 1) * hphi()); + vector v2(M_PI - htheta(), i * hphi()); + triangle(v0, v1, v2); + } + } + + void zone() { + for (int j = 1; j < thetasteps() - 1; j++) { + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // zone j = %d, i = %d\n", + j, i); + vector v0( j * htheta(), (i-1) * hphi()); + vector v1((j+1) * htheta(), (i-1) * hphi()); + vector v2( j * htheta(), i * hphi()); + vector v3((j+1) * htheta(), i * hphi()); + triangle(v0, v1, v2); + triangle(v1, v2, v3); + } + } + } +public: + void draw() { + northcap(); + southcap(); + zone(); + } +}; + +/** + * \brief main function + */ +int main(int argc, char *argv[]) { + surface S("spherecurve.inc", 5, 10); + color::green = 0.3; + S.draw(); + std::cout << "umin: " << S.umin() << std::endl; + std::cout << "umax: " << S.umax() << std::endl; + return EXIT_SUCCESS; +} diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/images/spherecurve.m index ea9c901..99d5c9a 100644 --- a/buch/papers/kugel/images/spherecurve.m +++ b/buch/papers/kugel/images/spherecurve.m @@ -1,5 +1,5 @@ # -# spherecurv.m +# spherecurve.m # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # @@ -125,7 +125,7 @@ function dreieck(fn, v0, v1, v2) fprintf(fn, " }\n"); endfunction -fn = fopen("spherecurve.inc", "w"); +fn = fopen("spherecurve2.inc", "w"); for i = (1:phisteps) # Polkappe nord diff --git a/buch/papers/kugel/images/spherecurve.pov b/buch/papers/kugel/images/spherecurve.pov index 86c3745..b1bf4b8 100644 --- a/buch/papers/kugel/images/spherecurve.pov +++ b/buch/papers/kugel/images/spherecurve.pov @@ -11,12 +11,12 @@ global_settings { assumed_gamma 1 } -#declare imagescale = 0.14; +#declare imagescale = 0.13; camera { location <10, 10, -40> look_at <0, 0, 0> - right 16/9 * x * imagescale + right x * imagescale up y * imagescale } -- cgit v1.2.1 From d08813723e1cab4bca4a527218610023775a4634 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 May 2022 11:53:56 +0200 Subject: better color coding --- buch/papers/kugel/images/spherecurve.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/kugel/images/spherecurve.cpp b/buch/papers/kugel/images/spherecurve.cpp index eff8c33..8ddf5e5 100644 --- a/buch/papers/kugel/images/spherecurve.cpp +++ b/buch/papers/kugel/images/spherecurve.cpp @@ -102,7 +102,7 @@ public: } u = pow(u,2); (*this)[0] = u; - (*this)[1] = green; + (*this)[1] = green * u * (1 - u); (*this)[2] = 1-u; double l = l0norm(); for (int i = 0; i < 3; i++) { @@ -284,7 +284,7 @@ public: */ int main(int argc, char *argv[]) { surface S("spherecurve.inc", 5, 10); - color::green = 0.3; + color::green = 1.0; S.draw(); std::cout << "umin: " << S.umin() << std::endl; std::cout << "umax: " << S.umax() << std::endl; -- cgit v1.2.1 From c9c9f97f5cf1bbe669acfdb8aae1e6c81f8faed9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 May 2022 16:23:27 +0200 Subject: Integrale von R(x,y) --- buch/chapters/060-integral/differentialkoerper.tex | 12 +- buch/chapters/060-integral/sqrat.tex | 365 ++++++++++++++++++++- 2 files changed, 374 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex index 66bb0c1..a071ae2 100644 --- a/buch/chapters/060-integral/differentialkoerper.tex +++ b/buch/chapters/060-integral/differentialkoerper.tex @@ -3,9 +3,19 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\section{Differentialkörper +\section{Differentialkörper und das Integrationsproblem \label{buch:integrale:section:dkoerper}} \rhead{Differentialkörper} +Die Einführung einer neuen Funktion $\operatorname{erf}(x)$ wurde +durch die Behauptung gerechtfertigt, dass es für den Integranden +$e^{-x^2}$ keine Stammfunktion in geschlossener Form gäbe. +Die Fehlerfunktion ist bei weitem nicht die einzige mit dieser +Eigenschaft. +Doch woher weiss man, dass es keine solche Funktion gibt, und +was heisst überhaupt ``Stammfunktion in geschlossener Form''? +In diesem Abschnitt wird daher ein algebraischer Rahmen entwickelt, +in dem diese Frage sinnvoll gestellt werden kann. + \input{chapters/060-integral/rational.tex} \input{chapters/060-integral/erweiterungen.tex} \input{chapters/060-integral/diffke.tex} diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index 38b1504..20f1ef7 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -90,6 +90,7 @@ Die zu integrierende Funktion kann also in der Form f(x) = W_1 + W_2\frac{1}{y} +\label{buch:integral:sqint:eqn:w1w2y} \end{equation} geschrieben werden mit rationalen Funktionen $W_1,W_2\in\mathbb{Q}(x)$. @@ -98,20 +99,380 @@ Abschnitt~\ref{buch:integral:subsection:rationalefunktionen} gefunden werden. Im Folgenden kümmern wir uns daher nur noch um $W_1$. +% +% Polynomdivision +% \subsubsection{Polynomdivision} +Die Funktion $W_2$ in \eqref{buch:integral:sqint:eqn:w1w2y} ist eine +rationale Funktion $W_2\in \mathbb{K}(x)$, also ein Bruch mit Polynomen +in $x$ als Zähler und Nenner. +Durch Polynomdivision mit Rest können wir $W_2$ schreiben als +\[ +W_1 = \varphi + W_3, +\] +wobei $\varphi$ ein Polynom in $x$ ist und $W_3$ eine rationale +Funktion, deren Zählergrad kleiner ist als der Nennergrad. +Zur Bestimmung der Stammfunktion bleibt jetzt nur noch +\begin{equation} +\int W_2\frac{1}{y} += +\int \frac{\varphi}{y} ++ +\int W_3\frac1{y} +\label{buch:integral:sqint:eqn:Wy} +\end{equation} +zu berechnen. -\subsubsection{Integranden der Form $p(x)/y$} +% +% Integranden der Form $\varphi(x)/y$ +% +\subsubsection{Integranden der Form $\varphi(x)/y$} +Der erste Term in~\eqref{buch:integral:sqint:eqn:Wy} ist ein Integral eines +Quotienten eines Polynoms geteilt durch $y$. +Solche Integrale können, wie im Folgenden gezeigt werden soll, reduziert +werden auf das Integral von $1/y$. +Genauer gilt der folgende Satz. -\subsubsection{Partialbruchzerlegung} +\begin{satz} +\label{buch:integral:sqint:satz:polyy} +Sei $\varphi\in\mathcal{K}(x)$ ein Polynom in $x$, dann gibt +es ein Polynom $\psi\in\mathcal{K}(x)$ vom Grad $\deg\psi < \deg\varphi$, +und $A\in\mathcal{K}$ derart, dass +\begin{equation} +\int \frac{\varphi}{y} += +\psi y + A\int\frac{1}{y}. +\label{buch:integral:sqint:eqn:phipsi} +\end{equation} +\end{satz} + +\begin{proof}[Beweis] +Wir schreiben die Polynome in der Form +\begin{align*} +\varphi +&= +\varphi_mx^m + \varphi_{m-1}x^{m-1} + \dots + \varphi_2x^2 + \varphi_1x + \varphi_0 +\\ +\psi +&= +\phantom{\varphi_mx^m+\mathstrut} +\psi_{m-1}x^{m-1} + \dots + \psi_2x^2 + \psi_1x + \psi_0 +\intertext{mit der Ableitung} +\psi' +&= +\phantom{\varphi_mx^m+\mathstrut} +\psi_{m-1}(m-1)x^{m-2} + \dots + 2\psi_2x + \psi_1. +\end{align*} +Wir leiten die Gleichung~\eqref{buch:integral:sqint:eqn:phipsi} +nach $x$ ab und erhalten +\begin{align*} +\frac{\varphi}{y} +&= +\psi'y + \psi y' + \frac{A}{y} += +\psi'y + \psi \frac{ax+b/2}{y} + \frac{A}{y}. +\intertext{Durch Multiplikation mit $y$ wird die Gleichung wesentlich +vereinfacht zu} +\varphi +&= +\psi' y^2 + \psi y' y + A += +\psi' \cdot(ax^2+bx+c) + \psi\cdot (ax+b/2) + A. +\end{align*} +Auf beiden Seiten stehen Polynome, man kann daher versuchen, die +Koeffizienten von $\psi$ mit Hilfe eines Koeffizientenvergleichs zu +bestimmen. +Dazu müssen die Produkte auf der rechten Seite ausmultipliziert werden. +So ergeben sich die Gleichungen +\begin{equation} +\renewcommand{\arraycolsep}{2pt} +\begin{array}{lcrcrcrcrcrcrcr} +\varphi_m +&=& +(m-1)\psi_{m-1} a &+& & & +&+& +\psi_{m-1} a & & & & +\\ +\varphi_{m-1} +&=& +(m-2)\psi_{m-2}a +&+& +(m-1)\psi_{m-1}b +& & +&+& +\psi_{m-2}a +&+& +\psi_{m-1}\frac{b}2 +& & +\\ +\varphi_{m-2} +&=& +(m-3)\psi_{m-3}a +&+& +(m-2)\psi_{m-2}b +&+& +(m-1)\psi_{m-1}c +&+& +\psi_{m-3}a +&+& +\psi_{m-2}\frac{b}2 +& & +\\ +&\vdots&&&&&&&&&&& +\\ +\varphi_2 +&=& +\psi_{1\phantom{-m}}a +&+& +2\psi_{2\phantom{-m}}b +&+& +3\psi_{3\phantom{-m}}c +&+& +\psi_{1\phantom{-m}}a +&+& +\psi_{2\phantom{-m}}\frac{b}2 +& & +\\ +\varphi_1 +&=& +& & +\psi_{1\phantom{-m}}b +& & +2\psi_{2\phantom{-m}}c +&+& +\psi_{0\phantom{-m}}a +&+& +\psi_{1\phantom{-m}}\frac{b}2 +\\ +\varphi_0 +&=& +& & +& & +\psi_{1\phantom{-m}}c +& & +&+& +\psi_{0\phantom{-m}}\frac{b}2 +&+&A +\end{array} +\end{equation} +In jeder Gleichung kommen hächstens drei der Koeffizienten von $\psi$ vor. +Fasst man sie zusammen und stellt die Terme etwas um, +erhält man die einfacheren Gleichungen +\begin{equation} +\renewcommand{\arraycolsep}{2pt} +\renewcommand{\arraystretch}{1.3} +\begin{array}{lcrcrcrcrcrcrcr} +\varphi_m +&=& +(m-0){\color{red}\psi_{m-1}}a & & & & +& & +\\ +\varphi_{m-1} +&=& +(m-1+\frac12)\psi_{m-1}b +&+& +(m-1){\color{red}\psi_{m-2}}a +& & +& & +\\ +\varphi_{m-2} +&=& +(m-1)\psi_{m-1}c +&+& +(m-2+\frac12)\psi_{m-2}b +&+& +(m-2){\color{red}\psi_{m-3}}a +& & +\\ +&\vdots&&&&&&&&&&& +\\ +\varphi_2 +&=& +3\psi_{3\phantom{-m}}c +&+& +(2+\frac12)\psi_{2\phantom{-m}}b +&+& +2{\color{red}\psi_{1\phantom{-m}}}a +& & +\\ +\varphi_1 +&=& +2\psi_{2\phantom{-m}}c +&+& +(1+\frac12)\psi_{1\phantom{-m}}b +&+& +{\color{red}\psi_{0\phantom{-m}}}a +& & +\\ +\varphi_0 +&=& +\psi_{1\phantom{-m}}c +& & +&+& +(0+\frac12) \psi_{0\phantom{-m}}b +&+&{\color{red}A} +\end{array} +\end{equation} +Die erste Gleichung kann wegen $a\ne 0$ nach $\psi_{m-1}$ aufgelöst werden, +dadurch ist $\psi_{m-1}$ bestimmt. +In allen folgenden Gleichungen taucht jeweils ein neuer Koeffizient +von $\psi$ auf, der rot hervorgehoben ist. +Wieder wegen $a\ne 0$ kann die Gleichung immer nach dieser Variablen +aufgelöst werden. +Die Gleichungen zeigen daher, dass die Koeffizienten des Polynoms $\psi$ +in absteigender Folge und die Konstanten $A$ eindeutig bestimmt werden. +\end{proof} + +Mit diesem Satz ist das Integral über den Teil $\varphi/y$ auf den +Fall des Integrals von $1/y$ reduziert. +Letzteres wird im nächsten Abschnitt berechnet. +% +% Das Integral von $1/y$ +% +\subsubsection{Das Integral von $1/y$} +Eine Stammfunktion von $1/y$ kann mit etwas Geschick bekannten +Interationstechnikgen gefunden werden. +Durch Ableitung der Funktion +\[ +F += +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) +\] +kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist, +also +\begin{equation} +\int +\frac{1}{y} += +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr). +\end{equation} + +% +% Partialbruchzerlegung +% +\subsubsection{Partialbruchzerlegung} +In der rationalen Funktion $W_3$ in \eqref{buch:integral:sqint:eqn:Wy} +hat der Zähler kleineren Grad als der Nenner, sie kann daher wieder +in Partialbrüche +\[ +W_3 += +\sum_{i=1}^n +\sum_{k=1}^{k_i} +\frac{A_{ik}}{(x-\alpha_i)^k} +\] +mit den Nullstellen $\alpha_i$ des Nenners von $W_3$ mit Vielfachheiten +$k_i$ zerlegt werden. +Die Stammfunktion von $W_3/y$ wird damit zu +\begin{equation} +\int W_3\frac{1}{y} += +\sum_{i=1}^n +\sum_{k=1}^{k_i} +A_{ik} +\int +\frac{1}{(x-\alpha_i)^ky} += +\sum_{i=1}^n +\sum_{k=1}^{k_i} +A_{ik} +\int +\frac{1}{(x-\alpha_i)^k \sqrt{ax^2+bx+c}}. +\end{equation} +Die Stammfunktion ist damit reduziert auf Integrale der Form \begin{equation} \int \frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}} \label{buch:integral:sqrat:eqn:2teart} \end{equation} +mit $k>0$. +% +% Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart} +% \subsubsection{Integrale der Form \eqref{buch:integral:sqrat:eqn:2teart}} +Die Integrale~\eqref{buch:integral:sqrat:eqn:2teart} +können mit Hilfe der Substution +\[ +t=\frac{1}{x-\alpha} +\qquad\text{oder}\qquad +x=\frac1t+\alpha +\] +In ein Integral verwandelt werden, für welches bereits eine +Berechnungsmethode entwickelt wurde. +Dazu berechnet man +\begin{align*} +y^2 +&= a\biggl(\frac1t+\alpha\biggr)^2 + b\biggl(\frac1t+\alpha\biggr) + c +\\ +&= +a\biggl(\frac{1}{t^2}+2\frac{\alpha}{t}+\alpha^2\biggr) ++\frac{b}{t}+b\alpha+c += +\frac{1}{t^2}\bigl( +\underbrace{a+(2a\alpha+b)t+(a\alpha^2+c)t^2}_{\displaystyle=Y^2} +\bigr) +\intertext{und damit} +y&=\frac{Y}{t}. +\end{align*} +Führt man die Substition +$dx = -dt/t^2$ im Integral aus, erhält man +\begin{align*} +\int\frac{dx}{(x-\alpha)^ky} +&= +- +\int +t^k\cdot\frac{t}{Y}\frac{dt}{t^2} += +-\int\frac{t^{k-1}}{Y}\,dt. +\end{align*} +Das letzte Integral ist wieder von der Form, die in +Satz~\ref{buch:integral:sqint:satz:polyy} behandelt wurde. +Insbesondere gibt es ein Polynom $\psi$ vom Grad $k-2$ und +eine Konstante $A$ derart, dass +\[ +\int\frac{1}{(x-\alpha)^ky} += +\psi Y + A\int\frac{1}{Y} +\] +ist. +Damit ist das Integral von $R(x,y)$ vollständig bestimmt. +\subsubsection{Beobachtungen} +Die eben dargestellte Berechnung des Integrals von $R(x,y)$ zeigt einige +Gemeinsamkeiten mit der entsprechenden Rechnung für rationale +Integranden, aber auch einige wesentliche Unterschiede. +Wieder zeigt sich, dass Polynomdivision und Partialbruchzerlegung +die zentralen Werkzeuge sind, mit denen der Integrand zerlegt und +leichter integrierbare Funktionen umgeformt werden kann. +Andererseits ist der in +Satz~\ref{buch:integral:sqint:satz:polyy} +zusammengefasste Schritt eine wesentliche zusätzliche Vereinfachung, +die keine Entsprechung bei rationalen Integranden hat. + +Die gefunden Form der Stammfunktion hat jedoch die allgemeine +Form +\[ +\int R(x,y) += +v_0 + +C +\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) ++ +\sum_{i=1}^n c_i +\log v_i, +\] +die ganz der bei rationalen Integranden gefunden Form entspricht. +Darin ist $v_0$ die Summe der angefallenen rationalen Teilintegrale, +also $v_0\in\mathcal{K}(x,y)$. +Die $v_i\in\mathcal{K}(x,y)$ sind die entsprechenden Logarithmusfunktionen, +die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart} +auftreten. +Insbesondere liefert die Rechnung eine Körpererweiterung von +$\mathcal{K}(x,y)$ um die logarithmische Funktionen +$\log(x+b/2a+y/\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine +Stammfunktion hat. -- cgit v1.2.1 From 2dd23cdeef2889a5b3210e324c159ab462bb267c Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:20:10 +0200 Subject: Korrektur (noch nicht fertig) --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 + buch/papers/nav/nautischesdreieck.tex | 89 +++++++++++++++---------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 ++- buch/papers/nav/trigo.tex | 99 ++++++++++++++++++++++------------- 7 files changed, 116 insertions(+), 87 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index aafa107..8eb4481 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 5bfc1b7..3b08e8d 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,10 +17,9 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e16dc2a..4c52547 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,3 +19,4 @@ \printbibliography[heading=subbibliography] \end{refsection} + diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c239d64..36e9c99 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,49 +4,26 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. +Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -Für die Definition gilt: -\begin{center} - \begin{tabular}{ c c c } - Winkel && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} - -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} - - -\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\subsection{Das Bilddreieck} \begin{figure} \begin{center} - \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - -Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + Man kann das nautische Dreieck auf die Erdkugel projizieren. +Dieses Dreieck nennt man dann Bilddreieck. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. +Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -59,8 +36,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. +Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -69,8 +46,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. -In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Zu all diesen Gestirnen gibt es Ephemeriden. +Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. \begin{figure} \begin{center} @@ -83,25 +60,24 @@ In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. + Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. +Man benutzt ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -109,7 +85,32 @@ Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen d \caption[Sextant]{Sextant} \end{center} \end{figure} - +\subsubsection{Eingeschaften} +Für das nautische Dreieck gibt es folgende Eigenschaften: +\begin{center} + \begin{tabular}{ l c l } + Legende && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} +\begin{center} + \begin{tabular}{ l c l } + Eigenschaften \\ + \hline + Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ + Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ + Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ + \end{tabular} +\end{center} \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 5b87303..f2e6132 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,4 +8,5 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} \ No newline at end of file +\usepackage{amsmath} +\usepackage{cancel} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index d56d482..a1653e8 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,12 +7,14 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. +Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index ce367f6..aca8bd2 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,16 +1,13 @@ \section{Sphärische Trigonometrie} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. -Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: - \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. +Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. +Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -19,18 +16,6 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. - -Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: -\begin{center} - \begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ - \end{tabular} -\end{center} \begin{figure} \begin{center} @@ -41,8 +26,11 @@ Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. + Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. + \begin{figure} \begin{center} @@ -51,7 +39,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme} +\subsection{Winkelsumme und Flächeninhalt} \begin{figure} \begin{center} @@ -64,9 +52,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei F der Flächeninhalt des Kugeldreiecks ist. +wobei $F$ der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -77,32 +65,69 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass +\subsection{Seiten und Winkelberechnung} +Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. +Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. +Die Approximation folgt noch. +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & + \quad \alpha = \frac{\pi}{2} \nonumber +\end{align} + +\subsubsection{Approximation von kleinen Dreiecken} +Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. +So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. +So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: +\begin{align} + \sin(a) &\approx a \nonumber \intertext{und} + \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber +\end{align} +Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: +\begin{align} + a &\approx \sin(a) \nonumber \intertext{und} + a^2 &\approx 1-\cos(a). \nonumber +\end{align} +Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. + +\subsubsection{Sphärischer Satz des Pythagoras} +Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich + +\begin{align} + \cos(a)\cdot \cos(b) &= \cos(c) \\ + \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ + \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + -a^2-b^2 &=-c^2\\ + a^2+b^2&=c^2 +\end{align} + +\subsubsection{Sphärischer Sinussatz} +Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -auch beim Kugeldreieck gilt. +kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. -\subsection{Sphärische Kosinussätze} -Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz + +\subsubsection{Sphärische Kosinussätze} +In der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber -\end{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber +\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. -Es gilt nämlich: +Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich \begin{align} - \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \nonumber + \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ + 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ + \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} + a^2&=b^2+c^2-2bc \cdot \cos(\alpha) \end{align} + + \ No newline at end of file -- cgit v1.2.1 From 537a80724031881b7ca7e84873d8f189fe70db45 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:23:00 +0200 Subject: Revert "Korrektur (noch nicht fertig)" This reverts commit ebe0085df81f3190423e14e6a48fc9d17550e417. --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 - buch/papers/nav/nautischesdreieck.tex | 89 ++++++++++++++++--------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 +-- buch/papers/nav/trigo.tex | 99 +++++++++++++---------------------- 7 files changed, 87 insertions(+), 116 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index 8eb4481..aafa107 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 3b08e8d..5bfc1b7 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,9 +17,10 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. + Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 4c52547..e16dc2a 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,4 +19,3 @@ \printbibliography[heading=subbibliography] \end{refsection} - diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index 36e9c99..c239d64 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,26 +4,49 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. +Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -\subsection{Das Bilddreieck} +Für die Definition gilt: +\begin{center} + \begin{tabular}{ c c c } + Winkel && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} + +\begin{itemize} + \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ + \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ + \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ + \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ + \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ +\end{itemize} + + +\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} \begin{figure} \begin{center} - \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - Man kann das nautische Dreieck auf die Erdkugel projizieren. -Dieses Dreieck nennt man dann Bilddreieck. -Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. -Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + +Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. +Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -36,8 +59,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. +Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -46,8 +69,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden. -Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. +Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. +In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. \begin{figure} \begin{center} @@ -60,24 +83,25 @@ Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Z Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. - +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. +Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die +Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit +$\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. +Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. -Man benutzt ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -85,32 +109,7 @@ Man benutzt ihn vor allem für die astronomische Navigation auf See. \caption[Sextant]{Sextant} \end{center} \end{figure} -\subsubsection{Eingeschaften} -Für das nautische Dreieck gibt es folgende Eigenschaften: -\begin{center} - \begin{tabular}{ l c l } - Legende && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} -\begin{center} - \begin{tabular}{ l c l } - Eigenschaften \\ - \hline - Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ - Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ - Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ - Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ - Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ - \end{tabular} -\end{center} + \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index f2e6132..5b87303 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,5 +8,4 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} -\usepackage{cancel} \ No newline at end of file +\usepackage{amsmath} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index a1653e8..d56d482 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,14 +7,12 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. -Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. -Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index aca8bd2..ce367f6 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,13 +1,16 @@ \section{Sphärische Trigonometrie} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. +Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: + \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. -Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. +Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. +Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -16,6 +19,18 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. +Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. + +Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: +\begin{center} + \begin{tabular}{ccc} + Eben & $\leftrightarrow$ & sphärisch \\ + \hline + $a$ & $\leftrightarrow$ & $\sin \ a$ \\ + + $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ + \end{tabular} +\end{center} \begin{figure} \begin{center} @@ -26,11 +41,8 @@ Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiec \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. - Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. - +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. \begin{figure} \begin{center} @@ -39,7 +51,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme und Flächeninhalt} +\subsection{Winkelsumme} \begin{figure} \begin{center} @@ -52,9 +64,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei $F$ der Flächeninhalt des Kugeldreiecks ist. +wobei F der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -65,69 +77,32 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. +\subsection{Sphärischer Sinussatz} +In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. +Das bedeutet, dass -\subsection{Seiten und Winkelberechnung} -Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. -Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. -Die Approximation folgt noch. -Es gilt nämlich: -\begin{align} - \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & - \quad \alpha = \frac{\pi}{2} \nonumber -\end{align} - -\subsubsection{Approximation von kleinen Dreiecken} -Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. -So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. -So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: -\begin{align} - \sin(a) &\approx a \nonumber \intertext{und} - \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber -\end{align} -Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: -\begin{align} - a &\approx \sin(a) \nonumber \intertext{und} - a^2 &\approx 1-\cos(a). \nonumber -\end{align} -Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. - -\subsubsection{Sphärischer Satz des Pythagoras} -Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich - -\begin{align} - \cos(a)\cdot \cos(b) &= \cos(c) \\ - \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ - \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} - -a^2-b^2 &=-c^2\\ - a^2+b^2&=c^2 -\end{align} - -\subsubsection{Sphärischer Sinussatz} -Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. +auch beim Kugeldreieck gilt. - -\subsubsection{Sphärische Kosinussätze} -In der sphärischen Trigonometrie gibt es den Seitenkosinussatz +\subsection{Sphärische Kosinussätze} +Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber -\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber +\end{align} -Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich +\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} +Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. +In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. +Es gilt nämlich: \begin{align} - \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ - 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ - \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} - a^2&=b^2+c^2-2bc \cdot \cos(\alpha) + \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & + \alpha = \frac{\pi}{2} \nonumber \end{align} - - \ No newline at end of file -- cgit v1.2.1 From 7776e5829bf5da82b6b3fc5478ed05c6c9a66d29 Mon Sep 17 00:00:00 2001 From: "ENEZ-PC\\erdem" Date: Tue, 24 May 2022 16:23:21 +0200 Subject: Revert "Revert "Korrektur (noch nicht fertig)"" This reverts commit 2fd00f1b2f0d123fdb1fb1a93b5e4d361587329c. --- buch/papers/nav/einleitung.tex | 2 +- buch/papers/nav/flatearth.tex | 3 +- buch/papers/nav/main.tex | 1 + buch/papers/nav/nautischesdreieck.tex | 89 +++++++++++++++---------------- buch/papers/nav/packages.tex | 3 +- buch/papers/nav/sincos.tex | 6 ++- buch/papers/nav/trigo.tex | 99 ++++++++++++++++++++++------------- 7 files changed, 116 insertions(+), 87 deletions(-) (limited to 'buch') diff --git a/buch/papers/nav/einleitung.tex b/buch/papers/nav/einleitung.tex index aafa107..8eb4481 100644 --- a/buch/papers/nav/einleitung.tex +++ b/buch/papers/nav/einleitung.tex @@ -3,7 +3,7 @@ \section{Einleitung} Heutzutage ist die Navigation ein Teil des Lebens. Man sendet dem Kollegen seinen eigenen Standort, um sich das ewige Erklären zu sparen oder gibt die Adresse des Ziels ein, damit man seinen Aufenthaltsort zum Beispiel auf einer riesigen Wiese am See findet. -Dies wird durch Technologien wie Funknavigation, welches ein auf Langzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. +Dies wird durch Technologien wie Funknavigation, welches ein auf Laufzeitmessung beruhendes Hyperbelverfahren mit Langwellen ist, oder die verbreitete Satellitennavigation, welche vier Satelliten für eine Messung zur Standortbestimmung nutzt. Vor all diesen technologischen Fortschritten gab es lediglich die Astronavigation, welche heute noch auf Schiffen verwendet wird im Falle eines Stromausfalls. Aber wie funktioniert die Navigation mit den Sternen? Welche Hilfsmittel benötigt man, welche Rolle spielt die Mathematik und weshalb kann die Erde nicht flach sein? In diesem Kapitel werden genau diese Fragen mithilfe des nautischen Dreiecks, der sphärischen Trigonometrie und einigen Hilfsmitteln und Messgeräten beantwortet. \ No newline at end of file diff --git a/buch/papers/nav/flatearth.tex b/buch/papers/nav/flatearth.tex index 5bfc1b7..3b08e8d 100644 --- a/buch/papers/nav/flatearth.tex +++ b/buch/papers/nav/flatearth.tex @@ -17,10 +17,9 @@ Eratosthenes konnte etwa 100 Jahre später den Erdumfang berechnen. Er beobachtete, dass die Sonne in Syene mittags im Zenit steht und gleichzeitig in Alexandria unter einem Winkel einfällt. Mithilfe der Trigonometrie konnte er mit dem Abstand der Städte und dem Einfallswinkel den Umfang berechnen. -Der Kartograph Gerhard Mercator projizierte die Erdkugel auf ein Papier und erstellte so eine winkeltreue Karte. +Der Kartograph Gerhard Mercator projizierte die Erdkugel wie in Abbildung 21.1 dargestellt auf ein Papier und erstellte so eine winkeltreue Karte. Jedoch wurden die Länder, die einen grösseren Abstand zum Äquator haben vergrössert, damit die Winkel stimmen können. Wurde man also nun davon ausgehen, dass die Erde flach ist so würden wir nie dort ankommen wo wir es wollen. - Dies sieht man zum Beispiel sehr gut, wenn man die Anwendung Google Earth und eine Weltkarte vergleicht. Grönland ist auf der Weltkarte so gross wie Afrika. In der Anwendung Google Earth jedoch ist Grönland etwa so gross wie Algerien. diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index e16dc2a..4c52547 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -19,3 +19,4 @@ \printbibliography[heading=subbibliography] \end{refsection} + diff --git a/buch/papers/nav/nautischesdreieck.tex b/buch/papers/nav/nautischesdreieck.tex index c239d64..36e9c99 100644 --- a/buch/papers/nav/nautischesdreieck.tex +++ b/buch/papers/nav/nautischesdreieck.tex @@ -4,49 +4,26 @@ Die Himmelskugel ist eine gedachte Kugel, welche die Erde und dessen Beobachter Der Zenit ist jener Punkt, der vom Erdmittelpunkt durch denn eigenen Standort an die Himmelskugel verlängert wird. Ein Gestirn ist ein Planet oder ein Fixstern, zu welchen es diverse Jahrbücher mit allen astronomischen Eigenschaften gibt. Der Himmelspol ist der Nordpol an die Himmelskugel projiziert. -Das nautische Dreieck definiert sich durch folgende Ecken: Zenit, Gestirn und Himmelspol. +Das nautische Dreieck hat die Ecken Zenit, Gestirn und Himmelspol, wie man in der Abbildung 21.5 sehen kann. Ursprünglich ist das nautische Dreieck ein Hilfsmittel der sphärischen Astronomie um die momentane Position eines Fixsterns oder Planeten an der Himmelskugel zu bestimmen. -Für die Definition gilt: -\begin{center} - \begin{tabular}{ c c c } - Winkel && Name / Beziehung \\ - \hline - $\alpha$ && Rektaszension \\ - $\delta$ && Deklination \\ - $\theta$ && Sternzeit von Greenwich\\ - $\phi$ && Geographische Breite\\ - $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ - $a$ && Azimut\\ - $h$ && Höhe - \end{tabular} -\end{center} - -\begin{itemize} - \item Seitenlänge Zenit zu Himmelspol $= \frac{\pi}{2} - \phi $ - \item Seitenlänge Himmelspol zu Gestirn $= \frac{\pi}{2} - \delta$ - \item Seitenlänge Zenit zu Gestirn $= \frac{\pi}{2} - h$ - \item Winkel von Zenit zu Himmelsnordpol zu Gestirn$=\pi - \alpha$ - \item Winkel von Himmelsnordpol zu Zenit und Gestirn$= \tau$ -\end{itemize} - - -\subsection{Zusammenhang des nautischen Dreiecks und des Kugeldreiecks auf der Erdkugel} +\subsection{Das Bilddreieck} \begin{figure} \begin{center} - \includegraphics[height=5cm,width=8cm]{papers/nav/bilder/kugel3.png} + \includegraphics[width=8cm]{papers/nav/bilder/kugel3.png} \caption[Nautisches Dreieck]{Nautisches Dreieck} \end{center} \end{figure} - -Wie man in der Abbildung 21.4 sieht, liegt das nautische Dreieck auf der Himmelskugel mit den Ecken Zenit, Gestirn und Himmelsnordpol. -Das selbe Dreieck kann man aber auch auf die Erdkugel projizieren. Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. + Man kann das nautische Dreieck auf die Erdkugel projizieren. +Dieses Dreieck nennt man dann Bilddreieck. +Als Bildpunkt wird in der astronomischen Navigation der Punkt bezeichnet, an dem eine gedachte Linie vom Mittelpunkt eines beobachteten Gestirns zum Mittelpunkt der Erde die Erdoberfläche schneidet. +Die Projektion auf der Erdkugel hat die Ecken Nordpol, Standort und Bildpunkt. \section{Standortbestimmung ohne elektronische Hilfsmittel} Um den eigenen Standort herauszufinden, wird in diesem Kapitel die Projektion des nautische Dreiecks auf die Erdkugel zur Hilfe genommen. Mithilfe eines Sextanten, einem Jahrbuch und der sphärischen Trigonometrie kann man dann die Längen- und Breitengrade des eigenen Standortes bestimmen. -Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. +Was ein Sextant und ein Jahrbuch ist, wird im Abschnitt 21.6.3 erklärt. \begin{figure} \begin{center} \includegraphics[width=10cm]{papers/nav/bilder/dreieck.pdf} @@ -59,8 +36,8 @@ Was ein Sextant und ein Jahrbuch ist, wird im Kapitel 21.6 erklärt. \subsection{Ecke $P$ und $A$} Unser eigener Standort ist der gesuchte Ecke $P$ und die Ecke $A$ ist in unserem Fall der Nordpol. -Der Vorteil ander Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. -Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so simpel. +Der Vorteil an der Idee des nautischen Dreiecks ist, dass eine Ecke immer der Nordpol ist. +Somit ist diese Ecke immer bekannt und nur deswegen sind die Zusammenhänge von Rektaszension, Sternzeit und Deklination so einfach. \subsection{Ecke $B$ und $C$ - Bildpunkt $X$ und $Y$} Für die Standortermittlung benötigt man als weiteren Punkt ein Gestirn bzw. seinen Bildpunkt auf der Erdkugel. @@ -69,8 +46,8 @@ Es gibt diverse Gestirne, die man nutzen kann wie zum Beispiel die Sonne, der Mo Die Bildpunkte von den beiden Gestirnen $X$ und $Y$ bilden die beiden Ecken $B$ und $C$ im Dreieck der Abbildung 21.5. \subsection{Ephemeriden} -Zu all diesen Gestirnen gibt es Ephemeriden, die man auch Jahrbücher nennt. -In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. +Zu all diesen Gestirnen gibt es Ephemeriden. +Diese enthalten die Rektaszensionen und Deklinationen in Abhängigkeit von der Zeit. \begin{figure} \begin{center} @@ -83,25 +60,24 @@ In diesen findet man Begriffe wie Rektaszension, Deklination und Sternzeit. Die Deklination $\delta$ beschreibt den Winkel zwischen dem Himmelsäquator und Gestirn und entspricht dem Breitengrad des Gestirns. \subsubsection{Rektaszension und Sternzeit} -Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt steht und geht vom Koordinatensystem der Himmelskugel aus. -Der Frühlungspunkt ist der Nullpunkt auf dem Himmelsäquator. +Die Rektaszension $\alpha$ gibt an, in welchem Winkel das Gestirn zum Frühlingspunkt, welcher der Nullpunkt auf dem Himmelsäquator ist, steht und geht vom Koordinatensystem der Himmelskugel aus. + Die Tatsache, dass sich die Himmelskugel ca. vier Minuten schneller um die eigene Achse dreht als die Erdkugel, stellt hier ein kleines Problem dar. Die Lösung ist die Sternzeit. -Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die -Am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit -$\theta = 0$. +Mit dieser können wir die schnellere Drehung der Himmelskugel ausgleichen und können die am Frühlingspunkt (21. März) 12:00 Uhr ist die Sternzeit $\theta = 0$. Die Sternzeit geht vom Frühlungspunkt aus, an welchem die Sonne den Himmelsäquator schneidet. Für die Standortermittlung auf der Erdkugel ist es am einfachsten, wenn man die Sternzeit von Greenwich berechnet. -Für die Sternzeit von Greenwich $\theta $braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht recherchieren lässt. +Für die Sternzeit von Greenwich $\theta$ braucht man als erstes das Julianische Datum $T$ vom aktuellen Tag, welches sich leicht nachschlagen lässt. Im Anschluss berechnet man die Sternzeit von Greenwich \[\theta = 6^h 41^m 50^s,54841 + 8640184^s,812866 \cdot T + 0^s,093104 \cdot T^2 - 0^s,0000062 \cdot T^3.\] -Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ mithilfe der Rektaszension und Sternzeit von Greenwich bestimmen. +Wenn man die Sternzeit von Greenwich ausgerechnet hat, kann man den Längengrad des Gestirns $\lambda = \theta - \alpha$ bestimmen, wobei $\alpha$ die Rektaszension und $\theta$ die Sternzeit von Greenwich ist. Dies gilt analog auch für das zweite Gestirn. \subsubsection{Sextant} -Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann, insbesondere den Winkelabstand zu einem Gestirn vom Horizont. Man nutze ihn vor allem für die astronomische Navigation auf See. +Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen der Blickrichtung zu weit entfernten Objekten bestimmen kann. Es wird vor allem der Winkelabstand zu Gestirnen gemessen. +Man benutzt ihn vor allem für die astronomische Navigation auf See. \begin{figure} \begin{center} @@ -109,7 +85,32 @@ Ein Sextant ist ein nautisches Messinstrument, mit dem man den Winkel zwischen d \caption[Sextant]{Sextant} \end{center} \end{figure} - +\subsubsection{Eingeschaften} +Für das nautische Dreieck gibt es folgende Eigenschaften: +\begin{center} + \begin{tabular}{ l c l } + Legende && Name / Beziehung \\ + \hline + $\alpha$ && Rektaszension \\ + $\delta$ && Deklination \\ + $\theta$ && Sternzeit von Greenwich\\ + $\phi$ && Geographische Breite\\ + $\tau=\theta-\alpha$ && Stundenwinkel und Längengrad des Gestirns. \\ + $a$ && Azimut\\ + $h$ && Höhe + \end{tabular} +\end{center} +\begin{center} + \begin{tabular}{ l c l } + Eigenschaften \\ + \hline + Seitenlänge Zenit zu Himmelspol= && $\frac{\pi}{2} - \phi$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - \delta$ \\ + Seitenlänge Himmelspol zu Gestirn= && $\frac{\pi}{2} - h$ \\ + Winkel von Zenit zu Himmelsnordpol zu Gestirn= && $\pi-\alpha$\\ + Winkel von Himmelsnordpol zu Zenit zu Gestirn= && $\tau$\\ + \end{tabular} +\end{center} \subsection{Bestimmung des eigenen Standortes $P$} Nun hat man die Koordinaten der beiden Gestirne und man weiss die Koordinaten des Nordpols. Damit wir unseren Standort bestimmen können, bilden wir zuerst das Dreieck $ABC$, dann das Dreieck $BPC$ und zum Schluss noch das Dreieck $ABP$. diff --git a/buch/papers/nav/packages.tex b/buch/papers/nav/packages.tex index 5b87303..f2e6132 100644 --- a/buch/papers/nav/packages.tex +++ b/buch/papers/nav/packages.tex @@ -8,4 +8,5 @@ % following example %\usepackage{packagename} -\usepackage{amsmath} \ No newline at end of file +\usepackage{amsmath} +\usepackage{cancel} \ No newline at end of file diff --git a/buch/papers/nav/sincos.tex b/buch/papers/nav/sincos.tex index d56d482..a1653e8 100644 --- a/buch/papers/nav/sincos.tex +++ b/buch/papers/nav/sincos.tex @@ -7,12 +7,14 @@ Jedoch konnten sie dieses Problem nicht lösen. Die Geschichte der sphärischen Trigonometrie ist daher eng mit der Astronomie verknüpft. Ca. 350 vor Christus dachten die Griechen über Kugelgeometrie nach und sie wurde zu einer Hilfswissenschaft der Astronomen. Zwischen 190 v. Chr. und 120 v. Chr. lebte ein griechischer Astronom names Hipparchos. -Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten. +Dieser entwickelte unter anderem die Chordentafeln, welche die Chord - Funktionen, auch Chord genannt, beinhalten und im Abschnitt 3.1.1 beschrieben sind. Chord ist der Vorgänger der Sinusfunktion und galt damals als wichtigste Grundlage der Trigonometrie. -In dieser Zeit wurden auch die ersten Sternenkarten angefertigt, jedoch kannte man damals die Sinusfunktion noch nicht. +In dieser Zeit wurden auch die ersten Sternenkarten angefertigt. Damals kannte man die Sinusfunktionen noch nicht. Aus Indien stammten die ersten Ansätze zu den Kosinussätzen. Aufbauend auf den indischen und griechischen Forschungen entwickeln die Araber um das 9. Jahrhundert den Sinussatz. +Die Definition der trigonometrischen Funktionen ermöglicht nur, rechtwinklige Dreiecke zu berechnen. +Die Beziehung zwischen Seiten und Winkeln sind komplizierter und als Sinus- und Kosinussätze bekannt. Doch ein paar weitere Jahrhunderte vergingen bis zu diesem Thema wieder verstärkt Forschung betrieben wurde, da im 15. Jahrhundert grosse Entdeckungsreisen, hauptsächlich per Schiff, erfolgten und die Orientierung mit Sternen vermehrt an Wichtigkeit gewann. Man nutzte für die Kartographie nun die Kugelgeometrie, um die Genauigkeit zu erhöhen. Der Sinussatz, die Tangensfunktion und der neu entwickelte Seitenkosinussatz wurden in dieser Zeit bereits verwendet und im darauffolgenden Jahrhundert folgte der Winkelkosinussatz. diff --git a/buch/papers/nav/trigo.tex b/buch/papers/nav/trigo.tex index ce367f6..aca8bd2 100644 --- a/buch/papers/nav/trigo.tex +++ b/buch/papers/nav/trigo.tex @@ -1,16 +1,13 @@ \section{Sphärische Trigonometrie} -In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. -Dabei gibt es folgenden Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie: - \subsection{Das Kugeldreieck} -Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie "Grosskreisebene" und "Grosskreisbögen" verstehen. -Ein Grosskreis ist ein größtmöglicher Kreis auf einer Kugeloberfläche. +Damit man die Definition des Kugeldreiecks versteht, müssen wir zuerst Begriffe wie Grosskreisebene und Grosskreisbögen verstehen. +Ein Grosskreis ist ein grösstmöglicher Kreis auf einer Kugeloberfläche. Sein Mittelpunkt fällt immer mit dem Mittelpunkt der Kugel zusammen und ein Schnitt auf dem Großkreis teilt die Kugel in jedem Fall in zwei gleich grosse Hälften. Da es unendlich viele Möglichkeiten gibt, eine Kugel so zu zerschneiden, dass die Schnittebene den Kugelmittelpunkt trifft, gibt es auch unendlich viele Grosskreise. -Grosskreisbögen sind die Verbindungslinien zwischen zwei Punkten auf der Kugel, welche auch "Seiten" eines Kugeldreiecks gennant werden. +Grosskreisbögen sind die kürzesten Verbindungslinien zwischen zwei Punkten auf der Kugel. -Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden, so entsteht ein Kugeldreieck $ABC$. +Werden drei voneinander verschiedene Punkte, die sich nicht auf derselben Grosskreisebene befinden, mit Grosskreisbögen verbunden werden, so entsteht ein Kugeldreieck $ABC$. Für ein Kugeldreieck gilt, dass die Summe der drei Seiten kleiner als $2\pi$ aber grösser als 0 ist. $A$, $B$ und $C$ sind die Ecken des Dreiecks und dessen Seiten sind die Grosskreisbögen zwischen den Eckpunkten (siehe Abbildung 21.2). @@ -19,18 +16,6 @@ Laut dieser Definition ist die Seite $c$ der Winkel $AMB$, wobei der Punkt $M$ d Man kann bei Kugeldreiecken nicht so einfach unterscheiden, was Innen oder Aussen ist. Wenn man drei Eckpunkte miteinander verbindet, ergeben sich immer 16 Kugeldreiecke. -Jenes Kugeldreieck mit den Seitenlängen $a, b, c < \pi$ und den Winkeln $\alpha, \beta, \gamma < \pi$ nennt man Eulersches Dreieck. - -Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, wobei folgend $a$ eine Seite beschreibt: -\begin{center} - \begin{tabular}{ccc} - Eben & $\leftrightarrow$ & sphärisch \\ - \hline - $a$ & $\leftrightarrow$ & $\sin \ a$ \\ - - $a^2$ & $\leftrightarrow$ & $-\cos \ a$ \\ - \end{tabular} -\end{center} \begin{figure} \begin{center} @@ -41,8 +26,11 @@ Es gibt einen Zusammenhang zwischen der ebenen- und sphärischen Trigonometrie, \end{figure} \subsection{Rechtwinkliges Dreieck und rechtseitiges Dreieck} +In der sphärischen Trigonometrie gibt es eine Symetrie zwischen Seiten und Winkel, also zu jedem Satz über Seiten und Winkel gibt es einen entsprechenden Satz, mit dem man Winkel durch Seiten und Seiten durch Winkel ersetzt hat. + Wie auch im ebenen Dreieck gibt es beim Kugeldreieck auch ein rechtwinkliges Kugeldreieck, bei dem ein Winkel $\frac{\pi}{2}$ ist. -Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss. +Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine Seitenlänge $\frac{\pi}{2}$ lang sein muss, wie man in der Abbildung 21.3 sehen kann. + \begin{figure} \begin{center} @@ -51,7 +39,7 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S \end{center} \end{figure} -\subsection{Winkelsumme} +\subsection{Winkelsumme und Flächeninhalt} \begin{figure} \begin{center} @@ -64,9 +52,9 @@ Ein Rechtseitiges Dreieck gibt es jedoch nur beim Kugeldreieck, weil dort eine S Die Winkel eines Kugeldreiecks sind die, welche die Halbtangenten in den Eckpunkten einschliessen. Für die Summe der Innenwinkel gilt \begin{align} - \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \ \text{und} \ \alpha+\beta+\gamma > \pi, \nonumber + \alpha+\beta+\gamma &= \frac{F}{r^2} + \pi \quad \text{und} \quad \alpha+\beta+\gamma > \pi, \nonumber \end{align} -wobei F der Flächeninhalt des Kugeldreiecks ist. +wobei $F$ der Flächeninhalt des Kugeldreiecks ist. \subsubsection{Sphärischer Exzess} Der sphärische Exzess \begin{align} @@ -77,32 +65,69 @@ beschreibt die Abweichung der Innenwinkelsumme von $\pi$ und ist proportional zu \subsubsection{Flächeninnhalt} Mithilfe des Radius $r$ und dem sphärischen Exzess $\epsilon$ gilt für den Flächeninhalt \[ F=\frac{\pi \cdot r^2}{\frac{\pi}{2}} \cdot \epsilon\]. -\subsection{Sphärischer Sinussatz} -In jedem Dreieck ist das Verhältnis des Sinus einer Seite zum Sinus des Gegenwinkels konstant. -Das bedeutet, dass +\subsection{Seiten und Winkelberechnung} +Es gibt in der sphärischen Trigonometrie eigentlich gar keinen Satz des Pythagoras, wie man ihn aus der zweidimensionalen Geometrie kennt. +Es gibt aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt und zum jetzigen Punkt noch unklar ist, weshalb dieser Satz so aussieht. +Die Approximation folgt noch. +Es gilt nämlich: +\begin{align} + \cos c = \cos a \cdot \cos b \quad \text{wenn} \nonumber & + \quad \alpha = \frac{\pi}{2} \nonumber +\end{align} + +\subsubsection{Approximation von kleinen Dreiecken} +Die Sätze in der ebenen Trigonometrie sind eigentlich Approximationen der sphärischen Trigonometrie. +So ist der Sinussatz in der Ebene nur eine Annäherung des sphärischen Sinussatzes. Das Gleiche gilt für den Kosinussatz und dem Satz des Pythagoras. +So kann mit dem Taylorpolynom 2. Grades den Sinus und den Kosinus vom Sphärischen in die Ebene approximieren: +\begin{align} + \sin(a) &\approx a \nonumber \intertext{und} + \cos(a)&\approx 1-\frac{a^2}{2}.\nonumber +\end{align} +Es gibt ebenfalls folgende Approximierung der Seiten von der Sphäre in die Ebene: +\begin{align} + a &\approx \sin(a) \nonumber \intertext{und} + a^2 &\approx 1-\cos(a). \nonumber +\end{align} +Die Korrespondenzen zwischen der ebenen- und sphärischen Trigonometrie werden in den kommenden Abschnitten erläutert. + +\subsubsection{Sphärischer Satz des Pythagoras} +Die Korrespondenz \[ a^2 \approx 1-cos(a)\] liefert unter Anderem einen entsprechenden Satz des Pythagoras, nämlich + +\begin{align} + \cos(a)\cdot \cos(b) &= \cos(c) \\ + \bigg[1-\frac{a^2}{2}\bigg] \cdot \bigg[1-\frac{b^2}{2}\bigg] &= 1-\frac{c^2}{2} \\ + \xcancel{1}- \frac{a^2}{2} - \frac{b^2}{2} + \xcancel{\frac{a^2b^2}{4}}&= \xcancel{1}- \frac{c^2}{2} \intertext{Höhere Potenzen vernachlässigen} + -a^2-b^2 &=-c^2\\ + a^2+b^2&=c^2 +\end{align} + +\subsubsection{Sphärischer Sinussatz} +Den sphärischen Sinussatz \begin{align} \frac{\sin (a)}{\sin (\alpha)} =\frac{\sin (b)}{\sin (\beta)} = \frac{\sin (c)}{\sin (\gamma)} \nonumber \end{align} -auch beim Kugeldreieck gilt. +kann man ebenfalls mit der Korrespondenz \[a \approx \sin(a) \] zum entsprechenden ebenen Sinussatz \[\frac{a}{\sin (\alpha)} =\frac{b}{\sin (\beta)} = \frac{c}{\sin (\gamma)}\] approximieren. -\subsection{Sphärische Kosinussätze} -Auch in der sphärischen Trigonometrie gibt es den Seitenkosinussatz + +\subsubsection{Sphärische Kosinussätze} +In der sphärischen Trigonometrie gibt es den Seitenkosinussatz \begin{align} \cos \ a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos \alpha \nonumber \end{align} %Seitenkosinussatz und den Winkelkosinussatz \begin{align} - \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c. \nonumber -\end{align} + \cos \gamma = -\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos c, \nonumber +\end{align} der nur in der sphärischen Trigonometrie vorhanden ist. -\subsection{Sphärischer Satz des Pythagoras für das rechtwinklige Kugeldreieck} -Es gibt in der sphärischen Trigonometrie eigentlich garkeinen "Satz des Pythagoras", wie man ihn aus der zweidimensionalen Geometrie kennt. -In der sphärischen Trigonometrie gibt es aber auch einen Satz, der alle drei Seiten eines rechtwinkligen Kugeldreiecks, nicht aber für das rechtseitige Kugeldreieck, in eine Beziehung bringt. -Es gilt nämlich: +Analog gibt es auch beim Seitenkosinussatz eine Korrespondenz zu \[ a^2 \leftrightarrow 1-\cos(a),\] die den ebenen Kosinussatz herleiten lässt, nämlich \begin{align} - \cos c = \cos a \cdot \cos b \ \text{wenn} \nonumber & - \alpha = \frac{\pi}{2} \nonumber + \cos(a)&= \cos(b)\cdot \cos(c) + \sin(b) \cdot \sin(c)\cdot \cos(\alpha) \\ + 1-\frac{a^2}{2} &= \bigg[1-\frac{b^2}{2}\bigg]\bigg[1-\frac{c^2}{2}\bigg]+bc\cdot\cos(\alpha) \\ + \xcancel{1}-\frac{a^2}{2} &= \xcancel{1}-\frac{b^2}{2}-\frac{c^2}{2} \xcancel{+\frac{b^2c^2}{4}}+bc \cdot \cos(\alpha)\intertext{Höhere Potenzen vernachlässigen} + a^2&=b^2+c^2-2bc \cdot \cos(\alpha) \end{align} + + \ No newline at end of file -- cgit v1.2.1 From 76a5de291c288aa6e439fb97b0172dcfb5c9f1fe Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 10:30:01 +0200 Subject: rationale Funktionen --- buch/chapters/060-integral/rational.tex | 169 ++++++++++++++++++++++++++++++++ 1 file changed, 169 insertions(+) (limited to 'buch') diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 19f2ad9..989e65b 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -5,4 +5,173 @@ % \subsection{Rationale Funktionen und Funktionenkörper \label{buch:integral:subsection:rational}} +Welche Funktionen sollen als Antwort auf die Frage nach einer Stammfunktion +akzeptiert werden? +Polynome in der unabhängigen Variablen $x$ sollten sicher dazu gehören, +also alles, was man mit Hilfe der Multiplikation, Addition und Subtraktion +aus Koeffizienten zum Beispiel in den rationalen Zahlen $\mathbb{Q}$ und +der unabhängigen Variablen aufbauen kann. +Doch welche weiteren Operationen sollen zugelassen werden und was lässt +sich über die entstehende Funktionenmenge aussagen? + +\subsubsection{Körper} +Die kleinste Zahlenmenge, in der alle arithmetischen Operationen soweit +sinnvoll durchgeführt werden können, ist die Menge $\mathbb{Q}$ der +rationalen Zahlen. +Etwas formaler ist eine solche Menge, in der die Arithmetik uneingeschränkt +ausgeführt werden kann, ein Körper gemäss der folgenden Definition. +\index{Korper@Körper}% + +\begin{definition} +\label{buch:integral:definition:koerper} +Eine {\em Körper} ist eine Menge $K$ mit zwei Verknüpfungen $+$, die Addition, +und $\cdot$, die Multiplikation, +welche die folgenden Eigenschaften haben. +\begin{center} +\renewcommand{\tabcolsep}{0pt} +\begin{tabular}{p{68mm}p{4mm}p{68mm}} +%Eigenschaften der +Addition: +\begin{enumerate}[{\bf A}.1)] +\item assoziativ: $(a+b)+c=a+(b+c)$ +für alle $a,b,c\in K$ +\item kommutativ: $a+b=b+a$ +für alle $a,b\in K$ +\item Neutrales Element der Addition: es gibt ein Element $0\in K$ mit +der Eigenschaft $a+0=a$ für alle $a\in K$ +\item Additiv inverses Element: zu jedem Element $a\in K$ gibt es das Element +$-a$ mit der Eigenschaft $a+(-a)=0$. +\end{enumerate} +&&% +%Eigenschaften der +Multiplikation: +\begin{enumerate}[{\bf M}.1)] +\item assoziativ: $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ +für alle $a,b,c\in K$ +\index{Assoziativgesetz}% +\index{assoziativ}% +\item kommutativ: $a\cdot b=b\cdot a$ +für alle $a,b\in K$ +\index{Kommutativgesetz}% +\index{kommutativ}% +\item Neutrales Element der Multiplikation: es gibt ein Element $1\in K$ mit +der Eigenschaft $a\cdot 1 =a$ für alle $a\in K$ +\index{neutrales Element}% +\item Multiplikativ inverses Element: zu jedem Element +\index{inverses Element}% +$a\in K^*=K\setminus\{0\}$ +gibt es das Element $a^{-1}$ mit der Eigenschaft $a\cdot a^{-1}=1$. +Die Menge $K^*$ heisst auch die {\em Einheitengruppe} oder die +{\em Gruppe der invertierbaren Elemente} des Körpers. +\index{Einheitengruppe}% +\index{Gruppe der invertierbaren Elemente}% +\end{enumerate} +\end{tabular} +\end{center} +\vspace{-10pt} +Ausserdem gilt das Distributivgesetz: für alle $a,b,c\in K$ gilt +$a\cdot(b+c)=a\cdot b + a\cdot c$. +\index{Disitributivgesetz}% +\end{definition} + +Das Assoziativgesetz {\bf A}.1 besagt, dass Summen mit beliebig +vielen Termen ohne Klammern geschrieben werden kann, weil es nicht +darauf ankommt, in welcher Reihenfolge die Additionen ausgeführt werden. +Ebenso für das Assoziativgesetz {\bf M}.1 der Multiplikation. +Die Kommutativgesetze {\bf A}.2 und {\bf M}.2 implizieren, dass man +nicht auf die Reihenfolge der Summanden oder Faktoren achten muss. +Das Distributivgesetz schliesslich besagt, dass man Produkte ausmultiplizieren +oder gemeinsame Faktoren ausklammern kann, wie man es in der Schule +gelernt hat. + +Die rellen Zahlen $\mathbb{R}$ und die komplexen Zahlen $\mathbb{C}$ +bilden ebenfalls einen Körper, die von den rationalen Zahlen geerbten +Eigenschaften der Verknüpfungen setzen sich auf $\mathbb{R}$ und +$\mathbb{C}$ fort. +Es lassen sich allerdings auch Zahlkörper zwischen $\mathbb{Q}$ und +$\mathbb{R}$ konstruieren, wie das folgende Beispiel zeigt. + +\begin{beispiel} +Die Menge +\[ +\mathbb{Q}(\!\sqrt{2}) += +\{ +a+b\sqrt{2} +\;|\; +a,b\in \mathbb{Q} +\} +\] +ist eine Teilmenge von $\mathbb{R}$. +Die Rechenoperationen haben alle verlangten Eigenschaften, wenn gezeigt +werden kann, dass Produkte und Quotienten von Zahlen in $\mathbb{Q}(\!\sqrt{2})$ +wieder in $\mathbb{Q}(\!\sqrt{2})$ sind. +Dazu rechnet man +\begin{align*} +(a+b\sqrt{2}) +(c+d\sqrt{2}) +&= +ac + 2bd + (ad+bc)\sqrt{2} \in \mathbb{Q}(\!\sqrt{2}) +\intertext{und} +\frac{a+b\sqrt{2}}{c+d\sqrt{2}} +&= +\frac{a+b\sqrt{2}}{c+d\sqrt{2}} +\cdot +\frac{c-d\sqrt{2}}{c-d\sqrt{2}} += +\frac{ac-2bd +(-ad+bc)\sqrt{2}}{c^2-2d^2} +\\ +&= +\underbrace{\frac{ac-2bd}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}} ++ +\underbrace{\frac{-ad+bc}{c^2-2d^2}}_{\displaystyle\in\mathbb{Q}} +\sqrt{2} +\in \mathbb{Q}(\!\sqrt{2}). +\qedhere +\end{align*} +\end{beispiel} + + +\subsubsection{Rationalen Funktionen} +Die als Antworten auf die Frage nach einer Stammfunktion akzeptablen +Funktionen sollten alle rationalen Zahlen sowie die unabhängige +Variable $x$ enthalten. +Ausserdem sollte man beliebige arithmetische Operationen mit +diesen Ausdrücken durchführen können. +Mit Addition, Subtraktion und Multiplikation entstehen aus den +rationalen Zahlen und der unabhängigen Variablen die Polynome $\mathbb{Q}[x]$ +(siehe auch Abschnitt~\ref{buch:potenzen:section:polynome}). + + +\begin{definition} +Die Menge +\[ +\mathbb{Q}(x) += +\biggl\{ +\frac{p(x)}{q(x)} +\;\bigg|\; +p(x),q(x)\in\mathbb{Q}[x] +\wedge +q(x)\ne 0 +\biggr\}, +\] +bestehenden aus allen Quotienten von Polynome, deren Nenner nicht +das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen} +\index{rationale Funktion}% +mit Koeffizienten in $\mathbb{Q}$. +\end{definition} + +Die Definition erlaubt, dass der Nenner Nullstellen hat, die sich in +Polen der Funktion äussern. +Die Eigenschaften eines Körpers sind sicher erfüllt, wenn wir uns +nur davon überzeugen können, +dass die arithmetischen Operationen nicht aus dieser Funktionenmenge +herausführen. +Dazu muss man nur verstehen, dass die Operation des gleichnamig Machens +zweier Brüche auch für Nenner funktioniert, die Polynome sind, und die +Summe wzeier Brüche von Polynomen wieder in einen Bruch von Polynomen +umwandelt. + + -- cgit v1.2.1 From 8453542b493fe8396a406c5a195dc0a4125f638d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 11:59:00 +0200 Subject: Koerpererweiterungen --- buch/chapters/060-integral/erweiterungen.tex | 128 ++++++++++++++++++++++++++- buch/chapters/060-integral/rational.tex | 1 + 2 files changed, 128 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index f88f6e3..d5c7c72 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -5,8 +5,134 @@ % \subsection{Körpererweiterungen \label{buch:integral:subsection:koerpererweiterungen}} +Das Beispiel des Körpers $\mathbb{Q}(\!\sqrt{2})$ auf Seite +\pageref{buch:integral:beispiel:Qsqrt2} illustriert eine Möglichkeit, +einen kleinen Körper zu vergrössern. +Das Prinzip ist verallgemeinerungsfähig und soll in diesem Abschnitt +erarbeitet werden. + % % algebraische Zahl-Erweiterungen +\subsubsection{Algebraische Erweiterungen} +Der Körper $\mathbb{Q}(\!\sqrt{2})$ entsteht aus dem Körper $\mathbb{Q}$ +dadurch, dass man die Zahl $\sqrt{2}$ hinzufügt und alle erlaubten +arithmetischen Operationen zulässt. +Die Darstellung von Elementen von $\mathbb{Q}(\!\sqrt{2})$ als +$a+b\sqrt{2}$ ist möglich, weil die Zahl $\alpha=\sqrt{2}$ die +algebraische Relation +\[ +\alpha^2-2 = \sqrt{2}^2 -2 = 0 +\] +erfüllt. +Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem +geeigneten grösseren Körper gibt. +Die reellen oder komplexen Zahlen bilden einen solchen Körper. +Wir verallemeinern diese Situation wie folgt. + +\begin{definition} +Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein +{\em Erweiterungskörper} von $K$. +\index{Erweiterungskoerper@Erweiterungskörper} +\end{definition} + +\begin{definition} +\label{buch:integral:definition:algebraisch} +Sei $K\subset L$ eine Körpererweiterung. +Das Element $\alpha\in L$ heisst {\em algebraisch} über $K$, wenn es +ein Polynom $p(x)\in K[x]$ gibt derart, dass $\alpha$ eine Nullstelle +von $p(x)$ ist, also gibt mit $p(\alpha)=0$. +Das normierte Polynom $m(x)$ geringsten Grades, welches $m(\alpha)=0$ +erfüllt, heisst das {\em Minimalpolynom} von $\alpha$. +\index{Minimalpolynom}% +\end{definition} + +Man sagt auch $\alpha$ ist algebraisch vom Grad $n$, wenn das Minimalpolynom +den Grad $n$ hat. +Wenn $\alpha\ne 0$ algebraisch ist, dann ist auch $1/\alpha$ algebraisch, +wie das folgende Argument zeigt. +Für das Minimalpolynom $m(x)$ von $\alpha$, ist $m(\alpha)=0$. +Teilt man diese Gleichung durch $\alpha^n$ teilt, erhält man +\[ +m_0\frac{1}{\alpha^n} ++ +m_1\frac{1}{\alpha^{n-1}} ++ +\ldots ++ +m_{n-1}\frac{1}{\alpha} ++ +1 += +0, +\] +das Polynom +\[ +\hat{m}(x) += +m_0x^n + m_1x^{n-1} + \ldots m_{n-1} x + 1 +\in +K[x] +\] +hat also $\alpha^{-1}$ als Nullstelle. +Das Polynom $\hat{m}(x)$ beweist daher, dass $\alpha^{-1}$ algebraisch ist. + +Die Zahl $\sqrt{2}\in\mathbb{R}$ ist also algebraisch über $\mathbb{Q}$ +und jede andere Quadratwurzel von Elementen von $\mathbb{Q}$ ist +ebenfalls algebraisch über $\mathbb{Q}$. +Auch der Körper $\mathbb{Q}(\alpha)$ kann für jede andere Quadratwurzel +auf die genau gleiche Art wie für $\sqrt{2}$ konstruiert werden. + +\begin{definition} +\label{buch:integral:definition:algebraischeerweiterung} +Sei $K\subset L$ eine Körpererweiterung und $\alpha\in L$ ein algebraisches +Element mit Minimalpolynom $m(x)\in K[x]$. +Dann heisst die Menge +\begin{equation} +K(\alpha) += +\{ +a_0 + a_1\alpha + \ldots +a_n\alpha^n +\;|\; +a_i\in K +\} +\label{buch:integral:eqn:algelement} +\end{equation} +mit $n=\deg m(x) - 1$ der durch Adjunktion von $\alpha$ erhaltene +Erweiterungsköper. +\end{definition} + +Wieder muss nur überprüft werden, dass jedes Produkt oder jeder +Quotient von Ausdrücken der Form~\eqref{buch:integral:eqn:algelement} +wieder in diese Form gebracht werden kann. +Dazu sei +\[ +m(x) += +m_0+m_1x + m_2x^2 ++\ldots +m_{n-1}x^{n-1} + x^n +\] +das Minimalpolynom von $\alpha$. +Die Gleichung $m(\alpha)=0$ kann nach $\alpha^n$ aufgelöst werden und +liefert +\[ +\alpha^n = -m_0 - m_1\alpha - m_2\alpha^2 -\ldots -m_{n-1}\alpha^{n-1}. +\] +Damit kann jede Potenz von $\alpha$ mit einem Exponenten grösser als $n$ +in eine Linearkombination von Potenzen mit kleineren Exponenten +reduziert werden. +Ein Polynom in $\alpha$ kann also immer auf die +Form~\eqref{buch:integral:eqn:algelement} +gebracht werden. + +XXX Quotienten + % rationale Funktionen als Körpererweiterungen +\subsubsection{Rationale Funktionen als Körpererweiterung} + % Erweiterungen mit algebraischen Funktionen -% +\subsubsection{Algebraische Funktionen} + +% Transzendente Körpererweiterungen +\subsubsection{Transzendente Erweiterungen} + + diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 989e65b..9cef3a7 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -92,6 +92,7 @@ Es lassen sich allerdings auch Zahlkörper zwischen $\mathbb{Q}$ und $\mathbb{R}$ konstruieren, wie das folgende Beispiel zeigt. \begin{beispiel} +\label{buch:integral:beispiel:Qsqrt2} Die Menge \[ \mathbb{Q}(\!\sqrt{2}) -- cgit v1.2.1 From 6e9f45ad084ca9341c2893bdfe1ddcb07ee8a45b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 12:07:43 +0200 Subject: typo --- buch/chapters/060-integral/rational.tex | 6 +++--- buch/chapters/060-integral/sqrat.tex | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 9cef3a7..4cd7d7f 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -61,17 +61,17 @@ der Eigenschaft $a\cdot 1 =a$ für alle $a\in K$ \index{inverses Element}% $a\in K^*=K\setminus\{0\}$ gibt es das Element $a^{-1}$ mit der Eigenschaft $a\cdot a^{-1}=1$. -Die Menge $K^*$ heisst auch die {\em Einheitengruppe} oder die -{\em Gruppe der invertierbaren Elemente} des Körpers. \index{Einheitengruppe}% \index{Gruppe der invertierbaren Elemente}% \end{enumerate} \end{tabular} \end{center} -\vspace{-10pt} +\vspace{-22pt} Ausserdem gilt das Distributivgesetz: für alle $a,b,c\in K$ gilt $a\cdot(b+c)=a\cdot b + a\cdot c$. \index{Disitributivgesetz}% +Die Menge $K^*$ heisst auch die {\em Einheitengruppe} oder die +{\em Gruppe der invertierbaren Elemente} des Körpers. \end{definition} Das Assoziativgesetz {\bf A}.1 besagt, dass Summen mit beliebig diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index 20f1ef7..f6838e5 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -332,7 +332,7 @@ Letzteres wird im nächsten Abschnitt berechnet. % \subsubsection{Das Integral von $1/y$} Eine Stammfunktion von $1/y$ kann mit etwas Geschick bekannten -Interationstechnikgen gefunden werden. +Interationstechniken gefunden werden. Durch Ableitung der Funktion \[ F -- cgit v1.2.1 From 4197abc20216c15f11660d63549eb8b765f1c892 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 12:08:44 +0200 Subject: typos --- buch/chapters/060-integral/sqrat.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index f6838e5..ceb8650 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -337,7 +337,7 @@ Durch Ableitung der Funktion \[ F = -\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr) \] kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist, also @@ -345,7 +345,7 @@ also \int \frac{1}{y} = -\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr). +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr). \end{equation} % @@ -458,7 +458,7 @@ Form = v_0 + C -\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) +\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr) + \sum_{i=1}^n c_i \log v_i, -- cgit v1.2.1 From 03881a82e1a30cfaea1709f4f3f50c5cd9dfd0ea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 17:40:27 +0200 Subject: algebraische Erweiterungen --- buch/chapters/060-integral/erweiterungen.tex | 109 ++++++++++++++++++++++++++- buch/chapters/060-integral/rational.tex | 2 +- 2 files changed, 106 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index d5c7c72..7039cc0 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -27,7 +27,7 @@ erfüllt. Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem geeigneten grösseren Körper gibt. Die reellen oder komplexen Zahlen bilden einen solchen Körper. -Wir verallemeinern diese Situation wie folgt. +Wir verallgemeinern diese Situation wie folgt. \begin{definition} Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein @@ -124,15 +124,116 @@ Ein Polynom in $\alpha$ kann also immer auf die Form~\eqref{buch:integral:eqn:algelement} gebracht werden. -XXX Quotienten +Es muss aber noch gezeigt werden, dass auch der Kehrwert eines Elements +der Form~\eqref{buch:integral:eqn:algelement} in dieser Form geschrieben +werden kann. +Sei also $a(\alpha)$ so ein Element, dann sind die beiden Polynome +$a(x)$ und $m(x)$ teilerfremd, der grösste gemeinsame Teiler ist $1$. +Mit dem erweiterten euklidischen Algorithmus kann man zwei Polynome +$s(x)$ und $t(x)$ finden derart, dass $s(x)a(x)+t(x)m(x)=1$. +Setzt man $\alpha$ für $x$ ein, verschwindet das Minimalpolynom und +es bleibt +\[ +s(\alpha)a(\alpha) = 1 +\qquad\Rightarrow\qquad +s(\alpha) = \frac{1}{a(\alpha)}. +\] +Damit ist $s(\alpha)$ eine Darstellung von $1/a(\alpha)$ in der +Form~\eqref{buch:integral:eqn:algelement}. + +% Transzendente Körpererweiterungen +\subsubsection{Transzendente Erweiterungen} +Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch. +Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt, +dass $\pi$ und $e$ nicht algebraisch sind, es gibt also +kein Polynom mit rationalen Koeffizienten, welches $\pi$ +oder $e$ als Nullstelle hat. + +\begin{definition} +Eine Zahl $\alpha\in L$ in einer Körpererweiterung $K\subset L$ +heisst {\em transzendent}, wenn $\alpha$ nicht algebraisch ist, +wenn es also kein Polynom in $K[x]$ gibt, welches $\alpha$ als +Nullstelle hat. +\end{definition} + +Die Zahlen $\pi$ und $e$ sind also transzendent. +Eine andere Art, diese Eigenschaft zu beschreiben ist zu sagen, +dass die Potenzen +\[ +1=\pi^0, \pi, \pi^2,\pi^3,\dots +\] +linear unabhängig sind. +Gäbe es nämlich eine lineare Abhängigkeit, dann gäbe es Koeffizienten +$l_i$ derart, dass +\[ +l_0 + l_1\pi^1 + l_2\pi^2 + \ldots + l_{n-1}\pi^{n-1} + l_{n}\pi^n = l(\pi)=0, +\] +und damit wäre dann ein Polynom gefunden, welches $\pi$ als Nullstelle hat. + +Selbstverstländlich kann man zu einem transzendenten Element $\alpha$ +immer noch einen Körper konstruieren, der alle Zahlen enthält, welche man +mit den arithmetischen Operationen aus $\alpha$ bilden kann. +Man kann ihn schreiben als +\[ +K(\alpha) += +\biggl\{ +\frac{p(\alpha)}{q(\alpha)} +\;\bigg|\; +p(x),q(x)\in K[x] \wedge p(x)\ne 0 +\biggr\}, +\] +aber die Vereinfachungen zur +Form~\eqref{buch:integral:eqn:algelement}, die bei einem algebraischen +Element $\alpha$ möglich waren, können jetzt nicht mehr durchgeführt +werden. +$K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber +$K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum. +Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}. % rationale Funktionen als Körpererweiterungen \subsubsection{Rationale Funktionen als Körpererweiterung} +Die unabhängige Variable wird bei Rechnen so behandelt, dass die +Potenzen alle linear unabhängig sind. +Dies ist die Grundlage für den Koeffizientenvergleich. +Der Körper der rationalen Funktion $K(x)$ +ist also eine transzendente Körpererweiterung von $K$. % Erweiterungen mit algebraischen Funktionen \subsubsection{Algebraische Funktionen} +Für das Integrationsproblem möchten wir nicht nur rationale Funktionen +verwenden können, sondern auch Wurzelfunktionen. +Wir möchten also zum Beispiel auch mit der Funktion $\sqrt{ax^2+bx+c}$ +und allem, was man mit arithmetischen Operationen daraus machen kann, +arbeiten können. +Eine Körpererweiterung, die $\sqrt{ax^2+bx+c}$ enthält, enthält auch +alles, was man daraus bilden kann. +Doch wie bekommen wir die Funktion $\sqrt{ax^2+bx+c}$ in den Körper? -% Transzendente Körpererweiterungen -\subsubsection{Transzendente Erweiterungen} +Die Art und Weise, wie man Wurzeln in der Schule kennenlernt ist als +eine neue Operation, die zu einer Zahl die Quadratwurzel liefert. +Diese Idee, den Körper mit einer weiteren Funktion anzureichern, +führt über nicht auf eine nützliche neue algebraische Struktur. +Wir dürfen daher $\sqrt{ax^2+bx+c}$ nicht als die Zusammensetzung +einer einzelnen neuen Funktion $\sqrt{\phantom{A}}$ mit +einem Polynom betrachten. + +Die Wurzel $\sqrt{ax^2+bx+c}$ ist aber auch die Nullstelle des Polynoms +\[ +p(z) += +z^2 - [ax^2+bx+c] +\in +K(x)[z] +\] +mit Koeffizienten in $K(x)$. +Die eckigen Klammern sollen helfen, die Koeffizienten in $K(x)$ +zu erkennen. +Die Funktion $\sqrt{ax^2+bx+c}$ ist also algebraisch über $K(x)$. +Einen Funktionenkörper, der die Funktion enthält, kann man also erhalten, +indem man den Körper $K(x)$ um das über $K(x)$ algebraische Element +$y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert. +Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als +algebraische Erweiterungen eines Funktionenkörpers betrachtet. diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 4cd7d7f..ae64c34 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -157,7 +157,7 @@ p(x),q(x)\in\mathbb{Q}[x] q(x)\ne 0 \biggr\}, \] -bestehenden aus allen Quotienten von Polynome, deren Nenner nicht +bestehend aus allen Quotienten von Polynome, deren Nenner nicht das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen} \index{rationale Funktion}% mit Koeffizienten in $\mathbb{Q}$. -- cgit v1.2.1 From 9a90404d081513254925c76b2fbaabb1a1c62982 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 20:15:57 +0200 Subject: differenialkoerper --- buch/chapters/060-integral/diffke.tex | 33 ++++++++++++++++++++++++++++++++- 1 file changed, 32 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index 53b46ad..a943fa3 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -5,16 +5,47 @@ % \subsection{Differentialkörper und ihre Erweiterungen \label{buch:integral:subsection:diffke}} +Die Ableitung wird in den Grundvorlesungen der Analysis jeweils +als ein Grenzprozess eingeführt. +Die praktische Berechnung von Ableitungen verwendet aber praktisch +nie diese Definition, sondern fast ausschliesslich die rein algebraischen +Ableitungsregeln. +So wie die Wurzelfunktionen im letzten Abschnitt als algebraische +Körpererweiterungen erkannt wurden, muss jetzt auch für die Ableitung +eine rein algebraische Definition gefunden werden. +Die entstehende Struktur ist der Differentialkörper, der in diesem +Abschnitt definiert werden soll. + +% +% Derivation % \subsubsection{Derivation} -% Ableitungsaxiome +\begin{definition} +Sei $\mathscr{F}$ ein Funktionenkörper. +Eine {\em Derivation} ist eine lineare Abbildung +$D\colon \mathscr{F}\to\mathscr{F}$ +mit der Eigenschaft +\[ +D(fg) = (Df)g+f(Dg). +\] +\end{definition} + +% +% Ableitungsregeln +% \subsubsection{Ableitungsregeln} % Ableitungsregeln +% +% Konstantenkörper +% \subsubsection{Konstantenkörper} % Konstantenkörper +% +% Logarithmus und Exponantialfunktion +% \subsubsection{Logarithmus und Exponentialfunktion} % Logarithmus und Exponentialfunktion -- cgit v1.2.1 From f24e5bd9fda39e2f8bbfb0946aac2ee7dcda547d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 26 May 2022 08:35:55 +0200 Subject: new stuff --- buch/chapters/060-integral/diffke.tex | 96 +++++++++++++++++++- buch/chapters/060-integral/elementar.tex | 8 ++ buch/chapters/060-integral/erweiterungen.tex | 10 +++ buch/chapters/060-integral/logexp.tex | 127 +++++++++++++++++++++++++-- buch/chapters/060-integral/rational.tex | 2 +- buch/chapters/060-integral/sqrat.tex | 7 +- 6 files changed, 237 insertions(+), 13 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index a943fa3..02e90f6 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -20,32 +20,120 @@ Abschnitt definiert werden soll. % Derivation % \subsubsection{Derivation} +Für die praktische Berechnung der Ableitung einer Funktion verwendet +man in erster Linie die bekannten Rechenregeln. +Dazu gehören für zwei Funktionen $f$ und $g$ +\begin{itemize} +\item Linearität: $(\alpha f+\beta g)' = \alpha f' + \beta g'$ für +Konstanten $\alpha$, $\beta$. +\item Produktregel: $(fg)'=f'g+fg'$. +\index{Produktregel}% +\item Quotientenregel: $(f/g)' = (f'g-fg')/g^2$. +\index{Quotientenregel}% +\end{itemize} +Die ebenfalls häufig verwendete Kettenregel $(f\circ g)' = (f'\circ g) g'$ +\index{Kettenregel}% +für zusammengesetzte Funktionen wird später kaum benötigt, da wir +Verkettungen durch Körpererweiterungen ersetzen wollen. +Die Ableitung hat somit die rein algebraischen Eigenschaften +einer Derivation gemäss folgender Definition. \begin{definition} -Sei $\mathscr{F}$ ein Funktionenkörper. +Sei $\mathscr{F}$ ein Körper. Eine {\em Derivation} ist eine lineare Abbildung +\index{Derivation}% $D\colon \mathscr{F}\to\mathscr{F}$ mit der Eigenschaft \[ D(fg) = (Df)g+f(Dg). \] +Ein {\em Differentialkörper} ist ein Körper mit einer Derivation. +\index{Differentialkoerper@Differentialkörper}% \end{definition} +Die Ableitung in einem Funktionenkörper ist eine Derivation, +die sich zusätzlich dadurch auszeichnet, dass $Dx=x'=1$. +Sie wird weiterhin mit dem Strich bezeichnet. + % % Ableitungsregeln % \subsubsection{Ableitungsregeln} -% Ableitungsregeln +Die Definition einer Derivation macht keine Aussagen über Quotienten, +diese kann man aber aus den Eigenschaften einer Derivation sofort +ableiten. +Wir schreiben $q=f/g$ für $f,g\in\mathscr{F}$, dann ist $f=qg$. +Nach der Kettenregel gilt +\( +f'=q'g+qg' +\). +Substituiert man darin $q=f/g$ und löst nach $q'$ auf, erhält man +\[ +f'=q'g+\frac{fg'}{g} +\qquad\Rightarrow\qquad +q'=\frac1{g}\biggl(f'-\frac{fg'}{g}\biggr) += +\frac{f'g-fg'}{g^2}. +\] + % % Konstantenkörper % \subsubsection{Konstantenkörper} -% Konstantenkörper +Die Ableitung einer Konstanten verschwindet. +Beim Hinzufügen von Funktionen zu einem Funktionenkörper können weitere +Konstanten hinzukommen, ohne dass dies auf den ersten Blick sichtbar wird. +Zum Beispiel enthält $\mathbb{Q}(x,\!\sqrt{x+\pi})$ wegen +$(\!\sqrt{x+\pi})^2-x=\pi$ auch die Konstante $\pi$. +Eine Derivation ermöglicht dank des nachfolgenden Satzes auch, +solche Konstanten zu erkennen. + +\begin{satz} +Sei $\mathscr{F}$ ein Körper und $D$ eine Derivation in $\mathscr{F}$. +Dann ist die Menge $C=\{a\in\mathscr{F}\;|\;Da=0\}$ ein Körper. +\end{satz} + +\begin{proof}[Beweis] +Es muss gezeigt werden, dass Summe und Produkt von Element von $C$ +wieder in $C$ liegen. +Wenn $Da=Db=0$, dann ist $D(a+b)=Da+Db=0$, also ist $a+b\in C$. +Für das Produkt gilt $D(ab)=(Da)b+a(Db)=0b+a0=0$, also ist auch +$ab\in C$. +\end{proof} + +Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$. +\index{Konstantenkörper}% % % Logarithmus und Exponantialfunktion % \subsubsection{Logarithmus und Exponentialfunktion} -% Logarithmus und Exponentialfunktion +Die Exponentialfunktion und der Logarithmus sind nicht algebraisch +über $\mathbb{Q}(x)$, sie lassen sich nicht durch eine algebraische +Gleichung charakterisieren. +Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus. +Die Theorie der gewöhnlichen Differentialgleichungen garantiert, +dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen +festgelegt ist. +Für die Exponentialfunktion und der Logarithmus haben die +Ableitungseigenschaften +\[ +\exp'(x) = \exp(x) +\qquad\text{und}\qquad +x \log'(x) = 1. +\] +\index{Exponentialfunktion}% +\index{Logarithmus}% +In der algebraischen Beschreibung eines Funktionenkörpers gibt es +das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht. +Somit können keine Anfangsbedingungen vorgegeben werden. +Da die Gleichungen linear sind, sind Vielfache einer Lösung wieder +Lösungen. +Insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung und mit +$\log(x)$ auch $a\log(x)$ für alle Konstanten $a$. + +Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion +des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers +nicht ausdrücken. diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex index 2962178..854a875 100644 --- a/buch/chapters/060-integral/elementar.tex +++ b/buch/chapters/060-integral/elementar.tex @@ -5,3 +5,11 @@ % \subsection{Elementare Funktionen \label{buch:integral:subsection:elementar}} +Etwas allgemeiner kann man sagen, dass in den +Beispielen~\eqref{buch:integration:risch:eqn:integralbeispiel2} +algebraische Erweiterungen von $\mathbb{Q}(x)$ und Erweiterungen +um Logarithmen oder Exponentialfunktionen vorgekommen sind. +Die Stammfunktionen verwenden dieselben Funktionen oder höchstens +Erweiterungen um Logarithmen von Funktionen, die man schon im +Integranden gesehen hat. + diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index 7039cc0..a999ebb 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -141,6 +141,16 @@ s(\alpha) = \frac{1}{a(\alpha)}. Damit ist $s(\alpha)$ eine Darstellung von $1/a(\alpha)$ in der Form~\eqref{buch:integral:eqn:algelement}. +% +% Komplexe Zahlen +% +\subsubsection{Komplexe Zahlen} +Die imaginäre Einheit $i$ hat die Eigenschaft, dass $i^2=-1$, insbesondere +ist sie Nullstelle des Polynoms $m(x)=x^2+1\in\mathbb{Q}[x]$. +Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung +von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem +Real- und Imaginärteil. + % Transzendente Körpererweiterungen \subsubsection{Transzendente Erweiterungen} Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch. diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex index 7cbb906..2bfe0e1 100644 --- a/buch/chapters/060-integral/logexp.tex +++ b/buch/chapters/060-integral/logexp.tex @@ -13,15 +13,132 @@ $\log(x-\alpha)$ hinzuzufügen. Es können jedoch noch ganz andere neue Funktionen auftreten, wie die folgende Zusammenstellung einiger Stammfunktionen zeigt: -\begin{align*} +\begin{equation} +\begin{aligned} \int\frac{dx}{1+x^2} &= -\arctan x +\arctan x, \\ -\end{align*} - - +\int \cos x\,dx +&= +\sin x, +\\ +\int\frac{dx}{\sqrt{1-x^2}} +&= +\arcsin x, +\\ +\int +\operatorname{arcosh} x\,dx +&= +x \operatorname{arcosh} x - \sqrt{x^2-1}. +\end{aligned} +\label{buch:integration:risch:allgform} +\end{equation} +In der Stammfunktion treten Funktionen auf, die auf den ersten +Blick nichts mit den Funktionen im Integranden zu tun haben. +Die trigonometrischen und hyperbolichen Funktionen +in~\eqref{buch:integration:risch:allgform} +lassen sich alle durch Exponentialfunktionen ausdrücken. +So gilt +\begin{equation} +\begin{aligned} +\sin x &= \frac{1}{2i}\bigl( e^{ix} - e^{-ix}\bigr), +& +&\qquad& +\cos x &= \frac{1}{2}\bigl( e^{ix} + e^{-ix}\bigr), +\\ +\sinh x &= \frac12\bigl( e^x - e^{-x} \bigr), +& +&\qquad& +\cosh x &= \frac12\bigl( e^x + e^{-x} \bigr). +\end{aligned} +\label{buch:integral:risch:trighypinv} +\end{equation} +Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine +quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$. +Die Lösungsformel für quadratische Gleichungen erlaubt daher, $e^{ix}$ +bzw.~$e^{x}$ zu finden und damit auch die Umkehrfunktionen. +Die Rechnung ergibt +\begin{equation} +\begin{aligned} +\arcsin y +&= +\frac{1}{i}\log\bigl( +iy\pm\sqrt{1-y^2} +\bigr) +& +&\qquad& +\arccos y +&= +\log\bigl( +y\pm \sqrt{y^2-1} +\bigr) +\\ +\operatorname{arsinh}y +&= +\log\bigl( +y \pm \sqrt{1+y^2} +\bigr) +& +&\qquad& +\operatorname{arcosh} y +&= +\log\bigl( +y\pm \sqrt{y^2-1} +\bigr) +\end{aligned} +\label{buch:integral:risch:trighypinv} +\end{equation} +Alle Funktionen, die man aus dem elementaren Analysisunterricht +kennt, können also mit Hilfe von Exponentialfunktionen und Logarithmen +geschrieben werden. +Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen +und hyperbolischen Funktionen. +\index{logexpnotation@$\log$-$\exp$-Notation}% +Wendet man die Substitutionen +\eqref{buch:integral:risch:trighyp} +und +\eqref{buch:integral:risch:trighypinv} +auf die Integrale +\eqref{buch:integration:risch:allgform} +an, entstehen die Beziehungen +\begin{equation} +\begin{aligned} +\int\frac{1}{1+x^2} +&= +\frac12i\bigl( +\log(1-ix) - \log(1+ix) +\bigr) +\\ +\int\bigl( +{\textstyle\frac12} +e^{ix} ++ +{\textstyle\frac12} +e^{-ix} +\bigr) +&= +-{\textstyle\frac12}ie^{ix} ++{\textstyle\frac12}ie^{-ix} +\\ +\int +\frac{1}{\sqrt{1-x^2}} +&= +-i\log\bigl(ix+\sqrt{1-x^2}) +\\ +\int \log\bigl(x+\sqrt{x^2-1}\bigr) +&= +x\log\bigl(x+\sqrt{x^2-1}\bigr) - \sqrt{x^2-1}. +\end{aligned} +\label{buch:integration:risch:eqn:integralbeispiel2} +\end{equation} +Die in den Stammfuntionen auftretenden Funktionen treten entweder +schon im Integranden auf oder sind Logarithmen von solchen +Funktionen. +Zum Beispiel hat der Nenner im ersten Integral die Faktorisierung +$1+x^2=(1+ix)(1-ix)$, in der Stammfunktion findet man die Logarithmen +der Faktoren. diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index ae64c34..7b24e9f 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -157,7 +157,7 @@ p(x),q(x)\in\mathbb{Q}[x] q(x)\ne 0 \biggr\}, \] -bestehend aus allen Quotienten von Polynome, deren Nenner nicht +bestehend aus allen Quotienten von Polynomen, deren Nenner nicht das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen} \index{rationale Funktion}% mit Koeffizienten in $\mathbb{Q}$. diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index ceb8650..787cfc9 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -331,8 +331,9 @@ Letzteres wird im nächsten Abschnitt berechnet. % Das Integral von $1/y$ % \subsubsection{Das Integral von $1/y$} -Eine Stammfunktion von $1/y$ kann mit etwas Geschick bekannten -Interationstechniken gefunden werden. +Eine Stammfunktion von $1/y$ kann mit etwas Geschick mit den +Interationstechniken gefunden werden, die man in einem Analysis-Kurs +lernt. Durch Ableitung der Funktion \[ F @@ -471,7 +472,7 @@ die bei der Berechnung der Integrale \eqref{buch:integral:sqrat:eqn:2teart} auftreten. Insbesondere liefert die Rechnung eine Körpererweiterung von $\mathcal{K}(x,y)$ um die logarithmische Funktionen -$\log(x+b/2a+y/\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine +$\log(x+b/2a+y/\!\sqrt{y})$ und $\log v_i$, in der $R(x,y)$ eine Stammfunktion hat. -- cgit v1.2.1 From 50ecdafd467b0ec21be5b3bffce1d4c5acbb4fe6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 26 May 2022 08:36:59 +0200 Subject: add missing file --- buch/SeminarSpezielleFunktionen.tex | 7 +++++++ 1 file changed, 7 insertions(+) create mode 100644 buch/SeminarSpezielleFunktionen.tex (limited to 'buch') diff --git a/buch/SeminarSpezielleFunktionen.tex b/buch/SeminarSpezielleFunktionen.tex new file mode 100644 index 0000000..4ee1900 --- /dev/null +++ b/buch/SeminarSpezielleFunktionen.tex @@ -0,0 +1,7 @@ +% +% buch.tex -- Buch zum mathematischen Seminar Spezielle Funktionen +% +% (c) 2022 Prof. Dr. Andreas Mueller, OST Ostschweizer Fachhochschule +% +\def\IncludeBookCover{1} +\input{common/content.tex} -- cgit v1.2.1 From 14b48dfeb636fe25b0745a2ab617cc5d307c06e6 Mon Sep 17 00:00:00 2001 From: runterer Date: Thu, 26 May 2022 20:38:30 +0200 Subject: =?UTF-8?q?tikz=20und=20eulerprodukt=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/zeta/analytic_continuation.tex | 23 ++++++- buch/papers/zeta/continuation_overview.tikz.tex | 7 +- buch/papers/zeta/euler_product.tex | 85 +++++++++++++++++++++++++ buch/papers/zeta/main.tex | 1 + buch/papers/zeta/zeta_gamma.tex | 7 +- 5 files changed, 114 insertions(+), 9 deletions(-) create mode 100644 buch/papers/zeta/euler_product.tex (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 5e09e42..408a1f7 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -1,7 +1,26 @@ \section{Analytische Fortsetzung} \label{zeta:section:analytische_fortsetzung} \rhead{Analytische Fortsetzung} -%TODO missing Text +Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. +Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. +So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = 0.5$. +Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. + +Es werden zwei verschiedene Fortsetzungen benötigt. +Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. +Die zweite verwendet eine Spiegelung an der $\Re(s) = 0.5$ Linie und erschliesst damit die ganze komplexe Ebene. +Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. +\begin{figure} + \centering + \input{papers/zeta/continuation_overview.tikz.tex} + \caption{ + Die verschiedenen Abschnitte der Riemannschen Zetafunktion. + Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. + Für den blauen Bereich gilt \eqref{zeta:equation:fortsetzung1}. + Um den roten Bereich zu bekommen verwendet die Funktionalgleichung \eqref{zeta:equation:functional} eine Spiegelung an $\Re(s) = 0.5$. + } + \label{zeta:fig:continuation_overview} +\end{figure} \subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0} Zuerst definieren die Dirichletsche Etafunktion als @@ -42,7 +61,7 @@ Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:a &= \eta(s). \end{align} Dies ist die Fortsetzung auf den noch unbekannten Bereich $0 < \Re(s) < 1$ -\begin{equation} +\begin{equation} \label{zeta:equation:fortsetzung1} \zeta(s) := \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). diff --git a/buch/papers/zeta/continuation_overview.tikz.tex b/buch/papers/zeta/continuation_overview.tikz.tex index 03224ff..836ab1d 100644 --- a/buch/papers/zeta/continuation_overview.tikz.tex +++ b/buch/papers/zeta/continuation_overview.tikz.tex @@ -1,12 +1,13 @@ \begin{tikzpicture}[>=stealth', auto, node distance=0.9cm, scale=2, dot/.style={fill, circle, inner sep=0, minimum size=0.1cm}] - \draw[->] (-2,0) -- (-1,0) node[dot]{} node[anchor=north]{$-1$} -- (0,0) node[anchor=north west]{$0$} -- (1,0) node[anchor=north west]{$1$} -- (2,0) node[anchor=west]{Re$(s)$}; + \draw[->] (-2,0) -- (-1,0) node[dot]{} node[anchor=north]{$-1$} -- (0,0) node[anchor=north west]{$0$} -- (0.5,0) node[anchor=north west]{$0.5$}-- (1,0) node[anchor=north west]{$1$} -- (2,0) node[anchor=west]{$\Re(s)$}; - \draw[->] (0,-1.2) -- (0,1.2) node[anchor=south]{Im$(s)$}; + \draw[->] (0,-1.2) -- (0,1.2) node[anchor=south]{$\Im(s)$}; \begin{scope}[yscale=0.1] \draw[] (1,-1) -- (1,1); \end{scope} + \draw[dotted] (0.5,-1) -- (0.5,1); \begin{scope}[] \fill[opacity=0.2, red] (-1.8,1) rectangle (0, -1); @@ -14,4 +15,4 @@ \fill[opacity=0.2, green] (1,1) rectangle (1.8, -1); \end{scope} -\end{tikzpicture} \ No newline at end of file +\end{tikzpicture} diff --git a/buch/papers/zeta/euler_product.tex b/buch/papers/zeta/euler_product.tex new file mode 100644 index 0000000..a6ed512 --- /dev/null +++ b/buch/papers/zeta/euler_product.tex @@ -0,0 +1,85 @@ +\section{Eulerprodukt} \label{zeta:section:eulerprodukt} +\rhead{Eulerprodukt} + +Das Eulerprodukt stellt die Verbindung der Zetafunktion und der Primzahlen her. +Diese Verbindung ist sehr wichtig, da durch sie eine Aussage zur Primzahlverteilung gemacht werden kann. +Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche eines der grössten ungelösten Probleme der Mathematik ist. + +\begin{satz} + Für alle Zahlen $s$ mit $\Re(s) > 1$ ist die Zetafunktion identisch mit dem unendlichen Eulerprodukt + \begin{equation}\label{zeta:eq:eulerprodukt} + \zeta(s) + = + \sum_{n=1}^\infty + \frac{1}{n^s} + = + \prod_{p \in P} + \frac{1}{1-p^{-s}} + \end{equation} + wobei $P$ die Menge aller Primzahlen darstellt. +\end{satz} + +\begin{proof}[Beweis] + Der Beweis startet mit dem Eulerprodukt und stellt dieses so um, dass die Zetafunktion erscheint. + Als erstes ersetzen wir die Faktoren durch geometrische Reihen + \begin{equation} + \prod_{i=1}^{\infty} + \frac{1}{1-p^{-s}} + = + \prod_{p \in P} + \sum_{k_i=0}^{\infty} + \left( + \frac{1}{p_i^s} + \right)^{k_i} + = + \prod_{p \in P} + \sum_{k_i=0}^{\infty} + \frac{1}{p_i^{s k_i}}, + \end{equation} + dabei iteriert der Index $i$ über alle Primzahlen $p_i$. + Durch Ausschreiben der Multiplikation und Ausklammern der Summen erhalten wir + \begin{align} + \prod_{p \in P} + \sum_{k_i=0}^{\infty} + \frac{1}{p_i^{s k_i}} + &= + \sum_{k_1=0}^{\infty} + \frac{1}{p_1^{s k_1}} + \sum_{k_2=0}^{\infty} + \frac{1}{p_2^{s k_2}} + \ldots + \nonumber \\ + &= + \sum_{k_1=0}^{\infty} + \sum_{k_2=0}^{\infty} + \ldots + \left( + \frac{1}{p_1^{k_1}} + \frac{1}{p_2^{k_2}} + \ldots + \right)^s. + \label{zeta:equation:eulerprodukt2} + \end{align} + Der Fundamentalsatz der Arithmetik (Primfaktorzerlegung) besagt, dass jede beliebige Zahl $n \in \mathbb{N}$ durch eine eindeutige Primfaktorzerlegung beschrieben werden kann + \begin{equation} + n = \prod_i p_i^{k_i} \quad \forall \quad n \in \mathbb{N}. + \end{equation} + Jeder Summand der Summen in \eqref{zeta:equation:eulerprodukt2} ist somit eine Zahl $n$. + Da die Summen alle möglichen Kombinationen von Exponenten und Primzahlen in \eqref{zeta:equation:eulerprodukt2} enthält haben wir + \begin{equation} + \sum_{k_1=0}^{\infty} + \sum_{k_2=0}^{\infty} + \ldots + \left( + \frac{1}{p_1^{k_1}} + \frac{1}{p_2^{k_2}} + \ldots + \right)^s + = + \sum_{n=1}^\infty + \frac{1}{n^s} + = + \zeta(s) + \end{equation} +\end{proof} + diff --git a/buch/papers/zeta/main.tex b/buch/papers/zeta/main.tex index e0ea8e1..caddace 100644 --- a/buch/papers/zeta/main.tex +++ b/buch/papers/zeta/main.tex @@ -11,6 +11,7 @@ %TODO Einleitung \input{papers/zeta/einleitung.tex} +\input{papers/zeta/euler_product.tex} \input{papers/zeta/zeta_gamma.tex} \input{papers/zeta/analytic_continuation.tex} diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 49fea74..db41676 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -2,9 +2,8 @@ \rhead{Zusammenhang mit der Gammafunktion} In diesem Abschnitt wird gezeigt, wie sich die Zetafunktion durch die Gammafunktion $\Gamma(s)$ ausdrücken lässt. -Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ wird später für die Herleitung der analytischen Fortsetzung gebraucht. +Dieser Zusammenhang der Art $\zeta(s) = f(\Gamma(s))$ ist nicht nur interessant, er wird später auch für die Herleitung der analytischen Fortsetzung gebraucht. -%TODO ref Gamma Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:gamma:integralbeweis} \begin{equation*} \Gamma(s) @@ -51,12 +50,12 @@ Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhal &= \frac{1}{e^u - 1}. \end{align} -Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir %TODO formulieren als Satz +Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir den gewünschten Zusammenhang \begin{equation}\label{zeta:equation:zeta_gamma_final} \zeta(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{u^{s-1}}{e^u -1} - du. + du \qed \end{equation} -- cgit v1.2.1 From 7459c95431d89576126a6a0007238592a4f5f033 Mon Sep 17 00:00:00 2001 From: runterer Date: Fri, 27 May 2022 20:10:13 +0200 Subject: Minor improvements --- buch/papers/zeta/analytic_continuation.tex | 26 ++++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 408a1f7..40424e0 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -14,7 +14,7 @@ Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuat \centering \input{papers/zeta/continuation_overview.tikz.tex} \caption{ - Die verschiedenen Abschnitte der Riemannschen Zetafunktion. + Die verschiedenen Abschnitte der Riemannschen Zetafunktion. Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. Für den blauen Bereich gilt \eqref{zeta:equation:fortsetzung1}. Um den roten Bereich zu bekommen verwendet die Funktionalgleichung \eqref{zeta:equation:functional} eine Spiegelung an $\Re(s) = 0.5$. @@ -76,33 +76,35 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. \end{equation} Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten -\begin{align} +\begin{equation} \Gamma \left( \frac{s}{2} \right) - &= + = \int_0^{\infty} (\pi n^2)^{\frac{s}{2}} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - \,dx - && \text{Division durch } (\pi n^2)^{\frac{s}{2}} - \\ + \,dx. +\end{equation} +Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wir durch $(\pi n^2)^{\frac{s}{2}}$ +\begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} - &= + = \int_0^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^2 x} - \,dx - && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty} - \\ + \,dx, +\end{equation} +und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$ +\begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) - &= + = \int_0^{\infty} x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} \,dx. \label{zeta:equation:integral1} -\end{align} +\end{equation} Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. %TODO Wieso folgendes -> aus Fourier Signal Es gilt -- cgit v1.2.1 From 42a5955183a1bc0678158c61fd6189c39d305697 Mon Sep 17 00:00:00 2001 From: runterer Date: Fri, 27 May 2022 23:29:56 +0200 Subject: added poissonsche summenformel --- buch/papers/zeta/analytic_continuation.tex | 176 ++++++++++++++++++++++++++++- 1 file changed, 171 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 40424e0..0ccc116 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -106,15 +106,65 @@ und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$ \,dx. \label{zeta:equation:integral1} \end{equation} Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. -%TODO Wieso folgendes -> aus Fourier Signal -Es gilt +Im Abschnitt \ref{zeta:subsec:poisson_summation} wird die poissonsche Summenformel $\sum f(n) = \sum F(n)$ bewiesen. +In unserem Problem ist $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist +\begin{equation} + F(n) + = + \mathcal{F} + ( + e^{-\pi n^2 x} + ) + = + \frac{1}{\sqrt{x}} + e^{\frac{-n^2 \pi}{x}}. +\end{equation} +Dadurch ergibt sich \begin{equation}\label{zeta:equation:psi} - \psi(x) + \sum_{n=-\infty}^{\infty} + e^{-\pi n^2 x} = + \frac{1}{\sqrt{x}} + \sum_{n=-\infty}^{\infty} + e^{\frac{-n^2 \pi}{x}}, +\end{equation} +wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als +\begin{align} + 2 + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + + + 1 + &= + \frac{1}{\sqrt{x}} + \left( + 2 + \sum_{n=1}^{\infty} + e^{\frac{-n^2 \pi}{x}} + + + 1 + \right) + \\ + 2 + \psi(x) + + + 1 + &= + \frac{1}{\sqrt{x}} + \left( + 2 + \psi\left(\frac{1}{x}\right) + + + 1 + \right) + \\ + \psi(x) + &= - \frac{1}{2} + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}}. -\end{equation} + + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} +\end{align} +Diese Gleichung wird später wichtig werden. Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als \begin{equation}\label{zeta:equation:integral2} @@ -309,3 +359,119 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(1-s). \end{equation} %TODO Definitionen und Gleichungen klarer unterscheiden + +\subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} + +Der Beweis für Gleichung \ref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. +Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. + +\begin{lemma} + Die Fourierreihe der periodischen Dirac Delta Funktion $\sum \delta(x - 2\pi k)$ ist + \begin{equation} \label{zeta:equation:fourier_dirac} + \sum_{k=-\infty}^{\infty} + \delta(x - 2\pi k) + = + \frac{1}{2\pi} + \sum_{n=-\infty}^{\infty} + e^{i n x}. + \end{equation} +\end{lemma} + +\begin{proof}[Beweis] + Eine Fourierreihe einer beliebigen periodischen Funktion $f(x)$ berechnet sich als + \begin{align} + f(x) + &= + \sum_{n=-\infty}^{\infty} + c_n + e^{i n x} \\ + c_n + &= + \frac{1}{2\pi} + \int_{-\pi}^{\pi} + f(x) + e^{-i n x} + \, dx. + \end{align} + Wenn $f(x)=\delta(x)$ eingesetz wird ergeben sich konstante Koeffizienten + \begin{equation} + c_n + = + \frac{1}{2\pi} + \int_{-\pi}^{\pi} + \delta(x) + e^{-i n x} + \, dx + = + \frac{1}{2\pi}, + \end{equation} + womit die sehr einfache Fourierreihe der Dirac Delta Funktion berechnet wäre. +\end{proof} + +\begin{satz}[Poissonsche Summernformel] + Die Summe einer Funktion $f(n)$ über alle ganzen Zahlen $n$ ist äquivalent zur Summe ihrer Fouriertransformation $F(k)$ über alle ganzen Zahlen $k$ + \begin{equation} + \sum_{n=-\infty}^{\infty} + f(n) + = + \sum_{k=-\infty}^{\infty} + F(k). + \end{equation} +\end{satz} + +\begin{proof}[Beweis] + Wir schreiben die Summe über die Fouriertransformation aus + \begin{align} + \sum_{k=-\infty}^{\infty} + F(k) + &= + \sum_{k=-\infty}^{\infty} + \int_{-\infty}^{\infty} + f(x) + e^{-i 2\pi x k} + \, dx + \\ + &= + \int_{-\infty}^{\infty} + f(x) + \underbrace{ + \sum_{k=-\infty}^{\infty} + e^{-i 2\pi x k} + }_{\text{\eqref{zeta:equation:fourier_dirac}}} + \, dx, + \end{align} + und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac} + \begin{align} + \sum_{k=-\infty}^{\infty} + e^{-i 2\pi x k} + &= + 2 \pi + \sum_{k=-\infty}^{\infty} + \delta(-2\pi x - 2\pi k) + \\ + &= + \frac{2 \pi}{2 \pi} + \sum_{k=-\infty}^{\infty} + \delta(x + k). + \end{align} + Wenn wir dies einsetzen und erhalten wir den gesuchten Beweis für die poissonsche Summenformel + \begin{equation} + \sum_{k=-\infty}^{\infty} + F(k) + = + \int_{-\infty}^{\infty} + f(x) + \sum_{k=-\infty}^{\infty} + \delta(x + k) + \, dx + = + \sum_{k=-\infty}^{\infty} + \int_{-\infty}^{\infty} + f(x) + \delta(x + k) + \, dx + = + \sum_{k=-\infty}^{\infty} + f(k). + \end{equation} +\end{proof} -- cgit v1.2.1 From df8e535423f408f789f0cb624df7a4980572bc4d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 14:57:18 +0200 Subject: more onm integration and lemniscate --- buch/chapters/060-integral/differentialkoerper.tex | 5 + buch/chapters/060-integral/diffke.tex | 106 ++++++++++- buch/chapters/060-integral/elementar.tex | 199 +++++++++++++++++++++ buch/chapters/060-integral/erweiterungen.tex | 98 +++++++++- buch/chapters/060-integral/logexp.tex | 20 ++- buch/chapters/060-integral/rational.tex | 27 ++- buch/chapters/060-integral/risch.tex | 12 ++ buch/chapters/110-elliptisch/lemniskate.tex | 24 ++- buch/chapters/references.bib | 7 + 9 files changed, 475 insertions(+), 23 deletions(-) (limited to 'buch') diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex index a071ae2..a112e33 100644 --- a/buch/chapters/060-integral/differentialkoerper.tex +++ b/buch/chapters/060-integral/differentialkoerper.tex @@ -15,6 +15,11 @@ Doch woher weiss man, dass es keine solche Funktion gibt, und was heisst überhaupt ``Stammfunktion in geschlossener Form''? In diesem Abschnitt wird daher ein algebraischer Rahmen entwickelt, in dem diese Frage sinnvoll gestellt werden kann. +Das ultimative Ziel, welches aber erst in +Abschnitt~\ref{buch:integral:section:risch} in Angriff genommen +wird, ist ein Computer-Algorithmus, der Integrale in geschlossener +Form findet oder beweist, dass dies für einen gegebenen Integranden +nicht möglich ist. \input{chapters/060-integral/rational.tex} \input{chapters/060-integral/erweiterungen.tex} diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index 02e90f6..61badc8 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -105,6 +105,94 @@ $ab\in C$. Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$. \index{Konstantenkörper}% +% +% Ableitung algebraischer Elemente +% +\subsubsection{Ableitung und algebraische Körpererweiterungen} +Die Rechenregeln in einem Differentialkörper $\mathscr{F}$ legen auch die +Ableitung eines algebraischen Elements fest. +Sei $m(z)=m_0+m_1z+\ldots+m_{n-1}z^{n-1}+z^n$ das Minimalpolynom eines +über $\mathscr{F}$ algebraischen Elements $f$. +Aus $m(f)=0$ folgt durch Ableiten +\[ +0 += +m(f)' += +m_0' ++ +(m_1'f+m_1f') ++ +(m_2'f + m_12f'f) ++ +\ldots ++ +(m_{n-1}'f^{n-1} + m_{n-1} (n-1)f'f^{n-2}) ++ +nf'f^{n-1}. +\] +Zusammenfassen der Ableitung $f'$ auf der linken Seite liefert die +Gleichung +\[ +f'( +m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1} +) += +m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n, +\] +aus der +\[ +f' += +\frac{ +m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n +}{ +m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1} +} +\] +als Element von $\mathscr{F}(g)$ berechnet werden kann. +Die Ableitungsoperation lässt sich somit auf die Körpererweiterung +$\mathscr{F}(f)$ fortsetzen. + +\begin{beispiel} +Das über $\mathbb{Q}(x)$ algebraische Element $y=\sqrt{ax^2+bx+c}$ +hat das Minimalpolynom +\[ +m(z) += +z^2 - [ax^2+bx+c] +\in +\mathbb{Q}(x)[z] +\] +mit Koeffizienten $m_0 = ax^2+bx+c,$ $m_1=0$ und $m_2=1$. +Es hat die Ableitung +\[ +y' += +\frac{m_0'}{2m_2y} += +\frac{ +2ax+b +}{ +2y +} +\in +\mathbb{Q}(x,y) +\] +wegen $m_0'=2ax+b$. +\end{beispiel} + +\begin{definition} +Eine differentielle Körpererweiterung ist eine Körpererweiterung +$\mathscr{K}\subset\mathscr{F}$ von Differentialkörpern derart, dass +die Ableitungen $D_{\mathscr{K}}$ in $\mathscr{K}$ +und $D_{\mathscr{F}}$ in $\mathscr{F}$ übereinstimmen: +\( +D_{\mathscr{K}}g= D_{\mathscr{F}} g +\) +für alle $g\in\mathscr{K}$. +\end{definition} + % % Logarithmus und Exponantialfunktion % @@ -116,6 +204,7 @@ Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus. Die Theorie der gewöhnlichen Differentialgleichungen garantiert, dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen festgelegt ist. +\label{buch:integral:expundlog} Für die Exponentialfunktion und der Logarithmus haben die Ableitungseigenschaften \[ @@ -128,10 +217,19 @@ x \log'(x) = 1. In der algebraischen Beschreibung eines Funktionenkörpers gibt es das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht. Somit können keine Anfangsbedingungen vorgegeben werden. -Da die Gleichungen linear sind, sind Vielfache einer Lösung wieder -Lösungen. -Insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung und mit -$\log(x)$ auch $a\log(x)$ für alle Konstanten $a$. +Da die Gleichung für $\exp$ linear sind, sind Vielfache einer Lösung wieder +Lösungen, +insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung. +Die Gleichung für $\log$ ist nicht linear, aber es ist +$\log'(x) = 1/x$, $\log$ ist eine Stammfunktion von $1/x$, die +nur bis auf eine Konstante bestimmt ist. +Tatsächlich gilt +\[ +x(\log(x)+a)' += +x\log(x) + xa' = x\log(x)=1, +\] +die Funktion $\log(x)+a$ ist also auch eine Lösung für den Logarithmus. Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex index 854a875..fd5f051 100644 --- a/buch/chapters/060-integral/elementar.tex +++ b/buch/chapters/060-integral/elementar.tex @@ -13,3 +13,202 @@ Die Stammfunktionen verwenden dieselben Funktionen oder höchstens Erweiterungen um Logarithmen von Funktionen, die man schon im Integranden gesehen hat. +% +% Exponentielle und logarithmische Funktione +% +\subsubsection{Exponentielle und logarithmische Funktionen} +In Abschnitt~\ref{buch:integral:subsection:diffke} haben wir +bereits die Exponentialfunktion $e^x$ und die Logarithmusfunktion +$\log x$ charakterisiert als eine Körpererweiterung durch +Elemente, die der Differentialgleichung +\[ +\exp' = \exp +\qquad\text{und}\qquad +\log' = \frac{1}{x} +\] +genügen. +Für die Stammfunktionen, die in +Abschnitt~\ref{buch:integral:subsection:logexp} +gefunden wurden, sind aber Logarithmusfunktionen nicht von +$x$ sondern von beliebigen über $\mathbb{Q}$ algebraischen Elementen +nötig. +Um zu verstehen, wie wir diese Funktion als Körpererweiterung erhalten +könnten, betrachten wir die Ableitung einer Exponentialfunktion +$\vartheta(x) = \exp(f(x))$ und eines +Logarithmus +$\psi(x) = \log(f(x))$, wie man sie mit der Kettenregel +berechnet hätte: +\begin{align*} +\vartheta'(x) +&=\exp(f(x)) \cdot f'(x) +& +\psi'(x) +&= +\frac{f'(x)}{f(x)} +\quad\Leftrightarrow\quad +f(x)\psi'(x) += +f'(x). +\end{align*} +Dies motiviert die folgende Definition + +\begin{definition} +\label{buch:integral:def:explog} +Sei $\mathscr{F}$ ein Differentialklörper und $f\in\mathscr{F}$. +Ein Exponentialfunktion von $f$ ist ein $\vartheta\in \mathscr{F}$mit +$\vartheta' = \vartheta f'$. +Ein Logarithmus von $f$ ist ein $\vartheta\in\mathscr{F}$ mit +$f\vartheta'=f'$. +\end{definition} + +Für $f=x$ mit $f'=1$ reduziert sich die +Definition~\ref{buch:integral:def:explog} +auf die Definition der Exponentialfunktion $\exp(x)$ und +Logarithmusfunktion $\log(x)$ auf Seite~\pageref{buch:integral:expundlog}. + + +% +% +% +\subsubsection{Transzendente Körpererweiterungen} +Die Wurzelfunktionen haben wir früher als algebraische Erweiterungen +eines Differentialkörpers erkannt. +Die logarithmischen und exponentiellen Elemente gemäss +Definition~\ref{buch:integral:def:explog} sind nicht algebraisch. + +\begin{definition} +\label{buch:integral:def:transzendent} +Sei $\mathscr{F}\subset\mathscr{G}$ eine Körpererweiterung und +$\vartheta\in\mathscr{G}$. +$\vartheta$ heisst {\em transzendent}, wenn $\vartheta$ nicht +algebraisch ist. +\end{definition} + +\begin{beispiel} +Die Funktion $f = e^x + e^{2x} + e^{x/2}$ ist sicher transzendent, +in diesem Beispiel zeigen wir, dass es mindestens drei verschiedene +Möglichkeiten gibt, eine Körpererweiterung von $\mathbb{Q}(x)$ zu +konstruieren, die $f$ enthält. + +Erste Möglichkeit: $f=\vartheta_1 + \vartheta_2 + \vartheta_3$ mit +$\vartheta_1=e^x$, +$\vartheta_2=e^{2x}$ +und +$\vartheta_3=e^{x/2}$. +Jedes der Elemente $\vartheta_i$ ist exponentiell über $\mathbb{Q}(x)$ und +$f$ ist in +\[ +\mathbb{Q}(x) +\subset +\mathbb{Q}(x,\vartheta_1) +\subset +\mathbb{Q}(x,\vartheta_1,\vartheta_2) +\subset +\mathbb{Q}(x,\vartheta_1,\vartheta_2,\vartheta_3) +\ni +f. +\] +Jede dieser Körpererweiterungen ist transzendent. + +Zweite Möglichkeit: $\vartheta_1=e^x$ ist exponentiell über +$\mathbb{Q}(x)$ und $\mathbb{Q}(x,\vartheta_1)$ enthält wegen +\[ +(\vartheta_1^2)' += +2\vartheta_1\vartheta_1' += +2\vartheta_1^2, +\] +somit ist $\vartheta_1^2=\vartheta_2$ eine Exponentialfunktion von $2x$ +über $\mathbb{Q}(x)$. +Das Element $\vartheta_3=e^{x/2}$ ist zwar auch exponentiell über +$\mathbb{Q}(x)$, es ist aber auch eine Nullstelle des Polynoms +$m(z)=z^2-[\vartheta_1]$. +Die Erweiterung +$\mathbb{Q}(x,\vartheta_1)\subset\mathbb{Q}(x,\vartheta_1,\vartheta_3)$ +ist eine algebraische Erweiterung, die +$f=\vartheta_1 + \vartheta_1^2+\vartheta_3$ enthält. + +Dritte Möglichkeit: $\vartheta_3=e^{x/2}$ ist exponentiell über +$\mathbb{Q}(x)$. +Die transzendente Körpererweiterung +\[ +\mathbb{Q}(x) \subset \mathbb{Q}(x,\vartheta_3) +\] +enthält das Element +$f=\vartheta_3^4+\vartheta_3^2 + \vartheta_3 $. +\end{beispiel} + +Das Beispiel zeigt, dass man nicht sagen kann, dass eine Funktion +ausschliesslich in einer algebraischen oder transzendenten Körpererweiterung +zu finden ist. +Vielmehr gibt es für die gleiche Funktion möglicherweise verschiedene +Körpererweiterungen, die alle die Funktion enthalten können. + +% +% Elementare Funktionen +% +\subsubsection{Elementare Funktionen} +Die Stammfunktionen~\eqref{buch:integration:risch:eqn:integralbeispiel2} +können aufgebaut werden, indem man dem Körper $\mathbb{Q}(x)$ schrittweise +sowohl algebraische wie auch transzendente Elemente hinzufügt, +wie in der folgenden Definition, die dies für abstrakte +Differentialkörpererweiterungen formuliert. + +\begin{definition} +Eine Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst +{\em transzendente elementare Erweiterung}, wenn +$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und +jedes der Element $\vartheta_i$ transzendent und logarithmisch oder +exponentiell ist über +$\mathscr{F}_{i-1}=\mathscr{F}(\vartheta_1,\dots,\vartheta_{i-1})$. +Die Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst +{\em elementare Erweiterung}, wenn +$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und +jedes Element $\vartheta_i$ ist entweder logarithmisch, exponentiell +oder algebraisch über $\mathscr{F}_{i-1}$. +\end{definition} + +Die Funktionen, die als akzeptable Stammfunktionen für das Integrationsproblem +in Betracht kommen, sind also jene, die in einer geeigneten elementaren +Erweiterung des von $\mathbb{Q}(x)$ liegen. +Ausserdem können auch noch weitere Konstanten nötig sein, sowohl +algebraische Zahlen wie auch Konstanten wie $\pi$ oder $e$. + +\begin{definition} +Sei $\mathscr{K}(x)$ der Differentialklörper der rationalen Funktionen +über dem Konstantenkörper $\mathscr{K}\supset\mathbb{Q}$, der in $\mathbb{C}$ +enthalten ist. +Ist $\mathscr{F}\supset \mathscr{K}(x)$ eine transzendente elementare +Erweiterung von $\mathscr{K}(x)$, dann heisst $\mathscr{F}$ +ein Körper von {\em transzendenten elementaren Funktionen}. +Ist $\mathscr{F}$ eine elementare Erweiterung von $\mathscr{K}(x)$, dann +heisst $\mathscr{F}$ ein Körper von {\em elementaren Funktionen}. +\end{definition} + +\subsubsection{Das Integrationsproblem} +Die elementaren Funktionen enthalten alle Funktionen, die sich mit +arithmetischen Operationen, Wurzeln, Exponentialfunktionen, Logarithmen und +damit auch mit trigonometrischen und hyperbolischen Funktionen und ihren +Umkehrfunktionen aus den rationalen Zahlen, der unabhängigen Variablen $x$ +und möglicherweise einigen zusätzlichen Konstanten aufbauen lassen. +Sei also $f$ eine Funktion in einem Körper von elementaren +Funktionen +\[ +\mathscr(F) += +\mathbb{Q}(\alpha_1,\dots,\alpha_l)(x,\vartheta_1,\dots,\vartheta_n). +\] +Eine elementare Stammfunktion ist eine Funktion $F=\int f$ in einer +elementaren Körpererweiterung +\[ +\mathscr{G} += +\mathbb{Q}(\alpha_1,\dots,\alpha_l,\dots,\alpha_{l+k}) +(x,\vartheta_1,\dots,\vartheta_n,\dots,\vartheta_{n+m}) +\] +mit $F'=f$. +Das Ziel ist, $F$ mit Hilfe eines Algorithmus zu bestimmen. + + + diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index a999ebb..9138f3e 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -97,8 +97,8 @@ a_i\in K \} \label{buch:integral:eqn:algelement} \end{equation} -mit $n=\deg m(x) - 1$ der durch Adjunktion von $\alpha$ erhaltene -Erweiterungsköper. +mit $n=\deg m(x) - 1$ der durch {\em Adjunktion} oder Hinzufügen +von $\alpha$ erhaltene Erweiterungsköper. \end{definition} Wieder muss nur überprüft werden, dass jedes Produkt oder jeder @@ -151,7 +151,9 @@ Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem Real- und Imaginärteil. +% % Transzendente Körpererweiterungen +% \subsubsection{Transzendente Erweiterungen} Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch. Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt, @@ -201,7 +203,9 @@ $K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber $K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum. Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}. +% % rationale Funktionen als Körpererweiterungen +% \subsubsection{Rationale Funktionen als Körpererweiterung} Die unabhängige Variable wird bei Rechnen so behandelt, dass die Potenzen alle linear unabhängig sind. @@ -209,7 +213,9 @@ Dies ist die Grundlage für den Koeffizientenvergleich. Der Körper der rationalen Funktion $K(x)$ ist also eine transzendente Körpererweiterung von $K$. +% % Erweiterungen mit algebraischen Funktionen +% \subsubsection{Algebraische Funktionen} Für das Integrationsproblem möchten wir nicht nur rationale Funktionen verwenden können, sondern auch Wurzelfunktionen. @@ -246,4 +252,92 @@ $y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert. Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als algebraische Erweiterungen eines Funktionenkörpers betrachtet. +% +% Konjugation +% +\subsubsection{Konjugation} +Die komplexen Zahlen sind die algebraische Erweiterung der reellen Zahlen +um die Nullstelle $i$ des Polynoms $m(x)=x^2+1$. +Die Zahl $-i$ ist aber auch eine Nullstelle von $m(x)$, die mit algebraischen +Mitteln nicht von $i$ unterscheidbar ist. +Die komplexe Konjugation $a+bi\mapsto a-bi$ vertauscht die beiden +\index{Konjugation, komplexe}% +\index{komplexe Konjugation}% +Nullstellen des Minimalpolynoms. + +Ähnliches gilt für die Körpererweiterung $\mathbb{Q}(\!\sqrt{2})$. +$\sqrt{2}$ und $\sqrt{2}$ sind beide Nullstellen des Minimalpolynoms +$m(x)=x^2-2$, die mit algebraischen Mitteln nicht unterschiedbar sind. +Sie haben zwar verschiedene Vorzeichen, doch ohne eine Ordnungsrelation +können diese nicht unterschieden werden. +\index{Ordnungsrelation}% +Eine Ordnungsrelation zwischen rationalen Zahlen lässt sich zwar +definieren, aber die Zahl $\sqrt{2}$ ist nicht rational, es braucht +also eine zusätzliche Annahme, zum Beispiel die Identifikation von +$\sqrt{2}$ mit einer reellen Zahl in $\mathbb{R}$, wo der Vergleich +möglich ist. + +Auch in $\mathbb{Q}(\!\sqrt{2})$ ist die Konjugation +$a+b\sqrt{2}\mapsto a-b\sqrt{2}$ eine Selbstabbildung, die +die Körperoperationen respektiert. + +Das Polynom $m(x)=x^2-x-1$ hat die Nullstellen +\[ +\frac12 \pm\sqrt{\biggl(\frac12\biggr)^2+1} += +\frac{1\pm\sqrt{5}}{2} += +\left\{ +\bgroup +\renewcommand{\arraystretch}{2.20} +\renewcommand{\arraycolsep}{2pt} +\begin{array}{lcl} +\displaystyle +\frac{1+\sqrt{5}}{2} &=& \phantom{-}\varphi \\ +\displaystyle +\frac{1-\sqrt{5}}{2} &=& \displaystyle-\frac{1}{\varphi}. +\end{array} +\egroup +\right. +\] +Sie erfüllen die gleiche algebraische Relation $x^2=x+1$. +Sie sind sowohl im Vorzeichen wie auch im absoluten Betrag +verschieden, beides verlangt jedoch eine Ordnungsrelation als +Voraussetzung, die uns fehlt. +Aus beiden kann man mit rationalen Operationen $\sqrt{5}$ gewinnen, +denn +\[ +\sqrt{5} += +4\varphi-1 += +-4\biggl(-\frac{1}{\varphi}\biggr)^2-1 +\qquad\Rightarrow\qquad +\mathbb{Q}(\!\sqrt{5}) += +\mathbb{Q}(\varphi) += +\mathbb{Q}(-1/\varphi). +\] +Die Abbildung $a+b\varphi\mapsto a-b/\varphi$ ist eine Selbstabbildung +des Körpers $\mathbb{Q}(\!\sqrt{5})$, welche die beiden Nullstellen +vertauscht. + +Dieses Phänomen gilt für jede algebraische Erweiterung. +Die Nullstellen des Minimalpolynoms, welches die Erweiterung +definiert, sind grundsätzlich nicht unterscheidbar. +Mit der Adjunktion einer Nullstelle enthält der Erweiterungskörper +auch alle anderen. +Sind $\alpha_1$ und $\alpha_2$ zwei Nullstellen des Minimalpolynoms, +dann definiert die Abbildung $\alpha_1\mapsto\alpha_2$ eine Selbstabbildung, +die die Nullstellen permutiert. + +Die algebraische Körpererweiterung +$\mathbb{Q}(x)\subset \mathbb{Q}(x,\sqrt{ax^2+bx+c})$ +ist nicht unterscheidbar von +$\mathbb{Q}(x)\subset \mathbb{Q}(x,-\!\sqrt{ax^2+bx+c})$. +Für das Integrationsproblem bedeutet dies, dass alle Methoden so +formuliert werden müssen, dass die Wahl der Nullstellen auf die +Lösung keinen Einfluss haben. + diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex index 2bfe0e1..e0efab2 100644 --- a/buch/chapters/060-integral/logexp.tex +++ b/buch/chapters/060-integral/logexp.tex @@ -3,7 +3,7 @@ % % (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue % -\subsection{Log-Exp-Notation für elementare Funktionen +\subsection{Log-Exp-Notation für trigonometrische und hyperbolische Funktionen \label{buch:integral:subsection:logexp}} Die Integration rationaler Funktionen hat bereits gezeigt, dass eine Stammfunktion nicht immer im Körper der rationalen Funktionen @@ -37,6 +37,7 @@ x \operatorname{arcosh} x - \sqrt{x^2-1}. In der Stammfunktion treten Funktionen auf, die auf den ersten Blick nichts mit den Funktionen im Integranden zu tun haben. +\subsubsection{Trigonometrische und hyperbolische Funktionen} Die trigonometrischen und hyperbolichen Funktionen in~\eqref{buch:integration:risch:allgform} lassen sich alle durch Exponentialfunktionen ausdrücken. @@ -53,7 +54,7 @@ So gilt &\qquad& \cosh x &= \frac12\bigl( e^x + e^{-x} \bigr). \end{aligned} -\label{buch:integral:risch:trighypinv} +\label{buch:integral:risch:trighyp} \end{equation} Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$. @@ -66,27 +67,27 @@ Die Rechnung ergibt &= \frac{1}{i}\log\bigl( iy\pm\sqrt{1-y^2} -\bigr) +\bigr), & &\qquad& \arccos y &= \log\bigl( y\pm \sqrt{y^2-1} -\bigr) +\bigr), \\ \operatorname{arsinh}y &= \log\bigl( y \pm \sqrt{1+y^2} -\bigr) +\bigr), & &\qquad& \operatorname{arcosh} y &= \log\bigl( y\pm \sqrt{y^2-1} -\bigr) +\bigr). \end{aligned} \label{buch:integral:risch:trighypinv} \end{equation} @@ -97,6 +98,7 @@ Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen und hyperbolischen Funktionen. \index{logexpnotation@$\log$-$\exp$-Notation}% +\subsubsection{$\log$-$\exp$-Notation} Wendet man die Substitutionen \eqref{buch:integral:risch:trighyp} und @@ -110,7 +112,7 @@ an, entstehen die Beziehungen &= \frac12i\bigl( \log(1-ix) - \log(1+ix) -\bigr) +\bigr), \\ \int\bigl( {\textstyle\frac12} @@ -121,12 +123,12 @@ e^{-ix} \bigr) &= -{\textstyle\frac12}ie^{ix} -+{\textstyle\frac12}ie^{-ix} ++{\textstyle\frac12}ie^{-ix}, \\ \int \frac{1}{\sqrt{1-x^2}} &= --i\log\bigl(ix+\sqrt{1-x^2}) +-i\log\bigl(ix+\sqrt{1-x^2}), \\ \int \log\bigl(x+\sqrt{x^2-1}\bigr) &= diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 7b24e9f..0ca164d 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -132,7 +132,9 @@ ac + 2bd + (ad+bc)\sqrt{2} \in \mathbb{Q}(\!\sqrt{2}) \end{align*} \end{beispiel} - +% +% Rationale Funktionen +% \subsubsection{Rationalen Funktionen} Die als Antworten auf die Frage nach einer Stammfunktion akzeptablen Funktionen sollten alle rationalen Zahlen sowie die unabhängige @@ -174,5 +176,28 @@ zweier Brüche auch für Nenner funktioniert, die Polynome sind, und die Summe wzeier Brüche von Polynomen wieder in einen Bruch von Polynomen umwandelt. +% +% Warum rationale Zahlen? +% +\subsubsection{Warum die Beschränkung auf rationale Zahlen?} +Aus mathematischer Sicht gibt es gute Gründe, Analysis im Körper $\mathbb{R}$ +oder $\mathbb{C}$ zu betreiben. +Da Ableitung und Integral als Grenzwerte definiert sind, stellt diese +Wahl des Körpers sicher, dass die Grenzwerte auch tatsächlich existieren. +Der Fundamentalsatz der Algebra garantiert, dass über $\mathbb{C}$ +jedes Polynome in Linearfaktoren zerlegt werden kann. + +Der Einfachheit der Analyse in $\mathbb{R}$ oder $\mathbb{C}$ steht +die Schwierigkeit gegenüber, beliebige Elemente von $\mathbb{R}$ in +einem Computer exakt darzustellen. +Für Brüche in $\mathbb{Q}$ gibt es eine solche Darstellung durch +Paare von Ganzzahlen, wie sie die GNU Multiprecision Arithmetic Library +\cite{buch:gmp} realisiert. +Irrationale Zahlen dagegen können nur exakt gehandhabt werden, wenn +man im wesentlichen symbolisch mit ihnen rechnet. +Die Grundlage dafür wird in +Abschnitt~\ref{buch:integral:subsection:koerpererweiterungen} +gelegt. + diff --git a/buch/chapters/060-integral/risch.tex b/buch/chapters/060-integral/risch.tex index 1ba746a..2080ce8 100644 --- a/buch/chapters/060-integral/risch.tex +++ b/buch/chapters/060-integral/risch.tex @@ -6,6 +6,18 @@ \section{Der Risch-Algorithmus \label{buch:integral:section:risch}} \rhead{Risch-Algorithmus} +Die Lösung des Integrationsproblem für $\mathbb{Q}(x)$ und für +$\mathbb{Q}(x,y)$ mit $y=\!\sqrt{ax^2+bx+c}$ hat gezeigt, dass +ein Differentialkörper genau die richtige Bühne für dieses Unterfangen +sein dürfte. +Die Stammfunktionen konnten in einem Erweiterungskörper gefunden +werden, der ein paar Logarithmen hinzugefügt worden sind. +Tatsächlich lässt sich in diesem Rahmen sogar ein Algorithmus +formulieren, der in einem noch zu definierenden Sinn ``elementare'' +Funktionen als Stammfunktionen finden kann oder beweisen kann, dass +eine solche nicht existiert. +Dieser Abschnitt soll einen Überblick darüber geben. + \input{chapters/060-integral/logexp.tex} \input{chapters/060-integral/elementar.tex} diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index 0df27a7..f750a82 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -20,7 +20,9 @@ elliptischen Funktionen hergestellt werden. \caption{Bogenlänge und Radius der Lemniskate von Bernoulli. \label{buch:elliptisch:fig:lemniskate}} \end{figure} -Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung +Die {\em Lemniskate von Bernoulli} ist die Kurve vierten Grades +mit der Gleichung +\index{Lemniskate von Bernoulli}% \begin{equation} (X^2+Y^2)^2 = 2a^2(X^2-Y^2). \label{buch:elliptisch:eqn:lemniskate} @@ -161,13 +163,14 @@ Parameters $k$. Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet und hat den numerischen Wert -\[ +\begin{equation} \varpi = 2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt = 2.6220575542. -\] +\label{buch:elliptisch:eqn:varpi} +\end{equation} $\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt. \index{lemniskatische Konstante}% Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge @@ -179,7 +182,7 @@ $\varpi/2$. \subsection{Bogenlängenparametrisierung} Die Lemniskate mit der Gleichung \[ -(X^2+X^2)^2=2(X^2-X^2) +(X^2+Y^2)^2=2(X^2-Y^2) \] (der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate}) kann mit Jacobischen elliptischen Funktionen @@ -332,7 +335,8 @@ Dies bedeutet, dass die Bogenlänge zwischen den Parameterwerten $0$ und $s$ = s, \] -der Parameter $t$ ist also ein Bogenlängenparameter. +der Parameter $t$ ist also ein Bogenlängenparameter, man darf also +$s=t$ schreiben. Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der Gleichung @@ -355,10 +359,9 @@ y(t) \end{equation} \subsection{Der lemniskatische Sinus und Kosinus} -Der Sinus Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des +Der Sinus berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete die Bogenlänge zuordnet. - Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in \eqref{buch:elliptisch:eqn:lemniskatebogenlaenge} den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung @@ -368,6 +371,13 @@ Der Kosinus ist der Sinus des komplementären Winkels. Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen dem Punkt $(x(r), y(r))$ und $(1,0)$. +Da die Bogenlänge zwischen $(0,0)$ und $(1,0)$ in +in \eqref{buch:elliptisch:eqn:varpi} bereits bereichnet wurde. +ist sie $\varpi/2-s$. +Der {\em lemniskatische Kosinus} ist daher +$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$ +Graphen des lemniskatische Sinus und Kosinus sind in +Abbildung~\label{buch:elliptisch:figure:slcl} dargestellt. Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge} eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben. diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib index 17ef273..32a86ec 100644 --- a/buch/chapters/references.bib +++ b/buch/chapters/references.bib @@ -111,3 +111,10 @@ publisher = { Addison-Wesley } } +@online{buch:gmp, + title = {GNU Multiprecision Arithmetic Library}, + DAY = 26, + MONTH = 5, + YEAR = 2022, + url = {https://de.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library} +} -- cgit v1.2.1