From b492fb3ba89205b984c390a39cc9f57d4b2059fa Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Thu, 19 May 2022 18:00:01 +0200 Subject: add tick figure of simple mass system --- buch/papers/kra/images/simple_mass_spring.tex | 64 +++++++++++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 buch/papers/kra/images/simple_mass_spring.tex (limited to 'buch') diff --git a/buch/papers/kra/images/simple_mass_spring.tex b/buch/papers/kra/images/simple_mass_spring.tex new file mode 100644 index 0000000..e98ee3e --- /dev/null +++ b/buch/papers/kra/images/simple_mass_spring.tex @@ -0,0 +1,64 @@ +% create tikz drawing of a simple mass spring system + +\tikzstyle{hmline}=[{Latex[length=3.3,width=2.2]}-{Latex[length=3.3,width=2.2]},line width=0.3] +\tikzstyle{vmline}=[red, dashed,line width=0.4,dash pattern=on 1pt off 1pt] +\tikzstyle{ground}=[pattern=north east lines] +\tikzstyle{mass}=[line width=0.6,red!30!black,fill=red!40!black!10,rounded corners=1,top color=red!40!black!20,bottom color=red!40!black!10,shading angle=20] +\tikzstyle{spring}=[line width=0.8,blue!7!black!80,snake=coil,segment amplitude=5,line cap=round] + +\begin{tikzpicture}[scale=2] + \newcommand{\ticks}[2] + { + % arguments: x, y coordinates + \draw[thick] (#1, #2 - 0.1 / 2) --++ (0, 0.1); + } + + \tikzmath{ + \hWall = 1.5; + \wWall = 0.3; + \lWall = 3.5; + \hMass = 0.6; + \wMass = 1.1; + \xMass1 = 1.2; + \xMass2 = 2.2; + \xAxisYpos = 0; + \originX1 = 0; + \originY1 = 0.5; + \originX2 = 0; + \originY2 = -2; + \springscale=7; + } + + % create x axis + \draw[->,thick] (0,\xAxisYpos) --+ (\lWall, 0) node[right]{$x$}; + + % create ticks on x axis + \ticks{\wWall}{\xAxisYpos} + \ticks{\xMass1}{\xAxisYpos} + \ticks{\xMass2}{\xAxisYpos} + + % create underground + \draw[ground] (\originX1, \originY1) ++ (0, 0) --+(\lWall,0) --+(\lWall, \wWall) --+(\wWall, \wWall) --+(\wWall, \hWall) --+(0, \hWall) -- cycle; + \draw[ground] (\originX2, \originY2) ++ (0, 0) --+(\lWall,0) --+(\lWall, \wWall) --+(\wWall, \wWall) --+(\wWall, \hWall) --+(0, \hWall) -- cycle; + + % create masses + \draw[mass] (\originX1, \originY1) ++ (\xMass1, \wWall) rectangle ++ (\wMass,\hMass) node[midway] {$m$}; + \draw[mass] (\originX2, \originY2) ++ (\xMass2, \wWall) rectangle ++ (\wMass,\hMass) node[midway] {$m$}; + + % create springs + \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ (\wWall, \wWall + \hMass / 2) --+ (\xMass1 - \wWall, 0); + \draw[spring, segment length=(\xMass2 - \wWall) * \springscale] (\originX2, \originY2) ++ (\wWall, \wWall + \hMass / 2) --+ (\xMass2 - \wWall, 0); + + % create vertical measurement line + \draw[vmline] (\xMass1, \xAxisYpos) --+(0, \originY1 + \wWall); + \draw[vmline] (\xMass2, \xAxisYpos) --+(0, \originY2 + \hMass+\wWall); + \draw[vmline] (\wWall, \originY1+\wWall) --(\wWall, \originY2 + \hWall); + + % create horizontal measurement line + \draw[hmline] (\wWall, \xAxisYpos + 0.2) -- (\xMass1, \xAxisYpos + 0.2) node[midway,fill=white,inner sep=0] {$\ell_0$}; + \draw[hmline] (\xMass1, \xAxisYpos + 0.2) -- (\xMass2, \xAxisYpos + 0.2) node[midway,fill=white,inner sep=0] {$\Delta_{x}$}; + \draw[hmline] (\wWall, \xAxisYpos - 0.3) -- (\xMass2, \xAxisYpos - 0.3) node[midway,fill=white,inner sep=0] {$\ell_{1}$}; + + % create force arrow + \draw[->,blue, very thick,line cap=round] (\xMass2 + \wMass / 2, \originY2 + \wWall + \hMass + 0.15) node[above] {$\vb{F_{R}}$} --+ (-0.5, 0); +\end{tikzpicture} \ No newline at end of file -- cgit v1.2.1 From ffb50c6574c53b805df068fd2ce2e89726597911 Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Thu, 26 May 2022 11:36:20 +0200 Subject: add spring constant --- buch/papers/kra/images/simple_mass_spring.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/kra/images/simple_mass_spring.tex b/buch/papers/kra/images/simple_mass_spring.tex index e98ee3e..207f1e0 100644 --- a/buch/papers/kra/images/simple_mass_spring.tex +++ b/buch/papers/kra/images/simple_mass_spring.tex @@ -46,8 +46,10 @@ \draw[mass] (\originX2, \originY2) ++ (\xMass2, \wWall) rectangle ++ (\wMass,\hMass) node[midway] {$m$}; % create springs - \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ (\wWall, \wWall + \hMass / 2) --+ (\xMass1 - \wWall, 0); - \draw[spring, segment length=(\xMass2 - \wWall) * \springscale] (\originX2, \originY2) ++ (\wWall, \wWall + \hMass / 2) --+ (\xMass2 - \wWall, 0); + \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ + (\wWall, \wWall + \hMass / 2) --++ (\xMass1 - \wWall, 0) node[midway,above=0.2] {$k$}; + \draw[spring, segment length=(\xMass2 - \wWall) * \springscale] (\originX2, \originY2) ++ + (\wWall, \wWall + \hMass / 2) --++ (\xMass2 - \wWall, 0) node[midway,above=0.2] {$k$}; % create vertical measurement line \draw[vmline] (\xMass1, \xAxisYpos) --+(0, \originY1 + \wWall); -- cgit v1.2.1 From a0b6394bd559e7d2e1a6d7c028cfc73586503d58 Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Thu, 26 May 2022 11:46:24 +0200 Subject: add drawing --- buch/papers/kra/images/multi_mass_spring.tex | 54 ++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 buch/papers/kra/images/multi_mass_spring.tex (limited to 'buch') diff --git a/buch/papers/kra/images/multi_mass_spring.tex b/buch/papers/kra/images/multi_mass_spring.tex new file mode 100644 index 0000000..f255cc8 --- /dev/null +++ b/buch/papers/kra/images/multi_mass_spring.tex @@ -0,0 +1,54 @@ +% create tikz drawing of a multi mass multi spring system + +\tikzstyle{vmline}=[red, dashed,line width=0.4,dash pattern=on 1pt off 1pt] +\tikzstyle{ground}=[pattern=north east lines] +\tikzstyle{mass}=[line width=0.6,red!30!black,fill=red!40!black!10,rounded corners=1,top color=red!40!black!20,bottom color=red!40!black!10,shading angle=20] +\tikzstyle{spring}=[line width=0.8,blue!7!black!80,snake=coil,segment amplitude=5,line cap=round] + +\begin{tikzpicture}[scale=2] + \newcommand{\ticks}[3] + { + % x, y coordinates + \draw[thick] (#1, #2 - 0.1 / 2) --++ (0, 0.1) node[scale=0.8,below=0.2] {#3}; + } + \tikzmath{ + \hWall = 1.2; + \wWall = 0.3; + \lWall = 5; + \hMass = 0.6; + \wMass = 1.1; + \xMass1 = 1.0; + \xMass2 = 3.0; + \xAxisYpos = 0; + \originX1 = 0; + \originY1 = 0.5; + \springscale=7; + } + + % create axis + \draw[->,thick] (0,\xAxisYpos) --+ (\xMass2 + \wMass, 0) node[right]{$q$}; + % create ticks on x / q axis + \ticks{\xMass1}{\xAxisYpos}{$q_{1}$} + \ticks{\xMass2}{\xAxisYpos}{$q_{2}$} + + % create non-moving backgrounds + \draw[ground] (\originX1, \originY1) ++ (0, 0) --+(\lWall,0) --+(\lWall, \hWall) + --+ (\lWall - \wWall, \hWall) --+(\lWall - \wWall, \wWall) --+ (\wWall, \wWall) --+(\wWall, \hWall) --+(0, \hWall) -- cycle; + + % create masses + \draw[mass] (\originX1, \originY1) ++ (\xMass1, \wWall) rectangle ++ (\wMass,\hMass) node[midway] {$m_{1}$}; + \draw[mass] (\originX1, \originY1) ++ (\xMass2, \wWall) rectangle ++ (\wMass,\hMass) node[midway] {$m_{2}$}; + + % create springs + \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ + (\wWall, \wWall + \hMass / 2) --++ (\xMass1 - \wWall, 0) node[midway,above=0.2] {$k_1$}; + \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ + (\xMass1 + \wMass, \wWall + \hMass / 2) --++ (\xMass2 - \xMass1 - \wMass, 0) node[midway,above=0.2] {$k_c$}; + \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ + (\xMass2 + \wMass, \wWall + \hMass / 2) --++ (\lWall - \xMass2 - \wMass - \wWall, 0) node[midway,above=0.2] {$k_2$}; + + % create vertical measurement line + \draw[vmline] (\xMass1, \xAxisYpos) --+(0, \originY1 + \wWall); + \draw[vmline] (\xMass2, \xAxisYpos) --+(0, \originY1 + \wWall); + +\end{tikzpicture} -- cgit v1.2.1 From da8dbf2a727537fbf279268b4a42145677034994 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 28 May 2022 18:13:13 +0200 Subject: started with presentation --- buch/papers/zeta/presentation/presentation.tex | 224 +++++++++++++++++++++ .../zeta/presentation/youtube_screenshot.png | Bin 0 -> 378662 bytes 2 files changed, 224 insertions(+) create mode 100644 buch/papers/zeta/presentation/presentation.tex create mode 100644 buch/papers/zeta/presentation/youtube_screenshot.png (limited to 'buch') diff --git a/buch/papers/zeta/presentation/presentation.tex b/buch/papers/zeta/presentation/presentation.tex new file mode 100644 index 0000000..0833f14 --- /dev/null +++ b/buch/papers/zeta/presentation/presentation.tex @@ -0,0 +1,224 @@ +\documentclass[ngerman, aspectratio=169]{beamer} + +%style +\mode{ + \usetheme{Frankfurt} +} +%packages +\usepackage[utf8]{inputenc} +\usepackage[english]{babel} +\usepackage{graphicx} +\usepackage{array} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\usepackage{ragged2e} + +\usepackage{bm} % bold math +\usepackage{amsfonts} +\usepackage{amssymb} +\usepackage{mathtools} +\usepackage{amsmath} +\usepackage{multirow} % multi row in tables +\usepackage{scrextend} + +\usepackage{tikz} + +\usepackage{algorithmic} + +%\usepackage{algorithm} % http://ctan.org/pkg/algorithm +%\usepackage{algpseudocode} % http://ctan.org/pkg/algorithmicx + +%\usepackage{algorithmicx} + + +%citations +\usepackage[style=verbose,backend=biber]{biblatex} +\addbibresource{references.bib} + + + +\usefonttheme[onlymath]{serif} + +%Beamer Template modifications +%\definecolor{mainColor}{HTML}{0065A3} % HSR blue +\definecolor{mainColor}{HTML}{D72864} % OST pink +\definecolor{invColor}{HTML}{28d79b} % OST pink +\definecolor{dgreen}{HTML}{38ad36} % Dark green + +%\definecolor{mainColor}{HTML}{000000} % HSR blue +\setbeamercolor{palette primary}{bg=white,fg=mainColor} +\setbeamercolor{palette secondary}{bg=orange,fg=mainColor} +\setbeamercolor{palette tertiary}{bg=yellow,fg=red} +\setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic +\setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) +\setbeamercolor{section in toc}{fg=black} % TOC sections +\setbeamertemplate{section in toc}[sections numbered] +\setbeamertemplate{subsection in toc}{% + \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} + +\setbeamertemplate{itemize items}[circle] +\setbeamertemplate{description item}[circle] +\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] +\beamertemplatenavigationsymbolsempty + +\setbeamercolor{footline}{fg=gray} +\setbeamertemplate{footline}{% + \hfill\usebeamertemplate***{navigation symbols} + \hspace{0.5cm} + \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} +} + +\usepackage{caption} +\captionsetup{labelformat=empty} + +%Title Page +\title{Riemannsche Zeta Funktion} +\author{Raphael Unterer} +\institute{Mathematisches Seminar 2022: Spezielle Funktionen} + +\newcommand*{\HL}{\textcolor{mainColor}} +\newcommand*{\RD}{\textcolor{red}} +\newcommand*{\BL}{\textcolor{blue}} +\newcommand*{\GN}{\textcolor{dgreen}} + + + + +\makeatletter +\newcount\my@repeat@count +\newcommand{\myrepeat}[2]{% + \begingroup + \my@repeat@count=\z@ + \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% + \endgroup +} +\makeatother + + + + +\usetikzlibrary{automata,arrows,positioning,calc} + + +\begin{document} + + %Titelseite + \begin{frame} + \titlepage + \end{frame} + + %Inhaltsverzeichnis + \begin{frame} + \frametitle{Inhalt} + \tableofcontents + \end{frame} + + \section{Motivation} + + \begin{frame} + \frametitle{Summe aller Natürlichen Zahlen} + \begin{equation*} + \sum_{n=1}^{\infty} n + = + 1 + 2 + 3 + \ldots + \infty + = + - \frac{1}{12} + \end{equation*} + \end{frame} + \begin{frame} + \frametitle{Summe aller Natürlichen Zahlen} + \begin{center} + \includegraphics[width=0.7\textwidth]{youtube_screenshot.png} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Riemannsche Zeta Funktion} + \begin{equation*} + \zeta(s) + = + \sum_{n=1}^{\infty} + \frac{1}{n^s} + \end{equation*} + \pause + \begin{equation*} + \zeta(-1) + = + \sum_{n=1}^{\infty} + \frac{1}{n^{-1}} + = + \sum_{n=1}^{\infty} n + \end{equation*} + \end{frame} + \begin{frame} + \frametitle{Originaler Definitionsbereich} + Wir kennen die divergierende harmonische Reihe + \begin{equation*} + \zeta(1) + = + \sum_{n=1}^{\infty} + \frac{1}{n} + \rightarrow + \infty, + \end{equation*} + und somit ist $\Re(s) > 1$. + \end{frame} + + \section{Analytische Fortsetzung} + \begin{frame} + \frametitle{Plan für die Analytische Fortsetzung von $\zeta(s)$} + \begin{center} + \input{../continuation_overview.tikz.tex} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Fortsetzung auf $\Re(s) > 0$} + Dirichletsche Etafunktion ist + \begin{equation*}\label{zeta:equation:eta} + \eta(s) + = + \sum_{n=1}^{\infty} + \frac{(-1)^{n-1}}{n^s}, + \end{equation*} + und konvergiert im Bereich $\Re(s) > 0$. + \end{frame} + +% Zuerst wiederholen wir zweimal die Definition der Zetafunktion \eqref{zeta:equation1}, wobei wir sie einmal durch $2^{s-1}$ teilen +% \begin{align} +% \zeta(s) +% &= +% \sum_{n=1}^{\infty} +% \frac{1}{n^s} \label{zeta:align1} +% \\ +% \frac{1}{2^{s-1}} +% \zeta(s) +% &= +% \sum_{n=1}^{\infty} +% \frac{2}{(2n)^s}. \label{zeta:align2} +% \end{align} +% Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:align2}, ergibt sich +% \begin{align} +% \left(1 - \frac{1}{2^{s-1}} \right) +% \zeta(s) +% &= +% \frac{1}{1^s} +% \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} +% + \frac{1}{3^s} +% \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} +% \ldots +% \\ +% &= \eta(s). +% \end{align} +% Dies ist die Fortsetzung auf den noch unbekannten Bereich $0 < \Re(s) < 1$ +% \begin{equation} \label{zeta:equation:fortsetzung1} +% \zeta(s) +% := +% \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). +% \end{equation} +% \section{Euler Produkt} +% +% \section{Weitere Eigenschaften} +% +% + +\end{document} + diff --git a/buch/papers/zeta/presentation/youtube_screenshot.png b/buch/papers/zeta/presentation/youtube_screenshot.png new file mode 100644 index 0000000..434041b Binary files /dev/null and b/buch/papers/zeta/presentation/youtube_screenshot.png differ -- cgit v1.2.1 From bd59e9086178019b48f10db3ad2ca8356c96e2c0 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 28 May 2022 19:49:04 +0200 Subject: wip working on presentation --- buch/papers/zeta/presentation/presentation.tex | 111 ++++-- buch/papers/zeta/primzahlfunktion.pgf | 505 +++++++++++++++++++++++++ buch/papers/zeta/python/primzahlfunktion.py | 24 ++ 3 files changed, 603 insertions(+), 37 deletions(-) create mode 100644 buch/papers/zeta/primzahlfunktion.pgf create mode 100644 buch/papers/zeta/python/primzahlfunktion.py (limited to 'buch') diff --git a/buch/papers/zeta/presentation/presentation.tex b/buch/papers/zeta/presentation/presentation.tex index 0833f14..bb6d515 100644 --- a/buch/papers/zeta/presentation/presentation.tex +++ b/buch/papers/zeta/presentation/presentation.tex @@ -181,44 +181,81 @@ \end{equation*} und konvergiert im Bereich $\Re(s) > 0$. \end{frame} + \begin{frame} + \frametitle{Fortsetzung auf $\Re(s) > 0$} + \begin{align} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{1}{n^s} \label{zeta:align1} + \\ + \frac{1}{2^{s-1}} + \zeta(s) + &= + \sum_{n=1}^{\infty} + \frac{2}{(2n)^s} \label{zeta:align2} + \end{align} + \pause + \eqref{zeta:align1} - \eqref{zeta:align2}: + \begin{align*} + \left(1 - \frac{1}{2^{s-1}} \right) + \zeta(s) + &= + \frac{1}{1^s} + \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} + + \frac{1}{3^s} + \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + \ldots + \\ + &= \eta(s) + \end{align*} + \end{frame} + \begin{frame} + \frametitle{Fortsetzung auf $\Re(s) > 0$} + Somit haben wir die Fortsetzung gefunden als + \begin{equation} \label{zeta:equation:fortsetzung1} + \zeta(s) + := + \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). + \end{equation} + \end{frame} + \begin{frame} + \frametitle{Spiegelungseigenschaft für $\Re(s) < 0$} + \begin{equation*}\label{zeta:equation:functional} + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \zeta(s) + = + \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} + \zeta(1-s). + \end{equation*} + \end{frame} + %TODO maybe explain gamma-fct + + \section{Euler Produkt und Primzahlen} + \begin{frame} + \frametitle{Wieso ist die Zeta Funktion so bekannt?} + \begin{itemize} + \item Interessante Funktionswerte z.B. $\zeta(2) = \frac{\pi^2}{6}$ + \item Primzahlenverteilung (Riemannhypothese) + \item Forschungsgebiet der analytischen Zahlentheorie seit dem 18. Jahrhundert + \item ... + \end{itemize} + \end{frame} + \begin{frame} + \frametitle{Primzahlfunktion} + \begin{center} + \scalebox{0.5}{\input{../primzahlfunktion.pgf}} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Zusammenhang Zeta und Primzahlen} + %TODO + \end{frame} + + + \section{Weitere Eigenschaften} + -% Zuerst wiederholen wir zweimal die Definition der Zetafunktion \eqref{zeta:equation1}, wobei wir sie einmal durch $2^{s-1}$ teilen -% \begin{align} -% \zeta(s) -% &= -% \sum_{n=1}^{\infty} -% \frac{1}{n^s} \label{zeta:align1} -% \\ -% \frac{1}{2^{s-1}} -% \zeta(s) -% &= -% \sum_{n=1}^{\infty} -% \frac{2}{(2n)^s}. \label{zeta:align2} -% \end{align} -% Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:align2}, ergibt sich -% \begin{align} -% \left(1 - \frac{1}{2^{s-1}} \right) -% \zeta(s) -% &= -% \frac{1}{1^s} -% \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} -% + \frac{1}{3^s} -% \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} -% \ldots -% \\ -% &= \eta(s). -% \end{align} -% Dies ist die Fortsetzung auf den noch unbekannten Bereich $0 < \Re(s) < 1$ -% \begin{equation} \label{zeta:equation:fortsetzung1} -% \zeta(s) -% := -% \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s). -% \end{equation} -% \section{Euler Produkt} -% -% \section{Weitere Eigenschaften} -% -% \end{document} diff --git a/buch/papers/zeta/primzahlfunktion.pgf b/buch/papers/zeta/primzahlfunktion.pgf new file mode 100644 index 0000000..7d4f4fc --- /dev/null +++ b/buch/papers/zeta/primzahlfunktion.pgf @@ -0,0 +1,505 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.025455in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.025455in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.776970in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.776970in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.528485in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.528485in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.280000in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.031515in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.031515in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.783030in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.783030in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.534545in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.534545in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.696000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=0.647775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.368000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=1.319775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.040000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=1.991775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.712000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=2.663775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.384000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=3.335775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{4.056000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.563888in, y=4.007775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.025455in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.326061in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.326061in}{1.032000in}}% +\pgfpathlineto{\pgfqpoint{1.476364in}{1.032000in}}% +\pgfpathlineto{\pgfqpoint{1.476364in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.776970in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.776970in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{2.077576in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{2.077576in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.678788in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.678788in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.979394in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.979394in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.580606in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.580606in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.881212in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.881212in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.482424in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.482424in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.384242in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.384242in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{4.056000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/python/primzahlfunktion.py b/buch/papers/zeta/python/primzahlfunktion.py new file mode 100644 index 0000000..9434de9 --- /dev/null +++ b/buch/papers/zeta/python/primzahlfunktion.py @@ -0,0 +1,24 @@ +import matplotlib.pyplot as plt +import numpy as np + +primzahlfunktion = [0, 0, 0, 0] +x = [0, 1-1e-12, 1, 2-1e-12] +x_last = 1 +value = 0 +for i in range(2, 30, 1): + new_value = value + 1 + for j in range(2, i, 1): + if i % j == 0: + new_value = value + value = new_value + primzahlfunktion.append(new_value) + x_last += 1 + x.append(x_last) + primzahlfunktion.append(new_value) + x.append(x_last + 1 - 1e-12) + + +plt.rcParams.update({"pgf.texsystem": "pdflatex"}) +plt.plot(x, primzahlfunktion) +plt.show() + -- cgit v1.2.1 From 052ccbe27e19d53ac7272bf29c9c16e071d7059b Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Wed, 1 Jun 2022 13:34:26 +0200 Subject: add phase space plot --- buch/papers/kra/images/phase_space.tex | 67 ++++++++++++++++++++++++++++++++++ 1 file changed, 67 insertions(+) create mode 100644 buch/papers/kra/images/phase_space.tex (limited to 'buch') diff --git a/buch/papers/kra/images/phase_space.tex b/buch/papers/kra/images/phase_space.tex new file mode 100644 index 0000000..cd51ea4 --- /dev/null +++ b/buch/papers/kra/images/phase_space.tex @@ -0,0 +1,67 @@ +\colorlet{mypurple}{red!50!blue!90!black!80} + +% style to create arrows +\tikzset{ + traj/.style 2 args={thick, postaction={decorate},decoration={markings, + mark=at position #1 with {\arrow{<}}, + mark=at position #2 with {\arrow{<}}} + } +} + +\begin{tikzpicture}[scale=0.6] + % p(t=0) = 0, q(t=0) = A, max(p) = mwA + \tikzmath{ + \axh = 5.2; + \axw1 = 4.2; + \axw2 = 4.8; + \d1 = 0.9; + \a0 = 1; + \b0 = 2; + \a1 = \a0 + \d1; + \b1 = \b0 + \d1; + \a2 = \a1 + \d1; + \b2 = \b1 + \d1; + \a3 = \a2 + \d1; + \b3 = \b2 + \d1; + \d2 = 0.75; + \aa0 = 2; + \bb0 = 1; + \aa1 = \aa0 + \d2; + \bb1 = \bb0 + \d2; + \aa2 = \aa1 + \d2; + \bb2 = \bb1 + \d2; + \aa3 = \aa2 + \d2; + \bb3 = \bb2 + \d2; + } + + \draw[->,thick] (-\axw1,0) -- (\axw1,0) node[right] {$q$}; + \draw[->,thick] (0,-\axh) -- (0,\axh) node[above] {$p$}; + + \draw[traj={0.375}{0.875},darkgreen] ellipse (\a0 and \b0); + \draw[traj={0.375}{0.875},blue] ellipse (\a1 and \b1); + \draw[traj={0.375}{0.875},cyan] ellipse (\a2 and \b2); + \draw[traj={0.375}{0.875},mypurple] ellipse (\a3 and \b3); + + \node[right,darkgreen] at (45:{\a0} and {\b0}) {$E_A$}; + \node[right, blue] at (45:{\a1} and {\b1}) {$E_B$}; + \node[right, cyan] at (45:{\a2} and {\b2}) {$E_C$}; + \node[right, mypurple] at (45:{\a3} and {\b3}) {$E_D$}; + \node[above left] at (110:\b3 + 0.1) {grosses $\omega$}; + + \begin{scope}[xshift=12cm] + \draw[->,thick] (-\axw2,0) -- (\axw2,0) node[right] {$q$}; + \draw[->,thick] (0,-\axh) -- (0,\axh) node[above] {$p$}; + + \draw[traj={0.375}{0.875},darkgreen] ellipse (\aa0 and \bb0); + \draw[traj={0.375}{0.875},blue] ellipse (\aa1 and \bb1); + \draw[traj={0.375}{0.875},cyan] ellipse (\aa2 and \bb2); + \draw[traj={0.375}{0.875},mypurple] ellipse (\aa3 and \bb3); + + \node[above, darkgreen] at (45:{\aa0} and {\bb0}) {$E_A$}; + \node[above, blue] at (45:{\aa1} and {\bb1}) {$E_B$}; + \node[above, cyan] at (45:{\aa2} and {\bb2}) {$E_C$}; + \node[above, mypurple] at (45:{\aa3} and {\bb3}) {$E_D$}; + + \node[above left] at (110:\b3 + 0.1) {kleines $\omega$}; + \end{scope} +\end{tikzpicture} \ No newline at end of file -- cgit v1.2.1 From 45e8902e2409339cfc363033e622980600cbcf41 Mon Sep 17 00:00:00 2001 From: runterer Date: Thu, 2 Jun 2022 00:28:08 +0200 Subject: presentation finished? --- buch/papers/zeta/presentation/presentation.tex | 112 +- .../zeta/presentation/zeta_color_plot-img0.png | Bin 0 -> 37362 bytes buch/papers/zeta/presentation/zeta_color_plot.pgf | 402 +++++++ buch/papers/zeta/python/plot_zeta.py | 39 + buch/papers/zeta/python/plot_zeta2.py | 31 + buch/papers/zeta/zeta_re_-1_plot.pgf | 1147 ++++++++++++++++++ buch/papers/zeta/zeta_re_0.5_plot.pgf | 1206 +++++++++++++++++++ buch/papers/zeta/zeta_re_0_plot.pgf | 1242 ++++++++++++++++++++ 8 files changed, 4174 insertions(+), 5 deletions(-) create mode 100644 buch/papers/zeta/presentation/zeta_color_plot-img0.png create mode 100644 buch/papers/zeta/presentation/zeta_color_plot.pgf create mode 100644 buch/papers/zeta/python/plot_zeta.py create mode 100644 buch/papers/zeta/python/plot_zeta2.py create mode 100644 buch/papers/zeta/zeta_re_-1_plot.pgf create mode 100644 buch/papers/zeta/zeta_re_0.5_plot.pgf create mode 100644 buch/papers/zeta/zeta_re_0_plot.pgf (limited to 'buch') diff --git a/buch/papers/zeta/presentation/presentation.tex b/buch/papers/zeta/presentation/presentation.tex index bb6d515..be3e12c 100644 --- a/buch/papers/zeta/presentation/presentation.tex +++ b/buch/papers/zeta/presentation/presentation.tex @@ -80,6 +80,7 @@ \newcommand*{\RD}{\textcolor{red}} \newcommand*{\BL}{\textcolor{blue}} \newcommand*{\GN}{\textcolor{dgreen}} +\newcommand*{\YE}{\textcolor{violet}} @@ -241,21 +242,122 @@ \item ... \end{itemize} \end{frame} + \begin{frame} + \frametitle{Euler Produkt: Verbindung von Zeta und Primzahlen} + \begin{equation*} + \zeta(s) + = + \sum_{n=1}^\infty + \frac{1}{n^s} + = + \prod_{p \in P} + \frac{1}{1-p^{-s}} + \end{equation*} + \pause + Geometrische Reihe + \begin{equation*} + \prod_{p \in P} + \frac{1}{1-p^{-s}} + = + \prod_{p \in P} + \left( + 1 + + + \frac{1}{p^s} + + + \frac{1}{p^{2s}} + + + \frac{1}{p^{3s}} + + + \ldots + \right) + \end{equation*} + \pause + Erste Terme ausmultiplizieren + \begin{align*} + \left( + 1 + + + \RD{\frac{1}{2^s}} + + + \GN{\frac{1}{2^{2s}}} + + + \frac{1}{2^{3s}} + + + \ldots + \right) + \left( + 1 + + + \BL{\frac{1}{3^s}} + + + \frac{1}{3^{2s}} + + + \frac{1}{3^{3s}} + + + \ldots + \right) + \left( + 1 + + + \YE{\frac{1}{5^s}} + + + \frac{1}{5^{2s}} + + + \frac{1}{5^{3s}} + + + \ldots + \right) + \\ + = + 1 + + + \RD{\frac{1}{2^s}} + + + \BL{\frac{1}{3^s}} + + + \GN{\frac{1}{4^s}} + + + \YE{\frac{1}{5^s}} + + + \ldots + \end{align*} + \end{frame} \begin{frame} \frametitle{Primzahlfunktion} \begin{center} \scalebox{0.5}{\input{../primzahlfunktion.pgf}} \end{center} \end{frame} - \begin{frame} - \frametitle{Zusammenhang Zeta und Primzahlen} - %TODO - \end{frame} - \section{Weitere Eigenschaften} + \section{Darstellungen} + \begin{frame} + \frametitle{Farbcodierung} + \begin{center} + \scalebox{0.6}{\input{zeta_color_plot.pgf}} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Konstanter Realteil $\Re(s)=-1$ und $\Im(s)=0\ldots40$} + \begin{center} + \scalebox{0.6}{\input{../zeta_re_-1_plot.pgf}} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Konstanter Realteil $\Re(s)=0$ und $\Im(s)=0\ldots40$} + \begin{center} + \scalebox{0.6}{\input{../zeta_re_0_plot.pgf}} + \end{center} + \end{frame} + \begin{frame} + \frametitle{Konstanter Realteil $\Re(s)=0.5$ und $\Im(s)=0\ldots40$} + \begin{center} + \scalebox{0.6}{\input{../zeta_re_0.5_plot.pgf}} + \end{center} + \end{frame} \end{document} diff --git a/buch/papers/zeta/presentation/zeta_color_plot-img0.png b/buch/papers/zeta/presentation/zeta_color_plot-img0.png new file mode 100644 index 0000000..b8c7298 Binary files /dev/null and b/buch/papers/zeta/presentation/zeta_color_plot-img0.png differ diff --git a/buch/papers/zeta/presentation/zeta_color_plot.pgf b/buch/papers/zeta/presentation/zeta_color_plot.pgf new file mode 100644 index 0000000..0fd7cb8 --- /dev/null +++ b/buch/papers/zeta/presentation/zeta_color_plot.pgf @@ -0,0 +1,402 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.588156in}{0.528000in}}{\pgfqpoint{1.383688in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgftext[left,bottom]{\includegraphics[interpolate=true,width=1.390000in,height=3.700000in]{zeta_color_plot-img0.png}}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.588156in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.050619in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.050619in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.513081in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.513081in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=0.489420in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-20}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.990462in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=0.951882in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{1.452925in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=1.414345in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{1.915387in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.340083in, y=1.876807in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{2.377850in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.431905in, y=2.339270in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{2.840312in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.431905in, y=2.801732in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{3.302775in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.372877in, y=3.264194in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{3.765237in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.372877in, y=3.726657in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.225499in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/python/plot_zeta.py b/buch/papers/zeta/python/plot_zeta.py new file mode 100644 index 0000000..53097c5 --- /dev/null +++ b/buch/papers/zeta/python/plot_zeta.py @@ -0,0 +1,39 @@ +import numpy as np +from mpmath import zeta +import matplotlib.pyplot as plt +from matplotlib import colors +import matplotlib +matplotlib.use("pgf") +matplotlib.rcParams.update( + { + "pgf.texsystem": "pdflatex", + "font.family": "serif", + "font.size": 8, + "text.usetex": True, + "pgf.rcfonts": False, + "axes.unicode_minus": False, + } +) + +print(zeta(-1)) +print(zeta(-1 + 2j)) + +re_values = np.arange(-10, 5, 0.04) +im_values = np.arange(-20, 20, 0.04) +plot_matrix = np.zeros((len(im_values), len(re_values), 3)) +for im_i, im in enumerate(im_values): + print(im_i) + for re_i, re in enumerate(re_values): + z = complex(zeta(re + 1j*im)) + h = (np.angle(z) + np.pi) / (2*np.pi) + v = np.abs(z) + s = 1.0 + plot_matrix[im_i, re_i] = [h, s, v] + +log10_v = np.log10(plot_matrix[:, :, 2]) +log10_v += np.abs(np.min(log10_v)) +plot_matrix[:, :, 2] = (log10_v) / np.max(log10_v) +plt.imshow(colors.hsv_to_rgb(plot_matrix), extent=[re_values.min(), re_values.max(), im_values.min(), im_values.max()]) +plt.xlabel("$\Re$") +plt.ylabel("$\Im$") +plt.savefig(f"zeta_color_plot.pgf") diff --git a/buch/papers/zeta/python/plot_zeta2.py b/buch/papers/zeta/python/plot_zeta2.py new file mode 100644 index 0000000..b730703 --- /dev/null +++ b/buch/papers/zeta/python/plot_zeta2.py @@ -0,0 +1,31 @@ +import numpy as np +from mpmath import zeta +import matplotlib.pyplot as plt +import matplotlib +matplotlib.use("pgf") +matplotlib.rcParams.update( + { + "pgf.texsystem": "pdflatex", + "font.family": "serif", + "font.size": 8, + "text.usetex": True, + "pgf.rcfonts": False, + "axes.unicode_minus": False, + } +) +# const re plot +re_values = [-1, 0, 0.5] +im_values = np.arange(0, 40, 0.04) +buf = np.zeros((len(re_values), len(im_values), 2)) +for im_i, im in enumerate(im_values): + print(im_i) + for re_i, re in enumerate(re_values): + z = complex(zeta(re + 1j*im)) + buf[re_i, im_i] = [np.real(z), np.imag(z)] + +for i in range(len(re_values)): + plt.figure() + plt.plot(buf[i,:,0], buf[i,:,1], label=f"$\Re={re_values[i]}$") + plt.xlabel("$\Re$") + plt.ylabel("$\Im$") + plt.savefig(f"zeta_re_{re_values[i]}_plot.pgf") diff --git a/buch/papers/zeta/zeta_re_-1_plot.pgf b/buch/papers/zeta/zeta_re_-1_plot.pgf new file mode 100644 index 0000000..dd15ba1 --- /dev/null +++ b/buch/papers/zeta/zeta_re_-1_plot.pgf @@ -0,0 +1,1147 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.991229in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.991229in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.678290in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.678290in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.365352in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.365352in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.052413in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.052413in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.739474in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.739474in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.426535in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.426535in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.113597in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.113597in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.894551in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.492898in, y=0.855970in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.413962in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.492898in, y=1.375381in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.933373in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.894793in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.452784in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.414204in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.972195in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.933615in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.491606in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.584721in, y=3.453026in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{4.011017in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.584721in, y=3.972437in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.437343in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.040962in}{2.452784in}}% +\pgfpathlineto{\pgfqpoint{3.041938in}{2.448750in}}% +\pgfpathlineto{\pgfqpoint{3.045317in}{2.444722in}}% +\pgfpathlineto{\pgfqpoint{3.050454in}{2.441969in}}% +\pgfpathlineto{\pgfqpoint{3.057405in}{2.440667in}}% +\pgfpathlineto{\pgfqpoint{3.065376in}{2.441381in}}% +\pgfpathlineto{\pgfqpoint{3.073437in}{2.444270in}}% +\pgfpathlineto{\pgfqpoint{3.081535in}{2.449680in}}% +\pgfpathlineto{\pgfqpoint{3.089116in}{2.457647in}}% +\pgfpathlineto{\pgfqpoint{3.097729in}{2.470306in}}% +\pgfpathlineto{\pgfqpoint{3.114507in}{2.495497in}}% +\pgfpathlineto{\pgfqpoint{3.125627in}{2.507753in}}% +\pgfpathlineto{\pgfqpoint{3.138397in}{2.518430in}}% +\pgfpathlineto{\pgfqpoint{3.151970in}{2.527030in}}% +\pgfpathlineto{\pgfqpoint{3.168683in}{2.534840in}}% +\pgfpathlineto{\pgfqpoint{3.186692in}{2.540643in}}% +\pgfpathlineto{\pgfqpoint{3.205162in}{2.544313in}}% +\pgfpathlineto{\pgfqpoint{3.225905in}{2.546053in}}% +\pgfpathlineto{\pgfqpoint{3.245759in}{2.545542in}}% +\pgfpathlineto{\pgfqpoint{3.266931in}{2.542705in}}% +\pgfpathlineto{\pgfqpoint{3.285821in}{2.538106in}}% +\pgfpathlineto{\pgfqpoint{3.305032in}{2.531237in}}% +\pgfpathlineto{\pgfqpoint{3.324119in}{2.521868in}}% +\pgfpathlineto{\pgfqpoint{3.339543in}{2.512008in}}% +\pgfpathlineto{\pgfqpoint{3.354141in}{2.500194in}}% +\pgfpathlineto{\pgfqpoint{3.367504in}{2.486377in}}% +\pgfpathlineto{\pgfqpoint{3.379178in}{2.470553in}}% +\pgfpathlineto{\pgfqpoint{3.386976in}{2.456480in}}% +\pgfpathlineto{\pgfqpoint{3.393121in}{2.441206in}}% +\pgfpathlineto{\pgfqpoint{3.397343in}{2.424812in}}% +\pgfpathlineto{\pgfqpoint{3.399372in}{2.407409in}}% +\pgfpathlineto{\pgfqpoint{3.398939in}{2.389140in}}% +\pgfpathlineto{\pgfqpoint{3.395783in}{2.370184in}}% +\pgfpathlineto{\pgfqpoint{3.389660in}{2.350755in}}% +\pgfpathlineto{\pgfqpoint{3.382987in}{2.336022in}}% +\pgfpathlineto{\pgfqpoint{3.374437in}{2.321281in}}% +\pgfpathlineto{\pgfqpoint{3.363942in}{2.306663in}}% +\pgfpathlineto{\pgfqpoint{3.351444in}{2.292307in}}% +\pgfpathlineto{\pgfqpoint{3.336903in}{2.278365in}}% +\pgfpathlineto{\pgfqpoint{3.320298in}{2.264997in}}% +\pgfpathlineto{\pgfqpoint{3.301627in}{2.252371in}}% +\pgfpathlineto{\pgfqpoint{3.280910in}{2.240662in}}% +\pgfpathlineto{\pgfqpoint{3.258195in}{2.230050in}}% +\pgfpathlineto{\pgfqpoint{3.233551in}{2.220720in}}% +\pgfpathlineto{\pgfqpoint{3.207080in}{2.212858in}}% +\pgfpathlineto{\pgfqpoint{3.178909in}{2.206648in}}% +\pgfpathlineto{\pgfqpoint{3.149199in}{2.202272in}}% +\pgfpathlineto{\pgfqpoint{3.118141in}{2.199908in}}% +\pgfpathlineto{\pgfqpoint{3.085957in}{2.199722in}}% +\pgfpathlineto{\pgfqpoint{3.052902in}{2.201870in}}% +\pgfpathlineto{\pgfqpoint{3.019262in}{2.206494in}}% +\pgfpathlineto{\pgfqpoint{2.985354in}{2.213717in}}% +\pgfpathlineto{\pgfqpoint{2.951523in}{2.223640in}}% +\pgfpathlineto{\pgfqpoint{2.918141in}{2.236339in}}% +\pgfpathlineto{\pgfqpoint{2.885606in}{2.251864in}}% +\pgfpathlineto{\pgfqpoint{2.854333in}{2.270230in}}% +\pgfpathlineto{\pgfqpoint{2.834400in}{2.284047in}}% +\pgfpathlineto{\pgfqpoint{2.815354in}{2.299106in}}% +\pgfpathlineto{\pgfqpoint{2.797326in}{2.315386in}}% +\pgfpathlineto{\pgfqpoint{2.780453in}{2.332856in}}% +\pgfpathlineto{\pgfqpoint{2.764868in}{2.351479in}}% +\pgfpathlineto{\pgfqpoint{2.750706in}{2.371209in}}% +\pgfpathlineto{\pgfqpoint{2.738100in}{2.391989in}}% +\pgfpathlineto{\pgfqpoint{2.727179in}{2.413757in}}% +\pgfpathlineto{\pgfqpoint{2.718070in}{2.436440in}}% +\pgfpathlineto{\pgfqpoint{2.710895in}{2.459955in}}% +\pgfpathlineto{\pgfqpoint{2.705771in}{2.484213in}}% +\pgfpathlineto{\pgfqpoint{2.702808in}{2.509115in}}% +\pgfpathlineto{\pgfqpoint{2.702110in}{2.534554in}}% +\pgfpathlineto{\pgfqpoint{2.703768in}{2.560412in}}% +\pgfpathlineto{\pgfqpoint{2.707869in}{2.586567in}}% +\pgfpathlineto{\pgfqpoint{2.714485in}{2.612888in}}% +\pgfpathlineto{\pgfqpoint{2.723676in}{2.639235in}}% +\pgfpathlineto{\pgfqpoint{2.735493in}{2.665465in}}% +\pgfpathlineto{\pgfqpoint{2.749969in}{2.691426in}}% +\pgfpathlineto{\pgfqpoint{2.767124in}{2.716962in}}% +\pgfpathlineto{\pgfqpoint{2.786961in}{2.741914in}}% +\pgfpathlineto{\pgfqpoint{2.809467in}{2.766119in}}% +\pgfpathlineto{\pgfqpoint{2.834613in}{2.789409in}}% +\pgfpathlineto{\pgfqpoint{2.862350in}{2.811617in}}% +\pgfpathlineto{\pgfqpoint{2.892611in}{2.832576in}}% +\pgfpathlineto{\pgfqpoint{2.925310in}{2.852119in}}% +\pgfpathlineto{\pgfqpoint{2.960342in}{2.870079in}}% +\pgfpathlineto{\pgfqpoint{2.997581in}{2.886297in}}% +\pgfpathlineto{\pgfqpoint{3.036884in}{2.900613in}}% +\pgfpathlineto{\pgfqpoint{3.078086in}{2.912878in}}% +\pgfpathlineto{\pgfqpoint{3.121003in}{2.922947in}}% +\pgfpathlineto{\pgfqpoint{3.165433in}{2.930685in}}% +\pgfpathlineto{\pgfqpoint{3.211156in}{2.935966in}}% +\pgfpathlineto{\pgfqpoint{3.257933in}{2.938677in}}% +\pgfpathlineto{\pgfqpoint{3.305510in}{2.938717in}}% +\pgfpathlineto{\pgfqpoint{3.353615in}{2.935999in}}% +\pgfpathlineto{\pgfqpoint{3.401964in}{2.930452in}}% +\pgfpathlineto{\pgfqpoint{3.450259in}{2.922022in}}% +\pgfpathlineto{\pgfqpoint{3.498193in}{2.910671in}}% +\pgfpathlineto{\pgfqpoint{3.545447in}{2.896383in}}% +\pgfpathlineto{\pgfqpoint{3.591697in}{2.879159in}}% +\pgfpathlineto{\pgfqpoint{3.636612in}{2.859023in}}% +\pgfpathlineto{\pgfqpoint{3.679858in}{2.836019in}}% +\pgfpathlineto{\pgfqpoint{3.721104in}{2.810214in}}% +\pgfpathlineto{\pgfqpoint{3.760018in}{2.781697in}}% +\pgfpathlineto{\pgfqpoint{3.796273in}{2.750581in}}% +\pgfpathlineto{\pgfqpoint{3.829552in}{2.717000in}}% +\pgfpathlineto{\pgfqpoint{3.859546in}{2.681113in}}% +\pgfpathlineto{\pgfqpoint{3.885961in}{2.643100in}}% +\pgfpathlineto{\pgfqpoint{3.908518in}{2.603163in}}% +\pgfpathlineto{\pgfqpoint{3.918269in}{2.582542in}}% +\pgfpathlineto{\pgfqpoint{3.926959in}{2.561527in}}% +\pgfpathlineto{\pgfqpoint{3.934561in}{2.540147in}}% +\pgfpathlineto{\pgfqpoint{3.941047in}{2.518435in}}% +\pgfpathlineto{\pgfqpoint{3.946391in}{2.496425in}}% +\pgfpathlineto{\pgfqpoint{3.950569in}{2.474152in}}% +\pgfpathlineto{\pgfqpoint{3.953560in}{2.451651in}}% +\pgfpathlineto{\pgfqpoint{3.955342in}{2.428959in}}% +\pgfpathlineto{\pgfqpoint{3.955898in}{2.406114in}}% +\pgfpathlineto{\pgfqpoint{3.955211in}{2.383153in}}% +\pgfpathlineto{\pgfqpoint{3.953267in}{2.360118in}}% +\pgfpathlineto{\pgfqpoint{3.950054in}{2.337048in}}% +\pgfpathlineto{\pgfqpoint{3.945564in}{2.313984in}}% +\pgfpathlineto{\pgfqpoint{3.939787in}{2.290967in}}% +\pgfpathlineto{\pgfqpoint{3.932719in}{2.268040in}}% +\pgfpathlineto{\pgfqpoint{3.924359in}{2.245245in}}% +\pgfpathlineto{\pgfqpoint{3.914705in}{2.222626in}}% +\pgfpathlineto{\pgfqpoint{3.903761in}{2.200226in}}% +\pgfpathlineto{\pgfqpoint{3.891530in}{2.178089in}}% +\pgfpathlineto{\pgfqpoint{3.878022in}{2.156258in}}% +\pgfpathlineto{\pgfqpoint{3.863247in}{2.134777in}}% +\pgfpathlineto{\pgfqpoint{3.847217in}{2.113690in}}% +\pgfpathlineto{\pgfqpoint{3.829948in}{2.093041in}}% +\pgfpathlineto{\pgfqpoint{3.811460in}{2.072874in}}% +\pgfpathlineto{\pgfqpoint{3.791772in}{2.053231in}}% +\pgfpathlineto{\pgfqpoint{3.770909in}{2.034155in}}% +\pgfpathlineto{\pgfqpoint{3.748899in}{2.015689in}}% +\pgfpathlineto{\pgfqpoint{3.725769in}{1.997875in}}% +\pgfpathlineto{\pgfqpoint{3.701553in}{1.980752in}}% +\pgfpathlineto{\pgfqpoint{3.676285in}{1.964362in}}% +\pgfpathlineto{\pgfqpoint{3.650003in}{1.948744in}}% +\pgfpathlineto{\pgfqpoint{3.622746in}{1.933936in}}% +\pgfpathlineto{\pgfqpoint{3.594559in}{1.919975in}}% +\pgfpathlineto{\pgfqpoint{3.565485in}{1.906896in}}% +\pgfpathlineto{\pgfqpoint{3.535574in}{1.894735in}}% +\pgfpathlineto{\pgfqpoint{3.504874in}{1.883525in}}% +\pgfpathlineto{\pgfqpoint{3.473440in}{1.873296in}}% +\pgfpathlineto{\pgfqpoint{3.441325in}{1.864080in}}% +\pgfpathlineto{\pgfqpoint{3.408587in}{1.855904in}}% +\pgfpathlineto{\pgfqpoint{3.375285in}{1.848795in}}% +\pgfpathlineto{\pgfqpoint{3.341480in}{1.842778in}}% +\pgfpathlineto{\pgfqpoint{3.307236in}{1.837874in}}% +\pgfpathlineto{\pgfqpoint{3.272618in}{1.834105in}}% +\pgfpathlineto{\pgfqpoint{3.237692in}{1.831489in}}% +\pgfpathlineto{\pgfqpoint{3.202526in}{1.830042in}}% +\pgfpathlineto{\pgfqpoint{3.167192in}{1.829777in}}% +\pgfpathlineto{\pgfqpoint{3.131758in}{1.830707in}}% +\pgfpathlineto{\pgfqpoint{3.096299in}{1.832839in}}% +\pgfpathlineto{\pgfqpoint{3.060886in}{1.836182in}}% +\pgfpathlineto{\pgfqpoint{3.025595in}{1.840737in}}% +\pgfpathlineto{\pgfqpoint{2.990500in}{1.846507in}}% +\pgfpathlineto{\pgfqpoint{2.955677in}{1.853491in}}% +\pgfpathlineto{\pgfqpoint{2.921200in}{1.861684in}}% +\pgfpathlineto{\pgfqpoint{2.887148in}{1.871078in}}% +\pgfpathlineto{\pgfqpoint{2.853595in}{1.881666in}}% +\pgfpathlineto{\pgfqpoint{2.820618in}{1.893433in}}% +\pgfpathlineto{\pgfqpoint{2.788292in}{1.906365in}}% +\pgfpathlineto{\pgfqpoint{2.756692in}{1.920444in}}% +\pgfpathlineto{\pgfqpoint{2.725894in}{1.935648in}}% +\pgfpathlineto{\pgfqpoint{2.695970in}{1.951954in}}% +\pgfpathlineto{\pgfqpoint{2.666994in}{1.969335in}}% +\pgfpathlineto{\pgfqpoint{2.639036in}{1.987763in}}% +\pgfpathlineto{\pgfqpoint{2.612167in}{2.007203in}}% +\pgfpathlineto{\pgfqpoint{2.586455in}{2.027622in}}% +\pgfpathlineto{\pgfqpoint{2.561965in}{2.048983in}}% +\pgfpathlineto{\pgfqpoint{2.538764in}{2.071243in}}% +\pgfpathlineto{\pgfqpoint{2.516912in}{2.094362in}}% +\pgfpathlineto{\pgfqpoint{2.496471in}{2.118292in}}% +\pgfpathlineto{\pgfqpoint{2.477496in}{2.142986in}}% +\pgfpathlineto{\pgfqpoint{2.460043in}{2.168395in}}% +\pgfpathlineto{\pgfqpoint{2.444163in}{2.194464in}}% +\pgfpathlineto{\pgfqpoint{2.429904in}{2.221139in}}% +\pgfpathlineto{\pgfqpoint{2.417313in}{2.248363in}}% +\pgfpathlineto{\pgfqpoint{2.406430in}{2.276078in}}% +\pgfpathlineto{\pgfqpoint{2.397293in}{2.304221in}}% +\pgfpathlineto{\pgfqpoint{2.389938in}{2.332730in}}% +\pgfpathlineto{\pgfqpoint{2.384395in}{2.361542in}}% +\pgfpathlineto{\pgfqpoint{2.380689in}{2.390589in}}% +\pgfpathlineto{\pgfqpoint{2.378844in}{2.419805in}}% +\pgfpathlineto{\pgfqpoint{2.378877in}{2.449121in}}% +\pgfpathlineto{\pgfqpoint{2.380802in}{2.478467in}}% +\pgfpathlineto{\pgfqpoint{2.384628in}{2.507774in}}% +\pgfpathlineto{\pgfqpoint{2.390359in}{2.536969in}}% +\pgfpathlineto{\pgfqpoint{2.397996in}{2.565982in}}% +\pgfpathlineto{\pgfqpoint{2.407533in}{2.594739in}}% +\pgfpathlineto{\pgfqpoint{2.418960in}{2.623168in}}% +\pgfpathlineto{\pgfqpoint{2.432264in}{2.651198in}}% +\pgfpathlineto{\pgfqpoint{2.447423in}{2.678755in}}% +\pgfpathlineto{\pgfqpoint{2.464415in}{2.705767in}}% +\pgfpathlineto{\pgfqpoint{2.483209in}{2.732163in}}% +\pgfpathlineto{\pgfqpoint{2.503771in}{2.757873in}}% +\pgfpathlineto{\pgfqpoint{2.526062in}{2.782826in}}% +\pgfpathlineto{\pgfqpoint{2.550037in}{2.806954in}}% +\pgfpathlineto{\pgfqpoint{2.575648in}{2.830189in}}% +\pgfpathlineto{\pgfqpoint{2.602841in}{2.852466in}}% +\pgfpathlineto{\pgfqpoint{2.631556in}{2.873720in}}% +\pgfpathlineto{\pgfqpoint{2.661731in}{2.893889in}}% +\pgfpathlineto{\pgfqpoint{2.693298in}{2.912913in}}% +\pgfpathlineto{\pgfqpoint{2.726185in}{2.930734in}}% +\pgfpathlineto{\pgfqpoint{2.760315in}{2.947296in}}% +\pgfpathlineto{\pgfqpoint{2.795607in}{2.962548in}}% +\pgfpathlineto{\pgfqpoint{2.831976in}{2.976438in}}% +\pgfpathlineto{\pgfqpoint{2.869335in}{2.988921in}}% +\pgfpathlineto{\pgfqpoint{2.907589in}{2.999952in}}% +\pgfpathlineto{\pgfqpoint{2.946645in}{3.009492in}}% +\pgfpathlineto{\pgfqpoint{2.986401in}{3.017503in}}% +\pgfpathlineto{\pgfqpoint{3.026758in}{3.023952in}}% +\pgfpathlineto{\pgfqpoint{3.067608in}{3.028811in}}% +\pgfpathlineto{\pgfqpoint{3.108845in}{3.032054in}}% +\pgfpathlineto{\pgfqpoint{3.150359in}{3.033659in}}% +\pgfpathlineto{\pgfqpoint{3.192038in}{3.033610in}}% +\pgfpathlineto{\pgfqpoint{3.233769in}{3.031894in}}% +\pgfpathlineto{\pgfqpoint{3.275435in}{3.028503in}}% +\pgfpathlineto{\pgfqpoint{3.316920in}{3.023433in}}% +\pgfpathlineto{\pgfqpoint{3.358108in}{3.016685in}}% +\pgfpathlineto{\pgfqpoint{3.398880in}{3.008265in}}% +\pgfpathlineto{\pgfqpoint{3.439119in}{2.998182in}}% +\pgfpathlineto{\pgfqpoint{3.478706in}{2.986452in}}% +\pgfpathlineto{\pgfqpoint{3.517523in}{2.973095in}}% +\pgfpathlineto{\pgfqpoint{3.555454in}{2.958135in}}% +\pgfpathlineto{\pgfqpoint{3.592382in}{2.941601in}}% +\pgfpathlineto{\pgfqpoint{3.628194in}{2.923528in}}% +\pgfpathlineto{\pgfqpoint{3.662777in}{2.903955in}}% +\pgfpathlineto{\pgfqpoint{3.696020in}{2.882924in}}% +\pgfpathlineto{\pgfqpoint{3.727816in}{2.860485in}}% +\pgfpathlineto{\pgfqpoint{3.758058in}{2.836691in}}% +\pgfpathlineto{\pgfqpoint{3.786646in}{2.811598in}}% +\pgfpathlineto{\pgfqpoint{3.813480in}{2.785269in}}% +\pgfpathlineto{\pgfqpoint{3.838466in}{2.757769in}}% +\pgfpathlineto{\pgfqpoint{3.861512in}{2.729170in}}% +\pgfpathlineto{\pgfqpoint{3.882535in}{2.699545in}}% +\pgfpathlineto{\pgfqpoint{3.901450in}{2.668973in}}% +\pgfpathlineto{\pgfqpoint{3.918184in}{2.637535in}}% +\pgfpathlineto{\pgfqpoint{3.932664in}{2.605317in}}% +\pgfpathlineto{\pgfqpoint{3.944827in}{2.572409in}}% +\pgfpathlineto{\pgfqpoint{3.954611in}{2.538901in}}% +\pgfpathlineto{\pgfqpoint{3.961966in}{2.504888in}}% +\pgfpathlineto{\pgfqpoint{3.966844in}{2.470469in}}% +\pgfpathlineto{\pgfqpoint{3.969206in}{2.435743in}}% +\pgfpathlineto{\pgfqpoint{3.969019in}{2.400812in}}% +\pgfpathlineto{\pgfqpoint{3.966257in}{2.365780in}}% +\pgfpathlineto{\pgfqpoint{3.960902in}{2.330753in}}% +\pgfpathlineto{\pgfqpoint{3.952942in}{2.295838in}}% +\pgfpathlineto{\pgfqpoint{3.942376in}{2.261141in}}% +\pgfpathlineto{\pgfqpoint{3.929207in}{2.226773in}}% +\pgfpathlineto{\pgfqpoint{3.913447in}{2.192842in}}% +\pgfpathlineto{\pgfqpoint{3.895116in}{2.159457in}}% +\pgfpathlineto{\pgfqpoint{3.874244in}{2.126727in}}% +\pgfpathlineto{\pgfqpoint{3.850865in}{2.094761in}}% +\pgfpathlineto{\pgfqpoint{3.825024in}{2.063665in}}% +\pgfpathlineto{\pgfqpoint{3.796774in}{2.033546in}}% +\pgfpathlineto{\pgfqpoint{3.766173in}{2.004508in}}% +\pgfpathlineto{\pgfqpoint{3.733291in}{1.976655in}}% +\pgfpathlineto{\pgfqpoint{3.698203in}{1.950085in}}% +\pgfpathlineto{\pgfqpoint{3.660992in}{1.924898in}}% +\pgfpathlineto{\pgfqpoint{3.621749in}{1.901188in}}% +\pgfpathlineto{\pgfqpoint{3.580573in}{1.879046in}}% +\pgfpathlineto{\pgfqpoint{3.537569in}{1.858560in}}% +\pgfpathlineto{\pgfqpoint{3.492849in}{1.839815in}}% +\pgfpathlineto{\pgfqpoint{3.446534in}{1.822891in}}% +\pgfpathlineto{\pgfqpoint{3.398748in}{1.807862in}}% +\pgfpathlineto{\pgfqpoint{3.349623in}{1.794799in}}% +\pgfpathlineto{\pgfqpoint{3.299297in}{1.783767in}}% +\pgfpathlineto{\pgfqpoint{3.247913in}{1.774827in}}% +\pgfpathlineto{\pgfqpoint{3.195620in}{1.768033in}}% +\pgfpathlineto{\pgfqpoint{3.142569in}{1.763432in}}% +\pgfpathlineto{\pgfqpoint{3.088920in}{1.761068in}}% +\pgfpathlineto{\pgfqpoint{3.034833in}{1.760975in}}% +\pgfpathlineto{\pgfqpoint{2.980472in}{1.763184in}}% +\pgfpathlineto{\pgfqpoint{2.926006in}{1.767717in}}% +\pgfpathlineto{\pgfqpoint{2.871606in}{1.774590in}}% +\pgfpathlineto{\pgfqpoint{2.817442in}{1.783810in}}% +\pgfpathlineto{\pgfqpoint{2.763691in}{1.795380in}}% +\pgfpathlineto{\pgfqpoint{2.710525in}{1.809294in}}% +\pgfpathlineto{\pgfqpoint{2.658121in}{1.825537in}}% +\pgfpathlineto{\pgfqpoint{2.606654in}{1.844090in}}% +\pgfpathlineto{\pgfqpoint{2.556299in}{1.864924in}}% +\pgfpathlineto{\pgfqpoint{2.507230in}{1.888003in}}% +\pgfpathlineto{\pgfqpoint{2.459617in}{1.913284in}}% +\pgfpathlineto{\pgfqpoint{2.413632in}{1.940716in}}% +\pgfpathlineto{\pgfqpoint{2.369440in}{1.970241in}}% +\pgfpathlineto{\pgfqpoint{2.327204in}{2.001793in}}% +\pgfpathlineto{\pgfqpoint{2.287084in}{2.035300in}}% +\pgfpathlineto{\pgfqpoint{2.249234in}{2.070681in}}% +\pgfpathlineto{\pgfqpoint{2.213803in}{2.107850in}}% +\pgfpathlineto{\pgfqpoint{2.180937in}{2.146713in}}% +\pgfpathlineto{\pgfqpoint{2.150771in}{2.187170in}}% +\pgfpathlineto{\pgfqpoint{2.123437in}{2.229114in}}% +\pgfpathlineto{\pgfqpoint{2.099058in}{2.272432in}}% +\pgfpathlineto{\pgfqpoint{2.077750in}{2.317007in}}% +\pgfpathlineto{\pgfqpoint{2.059621in}{2.362714in}}% +\pgfpathlineto{\pgfqpoint{2.044770in}{2.409424in}}% +\pgfpathlineto{\pgfqpoint{2.033285in}{2.457003in}}% +\pgfpathlineto{\pgfqpoint{2.025248in}{2.505313in}}% +\pgfpathlineto{\pgfqpoint{2.020728in}{2.554210in}}% +\pgfpathlineto{\pgfqpoint{2.019786in}{2.603548in}}% +\pgfpathlineto{\pgfqpoint{2.022471in}{2.653179in}}% +\pgfpathlineto{\pgfqpoint{2.028820in}{2.702949in}}% +\pgfpathlineto{\pgfqpoint{2.038862in}{2.752704in}}% +\pgfpathlineto{\pgfqpoint{2.052611in}{2.802287in}}% +\pgfpathlineto{\pgfqpoint{2.070073in}{2.851540in}}% +\pgfpathlineto{\pgfqpoint{2.091238in}{2.900304in}}% +\pgfpathlineto{\pgfqpoint{2.116087in}{2.948419in}}% +\pgfpathlineto{\pgfqpoint{2.144589in}{2.995726in}}% +\pgfpathlineto{\pgfqpoint{2.176699in}{3.042067in}}% +\pgfpathlineto{\pgfqpoint{2.212362in}{3.087283in}}% +\pgfpathlineto{\pgfqpoint{2.251508in}{3.131220in}}% +\pgfpathlineto{\pgfqpoint{2.294058in}{3.173723in}}% +\pgfpathlineto{\pgfqpoint{2.339920in}{3.214641in}}% +\pgfpathlineto{\pgfqpoint{2.388990in}{3.253827in}}% +\pgfpathlineto{\pgfqpoint{2.441152in}{3.291137in}}% +\pgfpathlineto{\pgfqpoint{2.496278in}{3.326431in}}% +\pgfpathlineto{\pgfqpoint{2.554232in}{3.359575in}}% +\pgfpathlineto{\pgfqpoint{2.614865in}{3.390439in}}% +\pgfpathlineto{\pgfqpoint{2.678016in}{3.418901in}}% +\pgfpathlineto{\pgfqpoint{2.743517in}{3.444843in}}% +\pgfpathlineto{\pgfqpoint{2.811189in}{3.468155in}}% +\pgfpathlineto{\pgfqpoint{2.880844in}{3.488734in}}% +\pgfpathlineto{\pgfqpoint{2.952286in}{3.506484in}}% +\pgfpathlineto{\pgfqpoint{3.025310in}{3.521319in}}% +\pgfpathlineto{\pgfqpoint{3.099703in}{3.533160in}}% +\pgfpathlineto{\pgfqpoint{3.175247in}{3.541938in}}% +\pgfpathlineto{\pgfqpoint{3.251717in}{3.547591in}}% +\pgfpathlineto{\pgfqpoint{3.328881in}{3.550069in}}% +\pgfpathlineto{\pgfqpoint{3.406506in}{3.549331in}}% +\pgfpathlineto{\pgfqpoint{3.484350in}{3.545345in}}% +\pgfpathlineto{\pgfqpoint{3.562172in}{3.538091in}}% +\pgfpathlineto{\pgfqpoint{3.639725in}{3.527560in}}% +\pgfpathlineto{\pgfqpoint{3.716763in}{3.513750in}}% +\pgfpathlineto{\pgfqpoint{3.793038in}{3.496674in}}% +\pgfpathlineto{\pgfqpoint{3.868302in}{3.476354in}}% +\pgfpathlineto{\pgfqpoint{3.942306in}{3.452823in}}% +\pgfpathlineto{\pgfqpoint{4.014806in}{3.426125in}}% +\pgfpathlineto{\pgfqpoint{4.085559in}{3.396314in}}% +\pgfpathlineto{\pgfqpoint{4.154324in}{3.363458in}}% +\pgfpathlineto{\pgfqpoint{4.220865in}{3.327632in}}% +\pgfpathlineto{\pgfqpoint{4.284953in}{3.288923in}}% +\pgfpathlineto{\pgfqpoint{4.346362in}{3.247431in}}% +\pgfpathlineto{\pgfqpoint{4.404874in}{3.203261in}}% +\pgfpathlineto{\pgfqpoint{4.460278in}{3.156533in}}% +\pgfpathlineto{\pgfqpoint{4.512374in}{3.107374in}}% +\pgfpathlineto{\pgfqpoint{4.560967in}{3.055920in}}% +\pgfpathlineto{\pgfqpoint{4.605876in}{3.002319in}}% +\pgfpathlineto{\pgfqpoint{4.646927in}{2.946724in}}% +\pgfpathlineto{\pgfqpoint{4.683960in}{2.889298in}}% +\pgfpathlineto{\pgfqpoint{4.716827in}{2.830211in}}% +\pgfpathlineto{\pgfqpoint{4.745390in}{2.769642in}}% +\pgfpathlineto{\pgfqpoint{4.769528in}{2.707772in}}% +\pgfpathlineto{\pgfqpoint{4.789132in}{2.644794in}}% +\pgfpathlineto{\pgfqpoint{4.804108in}{2.580901in}}% +\pgfpathlineto{\pgfqpoint{4.814376in}{2.516295in}}% +\pgfpathlineto{\pgfqpoint{4.819873in}{2.451180in}}% +\pgfpathlineto{\pgfqpoint{4.820549in}{2.385763in}}% +\pgfpathlineto{\pgfqpoint{4.816375in}{2.320255in}}% +\pgfpathlineto{\pgfqpoint{4.807332in}{2.254868in}}% +\pgfpathlineto{\pgfqpoint{4.793424in}{2.189817in}}% +\pgfpathlineto{\pgfqpoint{4.774666in}{2.125315in}}% +\pgfpathlineto{\pgfqpoint{4.751094in}{2.061577in}}% +\pgfpathlineto{\pgfqpoint{4.722760in}{1.998816in}}% +\pgfpathlineto{\pgfqpoint{4.689731in}{1.937243in}}% +\pgfpathlineto{\pgfqpoint{4.652093in}{1.877067in}}% +\pgfpathlineto{\pgfqpoint{4.609947in}{1.818494in}}% +\pgfpathlineto{\pgfqpoint{4.563413in}{1.761725in}}% +\pgfpathlineto{\pgfqpoint{4.512624in}{1.706957in}}% +\pgfpathlineto{\pgfqpoint{4.457731in}{1.654381in}}% +\pgfpathlineto{\pgfqpoint{4.398900in}{1.604181in}}% +\pgfpathlineto{\pgfqpoint{4.336312in}{1.556535in}}% +\pgfpathlineto{\pgfqpoint{4.270162in}{1.511612in}}% +\pgfpathlineto{\pgfqpoint{4.200659in}{1.469575in}}% +\pgfpathlineto{\pgfqpoint{4.128027in}{1.430575in}}% +\pgfpathlineto{\pgfqpoint{4.052500in}{1.394754in}}% +\pgfpathlineto{\pgfqpoint{3.974326in}{1.362245in}}% +\pgfpathlineto{\pgfqpoint{3.893762in}{1.333167in}}% +\pgfpathlineto{\pgfqpoint{3.811078in}{1.307631in}}% +\pgfpathlineto{\pgfqpoint{3.726550in}{1.285733in}}% +\pgfpathlineto{\pgfqpoint{3.640464in}{1.267559in}}% +\pgfpathlineto{\pgfqpoint{3.553115in}{1.253180in}}% +\pgfpathlineto{\pgfqpoint{3.464801in}{1.242654in}}% +\pgfpathlineto{\pgfqpoint{3.375828in}{1.236027in}}% +\pgfpathlineto{\pgfqpoint{3.286504in}{1.233329in}}% +\pgfpathlineto{\pgfqpoint{3.197142in}{1.234577in}}% +\pgfpathlineto{\pgfqpoint{3.108056in}{1.239772in}}% +\pgfpathlineto{\pgfqpoint{3.019560in}{1.248903in}}% +\pgfpathlineto{\pgfqpoint{2.931969in}{1.261943in}}% +\pgfpathlineto{\pgfqpoint{2.845595in}{1.278850in}}% +\pgfpathlineto{\pgfqpoint{2.760749in}{1.299569in}}% +\pgfpathlineto{\pgfqpoint{2.677735in}{1.324028in}}% +\pgfpathlineto{\pgfqpoint{2.596855in}{1.352142in}}% +\pgfpathlineto{\pgfqpoint{2.518402in}{1.383813in}}% +\pgfpathlineto{\pgfqpoint{2.442663in}{1.418928in}}% +\pgfpathlineto{\pgfqpoint{2.369915in}{1.457359in}}% +\pgfpathlineto{\pgfqpoint{2.300427in}{1.498969in}}% +\pgfpathlineto{\pgfqpoint{2.234454in}{1.543603in}}% +\pgfpathlineto{\pgfqpoint{2.172241in}{1.591097in}}% +\pgfpathlineto{\pgfqpoint{2.114019in}{1.641275in}}% +\pgfpathlineto{\pgfqpoint{2.060005in}{1.693949in}}% +\pgfpathlineto{\pgfqpoint{2.010401in}{1.748922in}}% +\pgfpathlineto{\pgfqpoint{1.965393in}{1.805984in}}% +\pgfpathlineto{\pgfqpoint{1.925149in}{1.864920in}}% +\pgfpathlineto{\pgfqpoint{1.889821in}{1.925505in}}% +\pgfpathlineto{\pgfqpoint{1.859541in}{1.987504in}}% +\pgfpathlineto{\pgfqpoint{1.834423in}{2.050680in}}% +\pgfpathlineto{\pgfqpoint{1.814560in}{2.114787in}}% +\pgfpathlineto{\pgfqpoint{1.800025in}{2.179575in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{2.244791in}}% +\pgfpathlineto{\pgfqpoint{1.787131in}{2.310179in}}% +\pgfpathlineto{\pgfqpoint{1.788813in}{2.375480in}}% +\pgfpathlineto{\pgfqpoint{1.795906in}{2.440434in}}% +\pgfpathlineto{\pgfqpoint{1.808377in}{2.504784in}}% +\pgfpathlineto{\pgfqpoint{1.826170in}{2.568272in}}% +\pgfpathlineto{\pgfqpoint{1.849209in}{2.630643in}}% +\pgfpathlineto{\pgfqpoint{1.877396in}{2.691644in}}% +\pgfpathlineto{\pgfqpoint{1.910610in}{2.751028in}}% +\pgfpathlineto{\pgfqpoint{1.948711in}{2.808554in}}% +\pgfpathlineto{\pgfqpoint{1.991536in}{2.863985in}}% +\pgfpathlineto{\pgfqpoint{2.038905in}{2.917095in}}% +\pgfpathlineto{\pgfqpoint{2.090616in}{2.967663in}}% +\pgfpathlineto{\pgfqpoint{2.146448in}{3.015481in}}% +\pgfpathlineto{\pgfqpoint{2.206164in}{3.060348in}}% +\pgfpathlineto{\pgfqpoint{2.269508in}{3.102076in}}% +\pgfpathlineto{\pgfqpoint{2.336207in}{3.140490in}}% +\pgfpathlineto{\pgfqpoint{2.405975in}{3.175427in}}% +\pgfpathlineto{\pgfqpoint{2.478509in}{3.206739in}}% +\pgfpathlineto{\pgfqpoint{2.553495in}{3.234289in}}% +\pgfpathlineto{\pgfqpoint{2.630606in}{3.257961in}}% +\pgfpathlineto{\pgfqpoint{2.709504in}{3.277650in}}% +\pgfpathlineto{\pgfqpoint{2.789843in}{3.293269in}}% +\pgfpathlineto{\pgfqpoint{2.871268in}{3.304750in}}% +\pgfpathlineto{\pgfqpoint{2.953418in}{3.312039in}}% +\pgfpathlineto{\pgfqpoint{3.035925in}{3.315102in}}% +\pgfpathlineto{\pgfqpoint{3.118421in}{3.313922in}}% +\pgfpathlineto{\pgfqpoint{3.200533in}{3.308501in}}% +\pgfpathlineto{\pgfqpoint{3.281890in}{3.298859in}}% +\pgfpathlineto{\pgfqpoint{3.362119in}{3.285035in}}% +\pgfpathlineto{\pgfqpoint{3.440853in}{3.267085in}}% +\pgfpathlineto{\pgfqpoint{3.517728in}{3.245086in}}% +\pgfpathlineto{\pgfqpoint{3.592386in}{3.219130in}}% +\pgfpathlineto{\pgfqpoint{3.664475in}{3.189330in}}% +\pgfpathlineto{\pgfqpoint{3.733656in}{3.155815in}}% +\pgfpathlineto{\pgfqpoint{3.799598in}{3.118732in}}% +\pgfpathlineto{\pgfqpoint{3.861982in}{3.078243in}}% +\pgfpathlineto{\pgfqpoint{3.920503in}{3.034529in}}% +\pgfpathlineto{\pgfqpoint{3.974873in}{2.987784in}}% +\pgfpathlineto{\pgfqpoint{4.024819in}{2.938219in}}% +\pgfpathlineto{\pgfqpoint{4.070085in}{2.886057in}}% +\pgfpathlineto{\pgfqpoint{4.110436in}{2.831537in}}% +\pgfpathlineto{\pgfqpoint{4.145657in}{2.774906in}}% +\pgfpathlineto{\pgfqpoint{4.175554in}{2.716427in}}% +\pgfpathlineto{\pgfqpoint{4.199956in}{2.656371in}}% +\pgfpathlineto{\pgfqpoint{4.218715in}{2.595018in}}% +\pgfpathlineto{\pgfqpoint{4.231708in}{2.532656in}}% +\pgfpathlineto{\pgfqpoint{4.238838in}{2.469580in}}% +\pgfpathlineto{\pgfqpoint{4.240031in}{2.406091in}}% +\pgfpathlineto{\pgfqpoint{4.235243in}{2.342495in}}% +\pgfpathlineto{\pgfqpoint{4.224454in}{2.279100in}}% +\pgfpathlineto{\pgfqpoint{4.207674in}{2.216214in}}% +\pgfpathlineto{\pgfqpoint{4.184938in}{2.154148in}}% +\pgfpathlineto{\pgfqpoint{4.156309in}{2.093212in}}% +\pgfpathlineto{\pgfqpoint{4.121878in}{2.033710in}}% +\pgfpathlineto{\pgfqpoint{4.081764in}{1.975947in}}% +\pgfpathlineto{\pgfqpoint{4.036113in}{1.920219in}}% +\pgfpathlineto{\pgfqpoint{3.985097in}{1.866816in}}% +\pgfpathlineto{\pgfqpoint{3.928914in}{1.816022in}}% +\pgfpathlineto{\pgfqpoint{3.867788in}{1.768109in}}% +\pgfpathlineto{\pgfqpoint{3.801970in}{1.723340in}}% +\pgfpathlineto{\pgfqpoint{3.731731in}{1.681965in}}% +\pgfpathlineto{\pgfqpoint{3.657368in}{1.644222in}}% +\pgfpathlineto{\pgfqpoint{3.579199in}{1.610334in}}% +\pgfpathlineto{\pgfqpoint{3.497564in}{1.580507in}}% +\pgfpathlineto{\pgfqpoint{3.412819in}{1.554933in}}% +\pgfpathlineto{\pgfqpoint{3.325342in}{1.533783in}}% +\pgfpathlineto{\pgfqpoint{3.235524in}{1.517213in}}% +\pgfpathlineto{\pgfqpoint{3.143774in}{1.505356in}}% +\pgfpathlineto{\pgfqpoint{3.050511in}{1.498327in}}% +\pgfpathlineto{\pgfqpoint{2.956169in}{1.496219in}}% +\pgfpathlineto{\pgfqpoint{2.861189in}{1.499102in}}% +\pgfpathlineto{\pgfqpoint{2.766019in}{1.507026in}}% +\pgfpathlineto{\pgfqpoint{2.671115in}{1.520016in}}% +\pgfpathlineto{\pgfqpoint{2.576935in}{1.538076in}}% +\pgfpathlineto{\pgfqpoint{2.483940in}{1.561185in}}% +\pgfpathlineto{\pgfqpoint{2.392589in}{1.589299in}}% +\pgfpathlineto{\pgfqpoint{2.303340in}{1.622350in}}% +\pgfpathlineto{\pgfqpoint{2.216645in}{1.660247in}}% +\pgfpathlineto{\pgfqpoint{2.132949in}{1.702875in}}% +\pgfpathlineto{\pgfqpoint{2.052690in}{1.750096in}}% +\pgfpathlineto{\pgfqpoint{1.976293in}{1.801750in}}% +\pgfpathlineto{\pgfqpoint{1.904172in}{1.857653in}}% +\pgfpathlineto{\pgfqpoint{1.836723in}{1.917602in}}% +\pgfpathlineto{\pgfqpoint{1.774328in}{1.981370in}}% +\pgfpathlineto{\pgfqpoint{1.717348in}{2.048712in}}% +\pgfpathlineto{\pgfqpoint{1.666124in}{2.119363in}}% +\pgfpathlineto{\pgfqpoint{1.620974in}{2.193040in}}% +\pgfpathlineto{\pgfqpoint{1.582192in}{2.269442in}}% +\pgfpathlineto{\pgfqpoint{1.550045in}{2.348253in}}% +\pgfpathlineto{\pgfqpoint{1.524775in}{2.429141in}}% +\pgfpathlineto{\pgfqpoint{1.506591in}{2.511764in}}% +\pgfpathlineto{\pgfqpoint{1.495676in}{2.595763in}}% +\pgfpathlineto{\pgfqpoint{1.492180in}{2.680773in}}% +\pgfpathlineto{\pgfqpoint{1.496219in}{2.766418in}}% +\pgfpathlineto{\pgfqpoint{1.507879in}{2.852315in}}% +\pgfpathlineto{\pgfqpoint{1.527209in}{2.938076in}}% +\pgfpathlineto{\pgfqpoint{1.554225in}{3.023310in}}% +\pgfpathlineto{\pgfqpoint{1.588909in}{3.107621in}}% +\pgfpathlineto{\pgfqpoint{1.631204in}{3.190617in}}% +\pgfpathlineto{\pgfqpoint{1.681021in}{3.271903in}}% +\pgfpathlineto{\pgfqpoint{1.738235in}{3.351092in}}% +\pgfpathlineto{\pgfqpoint{1.802684in}{3.427799in}}% +\pgfpathlineto{\pgfqpoint{1.874172in}{3.501647in}}% +\pgfpathlineto{\pgfqpoint{1.952470in}{3.572269in}}% +\pgfpathlineto{\pgfqpoint{2.037313in}{3.639306in}}% +\pgfpathlineto{\pgfqpoint{2.128405in}{3.702414in}}% +\pgfpathlineto{\pgfqpoint{2.225418in}{3.761262in}}% +\pgfpathlineto{\pgfqpoint{2.327993in}{3.815536in}}% +\pgfpathlineto{\pgfqpoint{2.435740in}{3.864938in}}% +\pgfpathlineto{\pgfqpoint{2.548245in}{3.909190in}}% +\pgfpathlineto{\pgfqpoint{2.665065in}{3.948033in}}% +\pgfpathlineto{\pgfqpoint{2.785734in}{3.981232in}}% +\pgfpathlineto{\pgfqpoint{2.909762in}{4.008574in}}% +\pgfpathlineto{\pgfqpoint{3.036639in}{4.029871in}}% +\pgfpathlineto{\pgfqpoint{3.165839in}{4.044961in}}% +\pgfpathlineto{\pgfqpoint{3.296817in}{4.053706in}}% +\pgfpathlineto{\pgfqpoint{3.429016in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.561867in}{4.051761in}}% +\pgfpathlineto{\pgfqpoint{3.694792in}{4.040939in}}% +\pgfpathlineto{\pgfqpoint{3.827209in}{4.023511in}}% +\pgfpathlineto{\pgfqpoint{3.958530in}{3.999486in}}% +\pgfpathlineto{\pgfqpoint{4.088167in}{3.968902in}}% +\pgfpathlineto{\pgfqpoint{4.215534in}{3.931828in}}% +\pgfpathlineto{\pgfqpoint{4.340051in}{3.888362in}}% +\pgfpathlineto{\pgfqpoint{4.461144in}{3.838634in}}% +\pgfpathlineto{\pgfqpoint{4.578248in}{3.782801in}}% +\pgfpathlineto{\pgfqpoint{4.690815in}{3.721053in}}% +\pgfpathlineto{\pgfqpoint{4.798309in}{3.653606in}}% +\pgfpathlineto{\pgfqpoint{4.900213in}{3.580704in}}% +\pgfpathlineto{\pgfqpoint{4.996032in}{3.502620in}}% +\pgfpathlineto{\pgfqpoint{5.085292in}{3.419651in}}% +\pgfpathlineto{\pgfqpoint{5.167549in}{3.332121in}}% +\pgfpathlineto{\pgfqpoint{5.242383in}{3.240375in}}% +\pgfpathlineto{\pgfqpoint{5.309406in}{3.144784in}}% +\pgfpathlineto{\pgfqpoint{5.368262in}{3.045736in}}% +\pgfpathlineto{\pgfqpoint{5.418631in}{2.943641in}}% +\pgfpathlineto{\pgfqpoint{5.460227in}{2.838924in}}% +\pgfpathlineto{\pgfqpoint{5.492804in}{2.732027in}}% +\pgfpathlineto{\pgfqpoint{5.516154in}{2.623406in}}% +\pgfpathlineto{\pgfqpoint{5.530109in}{2.513527in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.402867in}}% +\pgfpathlineto{\pgfqpoint{5.529381in}{2.291908in}}% +\pgfpathlineto{\pgfqpoint{5.514576in}{2.181141in}}% +\pgfpathlineto{\pgfqpoint{5.490138in}{2.071056in}}% +\pgfpathlineto{\pgfqpoint{5.456115in}{1.962145in}}% +\pgfpathlineto{\pgfqpoint{5.412604in}{1.854898in}}% +\pgfpathlineto{\pgfqpoint{5.359742in}{1.749802in}}% +\pgfpathlineto{\pgfqpoint{5.297714in}{1.647336in}}% +\pgfpathlineto{\pgfqpoint{5.226748in}{1.547970in}}% +\pgfpathlineto{\pgfqpoint{5.147113in}{1.452165in}}% +\pgfpathlineto{\pgfqpoint{5.059123in}{1.360366in}}% +\pgfpathlineto{\pgfqpoint{4.963131in}{1.273003in}}% +\pgfpathlineto{\pgfqpoint{4.859530in}{1.190491in}}% +\pgfpathlineto{\pgfqpoint{4.748751in}{1.113220in}}% +\pgfpathlineto{\pgfqpoint{4.631262in}{1.041563in}}% +\pgfpathlineto{\pgfqpoint{4.507564in}{0.975865in}}% +\pgfpathlineto{\pgfqpoint{4.378193in}{0.916449in}}% +\pgfpathlineto{\pgfqpoint{4.243711in}{0.863607in}}% +\pgfpathlineto{\pgfqpoint{4.104710in}{0.817604in}}% +\pgfpathlineto{\pgfqpoint{3.961806in}{0.778674in}}% +\pgfpathlineto{\pgfqpoint{3.815636in}{0.747018in}}% +\pgfpathlineto{\pgfqpoint{3.666859in}{0.722806in}}% +\pgfpathlineto{\pgfqpoint{3.516147in}{0.706172in}}% +\pgfpathlineto{\pgfqpoint{3.364185in}{0.697216in}}% +\pgfpathlineto{\pgfqpoint{3.211670in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.059303in}{0.702552in}}% +\pgfpathlineto{\pgfqpoint{2.907790in}{0.716862in}}% +\pgfpathlineto{\pgfqpoint{2.757834in}{0.738883in}}% +\pgfpathlineto{\pgfqpoint{2.610136in}{0.768532in}}% +\pgfpathlineto{\pgfqpoint{2.465390in}{0.805687in}}% +\pgfpathlineto{\pgfqpoint{2.324277in}{0.850192in}}% +\pgfpathlineto{\pgfqpoint{2.187467in}{0.901852in}}% +\pgfpathlineto{\pgfqpoint{2.055610in}{0.960440in}}% +\pgfpathlineto{\pgfqpoint{1.929335in}{1.025692in}}% +\pgfpathlineto{\pgfqpoint{1.809250in}{1.097312in}}% +\pgfpathlineto{\pgfqpoint{1.695932in}{1.174971in}}% +\pgfpathlineto{\pgfqpoint{1.589930in}{1.258310in}}% +\pgfpathlineto{\pgfqpoint{1.491760in}{1.346940in}}% +\pgfpathlineto{\pgfqpoint{1.401900in}{1.440445in}}% +\pgfpathlineto{\pgfqpoint{1.320792in}{1.538385in}}% +\pgfpathlineto{\pgfqpoint{1.248836in}{1.640294in}}% +\pgfpathlineto{\pgfqpoint{1.186388in}{1.745686in}}% +\pgfpathlineto{\pgfqpoint{1.133760in}{1.854056in}}% +\pgfpathlineto{\pgfqpoint{1.091217in}{1.964882in}}% +\pgfpathlineto{\pgfqpoint{1.058974in}{2.077628in}}% +\pgfpathlineto{\pgfqpoint{1.037198in}{2.191746in}}% +\pgfpathlineto{\pgfqpoint{1.026004in}{2.306681in}}% +\pgfpathlineto{\pgfqpoint{1.025455in}{2.421870in}}% +\pgfpathlineto{\pgfqpoint{1.035559in}{2.536747in}}% +\pgfpathlineto{\pgfqpoint{1.056276in}{2.650746in}}% +\pgfpathlineto{\pgfqpoint{1.087509in}{2.763303in}}% +\pgfpathlineto{\pgfqpoint{1.129109in}{2.873860in}}% +\pgfpathlineto{\pgfqpoint{1.180876in}{2.981866in}}% +\pgfpathlineto{\pgfqpoint{1.242556in}{3.086782in}}% +\pgfpathlineto{\pgfqpoint{1.313846in}{3.188081in}}% +\pgfpathlineto{\pgfqpoint{1.394394in}{3.285254in}}% +\pgfpathlineto{\pgfqpoint{1.483797in}{3.377811in}}% +\pgfpathlineto{\pgfqpoint{1.581610in}{3.465285in}}% +\pgfpathlineto{\pgfqpoint{1.687341in}{3.547229in}}% +\pgfpathlineto{\pgfqpoint{1.800458in}{3.623228in}}% +\pgfpathlineto{\pgfqpoint{1.920388in}{3.692892in}}% +\pgfpathlineto{\pgfqpoint{2.046523in}{3.755865in}}% +\pgfpathlineto{\pgfqpoint{2.178221in}{3.811822in}}% +\pgfpathlineto{\pgfqpoint{2.314808in}{3.860473in}}% +\pgfpathlineto{\pgfqpoint{2.455585in}{3.901567in}}% +\pgfpathlineto{\pgfqpoint{2.599829in}{3.934889in}}% +\pgfpathlineto{\pgfqpoint{2.746795in}{3.960264in}}% +\pgfpathlineto{\pgfqpoint{2.895725in}{3.977557in}}% +\pgfpathlineto{\pgfqpoint{3.045845in}{3.986676in}}% +\pgfpathlineto{\pgfqpoint{3.196376in}{3.987571in}}% +\pgfpathlineto{\pgfqpoint{3.346531in}{3.980232in}}% +\pgfpathlineto{\pgfqpoint{3.495527in}{3.964695in}}% +\pgfpathlineto{\pgfqpoint{3.642582in}{3.941038in}}% +\pgfpathlineto{\pgfqpoint{3.786921in}{3.909381in}}% +\pgfpathlineto{\pgfqpoint{3.927784in}{3.869888in}}% +\pgfpathlineto{\pgfqpoint{4.064426in}{3.822762in}}% +\pgfpathlineto{\pgfqpoint{4.196121in}{3.768249in}}% +\pgfpathlineto{\pgfqpoint{4.322168in}{3.706635in}}% +\pgfpathlineto{\pgfqpoint{4.441894in}{3.638242in}}% +\pgfpathlineto{\pgfqpoint{4.554658in}{3.563431in}}% +\pgfpathlineto{\pgfqpoint{4.659854in}{3.482597in}}% +\pgfpathlineto{\pgfqpoint{4.756914in}{3.396170in}}% +\pgfpathlineto{\pgfqpoint{4.845312in}{3.304607in}}% +\pgfpathlineto{\pgfqpoint{4.924568in}{3.208399in}}% +\pgfpathlineto{\pgfqpoint{4.994249in}{3.108059in}}% +\pgfpathlineto{\pgfqpoint{5.053971in}{3.004126in}}% +\pgfpathlineto{\pgfqpoint{5.103404in}{2.897158in}}% +\pgfpathlineto{\pgfqpoint{5.142273in}{2.787733in}}% +\pgfpathlineto{\pgfqpoint{5.170358in}{2.676442in}}% +\pgfpathlineto{\pgfqpoint{5.187497in}{2.563889in}}% +\pgfpathlineto{\pgfqpoint{5.193588in}{2.450686in}}% +\pgfpathlineto{\pgfqpoint{5.188587in}{2.337451in}}% +\pgfpathlineto{\pgfqpoint{5.172513in}{2.224802in}}% +\pgfpathlineto{\pgfqpoint{5.145442in}{2.113357in}}% +\pgfpathlineto{\pgfqpoint{5.107513in}{2.003730in}}% +\pgfpathlineto{\pgfqpoint{5.058924in}{1.896525in}}% +\pgfpathlineto{\pgfqpoint{4.999933in}{1.792335in}}% +\pgfpathlineto{\pgfqpoint{4.930854in}{1.691738in}}% +\pgfpathlineto{\pgfqpoint{4.852060in}{1.595295in}}% +\pgfpathlineto{\pgfqpoint{4.763977in}{1.503544in}}% +\pgfpathlineto{\pgfqpoint{4.667083in}{1.417000in}}% +\pgfpathlineto{\pgfqpoint{4.561910in}{1.336149in}}% +\pgfpathlineto{\pgfqpoint{4.449033in}{1.261448in}}% +\pgfpathlineto{\pgfqpoint{4.329074in}{1.193322in}}% +\pgfpathlineto{\pgfqpoint{4.202697in}{1.132158in}}% +\pgfpathlineto{\pgfqpoint{4.070602in}{1.078307in}}% +\pgfpathlineto{\pgfqpoint{3.933525in}{1.032081in}}% +\pgfpathlineto{\pgfqpoint{3.792231in}{0.993747in}}% +\pgfpathlineto{\pgfqpoint{3.647512in}{0.963532in}}% +\pgfpathlineto{\pgfqpoint{3.500180in}{0.941616in}}% +\pgfpathlineto{\pgfqpoint{3.351067in}{0.928132in}}% +\pgfpathlineto{\pgfqpoint{3.201016in}{0.923167in}}% +\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% +\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/zeta_re_0.5_plot.pgf b/buch/papers/zeta/zeta_re_0.5_plot.pgf new file mode 100644 index 0000000..3ac7df8 --- /dev/null +++ b/buch/papers/zeta/zeta_re_0.5_plot.pgf @@ -0,0 +1,1206 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.497200in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.497200in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.521943in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.521943in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.546687in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.546687in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.571430in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.571430in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.596173in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.596173in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.894147in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=0.855567in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.374788in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=1.336208in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.855429in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=1.816849in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.336069in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=2.297489in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.816710in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=2.778130in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.297351in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=3.258771in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.777992in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=3.739411in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.404549in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.025455in}{2.336069in}}% +\pgfpathlineto{\pgfqpoint{1.038495in}{2.186217in}}% +\pgfpathlineto{\pgfqpoint{1.076639in}{2.042087in}}% +\pgfpathlineto{\pgfqpoint{1.137137in}{1.908708in}}% +\pgfpathlineto{\pgfqpoint{1.215937in}{1.789896in}}% +\pgfpathlineto{\pgfqpoint{1.308314in}{1.687993in}}% +\pgfpathlineto{\pgfqpoint{1.409481in}{1.603898in}}% +\pgfpathlineto{\pgfqpoint{1.515072in}{1.537295in}}% +\pgfpathlineto{\pgfqpoint{1.621432in}{1.486981in}}% +\pgfpathlineto{\pgfqpoint{1.725731in}{1.451216in}}% +\pgfpathlineto{\pgfqpoint{1.825942in}{1.428011in}}% +\pgfpathlineto{\pgfqpoint{1.920744in}{1.415352in}}% +\pgfpathlineto{\pgfqpoint{2.009382in}{1.411339in}}% +\pgfpathlineto{\pgfqpoint{2.091535in}{1.414268in}}% +\pgfpathlineto{\pgfqpoint{2.167190in}{1.422662in}}% +\pgfpathlineto{\pgfqpoint{2.236544in}{1.435276in}}% +\pgfpathlineto{\pgfqpoint{2.299923in}{1.451081in}}% +\pgfpathlineto{\pgfqpoint{2.357727in}{1.469237in}}% +\pgfpathlineto{\pgfqpoint{2.410389in}{1.489073in}}% +\pgfpathlineto{\pgfqpoint{2.458347in}{1.510052in}}% +\pgfpathlineto{\pgfqpoint{2.502030in}{1.531753in}}% +\pgfpathlineto{\pgfqpoint{2.541842in}{1.553849in}}% +\pgfpathlineto{\pgfqpoint{2.578159in}{1.576085in}}% +\pgfpathlineto{\pgfqpoint{2.611326in}{1.598269in}}% +\pgfpathlineto{\pgfqpoint{2.641659in}{1.620252in}}% +\pgfpathlineto{\pgfqpoint{2.694929in}{1.663218in}}% +\pgfpathlineto{\pgfqpoint{2.739912in}{1.704430in}}% +\pgfpathlineto{\pgfqpoint{2.778168in}{1.743637in}}% +\pgfpathlineto{\pgfqpoint{2.810942in}{1.780765in}}% +\pgfpathlineto{\pgfqpoint{2.839224in}{1.815845in}}% +\pgfpathlineto{\pgfqpoint{2.874923in}{1.864826in}}% +\pgfpathlineto{\pgfqpoint{2.904327in}{1.909812in}}% +\pgfpathlineto{\pgfqpoint{2.928933in}{1.951250in}}% +\pgfpathlineto{\pgfqpoint{2.956147in}{2.001721in}}% +\pgfpathlineto{\pgfqpoint{2.983709in}{2.058389in}}% +\pgfpathlineto{\pgfqpoint{3.010449in}{2.118876in}}% +\pgfpathlineto{\pgfqpoint{3.046181in}{2.206269in}}% +\pgfpathlineto{\pgfqpoint{3.091487in}{2.316676in}}% +\pgfpathlineto{\pgfqpoint{3.115316in}{2.368880in}}% +\pgfpathlineto{\pgfqpoint{3.137213in}{2.411802in}}% +\pgfpathlineto{\pgfqpoint{3.160720in}{2.452550in}}% +\pgfpathlineto{\pgfqpoint{3.182543in}{2.485902in}}% +\pgfpathlineto{\pgfqpoint{3.206220in}{2.517844in}}% +\pgfpathlineto{\pgfqpoint{3.232012in}{2.548337in}}% +\pgfpathlineto{\pgfqpoint{3.255293in}{2.572564in}}% +\pgfpathlineto{\pgfqpoint{3.280331in}{2.595610in}}% +\pgfpathlineto{\pgfqpoint{3.307232in}{2.617345in}}% +\pgfpathlineto{\pgfqpoint{3.336086in}{2.637605in}}% +\pgfpathlineto{\pgfqpoint{3.366959in}{2.656195in}}% +\pgfpathlineto{\pgfqpoint{3.399890in}{2.672893in}}% +\pgfpathlineto{\pgfqpoint{3.427726in}{2.684718in}}% +\pgfpathlineto{\pgfqpoint{3.456874in}{2.695029in}}% +\pgfpathlineto{\pgfqpoint{3.487307in}{2.703674in}}% +\pgfpathlineto{\pgfqpoint{3.518978in}{2.710490in}}% +\pgfpathlineto{\pgfqpoint{3.551819in}{2.715311in}}% +\pgfpathlineto{\pgfqpoint{3.585740in}{2.717962in}}% +\pgfpathlineto{\pgfqpoint{3.620624in}{2.718264in}}% +\pgfpathlineto{\pgfqpoint{3.656331in}{2.716038in}}% +\pgfpathlineto{\pgfqpoint{3.692689in}{2.711104in}}% +\pgfpathlineto{\pgfqpoint{3.729498in}{2.703288in}}% +\pgfpathlineto{\pgfqpoint{3.757261in}{2.695433in}}% +\pgfpathlineto{\pgfqpoint{3.785039in}{2.685796in}}% +\pgfpathlineto{\pgfqpoint{3.812709in}{2.674315in}}% +\pgfpathlineto{\pgfqpoint{3.840140in}{2.660933in}}% +\pgfpathlineto{\pgfqpoint{3.867192in}{2.645601in}}% +\pgfpathlineto{\pgfqpoint{3.893712in}{2.628278in}}% +\pgfpathlineto{\pgfqpoint{3.919537in}{2.608930in}}% +\pgfpathlineto{\pgfqpoint{3.944495in}{2.587536in}}% +\pgfpathlineto{\pgfqpoint{3.968405in}{2.564086in}}% +\pgfpathlineto{\pgfqpoint{3.991077in}{2.538582in}}% +\pgfpathlineto{\pgfqpoint{4.012311in}{2.511041in}}% +\pgfpathlineto{\pgfqpoint{4.031904in}{2.481497in}}% +\pgfpathlineto{\pgfqpoint{4.049645in}{2.449999in}}% +\pgfpathlineto{\pgfqpoint{4.065318in}{2.416614in}}% +\pgfpathlineto{\pgfqpoint{4.078707in}{2.381431in}}% +\pgfpathlineto{\pgfqpoint{4.089591in}{2.344557in}}% +\pgfpathlineto{\pgfqpoint{4.097755in}{2.306122in}}% +\pgfpathlineto{\pgfqpoint{4.102982in}{2.266278in}}% +\pgfpathlineto{\pgfqpoint{4.105064in}{2.225199in}}% +\pgfpathlineto{\pgfqpoint{4.104606in}{2.197224in}}% +\pgfpathlineto{\pgfqpoint{4.102602in}{2.168853in}}% +\pgfpathlineto{\pgfqpoint{4.099000in}{2.140155in}}% +\pgfpathlineto{\pgfqpoint{4.093747in}{2.111205in}}% +\pgfpathlineto{\pgfqpoint{4.086794in}{2.082081in}}% +\pgfpathlineto{\pgfqpoint{4.078098in}{2.052867in}}% +\pgfpathlineto{\pgfqpoint{4.067617in}{2.023651in}}% +\pgfpathlineto{\pgfqpoint{4.055316in}{1.994526in}}% +\pgfpathlineto{\pgfqpoint{4.041162in}{1.965588in}}% +\pgfpathlineto{\pgfqpoint{4.025130in}{1.936939in}}% +\pgfpathlineto{\pgfqpoint{4.007201in}{1.908684in}}% +\pgfpathlineto{\pgfqpoint{3.987360in}{1.880930in}}% +\pgfpathlineto{\pgfqpoint{3.965600in}{1.853790in}}% +\pgfpathlineto{\pgfqpoint{3.941922in}{1.827380in}}% +\pgfpathlineto{\pgfqpoint{3.916332in}{1.801817in}}% +\pgfpathlineto{\pgfqpoint{3.888846in}{1.777221in}}% +\pgfpathlineto{\pgfqpoint{3.859487in}{1.753715in}}% +\pgfpathlineto{\pgfqpoint{3.828289in}{1.731423in}}% +\pgfpathlineto{\pgfqpoint{3.795290in}{1.710468in}}% +\pgfpathlineto{\pgfqpoint{3.760543in}{1.690977in}}% +\pgfpathlineto{\pgfqpoint{3.724108in}{1.673073in}}% +\pgfpathlineto{\pgfqpoint{3.686052in}{1.656883in}}% +\pgfpathlineto{\pgfqpoint{3.646457in}{1.642528in}}% +\pgfpathlineto{\pgfqpoint{3.605412in}{1.630130in}}% +\pgfpathlineto{\pgfqpoint{3.563018in}{1.619807in}}% +\pgfpathlineto{\pgfqpoint{3.519383in}{1.611674in}}% +\pgfpathlineto{\pgfqpoint{3.474630in}{1.605842in}}% +\pgfpathlineto{\pgfqpoint{3.428888in}{1.602417in}}% +\pgfpathlineto{\pgfqpoint{3.382299in}{1.601500in}}% +\pgfpathlineto{\pgfqpoint{3.335015in}{1.603183in}}% +\pgfpathlineto{\pgfqpoint{3.287195in}{1.607554in}}% +\pgfpathlineto{\pgfqpoint{3.239010in}{1.614690in}}% +\pgfpathlineto{\pgfqpoint{3.190641in}{1.624662in}}% +\pgfpathlineto{\pgfqpoint{3.142274in}{1.637528in}}% +\pgfpathlineto{\pgfqpoint{3.094105in}{1.653339in}}% +\pgfpathlineto{\pgfqpoint{3.046340in}{1.672132in}}% +\pgfpathlineto{\pgfqpoint{2.999188in}{1.693933in}}% +\pgfpathlineto{\pgfqpoint{2.952866in}{1.718754in}}% +\pgfpathlineto{\pgfqpoint{2.907596in}{1.746596in}}% +\pgfpathlineto{\pgfqpoint{2.863604in}{1.777444in}}% +\pgfpathlineto{\pgfqpoint{2.821120in}{1.811267in}}% +\pgfpathlineto{\pgfqpoint{2.780377in}{1.848022in}}% +\pgfpathlineto{\pgfqpoint{2.741607in}{1.887648in}}% +\pgfpathlineto{\pgfqpoint{2.705043in}{1.930067in}}% +\pgfpathlineto{\pgfqpoint{2.670919in}{1.975186in}}% +\pgfpathlineto{\pgfqpoint{2.639462in}{2.022894in}}% +\pgfpathlineto{\pgfqpoint{2.610899in}{2.073064in}}% +\pgfpathlineto{\pgfqpoint{2.585449in}{2.125551in}}% +\pgfpathlineto{\pgfqpoint{2.563326in}{2.180192in}}% +\pgfpathlineto{\pgfqpoint{2.544735in}{2.236809in}}% +\pgfpathlineto{\pgfqpoint{2.529870in}{2.295206in}}% +\pgfpathlineto{\pgfqpoint{2.518915in}{2.355170in}}% +\pgfpathlineto{\pgfqpoint{2.512042in}{2.416472in}}% +\pgfpathlineto{\pgfqpoint{2.509405in}{2.478869in}}% +\pgfpathlineto{\pgfqpoint{2.511144in}{2.542101in}}% +\pgfpathlineto{\pgfqpoint{2.513695in}{2.573946in}}% +\pgfpathlineto{\pgfqpoint{2.517384in}{2.605896in}}% +\pgfpathlineto{\pgfqpoint{2.522223in}{2.637916in}}% +\pgfpathlineto{\pgfqpoint{2.528225in}{2.669968in}}% +\pgfpathlineto{\pgfqpoint{2.535399in}{2.702015in}}% +\pgfpathlineto{\pgfqpoint{2.543753in}{2.734019in}}% +\pgfpathlineto{\pgfqpoint{2.553294in}{2.765941in}}% +\pgfpathlineto{\pgfqpoint{2.564027in}{2.797742in}}% +\pgfpathlineto{\pgfqpoint{2.575957in}{2.829381in}}% +\pgfpathlineto{\pgfqpoint{2.589086in}{2.860819in}}% +\pgfpathlineto{\pgfqpoint{2.603415in}{2.892013in}}% +\pgfpathlineto{\pgfqpoint{2.618943in}{2.922924in}}% +\pgfpathlineto{\pgfqpoint{2.635668in}{2.953509in}}% +\pgfpathlineto{\pgfqpoint{2.653587in}{2.983727in}}% +\pgfpathlineto{\pgfqpoint{2.672693in}{3.013535in}}% +\pgfpathlineto{\pgfqpoint{2.692980in}{3.042891in}}% +\pgfpathlineto{\pgfqpoint{2.714437in}{3.071753in}}% +\pgfpathlineto{\pgfqpoint{2.737055in}{3.100078in}}% +\pgfpathlineto{\pgfqpoint{2.760822in}{3.127825in}}% +\pgfpathlineto{\pgfqpoint{2.785721in}{3.154950in}}% +\pgfpathlineto{\pgfqpoint{2.811738in}{3.181412in}}% +\pgfpathlineto{\pgfqpoint{2.838855in}{3.207169in}}% +\pgfpathlineto{\pgfqpoint{2.867052in}{3.232178in}}% +\pgfpathlineto{\pgfqpoint{2.896306in}{3.256399in}}% +\pgfpathlineto{\pgfqpoint{2.926596in}{3.279792in}}% +\pgfpathlineto{\pgfqpoint{2.957895in}{3.302315in}}% +\pgfpathlineto{\pgfqpoint{2.990177in}{3.323928in}}% +\pgfpathlineto{\pgfqpoint{3.023412in}{3.344593in}}% +\pgfpathlineto{\pgfqpoint{3.057571in}{3.364272in}}% +\pgfpathlineto{\pgfqpoint{3.092620in}{3.382926in}}% +\pgfpathlineto{\pgfqpoint{3.128525in}{3.400519in}}% +\pgfpathlineto{\pgfqpoint{3.165251in}{3.417015in}}% +\pgfpathlineto{\pgfqpoint{3.202759in}{3.432378in}}% +\pgfpathlineto{\pgfqpoint{3.241010in}{3.446577in}}% +\pgfpathlineto{\pgfqpoint{3.279964in}{3.459577in}}% +\pgfpathlineto{\pgfqpoint{3.319577in}{3.471347in}}% +\pgfpathlineto{\pgfqpoint{3.359805in}{3.481858in}}% +\pgfpathlineto{\pgfqpoint{3.400602in}{3.491080in}}% +\pgfpathlineto{\pgfqpoint{3.441920in}{3.498987in}}% +\pgfpathlineto{\pgfqpoint{3.483711in}{3.505553in}}% +\pgfpathlineto{\pgfqpoint{3.525925in}{3.510753in}}% +\pgfpathlineto{\pgfqpoint{3.568510in}{3.514565in}}% +\pgfpathlineto{\pgfqpoint{3.611412in}{3.516968in}}% +\pgfpathlineto{\pgfqpoint{3.654577in}{3.517944in}}% +\pgfpathlineto{\pgfqpoint{3.697951in}{3.517475in}}% +\pgfpathlineto{\pgfqpoint{3.741477in}{3.515545in}}% +\pgfpathlineto{\pgfqpoint{3.785096in}{3.512142in}}% +\pgfpathlineto{\pgfqpoint{3.828751in}{3.507255in}}% +\pgfpathlineto{\pgfqpoint{3.872382in}{3.500873in}}% +\pgfpathlineto{\pgfqpoint{3.915929in}{3.492991in}}% +\pgfpathlineto{\pgfqpoint{3.959331in}{3.483603in}}% +\pgfpathlineto{\pgfqpoint{4.002527in}{3.472706in}}% +\pgfpathlineto{\pgfqpoint{4.045454in}{3.460300in}}% +\pgfpathlineto{\pgfqpoint{4.088051in}{3.446387in}}% +\pgfpathlineto{\pgfqpoint{4.130253in}{3.430972in}}% +\pgfpathlineto{\pgfqpoint{4.171999in}{3.414060in}}% +\pgfpathlineto{\pgfqpoint{4.213225in}{3.395660in}}% +\pgfpathlineto{\pgfqpoint{4.253867in}{3.375785in}}% +\pgfpathlineto{\pgfqpoint{4.293863in}{3.354448in}}% +\pgfpathlineto{\pgfqpoint{4.333150in}{3.331664in}}% +\pgfpathlineto{\pgfqpoint{4.371664in}{3.307454in}}% +\pgfpathlineto{\pgfqpoint{4.409344in}{3.281838in}}% +\pgfpathlineto{\pgfqpoint{4.446129in}{3.254841in}}% +\pgfpathlineto{\pgfqpoint{4.481956in}{3.226487in}}% +\pgfpathlineto{\pgfqpoint{4.516765in}{3.196806in}}% +\pgfpathlineto{\pgfqpoint{4.550497in}{3.165829in}}% +\pgfpathlineto{\pgfqpoint{4.583094in}{3.133590in}}% +\pgfpathlineto{\pgfqpoint{4.614497in}{3.100124in}}% +\pgfpathlineto{\pgfqpoint{4.644652in}{3.065470in}}% +\pgfpathlineto{\pgfqpoint{4.673502in}{3.029670in}}% +\pgfpathlineto{\pgfqpoint{4.700994in}{2.992765in}}% +\pgfpathlineto{\pgfqpoint{4.727078in}{2.954802in}}% +\pgfpathlineto{\pgfqpoint{4.751701in}{2.915828in}}% +\pgfpathlineto{\pgfqpoint{4.774817in}{2.875894in}}% +\pgfpathlineto{\pgfqpoint{4.796377in}{2.835051in}}% +\pgfpathlineto{\pgfqpoint{4.816339in}{2.793353in}}% +\pgfpathlineto{\pgfqpoint{4.834660in}{2.750857in}}% +\pgfpathlineto{\pgfqpoint{4.851300in}{2.707620in}}% +\pgfpathlineto{\pgfqpoint{4.866220in}{2.663704in}}% +\pgfpathlineto{\pgfqpoint{4.879386in}{2.619169in}}% +\pgfpathlineto{\pgfqpoint{4.890764in}{2.574079in}}% +\pgfpathlineto{\pgfqpoint{4.900326in}{2.528500in}}% +\pgfpathlineto{\pgfqpoint{4.908043in}{2.482498in}}% +\pgfpathlineto{\pgfqpoint{4.913891in}{2.436141in}}% +\pgfpathlineto{\pgfqpoint{4.917848in}{2.389499in}}% +\pgfpathlineto{\pgfqpoint{4.919896in}{2.342642in}}% +\pgfpathlineto{\pgfqpoint{4.920018in}{2.295642in}}% +\pgfpathlineto{\pgfqpoint{4.918204in}{2.248572in}}% +\pgfpathlineto{\pgfqpoint{4.914443in}{2.201505in}}% +\pgfpathlineto{\pgfqpoint{4.908729in}{2.154516in}}% +\pgfpathlineto{\pgfqpoint{4.901061in}{2.107680in}}% +\pgfpathlineto{\pgfqpoint{4.891438in}{2.061071in}}% +\pgfpathlineto{\pgfqpoint{4.879865in}{2.014767in}}% +\pgfpathlineto{\pgfqpoint{4.866349in}{1.968842in}}% +\pgfpathlineto{\pgfqpoint{4.850903in}{1.923372in}}% +\pgfpathlineto{\pgfqpoint{4.833539in}{1.878435in}}% +\pgfpathlineto{\pgfqpoint{4.814277in}{1.834104in}}% +\pgfpathlineto{\pgfqpoint{4.793138in}{1.790456in}}% +\pgfpathlineto{\pgfqpoint{4.770148in}{1.747565in}}% +\pgfpathlineto{\pgfqpoint{4.745336in}{1.705506in}}% +\pgfpathlineto{\pgfqpoint{4.718733in}{1.664351in}}% +\pgfpathlineto{\pgfqpoint{4.690376in}{1.624173in}}% +\pgfpathlineto{\pgfqpoint{4.660304in}{1.585043in}}% +\pgfpathlineto{\pgfqpoint{4.628560in}{1.547031in}}% +\pgfpathlineto{\pgfqpoint{4.595190in}{1.510205in}}% +\pgfpathlineto{\pgfqpoint{4.560244in}{1.474631in}}% +\pgfpathlineto{\pgfqpoint{4.523775in}{1.440375in}}% +\pgfpathlineto{\pgfqpoint{4.485839in}{1.407500in}}% +\pgfpathlineto{\pgfqpoint{4.446495in}{1.376067in}}% +\pgfpathlineto{\pgfqpoint{4.405807in}{1.346135in}}% +\pgfpathlineto{\pgfqpoint{4.363840in}{1.317760in}}% +\pgfpathlineto{\pgfqpoint{4.320661in}{1.290996in}}% +\pgfpathlineto{\pgfqpoint{4.276342in}{1.265894in}}% +\pgfpathlineto{\pgfqpoint{4.230958in}{1.242504in}}% +\pgfpathlineto{\pgfqpoint{4.184585in}{1.220870in}}% +\pgfpathlineto{\pgfqpoint{4.137302in}{1.201036in}}% +\pgfpathlineto{\pgfqpoint{4.089189in}{1.183041in}}% +\pgfpathlineto{\pgfqpoint{4.040332in}{1.166921in}}% +\pgfpathlineto{\pgfqpoint{3.990814in}{1.152709in}}% +\pgfpathlineto{\pgfqpoint{3.940724in}{1.140435in}}% +\pgfpathlineto{\pgfqpoint{3.890151in}{1.130125in}}% +\pgfpathlineto{\pgfqpoint{3.839186in}{1.121800in}}% +\pgfpathlineto{\pgfqpoint{3.787920in}{1.115478in}}% +\pgfpathlineto{\pgfqpoint{3.736447in}{1.111176in}}% +\pgfpathlineto{\pgfqpoint{3.684861in}{1.108902in}}% +\pgfpathlineto{\pgfqpoint{3.633258in}{1.108664in}}% +\pgfpathlineto{\pgfqpoint{3.581732in}{1.110465in}}% +\pgfpathlineto{\pgfqpoint{3.530381in}{1.114302in}}% +\pgfpathlineto{\pgfqpoint{3.479301in}{1.120170in}}% +\pgfpathlineto{\pgfqpoint{3.428588in}{1.128060in}}% +\pgfpathlineto{\pgfqpoint{3.378339in}{1.137957in}}% +\pgfpathlineto{\pgfqpoint{3.328650in}{1.149844in}}% +\pgfpathlineto{\pgfqpoint{3.279615in}{1.163697in}}% +\pgfpathlineto{\pgfqpoint{3.231330in}{1.179491in}}% +\pgfpathlineto{\pgfqpoint{3.183888in}{1.197194in}}% +\pgfpathlineto{\pgfqpoint{3.137381in}{1.216772in}}% +\pgfpathlineto{\pgfqpoint{3.091900in}{1.238185in}}% +\pgfpathlineto{\pgfqpoint{3.047534in}{1.261391in}}% +\pgfpathlineto{\pgfqpoint{3.004371in}{1.286341in}}% +\pgfpathlineto{\pgfqpoint{2.962495in}{1.312986in}}% +\pgfpathlineto{\pgfqpoint{2.921989in}{1.341270in}}% +\pgfpathlineto{\pgfqpoint{2.882933in}{1.371133in}}% +\pgfpathlineto{\pgfqpoint{2.845406in}{1.402515in}}% +\pgfpathlineto{\pgfqpoint{2.809481in}{1.435348in}}% +\pgfpathlineto{\pgfqpoint{2.775231in}{1.469563in}}% +\pgfpathlineto{\pgfqpoint{2.742722in}{1.505086in}}% +\pgfpathlineto{\pgfqpoint{2.712020in}{1.541842in}}% +\pgfpathlineto{\pgfqpoint{2.683186in}{1.579752in}}% +\pgfpathlineto{\pgfqpoint{2.656277in}{1.618732in}}% +\pgfpathlineto{\pgfqpoint{2.631345in}{1.658699in}}% +\pgfpathlineto{\pgfqpoint{2.608440in}{1.699564in}}% +\pgfpathlineto{\pgfqpoint{2.587605in}{1.741238in}}% +\pgfpathlineto{\pgfqpoint{2.568881in}{1.783627in}}% +\pgfpathlineto{\pgfqpoint{2.552303in}{1.826639in}}% +\pgfpathlineto{\pgfqpoint{2.537901in}{1.870177in}}% +\pgfpathlineto{\pgfqpoint{2.525701in}{1.914142in}}% +\pgfpathlineto{\pgfqpoint{2.515723in}{1.958437in}}% +\pgfpathlineto{\pgfqpoint{2.507983in}{2.002961in}}% +\pgfpathlineto{\pgfqpoint{2.502491in}{2.047612in}}% +\pgfpathlineto{\pgfqpoint{2.499252in}{2.092289in}}% +\pgfpathlineto{\pgfqpoint{2.498266in}{2.136889in}}% +\pgfpathlineto{\pgfqpoint{2.499526in}{2.181310in}}% +\pgfpathlineto{\pgfqpoint{2.503023in}{2.225449in}}% +\pgfpathlineto{\pgfqpoint{2.508739in}{2.269204in}}% +\pgfpathlineto{\pgfqpoint{2.516653in}{2.312473in}}% +\pgfpathlineto{\pgfqpoint{2.526738in}{2.355155in}}% +\pgfpathlineto{\pgfqpoint{2.538959in}{2.397151in}}% +\pgfpathlineto{\pgfqpoint{2.553280in}{2.438361in}}% +\pgfpathlineto{\pgfqpoint{2.569657in}{2.478689in}}% +\pgfpathlineto{\pgfqpoint{2.588041in}{2.518040in}}% +\pgfpathlineto{\pgfqpoint{2.608379in}{2.556320in}}% +\pgfpathlineto{\pgfqpoint{2.630611in}{2.593438in}}% +\pgfpathlineto{\pgfqpoint{2.654673in}{2.629307in}}% +\pgfpathlineto{\pgfqpoint{2.680496in}{2.663841in}}% +\pgfpathlineto{\pgfqpoint{2.708008in}{2.696959in}}% +\pgfpathlineto{\pgfqpoint{2.737128in}{2.728580in}}% +\pgfpathlineto{\pgfqpoint{2.767776in}{2.758629in}}% +\pgfpathlineto{\pgfqpoint{2.799864in}{2.787036in}}% +\pgfpathlineto{\pgfqpoint{2.833301in}{2.813732in}}% +\pgfpathlineto{\pgfqpoint{2.867991in}{2.838654in}}% +\pgfpathlineto{\pgfqpoint{2.903838in}{2.861744in}}% +\pgfpathlineto{\pgfqpoint{2.940738in}{2.882946in}}% +\pgfpathlineto{\pgfqpoint{2.978586in}{2.902211in}}% +\pgfpathlineto{\pgfqpoint{3.017274in}{2.919494in}}% +\pgfpathlineto{\pgfqpoint{3.056692in}{2.934757in}}% +\pgfpathlineto{\pgfqpoint{3.096726in}{2.947965in}}% +\pgfpathlineto{\pgfqpoint{3.137261in}{2.959089in}}% +\pgfpathlineto{\pgfqpoint{3.178179in}{2.968106in}}% +\pgfpathlineto{\pgfqpoint{3.219362in}{2.974999in}}% +\pgfpathlineto{\pgfqpoint{3.260689in}{2.979756in}}% +\pgfpathlineto{\pgfqpoint{3.302041in}{2.982370in}}% +\pgfpathlineto{\pgfqpoint{3.343294in}{2.982843in}}% +\pgfpathlineto{\pgfqpoint{3.384328in}{2.981180in}}% +\pgfpathlineto{\pgfqpoint{3.425020in}{2.977392in}}% +\pgfpathlineto{\pgfqpoint{3.465250in}{2.971499in}}% +\pgfpathlineto{\pgfqpoint{3.504896in}{2.963524in}}% +\pgfpathlineto{\pgfqpoint{3.543838in}{2.953497in}}% +\pgfpathlineto{\pgfqpoint{3.581960in}{2.941455in}}% +\pgfpathlineto{\pgfqpoint{3.619143in}{2.927439in}}% +\pgfpathlineto{\pgfqpoint{3.655274in}{2.911498in}}% +\pgfpathlineto{\pgfqpoint{3.690241in}{2.893686in}}% +\pgfpathlineto{\pgfqpoint{3.723935in}{2.874061in}}% +\pgfpathlineto{\pgfqpoint{3.756249in}{2.852690in}}% +\pgfpathlineto{\pgfqpoint{3.787081in}{2.829642in}}% +\pgfpathlineto{\pgfqpoint{3.816332in}{2.804995in}}% +\pgfpathlineto{\pgfqpoint{3.843907in}{2.778828in}}% +\pgfpathlineto{\pgfqpoint{3.869715in}{2.751229in}}% +\pgfpathlineto{\pgfqpoint{3.893672in}{2.722287in}}% +\pgfpathlineto{\pgfqpoint{3.915696in}{2.692100in}}% +\pgfpathlineto{\pgfqpoint{3.935712in}{2.660766in}}% +\pgfpathlineto{\pgfqpoint{3.953649in}{2.628389in}}% +\pgfpathlineto{\pgfqpoint{3.969443in}{2.595078in}}% +\pgfpathlineto{\pgfqpoint{3.983037in}{2.560944in}}% +\pgfpathlineto{\pgfqpoint{3.994379in}{2.526102in}}% +\pgfpathlineto{\pgfqpoint{4.003422in}{2.490669in}}% +\pgfpathlineto{\pgfqpoint{4.010128in}{2.454766in}}% +\pgfpathlineto{\pgfqpoint{4.014466in}{2.418515in}}% +\pgfpathlineto{\pgfqpoint{4.016410in}{2.382041in}}% +\pgfpathlineto{\pgfqpoint{4.015943in}{2.345471in}}% +\pgfpathlineto{\pgfqpoint{4.013054in}{2.308932in}}% +\pgfpathlineto{\pgfqpoint{4.007740in}{2.272553in}}% +\pgfpathlineto{\pgfqpoint{4.000006in}{2.236463in}}% +\pgfpathlineto{\pgfqpoint{3.989864in}{2.200792in}}% +\pgfpathlineto{\pgfqpoint{3.977333in}{2.165669in}}% +\pgfpathlineto{\pgfqpoint{3.962440in}{2.131222in}}% +\pgfpathlineto{\pgfqpoint{3.945221in}{2.097580in}}% +\pgfpathlineto{\pgfqpoint{3.925717in}{2.064869in}}% +\pgfpathlineto{\pgfqpoint{3.903980in}{2.033214in}}% +\pgfpathlineto{\pgfqpoint{3.880065in}{2.002736in}}% +\pgfpathlineto{\pgfqpoint{3.854039in}{1.973556in}}% +\pgfpathlineto{\pgfqpoint{3.825973in}{1.945792in}}% +\pgfpathlineto{\pgfqpoint{3.795947in}{1.919556in}}% +\pgfpathlineto{\pgfqpoint{3.764046in}{1.894959in}}% +\pgfpathlineto{\pgfqpoint{3.730365in}{1.872107in}}% +\pgfpathlineto{\pgfqpoint{3.695002in}{1.851102in}}% +\pgfpathlineto{\pgfqpoint{3.658064in}{1.832041in}}% +\pgfpathlineto{\pgfqpoint{3.619663in}{1.815015in}}% +\pgfpathlineto{\pgfqpoint{3.579917in}{1.800110in}}% +\pgfpathlineto{\pgfqpoint{3.538949in}{1.787407in}}% +\pgfpathlineto{\pgfqpoint{3.496889in}{1.776981in}}% +\pgfpathlineto{\pgfqpoint{3.453869in}{1.768899in}}% +\pgfpathlineto{\pgfqpoint{3.410029in}{1.763223in}}% +\pgfpathlineto{\pgfqpoint{3.365510in}{1.760007in}}% +\pgfpathlineto{\pgfqpoint{3.320459in}{1.759298in}}% +\pgfpathlineto{\pgfqpoint{3.275026in}{1.761136in}}% +\pgfpathlineto{\pgfqpoint{3.229363in}{1.765553in}}% +\pgfpathlineto{\pgfqpoint{3.183624in}{1.772574in}}% +\pgfpathlineto{\pgfqpoint{3.137969in}{1.782215in}}% +\pgfpathlineto{\pgfqpoint{3.092554in}{1.794484in}}% +\pgfpathlineto{\pgfqpoint{3.047540in}{1.809382in}}% +\pgfpathlineto{\pgfqpoint{3.003088in}{1.826899in}}% +\pgfpathlineto{\pgfqpoint{2.959359in}{1.847019in}}% +\pgfpathlineto{\pgfqpoint{2.916512in}{1.869717in}}% +\pgfpathlineto{\pgfqpoint{2.874709in}{1.894960in}}% +\pgfpathlineto{\pgfqpoint{2.834107in}{1.922705in}}% +\pgfpathlineto{\pgfqpoint{2.794862in}{1.952902in}}% +\pgfpathlineto{\pgfqpoint{2.757130in}{1.985491in}}% +\pgfpathlineto{\pgfqpoint{2.721061in}{2.020406in}}% +\pgfpathlineto{\pgfqpoint{2.686804in}{2.057571in}}% +\pgfpathlineto{\pgfqpoint{2.654502in}{2.096903in}}% +\pgfpathlineto{\pgfqpoint{2.624296in}{2.138310in}}% +\pgfpathlineto{\pgfqpoint{2.596321in}{2.181693in}}% +\pgfpathlineto{\pgfqpoint{2.570707in}{2.226946in}}% +\pgfpathlineto{\pgfqpoint{2.547578in}{2.273955in}}% +\pgfpathlineto{\pgfqpoint{2.527051in}{2.322600in}}% +\pgfpathlineto{\pgfqpoint{2.509238in}{2.372752in}}% +\pgfpathlineto{\pgfqpoint{2.494244in}{2.424279in}}% +\pgfpathlineto{\pgfqpoint{2.482164in}{2.477041in}}% +\pgfpathlineto{\pgfqpoint{2.473088in}{2.530891in}}% +\pgfpathlineto{\pgfqpoint{2.467095in}{2.585681in}}% +\pgfpathlineto{\pgfqpoint{2.464259in}{2.641254in}}% +\pgfpathlineto{\pgfqpoint{2.464643in}{2.697450in}}% +\pgfpathlineto{\pgfqpoint{2.468299in}{2.754105in}}% +\pgfpathlineto{\pgfqpoint{2.475273in}{2.811054in}}% +\pgfpathlineto{\pgfqpoint{2.485599in}{2.868124in}}% +\pgfpathlineto{\pgfqpoint{2.499302in}{2.925143in}}% +\pgfpathlineto{\pgfqpoint{2.516396in}{2.981936in}}% +\pgfpathlineto{\pgfqpoint{2.536886in}{3.038328in}}% +\pgfpathlineto{\pgfqpoint{2.560766in}{3.094141in}}% +\pgfpathlineto{\pgfqpoint{2.588019in}{3.149196in}}% +\pgfpathlineto{\pgfqpoint{2.618617in}{3.203318in}}% +\pgfpathlineto{\pgfqpoint{2.652524in}{3.256328in}}% +\pgfpathlineto{\pgfqpoint{2.689689in}{3.308052in}}% +\pgfpathlineto{\pgfqpoint{2.730055in}{3.358316in}}% +\pgfpathlineto{\pgfqpoint{2.773552in}{3.406949in}}% +\pgfpathlineto{\pgfqpoint{2.820099in}{3.453781in}}% +\pgfpathlineto{\pgfqpoint{2.869607in}{3.498650in}}% +\pgfpathlineto{\pgfqpoint{2.921974in}{3.541393in}}% +\pgfpathlineto{\pgfqpoint{2.977092in}{3.581855in}}% +\pgfpathlineto{\pgfqpoint{3.034839in}{3.619886in}}% +\pgfpathlineto{\pgfqpoint{3.095086in}{3.655339in}}% +\pgfpathlineto{\pgfqpoint{3.157696in}{3.688077in}}% +\pgfpathlineto{\pgfqpoint{3.222520in}{3.717967in}}% +\pgfpathlineto{\pgfqpoint{3.289404in}{3.744884in}}% +\pgfpathlineto{\pgfqpoint{3.358184in}{3.768710in}}% +\pgfpathlineto{\pgfqpoint{3.428690in}{3.789338in}}% +\pgfpathlineto{\pgfqpoint{3.500743in}{3.806665in}}% +\pgfpathlineto{\pgfqpoint{3.574158in}{3.820601in}}% +\pgfpathlineto{\pgfqpoint{3.648746in}{3.831063in}}% +\pgfpathlineto{\pgfqpoint{3.724311in}{3.837978in}}% +\pgfpathlineto{\pgfqpoint{3.800650in}{3.841285in}}% +\pgfpathlineto{\pgfqpoint{3.877560in}{3.840930in}}% +\pgfpathlineto{\pgfqpoint{3.954832in}{3.836872in}}% +\pgfpathlineto{\pgfqpoint{4.032252in}{3.829080in}}% +\pgfpathlineto{\pgfqpoint{4.109607in}{3.817534in}}% +\pgfpathlineto{\pgfqpoint{4.186681in}{3.802225in}}% +\pgfpathlineto{\pgfqpoint{4.263255in}{3.783156in}}% +\pgfpathlineto{\pgfqpoint{4.339113in}{3.760341in}}% +\pgfpathlineto{\pgfqpoint{4.414036in}{3.733806in}}% +\pgfpathlineto{\pgfqpoint{4.487809in}{3.703586in}}% +\pgfpathlineto{\pgfqpoint{4.560215in}{3.669730in}}% +\pgfpathlineto{\pgfqpoint{4.631043in}{3.632298in}}% +\pgfpathlineto{\pgfqpoint{4.700082in}{3.591361in}}% +\pgfpathlineto{\pgfqpoint{4.767128in}{3.547001in}}% +\pgfpathlineto{\pgfqpoint{4.831979in}{3.499311in}}% +\pgfpathlineto{\pgfqpoint{4.894438in}{3.448394in}}% +\pgfpathlineto{\pgfqpoint{4.954316in}{3.394365in}}% +\pgfpathlineto{\pgfqpoint{5.011427in}{3.337349in}}% +\pgfpathlineto{\pgfqpoint{5.065596in}{3.277480in}}% +\pgfpathlineto{\pgfqpoint{5.116654in}{3.214903in}}% +\pgfpathlineto{\pgfqpoint{5.164438in}{3.149769in}}% +\pgfpathlineto{\pgfqpoint{5.208798in}{3.082242in}}% +\pgfpathlineto{\pgfqpoint{5.249592in}{3.012491in}}% +\pgfpathlineto{\pgfqpoint{5.286686in}{2.940695in}}% +\pgfpathlineto{\pgfqpoint{5.319958in}{2.867038in}}% +\pgfpathlineto{\pgfqpoint{5.349298in}{2.791713in}}% +\pgfpathlineto{\pgfqpoint{5.374607in}{2.714917in}}% +\pgfpathlineto{\pgfqpoint{5.395795in}{2.636854in}}% +\pgfpathlineto{\pgfqpoint{5.412789in}{2.557733in}}% +\pgfpathlineto{\pgfqpoint{5.425524in}{2.477766in}}% +\pgfpathlineto{\pgfqpoint{5.433949in}{2.397168in}}% +\pgfpathlineto{\pgfqpoint{5.438029in}{2.316160in}}% +\pgfpathlineto{\pgfqpoint{5.437738in}{2.234963in}}% +\pgfpathlineto{\pgfqpoint{5.433065in}{2.153798in}}% +\pgfpathlineto{\pgfqpoint{5.424014in}{2.072889in}}% +\pgfpathlineto{\pgfqpoint{5.410600in}{1.992460in}}% +\pgfpathlineto{\pgfqpoint{5.392854in}{1.912733in}}% +\pgfpathlineto{\pgfqpoint{5.370817in}{1.833929in}}% +\pgfpathlineto{\pgfqpoint{5.344548in}{1.756266in}}% +\pgfpathlineto{\pgfqpoint{5.314115in}{1.679961in}}% +\pgfpathlineto{\pgfqpoint{5.279603in}{1.605225in}}% +\pgfpathlineto{\pgfqpoint{5.241106in}{1.532266in}}% +\pgfpathlineto{\pgfqpoint{5.198735in}{1.461287in}}% +\pgfpathlineto{\pgfqpoint{5.152609in}{1.392483in}}% +\pgfpathlineto{\pgfqpoint{5.102862in}{1.326044in}}% +\pgfpathlineto{\pgfqpoint{5.049639in}{1.262153in}}% +\pgfpathlineto{\pgfqpoint{4.993096in}{1.200985in}}% +\pgfpathlineto{\pgfqpoint{4.933398in}{1.142706in}}% +\pgfpathlineto{\pgfqpoint{4.870722in}{1.087473in}}% +\pgfpathlineto{\pgfqpoint{4.805255in}{1.035433in}}% +\pgfpathlineto{\pgfqpoint{4.737192in}{0.986724in}}% +\pgfpathlineto{\pgfqpoint{4.666735in}{0.941471in}}% +\pgfpathlineto{\pgfqpoint{4.594097in}{0.899789in}}% +\pgfpathlineto{\pgfqpoint{4.519493in}{0.861784in}}% +\pgfpathlineto{\pgfqpoint{4.443150in}{0.827545in}}% +\pgfpathlineto{\pgfqpoint{4.365296in}{0.797151in}}% +\pgfpathlineto{\pgfqpoint{4.286165in}{0.770670in}}% +\pgfpathlineto{\pgfqpoint{4.205996in}{0.748155in}}% +\pgfpathlineto{\pgfqpoint{4.125028in}{0.729645in}}% +\pgfpathlineto{\pgfqpoint{4.043506in}{0.715168in}}% +\pgfpathlineto{\pgfqpoint{3.961673in}{0.704737in}}% +\pgfpathlineto{\pgfqpoint{3.879773in}{0.698353in}}% +\pgfpathlineto{\pgfqpoint{3.798052in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.716752in}{0.697652in}}% +\pgfpathlineto{\pgfqpoint{3.636113in}{0.703269in}}% +\pgfpathlineto{\pgfqpoint{3.556373in}{0.712796in}}% +\pgfpathlineto{\pgfqpoint{3.477767in}{0.726165in}}% +\pgfpathlineto{\pgfqpoint{3.400521in}{0.743298in}}% +\pgfpathlineto{\pgfqpoint{3.324860in}{0.764100in}}% +\pgfpathlineto{\pgfqpoint{3.251001in}{0.788467in}}% +\pgfpathlineto{\pgfqpoint{3.179152in}{0.816281in}}% +\pgfpathlineto{\pgfqpoint{3.109514in}{0.847414in}}% +\pgfpathlineto{\pgfqpoint{3.042281in}{0.881727in}}% +\pgfpathlineto{\pgfqpoint{2.977635in}{0.919069in}}% +\pgfpathlineto{\pgfqpoint{2.915749in}{0.959279in}}% +\pgfpathlineto{\pgfqpoint{2.856784in}{1.002188in}}% +\pgfpathlineto{\pgfqpoint{2.800892in}{1.047617in}}% +\pgfpathlineto{\pgfqpoint{2.748209in}{1.095381in}}% +\pgfpathlineto{\pgfqpoint{2.698862in}{1.145285in}}% +\pgfpathlineto{\pgfqpoint{2.652964in}{1.197128in}}% +\pgfpathlineto{\pgfqpoint{2.610612in}{1.250704in}}% +\pgfpathlineto{\pgfqpoint{2.571893in}{1.305803in}}% +\pgfpathlineto{\pgfqpoint{2.536877in}{1.362207in}}% +\pgfpathlineto{\pgfqpoint{2.505621in}{1.419697in}}% +\pgfpathlineto{\pgfqpoint{2.478166in}{1.478053in}}% +\pgfpathlineto{\pgfqpoint{2.454539in}{1.537050in}}% +\pgfpathlineto{\pgfqpoint{2.434751in}{1.596465in}}% +\pgfpathlineto{\pgfqpoint{2.418799in}{1.656073in}}% +\pgfpathlineto{\pgfqpoint{2.406665in}{1.715651in}}% +\pgfpathlineto{\pgfqpoint{2.398316in}{1.774978in}}% +\pgfpathlineto{\pgfqpoint{2.393703in}{1.833835in}}% +\pgfpathlineto{\pgfqpoint{2.392763in}{1.892007in}}% +\pgfpathlineto{\pgfqpoint{2.395420in}{1.949285in}}% +\pgfpathlineto{\pgfqpoint{2.401583in}{2.005462in}}% +\pgfpathlineto{\pgfqpoint{2.411146in}{2.060340in}}% +\pgfpathlineto{\pgfqpoint{2.423991in}{2.113728in}}% +\pgfpathlineto{\pgfqpoint{2.439987in}{2.165441in}}% +\pgfpathlineto{\pgfqpoint{2.458992in}{2.215303in}}% +\pgfpathlineto{\pgfqpoint{2.480851in}{2.263150in}}% +\pgfpathlineto{\pgfqpoint{2.505399in}{2.308824in}}% +\pgfpathlineto{\pgfqpoint{2.532458in}{2.352181in}}% +\pgfpathlineto{\pgfqpoint{2.561845in}{2.393086in}}% +\pgfpathlineto{\pgfqpoint{2.593364in}{2.431418in}}% +\pgfpathlineto{\pgfqpoint{2.626814in}{2.467065in}}% +\pgfpathlineto{\pgfqpoint{2.661985in}{2.499931in}}% +\pgfpathlineto{\pgfqpoint{2.698663in}{2.529933in}}% +\pgfpathlineto{\pgfqpoint{2.736627in}{2.557001in}}% +\pgfpathlineto{\pgfqpoint{2.775652in}{2.581077in}}% +\pgfpathlineto{\pgfqpoint{2.815510in}{2.602122in}}% +\pgfpathlineto{\pgfqpoint{2.855971in}{2.620106in}}% +\pgfpathlineto{\pgfqpoint{2.896804in}{2.635018in}}% +\pgfpathlineto{\pgfqpoint{2.937775in}{2.646859in}}% +\pgfpathlineto{\pgfqpoint{2.978655in}{2.655645in}}% +\pgfpathlineto{\pgfqpoint{3.019214in}{2.661408in}}% +\pgfpathlineto{\pgfqpoint{3.059226in}{2.664193in}}% +\pgfpathlineto{\pgfqpoint{3.098467in}{2.664061in}}% +\pgfpathlineto{\pgfqpoint{3.136721in}{2.661084in}}% +\pgfpathlineto{\pgfqpoint{3.173775in}{2.655351in}}% +\pgfpathlineto{\pgfqpoint{3.209425in}{2.646964in}}% +\pgfpathlineto{\pgfqpoint{3.243473in}{2.636035in}}% +\pgfpathlineto{\pgfqpoint{3.275730in}{2.622692in}}% +\pgfpathlineto{\pgfqpoint{3.306019in}{2.607073in}}% +\pgfpathlineto{\pgfqpoint{3.334170in}{2.589328in}}% +\pgfpathlineto{\pgfqpoint{3.360027in}{2.569619in}}% +\pgfpathlineto{\pgfqpoint{3.383444in}{2.548114in}}% +\pgfpathlineto{\pgfqpoint{3.404289in}{2.524995in}}% +\pgfpathlineto{\pgfqpoint{3.422443in}{2.500450in}}% +\pgfpathlineto{\pgfqpoint{3.437801in}{2.474674in}}% +\pgfpathlineto{\pgfqpoint{3.450275in}{2.447871in}}% +\pgfpathlineto{\pgfqpoint{3.459787in}{2.420248in}}% +\pgfpathlineto{\pgfqpoint{3.466279in}{2.392019in}}% +\pgfpathlineto{\pgfqpoint{3.469707in}{2.363402in}}% +\pgfpathlineto{\pgfqpoint{3.470045in}{2.334615in}}% +\pgfpathlineto{\pgfqpoint{3.467280in}{2.305882in}}% +\pgfpathlineto{\pgfqpoint{3.461418in}{2.277424in}}% +\pgfpathlineto{\pgfqpoint{3.452483in}{2.249465in}}% +\pgfpathlineto{\pgfqpoint{3.440512in}{2.222224in}}% +\pgfpathlineto{\pgfqpoint{3.425561in}{2.195922in}}% +\pgfpathlineto{\pgfqpoint{3.407702in}{2.170773in}}% +\pgfpathlineto{\pgfqpoint{3.387023in}{2.146989in}}% +\pgfpathlineto{\pgfqpoint{3.363629in}{2.124774in}}% +\pgfpathlineto{\pgfqpoint{3.337639in}{2.104328in}}% +\pgfpathlineto{\pgfqpoint{3.309187in}{2.085841in}}% +\pgfpathlineto{\pgfqpoint{3.278423in}{2.069496in}}% +\pgfpathlineto{\pgfqpoint{3.245511in}{2.055467in}}% +\pgfpathlineto{\pgfqpoint{3.210626in}{2.043917in}}% +\pgfpathlineto{\pgfqpoint{3.173959in}{2.034997in}}% +\pgfpathlineto{\pgfqpoint{3.135709in}{2.028847in}}% +\pgfpathlineto{\pgfqpoint{3.096089in}{2.025594in}}% +\pgfpathlineto{\pgfqpoint{3.055322in}{2.025350in}}% +\pgfpathlineto{\pgfqpoint{3.013638in}{2.028215in}}% +\pgfpathlineto{\pgfqpoint{2.971276in}{2.034272in}}% +\pgfpathlineto{\pgfqpoint{2.928482in}{2.043591in}}% +\pgfpathlineto{\pgfqpoint{2.885510in}{2.056224in}}% +\pgfpathlineto{\pgfqpoint{2.842614in}{2.072207in}}% +\pgfpathlineto{\pgfqpoint{2.800058in}{2.091560in}}% +\pgfpathlineto{\pgfqpoint{2.758102in}{2.114287in}}% +\pgfpathlineto{\pgfqpoint{2.717011in}{2.140372in}}% +\pgfpathlineto{\pgfqpoint{2.677049in}{2.169784in}}% +\pgfpathlineto{\pgfqpoint{2.638479in}{2.202475in}}% +\pgfpathlineto{\pgfqpoint{2.601561in}{2.238378in}}% +\pgfpathlineto{\pgfqpoint{2.566552in}{2.277410in}}% +\pgfpathlineto{\pgfqpoint{2.533702in}{2.319471in}}% +\pgfpathlineto{\pgfqpoint{2.503257in}{2.364443in}}% +\pgfpathlineto{\pgfqpoint{2.475454in}{2.412194in}}% +\pgfpathlineto{\pgfqpoint{2.450521in}{2.462575in}}% +\pgfpathlineto{\pgfqpoint{2.428678in}{2.515421in}}% +\pgfpathlineto{\pgfqpoint{2.410132in}{2.570554in}}% +\pgfpathlineto{\pgfqpoint{2.395078in}{2.627778in}}% +\pgfpathlineto{\pgfqpoint{2.383699in}{2.686889in}}% +\pgfpathlineto{\pgfqpoint{2.376163in}{2.747667in}}% +\pgfpathlineto{\pgfqpoint{2.372623in}{2.809880in}}% +\pgfpathlineto{\pgfqpoint{2.373215in}{2.873286in}}% +\pgfpathlineto{\pgfqpoint{2.378060in}{2.937635in}}% +\pgfpathlineto{\pgfqpoint{2.387259in}{3.002666in}}% +\pgfpathlineto{\pgfqpoint{2.400897in}{3.068110in}}% +\pgfpathlineto{\pgfqpoint{2.419038in}{3.133693in}}% +\pgfpathlineto{\pgfqpoint{2.441727in}{3.199136in}}% +\pgfpathlineto{\pgfqpoint{2.468992in}{3.264153in}}% +\pgfpathlineto{\pgfqpoint{2.500835in}{3.328459in}}% +\pgfpathlineto{\pgfqpoint{2.537243in}{3.391764in}}% +\pgfpathlineto{\pgfqpoint{2.578178in}{3.453781in}}% +\pgfpathlineto{\pgfqpoint{2.623585in}{3.514220in}}% +\pgfpathlineto{\pgfqpoint{2.673385in}{3.572797in}}% +\pgfpathlineto{\pgfqpoint{2.727480in}{3.629229in}}% +\pgfpathlineto{\pgfqpoint{2.785751in}{3.683241in}}% +\pgfpathlineto{\pgfqpoint{2.848059in}{3.734560in}}% +\pgfpathlineto{\pgfqpoint{2.914244in}{3.782926in}}% +\pgfpathlineto{\pgfqpoint{2.984130in}{3.828083in}}% +\pgfpathlineto{\pgfqpoint{3.057517in}{3.869787in}}% +\pgfpathlineto{\pgfqpoint{3.134192in}{3.907806in}}% +\pgfpathlineto{\pgfqpoint{3.213922in}{3.941920in}}% +\pgfpathlineto{\pgfqpoint{3.296458in}{3.971922in}}% +\pgfpathlineto{\pgfqpoint{3.381535in}{3.997621in}}% +\pgfpathlineto{\pgfqpoint{3.468875in}{4.018840in}}% +\pgfpathlineto{\pgfqpoint{3.558186in}{4.035420in}}% +\pgfpathlineto{\pgfqpoint{3.649161in}{4.047219in}}% +\pgfpathlineto{\pgfqpoint{3.741487in}{4.054114in}}% +\pgfpathlineto{\pgfqpoint{3.834837in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.928877in}{4.052793in}}% +\pgfpathlineto{\pgfqpoint{4.023266in}{4.044429in}}% +\pgfpathlineto{\pgfqpoint{4.117659in}{4.030865in}}% +\pgfpathlineto{\pgfqpoint{4.211703in}{4.012079in}}% +\pgfpathlineto{\pgfqpoint{4.305047in}{3.988070in}}% +\pgfpathlineto{\pgfqpoint{4.397335in}{3.958861in}}% +\pgfpathlineto{\pgfqpoint{4.488215in}{3.924494in}}% +\pgfpathlineto{\pgfqpoint{4.577333in}{3.885034in}}% +\pgfpathlineto{\pgfqpoint{4.664343in}{3.840570in}}% +\pgfpathlineto{\pgfqpoint{4.748902in}{3.791209in}}% +\pgfpathlineto{\pgfqpoint{4.830673in}{3.737083in}}% +\pgfpathlineto{\pgfqpoint{4.909329in}{3.678343in}}% +\pgfpathlineto{\pgfqpoint{4.984553in}{3.615160in}}% +\pgfpathlineto{\pgfqpoint{5.056037in}{3.547726in}}% +\pgfpathlineto{\pgfqpoint{5.123488in}{3.476252in}}% +\pgfpathlineto{\pgfqpoint{5.186627in}{3.400968in}}% +\pgfpathlineto{\pgfqpoint{5.245190in}{3.322121in}}% +\pgfpathlineto{\pgfqpoint{5.298929in}{3.239975in}}% +\pgfpathlineto{\pgfqpoint{5.347616in}{3.154810in}}% +\pgfpathlineto{\pgfqpoint{5.391041in}{3.066919in}}% +\pgfpathlineto{\pgfqpoint{5.429014in}{2.976610in}}% +\pgfpathlineto{\pgfqpoint{5.461368in}{2.884202in}}% +\pgfpathlineto{\pgfqpoint{5.487956in}{2.790027in}}% +\pgfpathlineto{\pgfqpoint{5.508654in}{2.694423in}}% +\pgfpathlineto{\pgfqpoint{5.523365in}{2.597738in}}% +\pgfpathlineto{\pgfqpoint{5.532012in}{2.500326in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.402546in}}% +\pgfpathlineto{\pgfqpoint{5.530940in}{2.304762in}}% +\pgfpathlineto{\pgfqpoint{5.521195in}{2.207336in}}% +\pgfpathlineto{\pgfqpoint{5.505338in}{2.110633in}}% +\pgfpathlineto{\pgfqpoint{5.483419in}{2.015017in}}% +\pgfpathlineto{\pgfqpoint{5.455515in}{1.920848in}}% +\pgfpathlineto{\pgfqpoint{5.421729in}{1.828479in}}% +\pgfpathlineto{\pgfqpoint{5.382188in}{1.738262in}}% +\pgfpathlineto{\pgfqpoint{5.337044in}{1.650536in}}% +\pgfpathlineto{\pgfqpoint{5.286472in}{1.565633in}}% +\pgfpathlineto{\pgfqpoint{5.230672in}{1.483875in}}% +\pgfpathlineto{\pgfqpoint{5.169866in}{1.405568in}}% +\pgfpathlineto{\pgfqpoint{5.104298in}{1.331009in}}% +\pgfpathlineto{\pgfqpoint{5.034231in}{1.260475in}}% +\pgfpathlineto{\pgfqpoint{4.959950in}{1.194230in}}% +\pgfpathlineto{\pgfqpoint{4.881756in}{1.132518in}}% +\pgfpathlineto{\pgfqpoint{4.799970in}{1.075565in}}% +\pgfpathlineto{\pgfqpoint{4.714926in}{1.023576in}}% +\pgfpathlineto{\pgfqpoint{4.626974in}{0.976736in}}% +\pgfpathlineto{\pgfqpoint{4.536476in}{0.935207in}}% +\pgfpathlineto{\pgfqpoint{4.443805in}{0.899128in}}% +\pgfpathlineto{\pgfqpoint{4.349345in}{0.868616in}}% +\pgfpathlineto{\pgfqpoint{4.253485in}{0.843763in}}% +\pgfpathlineto{\pgfqpoint{4.156624in}{0.824635in}}% +\pgfpathlineto{\pgfqpoint{4.059160in}{0.811275in}}% +\pgfpathlineto{\pgfqpoint{3.961499in}{0.803700in}}% +\pgfpathlineto{\pgfqpoint{3.864044in}{0.801901in}}% +\pgfpathlineto{\pgfqpoint{3.767197in}{0.805844in}}% +\pgfpathlineto{\pgfqpoint{3.671359in}{0.815469in}}% +\pgfpathlineto{\pgfqpoint{3.576922in}{0.830693in}}% +\pgfpathlineto{\pgfqpoint{3.484276in}{0.851405in}}% +\pgfpathlineto{\pgfqpoint{3.393799in}{0.877472in}}% +\pgfpathlineto{\pgfqpoint{3.305860in}{0.908737in}}% +\pgfpathlineto{\pgfqpoint{3.220815in}{0.945018in}}% +\pgfpathlineto{\pgfqpoint{3.139007in}{0.986114in}}% +\pgfpathlineto{\pgfqpoint{3.060763in}{1.031799in}}% +\pgfpathlineto{\pgfqpoint{2.986393in}{1.081830in}}% +\pgfpathlineto{\pgfqpoint{2.916188in}{1.135941in}}% +\pgfpathlineto{\pgfqpoint{2.850420in}{1.193853in}}% +\pgfpathlineto{\pgfqpoint{2.789341in}{1.255266in}}% +\pgfpathlineto{\pgfqpoint{2.733177in}{1.319866in}}% +\pgfpathlineto{\pgfqpoint{2.682134in}{1.387325in}}% +\pgfpathlineto{\pgfqpoint{2.636391in}{1.457305in}}% +\pgfpathlineto{\pgfqpoint{2.596104in}{1.529454in}}% +\pgfpathlineto{\pgfqpoint{2.561400in}{1.603413in}}% +\pgfpathlineto{\pgfqpoint{2.532382in}{1.678814in}}% +\pgfpathlineto{\pgfqpoint{2.509124in}{1.755287in}}% +\pgfpathlineto{\pgfqpoint{2.491673in}{1.832455in}}% +\pgfpathlineto{\pgfqpoint{2.480048in}{1.909940in}}% +\pgfpathlineto{\pgfqpoint{2.474240in}{1.987363in}}% +\pgfpathlineto{\pgfqpoint{2.474212in}{2.064350in}}% +\pgfpathlineto{\pgfqpoint{2.479899in}{2.140527in}}% +\pgfpathlineto{\pgfqpoint{2.491211in}{2.215528in}}% +\pgfpathlineto{\pgfqpoint{2.508027in}{2.288991in}}% +\pgfpathlineto{\pgfqpoint{2.530202in}{2.360567in}}% +\pgfpathlineto{\pgfqpoint{2.557565in}{2.429916in}}% +\pgfpathlineto{\pgfqpoint{2.589920in}{2.496709in}}% +\pgfpathlineto{\pgfqpoint{2.627048in}{2.560632in}}% +\pgfpathlineto{\pgfqpoint{2.668706in}{2.621388in}}% +\pgfpathlineto{\pgfqpoint{2.714631in}{2.678695in}}% +\pgfpathlineto{\pgfqpoint{2.764538in}{2.732290in}}% +\pgfpathlineto{\pgfqpoint{2.818124in}{2.781930in}}% +\pgfpathlineto{\pgfqpoint{2.875070in}{2.827394in}}% +\pgfpathlineto{\pgfqpoint{2.935040in}{2.868480in}}% +\pgfpathlineto{\pgfqpoint{2.997684in}{2.905013in}}% +\pgfpathlineto{\pgfqpoint{3.062640in}{2.936838in}}% +\pgfpathlineto{\pgfqpoint{3.129538in}{2.963828in}}% +\pgfpathlineto{\pgfqpoint{3.197996in}{2.985878in}}% +\pgfpathlineto{\pgfqpoint{3.267628in}{3.002913in}}% +\pgfpathlineto{\pgfqpoint{3.338042in}{3.014880in}}% +\pgfpathlineto{\pgfqpoint{3.408846in}{3.021754in}}% +\pgfpathlineto{\pgfqpoint{3.479646in}{3.023538in}}% +\pgfpathlineto{\pgfqpoint{3.550049in}{3.020260in}}% +\pgfpathlineto{\pgfqpoint{3.619666in}{3.011973in}}% +\pgfpathlineto{\pgfqpoint{3.688115in}{2.998759in}}% +\pgfpathlineto{\pgfqpoint{3.755020in}{2.980724in}}% +\pgfpathlineto{\pgfqpoint{3.820015in}{2.957998in}}% +\pgfpathlineto{\pgfqpoint{3.882747in}{2.930736in}}% +\pgfpathlineto{\pgfqpoint{3.942875in}{2.899118in}}% +\pgfpathlineto{\pgfqpoint{4.000071in}{2.863344in}}% +\pgfpathlineto{\pgfqpoint{4.054029in}{2.823637in}}% +\pgfpathlineto{\pgfqpoint{4.104457in}{2.780240in}}% +\pgfpathlineto{\pgfqpoint{4.151084in}{2.733412in}}% +\pgfpathlineto{\pgfqpoint{4.193661in}{2.683435in}}% +\pgfpathlineto{\pgfqpoint{4.231962in}{2.630602in}}% +\pgfpathlineto{\pgfqpoint{4.265784in}{2.575223in}}% +\pgfpathlineto{\pgfqpoint{4.294948in}{2.517619in}}% +\pgfpathlineto{\pgfqpoint{4.319303in}{2.458123in}}% +\pgfpathlineto{\pgfqpoint{4.338723in}{2.397077in}}% +\pgfpathlineto{\pgfqpoint{4.353109in}{2.334831in}}% +\pgfpathlineto{\pgfqpoint{4.362392in}{2.271738in}}% +\pgfpathlineto{\pgfqpoint{4.366528in}{2.208157in}}% +\pgfpathlineto{\pgfqpoint{4.365503in}{2.144448in}}% +\pgfpathlineto{\pgfqpoint{4.359332in}{2.080969in}}% +\pgfpathlineto{\pgfqpoint{4.348056in}{2.018078in}}% +\pgfpathlineto{\pgfqpoint{4.331745in}{1.956126in}}% +\pgfpathlineto{\pgfqpoint{4.310498in}{1.895459in}}% +\pgfpathlineto{\pgfqpoint{4.284439in}{1.836416in}}% +\pgfpathlineto{\pgfqpoint{4.253718in}{1.779324in}}% +\pgfpathlineto{\pgfqpoint{4.218513in}{1.724500in}}% +\pgfpathlineto{\pgfqpoint{4.179023in}{1.672245in}}% +\pgfpathlineto{\pgfqpoint{4.135473in}{1.622847in}}% +\pgfpathlineto{\pgfqpoint{4.088107in}{1.576577in}}% +\pgfpathlineto{\pgfqpoint{4.037193in}{1.533686in}}% +\pgfpathlineto{\pgfqpoint{3.983016in}{1.494407in}}% +\pgfpathlineto{\pgfqpoint{3.925877in}{1.458951in}}% +\pgfpathlineto{\pgfqpoint{3.866097in}{1.427508in}}% +\pgfpathlineto{\pgfqpoint{3.804007in}{1.400243in}}% +\pgfpathlineto{\pgfqpoint{3.739950in}{1.377299in}}% +\pgfpathlineto{\pgfqpoint{3.674282in}{1.358792in}}% +\pgfpathlineto{\pgfqpoint{3.607365in}{1.344815in}}% +\pgfpathlineto{\pgfqpoint{3.539567in}{1.335433in}}% +\pgfpathlineto{\pgfqpoint{3.471260in}{1.330684in}}% +\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% +\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/zeta_re_0_plot.pgf b/buch/papers/zeta/zeta_re_0_plot.pgf new file mode 100644 index 0000000..29a844e --- /dev/null +++ b/buch/papers/zeta/zeta_re_0_plot.pgf @@ -0,0 +1,1242 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.479870in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.479870in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.174916in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.174916in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.869963in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.869963in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.565009in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.565009in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.260056in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.260056in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.955103in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.955103in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.650149in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.650149in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.897985in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=0.859405in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.384529in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.345949in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.871074in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.832493in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.357618in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.319038in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.844162in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.805582in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.330706in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=3.292126in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.817250in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=3.778670in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.496371in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.827393in}{2.357618in}}% +\pgfpathlineto{\pgfqpoint{1.828507in}{2.339765in}}% +\pgfpathlineto{\pgfqpoint{1.831827in}{2.322097in}}% +\pgfpathlineto{\pgfqpoint{1.837291in}{2.304795in}}% +\pgfpathlineto{\pgfqpoint{1.844799in}{2.288026in}}% +\pgfpathlineto{\pgfqpoint{1.854214in}{2.271943in}}% +\pgfpathlineto{\pgfqpoint{1.865375in}{2.256678in}}% +\pgfpathlineto{\pgfqpoint{1.878097in}{2.242341in}}% +\pgfpathlineto{\pgfqpoint{1.892182in}{2.229019in}}% +\pgfpathlineto{\pgfqpoint{1.907424in}{2.216774in}}% +\pgfpathlineto{\pgfqpoint{1.923617in}{2.205644in}}% +\pgfpathlineto{\pgfqpoint{1.940559in}{2.195648in}}% +\pgfpathlineto{\pgfqpoint{1.958058in}{2.186782in}}% +\pgfpathlineto{\pgfqpoint{1.994025in}{2.172353in}}% +\pgfpathlineto{\pgfqpoint{2.030278in}{2.162054in}}% +\pgfpathlineto{\pgfqpoint{2.065858in}{2.155446in}}% +\pgfpathlineto{\pgfqpoint{2.100079in}{2.152026in}}% +\pgfpathlineto{\pgfqpoint{2.132493in}{2.151287in}}% +\pgfpathlineto{\pgfqpoint{2.162845in}{2.152748in}}% +\pgfpathlineto{\pgfqpoint{2.191028in}{2.155979in}}% +\pgfpathlineto{\pgfqpoint{2.217038in}{2.160607in}}% +\pgfpathlineto{\pgfqpoint{2.252138in}{2.169498in}}% +\pgfpathlineto{\pgfqpoint{2.282908in}{2.180004in}}% +\pgfpathlineto{\pgfqpoint{2.309834in}{2.191516in}}% +\pgfpathlineto{\pgfqpoint{2.333422in}{2.203603in}}% +\pgfpathlineto{\pgfqpoint{2.360491in}{2.220114in}}% +\pgfpathlineto{\pgfqpoint{2.383456in}{2.236679in}}% +\pgfpathlineto{\pgfqpoint{2.407642in}{2.257082in}}% +\pgfpathlineto{\pgfqpoint{2.431700in}{2.280833in}}% +\pgfpathlineto{\pgfqpoint{2.454993in}{2.307400in}}% +\pgfpathlineto{\pgfqpoint{2.480238in}{2.339873in}}% +\pgfpathlineto{\pgfqpoint{2.554623in}{2.438671in}}% +\pgfpathlineto{\pgfqpoint{2.576803in}{2.463336in}}% +\pgfpathlineto{\pgfqpoint{2.601466in}{2.487332in}}% +\pgfpathlineto{\pgfqpoint{2.625599in}{2.507664in}}% +\pgfpathlineto{\pgfqpoint{2.652540in}{2.527196in}}% +\pgfpathlineto{\pgfqpoint{2.678147in}{2.543114in}}% +\pgfpathlineto{\pgfqpoint{2.706290in}{2.558061in}}% +\pgfpathlineto{\pgfqpoint{2.737139in}{2.571792in}}% +\pgfpathlineto{\pgfqpoint{2.770816in}{2.584016in}}% +\pgfpathlineto{\pgfqpoint{2.801091in}{2.592812in}}% +\pgfpathlineto{\pgfqpoint{2.833379in}{2.600113in}}% +\pgfpathlineto{\pgfqpoint{2.867640in}{2.605685in}}% +\pgfpathlineto{\pgfqpoint{2.903786in}{2.609274in}}% +\pgfpathlineto{\pgfqpoint{2.941676in}{2.610615in}}% +\pgfpathlineto{\pgfqpoint{2.981105in}{2.609433in}}% +\pgfpathlineto{\pgfqpoint{3.013576in}{2.606481in}}% +\pgfpathlineto{\pgfqpoint{3.046687in}{2.601592in}}% +\pgfpathlineto{\pgfqpoint{3.080230in}{2.594625in}}% +\pgfpathlineto{\pgfqpoint{3.113964in}{2.585449in}}% +\pgfpathlineto{\pgfqpoint{3.147615in}{2.573938in}}% +\pgfpathlineto{\pgfqpoint{3.180869in}{2.559983in}}% +\pgfpathlineto{\pgfqpoint{3.213377in}{2.543487in}}% +\pgfpathlineto{\pgfqpoint{3.244756in}{2.524379in}}% +\pgfpathlineto{\pgfqpoint{3.267298in}{2.508303in}}% +\pgfpathlineto{\pgfqpoint{3.288781in}{2.490719in}}% +\pgfpathlineto{\pgfqpoint{3.309005in}{2.471629in}}% +\pgfpathlineto{\pgfqpoint{3.327765in}{2.451046in}}% +\pgfpathlineto{\pgfqpoint{3.344844in}{2.428993in}}% +\pgfpathlineto{\pgfqpoint{3.360023in}{2.405512in}}% +\pgfpathlineto{\pgfqpoint{3.373075in}{2.380654in}}% +\pgfpathlineto{\pgfqpoint{3.383772in}{2.354491in}}% +\pgfpathlineto{\pgfqpoint{3.391884in}{2.327109in}}% +\pgfpathlineto{\pgfqpoint{3.397184in}{2.298612in}}% +\pgfpathlineto{\pgfqpoint{3.399446in}{2.269122in}}% +\pgfpathlineto{\pgfqpoint{3.399158in}{2.248981in}}% +\pgfpathlineto{\pgfqpoint{3.397360in}{2.228507in}}% +\pgfpathlineto{\pgfqpoint{3.393993in}{2.207752in}}% +\pgfpathlineto{\pgfqpoint{3.388998in}{2.186770in}}% +\pgfpathlineto{\pgfqpoint{3.382321in}{2.165620in}}% +\pgfpathlineto{\pgfqpoint{3.373911in}{2.144364in}}% +\pgfpathlineto{\pgfqpoint{3.363720in}{2.123067in}}% +\pgfpathlineto{\pgfqpoint{3.351707in}{2.101800in}}% +\pgfpathlineto{\pgfqpoint{3.337834in}{2.080635in}}% +\pgfpathlineto{\pgfqpoint{3.322068in}{2.059650in}}% +\pgfpathlineto{\pgfqpoint{3.304383in}{2.038925in}}% +\pgfpathlineto{\pgfqpoint{3.284760in}{2.018544in}}% +\pgfpathlineto{\pgfqpoint{3.263185in}{1.998593in}}% +\pgfpathlineto{\pgfqpoint{3.239652in}{1.979161in}}% +\pgfpathlineto{\pgfqpoint{3.214165in}{1.960341in}}% +\pgfpathlineto{\pgfqpoint{3.186732in}{1.942226in}}% +\pgfpathlineto{\pgfqpoint{3.157375in}{1.924912in}}% +\pgfpathlineto{\pgfqpoint{3.126120in}{1.908497in}}% +\pgfpathlineto{\pgfqpoint{3.093007in}{1.893079in}}% +\pgfpathlineto{\pgfqpoint{3.058082in}{1.878758in}}% +\pgfpathlineto{\pgfqpoint{3.021405in}{1.865633in}}% +\pgfpathlineto{\pgfqpoint{2.983044in}{1.853803in}}% +\pgfpathlineto{\pgfqpoint{2.943079in}{1.843368in}}% +\pgfpathlineto{\pgfqpoint{2.901600in}{1.834424in}}% +\pgfpathlineto{\pgfqpoint{2.858711in}{1.827067in}}% +\pgfpathlineto{\pgfqpoint{2.814524in}{1.821391in}}% +\pgfpathlineto{\pgfqpoint{2.769163in}{1.817484in}}% +\pgfpathlineto{\pgfqpoint{2.722767in}{1.815434in}}% +\pgfpathlineto{\pgfqpoint{2.675481in}{1.815322in}}% +\pgfpathlineto{\pgfqpoint{2.627465in}{1.817226in}}% +\pgfpathlineto{\pgfqpoint{2.578889in}{1.821215in}}% +\pgfpathlineto{\pgfqpoint{2.529934in}{1.827356in}}% +\pgfpathlineto{\pgfqpoint{2.480789in}{1.835705in}}% +\pgfpathlineto{\pgfqpoint{2.431657in}{1.846313in}}% +\pgfpathlineto{\pgfqpoint{2.382746in}{1.859221in}}% +\pgfpathlineto{\pgfqpoint{2.334276in}{1.874461in}}% +\pgfpathlineto{\pgfqpoint{2.286473in}{1.892055in}}% +\pgfpathlineto{\pgfqpoint{2.239571in}{1.912016in}}% +\pgfpathlineto{\pgfqpoint{2.193808in}{1.934343in}}% +\pgfpathlineto{\pgfqpoint{2.149432in}{1.959027in}}% +\pgfpathlineto{\pgfqpoint{2.106689in}{1.986044in}}% +\pgfpathlineto{\pgfqpoint{2.065833in}{2.015358in}}% +\pgfpathlineto{\pgfqpoint{2.027116in}{2.046921in}}% +\pgfpathlineto{\pgfqpoint{1.990793in}{2.080669in}}% +\pgfpathlineto{\pgfqpoint{1.957116in}{2.116527in}}% +\pgfpathlineto{\pgfqpoint{1.926335in}{2.154403in}}% +\pgfpathlineto{\pgfqpoint{1.898696in}{2.194193in}}% +\pgfpathlineto{\pgfqpoint{1.874438in}{2.235778in}}% +\pgfpathlineto{\pgfqpoint{1.853794in}{2.279024in}}% +\pgfpathlineto{\pgfqpoint{1.836986in}{2.323782in}}% +\pgfpathlineto{\pgfqpoint{1.824226in}{2.369891in}}% +\pgfpathlineto{\pgfqpoint{1.819427in}{2.393397in}}% +\pgfpathlineto{\pgfqpoint{1.815713in}{2.417174in}}% +\pgfpathlineto{\pgfqpoint{1.813108in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{1.811632in}{2.465441in}}% +\pgfpathlineto{\pgfqpoint{1.811306in}{2.489881in}}% +\pgfpathlineto{\pgfqpoint{1.812150in}{2.514490in}}% +\pgfpathlineto{\pgfqpoint{1.814181in}{2.539240in}}% +\pgfpathlineto{\pgfqpoint{1.817417in}{2.564105in}}% +\pgfpathlineto{\pgfqpoint{1.821872in}{2.589054in}}% +\pgfpathlineto{\pgfqpoint{1.827562in}{2.614059in}}% +\pgfpathlineto{\pgfqpoint{1.834499in}{2.639089in}}% +\pgfpathlineto{\pgfqpoint{1.842694in}{2.664115in}}% +\pgfpathlineto{\pgfqpoint{1.852157in}{2.689104in}}% +\pgfpathlineto{\pgfqpoint{1.862896in}{2.714025in}}% +\pgfpathlineto{\pgfqpoint{1.874918in}{2.738845in}}% +\pgfpathlineto{\pgfqpoint{1.888229in}{2.763532in}}% +\pgfpathlineto{\pgfqpoint{1.902831in}{2.788052in}}% +\pgfpathlineto{\pgfqpoint{1.918725in}{2.812372in}}% +\pgfpathlineto{\pgfqpoint{1.935912in}{2.836457in}}% +\pgfpathlineto{\pgfqpoint{1.954390in}{2.860274in}}% +\pgfpathlineto{\pgfqpoint{1.974155in}{2.883788in}}% +\pgfpathlineto{\pgfqpoint{1.995200in}{2.906963in}}% +\pgfpathlineto{\pgfqpoint{2.017519in}{2.929766in}}% +\pgfpathlineto{\pgfqpoint{2.041101in}{2.952161in}}% +\pgfpathlineto{\pgfqpoint{2.065934in}{2.974112in}}% +\pgfpathlineto{\pgfqpoint{2.092006in}{2.995585in}}% +\pgfpathlineto{\pgfqpoint{2.119301in}{3.016544in}}% +\pgfpathlineto{\pgfqpoint{2.147800in}{3.036954in}}% +\pgfpathlineto{\pgfqpoint{2.177483in}{3.056782in}}% +\pgfpathlineto{\pgfqpoint{2.208330in}{3.075991in}}% +\pgfpathlineto{\pgfqpoint{2.240316in}{3.094548in}}% +\pgfpathlineto{\pgfqpoint{2.273414in}{3.112418in}}% +\pgfpathlineto{\pgfqpoint{2.307598in}{3.129569in}}% +\pgfpathlineto{\pgfqpoint{2.342836in}{3.145966in}}% +\pgfpathlineto{\pgfqpoint{2.379096in}{3.161577in}}% +\pgfpathlineto{\pgfqpoint{2.416343in}{3.176371in}}% +\pgfpathlineto{\pgfqpoint{2.454543in}{3.190315in}}% +\pgfpathlineto{\pgfqpoint{2.493654in}{3.203380in}}% +\pgfpathlineto{\pgfqpoint{2.533638in}{3.215535in}}% +\pgfpathlineto{\pgfqpoint{2.574452in}{3.226751in}}% +\pgfpathlineto{\pgfqpoint{2.616051in}{3.237000in}}% +\pgfpathlineto{\pgfqpoint{2.658389in}{3.246256in}}% +\pgfpathlineto{\pgfqpoint{2.701417in}{3.254491in}}% +\pgfpathlineto{\pgfqpoint{2.745085in}{3.261682in}}% +\pgfpathlineto{\pgfqpoint{2.789341in}{3.267804in}}% +\pgfpathlineto{\pgfqpoint{2.834132in}{3.272834in}}% +\pgfpathlineto{\pgfqpoint{2.879401in}{3.276752in}}% +\pgfpathlineto{\pgfqpoint{2.925092in}{3.279537in}}% +\pgfpathlineto{\pgfqpoint{2.971147in}{3.281172in}}% +\pgfpathlineto{\pgfqpoint{3.017504in}{3.281638in}}% +\pgfpathlineto{\pgfqpoint{3.064102in}{3.280921in}}% +\pgfpathlineto{\pgfqpoint{3.110879in}{3.279007in}}% +\pgfpathlineto{\pgfqpoint{3.157769in}{3.275883in}}% +\pgfpathlineto{\pgfqpoint{3.204707in}{3.271539in}}% +\pgfpathlineto{\pgfqpoint{3.251627in}{3.265966in}}% +\pgfpathlineto{\pgfqpoint{3.298462in}{3.259157in}}% +\pgfpathlineto{\pgfqpoint{3.345141in}{3.251108in}}% +\pgfpathlineto{\pgfqpoint{3.391597in}{3.241814in}}% +\pgfpathlineto{\pgfqpoint{3.437759in}{3.231274in}}% +\pgfpathlineto{\pgfqpoint{3.483556in}{3.219490in}}% +\pgfpathlineto{\pgfqpoint{3.528917in}{3.206463in}}% +\pgfpathlineto{\pgfqpoint{3.573771in}{3.192199in}}% +\pgfpathlineto{\pgfqpoint{3.618045in}{3.176703in}}% +\pgfpathlineto{\pgfqpoint{3.661668in}{3.159986in}}% +\pgfpathlineto{\pgfqpoint{3.704568in}{3.142058in}}% +\pgfpathlineto{\pgfqpoint{3.746673in}{3.122931in}}% +\pgfpathlineto{\pgfqpoint{3.787911in}{3.102622in}}% +\pgfpathlineto{\pgfqpoint{3.828211in}{3.081147in}}% +\pgfpathlineto{\pgfqpoint{3.867502in}{3.058526in}}% +\pgfpathlineto{\pgfqpoint{3.905714in}{3.034781in}}% +\pgfpathlineto{\pgfqpoint{3.942778in}{3.009935in}}% +\pgfpathlineto{\pgfqpoint{3.978626in}{2.984015in}}% +\pgfpathlineto{\pgfqpoint{4.013190in}{2.957049in}}% +\pgfpathlineto{\pgfqpoint{4.046403in}{2.929067in}}% +\pgfpathlineto{\pgfqpoint{4.078202in}{2.900102in}}% +\pgfpathlineto{\pgfqpoint{4.108522in}{2.870189in}}% +\pgfpathlineto{\pgfqpoint{4.137302in}{2.839363in}}% +\pgfpathlineto{\pgfqpoint{4.164483in}{2.807663in}}% +\pgfpathlineto{\pgfqpoint{4.190005in}{2.775131in}}% +\pgfpathlineto{\pgfqpoint{4.213814in}{2.741809in}}% +\pgfpathlineto{\pgfqpoint{4.235854in}{2.707741in}}% +\pgfpathlineto{\pgfqpoint{4.256076in}{2.672975in}}% +\pgfpathlineto{\pgfqpoint{4.274429in}{2.637557in}}% +\pgfpathlineto{\pgfqpoint{4.290867in}{2.601539in}}% +\pgfpathlineto{\pgfqpoint{4.305347in}{2.564972in}}% +\pgfpathlineto{\pgfqpoint{4.317828in}{2.527909in}}% +\pgfpathlineto{\pgfqpoint{4.328270in}{2.490405in}}% +\pgfpathlineto{\pgfqpoint{4.336641in}{2.452517in}}% +\pgfpathlineto{\pgfqpoint{4.342908in}{2.414303in}}% +\pgfpathlineto{\pgfqpoint{4.347042in}{2.375821in}}% +\pgfpathlineto{\pgfqpoint{4.349019in}{2.337131in}}% +\pgfpathlineto{\pgfqpoint{4.348818in}{2.298295in}}% +\pgfpathlineto{\pgfqpoint{4.346420in}{2.259376in}}% +\pgfpathlineto{\pgfqpoint{4.341812in}{2.220437in}}% +\pgfpathlineto{\pgfqpoint{4.334983in}{2.181541in}}% +\pgfpathlineto{\pgfqpoint{4.325927in}{2.142754in}}% +\pgfpathlineto{\pgfqpoint{4.314641in}{2.104141in}}% +\pgfpathlineto{\pgfqpoint{4.301128in}{2.065767in}}% +\pgfpathlineto{\pgfqpoint{4.285392in}{2.027699in}}% +\pgfpathlineto{\pgfqpoint{4.267443in}{1.990004in}}% +\pgfpathlineto{\pgfqpoint{4.247296in}{1.952747in}}% +\pgfpathlineto{\pgfqpoint{4.224969in}{1.915996in}}% +\pgfpathlineto{\pgfqpoint{4.200483in}{1.879815in}}% +\pgfpathlineto{\pgfqpoint{4.173866in}{1.844272in}}% +\pgfpathlineto{\pgfqpoint{4.145149in}{1.809431in}}% +\pgfpathlineto{\pgfqpoint{4.114366in}{1.775358in}}% +\pgfpathlineto{\pgfqpoint{4.081557in}{1.742116in}}% +\pgfpathlineto{\pgfqpoint{4.046766in}{1.709769in}}% +\pgfpathlineto{\pgfqpoint{4.010041in}{1.678379in}}% +\pgfpathlineto{\pgfqpoint{3.971434in}{1.648007in}}% +\pgfpathlineto{\pgfqpoint{3.931001in}{1.618713in}}% +\pgfpathlineto{\pgfqpoint{3.888802in}{1.590556in}}% +\pgfpathlineto{\pgfqpoint{3.844901in}{1.563591in}}% +\pgfpathlineto{\pgfqpoint{3.799368in}{1.537874in}}% +\pgfpathlineto{\pgfqpoint{3.752273in}{1.513459in}}% +\pgfpathlineto{\pgfqpoint{3.703694in}{1.490397in}}% +\pgfpathlineto{\pgfqpoint{3.653709in}{1.468736in}}% +\pgfpathlineto{\pgfqpoint{3.602401in}{1.448524in}}% +\pgfpathlineto{\pgfqpoint{3.549857in}{1.429805in}}% +\pgfpathlineto{\pgfqpoint{3.496168in}{1.412621in}}% +\pgfpathlineto{\pgfqpoint{3.441424in}{1.397011in}}% +\pgfpathlineto{\pgfqpoint{3.385724in}{1.383012in}}% +\pgfpathlineto{\pgfqpoint{3.329165in}{1.370659in}}% +\pgfpathlineto{\pgfqpoint{3.271849in}{1.359980in}}% +\pgfpathlineto{\pgfqpoint{3.213879in}{1.351005in}}% +\pgfpathlineto{\pgfqpoint{3.155363in}{1.343758in}}% +\pgfpathlineto{\pgfqpoint{3.096407in}{1.338259in}}% +\pgfpathlineto{\pgfqpoint{3.037123in}{1.334527in}}% +\pgfpathlineto{\pgfqpoint{2.977621in}{1.332576in}}% +\pgfpathlineto{\pgfqpoint{2.918016in}{1.332418in}}% +\pgfpathlineto{\pgfqpoint{2.858422in}{1.334058in}}% +\pgfpathlineto{\pgfqpoint{2.798954in}{1.337501in}}% +\pgfpathlineto{\pgfqpoint{2.739729in}{1.342747in}}% +\pgfpathlineto{\pgfqpoint{2.680862in}{1.349792in}}% +\pgfpathlineto{\pgfqpoint{2.622472in}{1.358628in}}% +\pgfpathlineto{\pgfqpoint{2.564675in}{1.369244in}}% +\pgfpathlineto{\pgfqpoint{2.507587in}{1.381624in}}% +\pgfpathlineto{\pgfqpoint{2.451326in}{1.395748in}}% +\pgfpathlineto{\pgfqpoint{2.396006in}{1.411595in}}% +\pgfpathlineto{\pgfqpoint{2.341741in}{1.429137in}}% +\pgfpathlineto{\pgfqpoint{2.288645in}{1.448342in}}% +\pgfpathlineto{\pgfqpoint{2.236829in}{1.469176in}}% +\pgfpathlineto{\pgfqpoint{2.186402in}{1.491601in}}% +\pgfpathlineto{\pgfqpoint{2.137472in}{1.515575in}}% +\pgfpathlineto{\pgfqpoint{2.090143in}{1.541050in}}% +\pgfpathlineto{\pgfqpoint{2.044518in}{1.567978in}}% +\pgfpathlineto{\pgfqpoint{2.000696in}{1.596306in}}% +\pgfpathlineto{\pgfqpoint{1.958773in}{1.625976in}}% +\pgfpathlineto{\pgfqpoint{1.918841in}{1.656927in}}% +\pgfpathlineto{\pgfqpoint{1.880989in}{1.689098in}}% +\pgfpathlineto{\pgfqpoint{1.845302in}{1.722420in}}% +\pgfpathlineto{\pgfqpoint{1.811860in}{1.756824in}}% +\pgfpathlineto{\pgfqpoint{1.780740in}{1.792237in}}% +\pgfpathlineto{\pgfqpoint{1.752012in}{1.828584in}}% +\pgfpathlineto{\pgfqpoint{1.725742in}{1.865785in}}% +\pgfpathlineto{\pgfqpoint{1.701993in}{1.903760in}}% +\pgfpathlineto{\pgfqpoint{1.680819in}{1.942426in}}% +\pgfpathlineto{\pgfqpoint{1.662272in}{1.981697in}}% +\pgfpathlineto{\pgfqpoint{1.646394in}{2.021486in}}% +\pgfpathlineto{\pgfqpoint{1.633225in}{2.061703in}}% +\pgfpathlineto{\pgfqpoint{1.622798in}{2.102257in}}% +\pgfpathlineto{\pgfqpoint{1.615137in}{2.143056in}}% +\pgfpathlineto{\pgfqpoint{1.610264in}{2.184006in}}% +\pgfpathlineto{\pgfqpoint{1.608191in}{2.225013in}}% +\pgfpathlineto{\pgfqpoint{1.608925in}{2.265980in}}% +\pgfpathlineto{\pgfqpoint{1.612465in}{2.306813in}}% +\pgfpathlineto{\pgfqpoint{1.618806in}{2.347414in}}% +\pgfpathlineto{\pgfqpoint{1.627933in}{2.387686in}}% +\pgfpathlineto{\pgfqpoint{1.639826in}{2.427535in}}% +\pgfpathlineto{\pgfqpoint{1.654457in}{2.466863in}}% +\pgfpathlineto{\pgfqpoint{1.671793in}{2.505576in}}% +\pgfpathlineto{\pgfqpoint{1.691790in}{2.543578in}}% +\pgfpathlineto{\pgfqpoint{1.714402in}{2.580777in}}% +\pgfpathlineto{\pgfqpoint{1.739574in}{2.617080in}}% +\pgfpathlineto{\pgfqpoint{1.767242in}{2.652397in}}% +\pgfpathlineto{\pgfqpoint{1.797340in}{2.686641in}}% +\pgfpathlineto{\pgfqpoint{1.829791in}{2.719723in}}% +\pgfpathlineto{\pgfqpoint{1.864515in}{2.751560in}}% +\pgfpathlineto{\pgfqpoint{1.901422in}{2.782072in}}% +\pgfpathlineto{\pgfqpoint{1.940419in}{2.811178in}}% +\pgfpathlineto{\pgfqpoint{1.981406in}{2.838804in}}% +\pgfpathlineto{\pgfqpoint{2.024277in}{2.864878in}}% +\pgfpathlineto{\pgfqpoint{2.068919in}{2.889331in}}% +\pgfpathlineto{\pgfqpoint{2.115216in}{2.912097in}}% +\pgfpathlineto{\pgfqpoint{2.163046in}{2.933117in}}% +\pgfpathlineto{\pgfqpoint{2.212282in}{2.952333in}}% +\pgfpathlineto{\pgfqpoint{2.262792in}{2.969693in}}% +\pgfpathlineto{\pgfqpoint{2.314440in}{2.985149in}}% +\pgfpathlineto{\pgfqpoint{2.367086in}{2.998658in}}% +\pgfpathlineto{\pgfqpoint{2.420586in}{3.010182in}}% +\pgfpathlineto{\pgfqpoint{2.474794in}{3.019687in}}% +\pgfpathlineto{\pgfqpoint{2.529560in}{3.027146in}}% +\pgfpathlineto{\pgfqpoint{2.584732in}{3.032537in}}% +\pgfpathlineto{\pgfqpoint{2.640154in}{3.035842in}}% +\pgfpathlineto{\pgfqpoint{2.695671in}{3.037049in}}% +\pgfpathlineto{\pgfqpoint{2.751124in}{3.036154in}}% +\pgfpathlineto{\pgfqpoint{2.806355in}{3.033155in}}% +\pgfpathlineto{\pgfqpoint{2.861204in}{3.028058in}}% +\pgfpathlineto{\pgfqpoint{2.915513in}{3.020876in}}% +\pgfpathlineto{\pgfqpoint{2.969121in}{3.011625in}}% +\pgfpathlineto{\pgfqpoint{3.021870in}{3.000329in}}% +\pgfpathlineto{\pgfqpoint{3.073603in}{2.987017in}}% +\pgfpathlineto{\pgfqpoint{3.124165in}{2.971724in}}% +\pgfpathlineto{\pgfqpoint{3.173402in}{2.954492in}}% +\pgfpathlineto{\pgfqpoint{3.221162in}{2.935367in}}% +\pgfpathlineto{\pgfqpoint{3.267299in}{2.914403in}}% +\pgfpathlineto{\pgfqpoint{3.311668in}{2.891656in}}% +\pgfpathlineto{\pgfqpoint{3.354128in}{2.867193in}}% +\pgfpathlineto{\pgfqpoint{3.394543in}{2.841081in}}% +\pgfpathlineto{\pgfqpoint{3.432781in}{2.813395in}}% +\pgfpathlineto{\pgfqpoint{3.468716in}{2.784216in}}% +\pgfpathlineto{\pgfqpoint{3.502229in}{2.753628in}}% +\pgfpathlineto{\pgfqpoint{3.533203in}{2.721721in}}% +\pgfpathlineto{\pgfqpoint{3.561531in}{2.688590in}}% +\pgfpathlineto{\pgfqpoint{3.587113in}{2.654333in}}% +\pgfpathlineto{\pgfqpoint{3.609852in}{2.619053in}}% +\pgfpathlineto{\pgfqpoint{3.629664in}{2.582858in}}% +\pgfpathlineto{\pgfqpoint{3.646470in}{2.545857in}}% +\pgfpathlineto{\pgfqpoint{3.660198in}{2.508165in}}% +\pgfpathlineto{\pgfqpoint{3.670787in}{2.469898in}}% +\pgfpathlineto{\pgfqpoint{3.678185in}{2.431177in}}% +\pgfpathlineto{\pgfqpoint{3.682346in}{2.392123in}}% +\pgfpathlineto{\pgfqpoint{3.683236in}{2.352862in}}% +\pgfpathlineto{\pgfqpoint{3.680829in}{2.313520in}}% +\pgfpathlineto{\pgfqpoint{3.675111in}{2.274224in}}% +\pgfpathlineto{\pgfqpoint{3.666074in}{2.235103in}}% +\pgfpathlineto{\pgfqpoint{3.653724in}{2.196287in}}% +\pgfpathlineto{\pgfqpoint{3.638074in}{2.157906in}}% +\pgfpathlineto{\pgfqpoint{3.619149in}{2.120089in}}% +\pgfpathlineto{\pgfqpoint{3.596984in}{2.082966in}}% +\pgfpathlineto{\pgfqpoint{3.571623in}{2.046667in}}% +\pgfpathlineto{\pgfqpoint{3.543121in}{2.011318in}}% +\pgfpathlineto{\pgfqpoint{3.511545in}{1.977045in}}% +\pgfpathlineto{\pgfqpoint{3.476968in}{1.943972in}}% +\pgfpathlineto{\pgfqpoint{3.439477in}{1.912222in}}% +\pgfpathlineto{\pgfqpoint{3.399166in}{1.881913in}}% +\pgfpathlineto{\pgfqpoint{3.356141in}{1.853160in}}% +\pgfpathlineto{\pgfqpoint{3.310516in}{1.826076in}}% +\pgfpathlineto{\pgfqpoint{3.262415in}{1.800768in}}% +\pgfpathlineto{\pgfqpoint{3.211971in}{1.777342in}}% +\pgfpathlineto{\pgfqpoint{3.159325in}{1.755896in}}% +\pgfpathlineto{\pgfqpoint{3.104626in}{1.736524in}}% +\pgfpathlineto{\pgfqpoint{3.048034in}{1.719316in}}% +\pgfpathlineto{\pgfqpoint{2.989713in}{1.704354in}}% +\pgfpathlineto{\pgfqpoint{2.929837in}{1.691716in}}% +\pgfpathlineto{\pgfqpoint{2.868585in}{1.681472in}}% +\pgfpathlineto{\pgfqpoint{2.806143in}{1.673687in}}% +\pgfpathlineto{\pgfqpoint{2.742703in}{1.668418in}}% +\pgfpathlineto{\pgfqpoint{2.678463in}{1.665715in}}% +\pgfpathlineto{\pgfqpoint{2.613625in}{1.665620in}}% +\pgfpathlineto{\pgfqpoint{2.548395in}{1.668169in}}% +\pgfpathlineto{\pgfqpoint{2.482983in}{1.673389in}}% +\pgfpathlineto{\pgfqpoint{2.417602in}{1.681299in}}% +\pgfpathlineto{\pgfqpoint{2.352468in}{1.691910in}}% +\pgfpathlineto{\pgfqpoint{2.287799in}{1.705224in}}% +\pgfpathlineto{\pgfqpoint{2.223813in}{1.721237in}}% +\pgfpathlineto{\pgfqpoint{2.160728in}{1.739934in}}% +\pgfpathlineto{\pgfqpoint{2.098765in}{1.761291in}}% +\pgfpathlineto{\pgfqpoint{2.038142in}{1.785278in}}% +\pgfpathlineto{\pgfqpoint{1.979074in}{1.811854in}}% +\pgfpathlineto{\pgfqpoint{1.921776in}{1.840972in}}% +\pgfpathlineto{\pgfqpoint{1.866461in}{1.872573in}}% +\pgfpathlineto{\pgfqpoint{1.813335in}{1.906592in}}% +\pgfpathlineto{\pgfqpoint{1.762602in}{1.942954in}}% +\pgfpathlineto{\pgfqpoint{1.714462in}{1.981579in}}% +\pgfpathlineto{\pgfqpoint{1.669106in}{2.022374in}}% +\pgfpathlineto{\pgfqpoint{1.626723in}{2.065243in}}% +\pgfpathlineto{\pgfqpoint{1.587490in}{2.110078in}}% +\pgfpathlineto{\pgfqpoint{1.551580in}{2.156766in}}% +\pgfpathlineto{\pgfqpoint{1.519158in}{2.205188in}}% +\pgfpathlineto{\pgfqpoint{1.490377in}{2.255214in}}% +\pgfpathlineto{\pgfqpoint{1.465384in}{2.306710in}}% +\pgfpathlineto{\pgfqpoint{1.444312in}{2.359537in}}% +\pgfpathlineto{\pgfqpoint{1.427288in}{2.413548in}}% +\pgfpathlineto{\pgfqpoint{1.414425in}{2.468591in}}% +\pgfpathlineto{\pgfqpoint{1.405824in}{2.524508in}}% +\pgfpathlineto{\pgfqpoint{1.401576in}{2.581139in}}% +\pgfpathlineto{\pgfqpoint{1.401758in}{2.638318in}}% +\pgfpathlineto{\pgfqpoint{1.406433in}{2.695874in}}% +\pgfpathlineto{\pgfqpoint{1.415655in}{2.753636in}}% +\pgfpathlineto{\pgfqpoint{1.429459in}{2.811427in}}% +\pgfpathlineto{\pgfqpoint{1.447871in}{2.869070in}}% +\pgfpathlineto{\pgfqpoint{1.470898in}{2.926386in}}% +\pgfpathlineto{\pgfqpoint{1.498538in}{2.983193in}}% +\pgfpathlineto{\pgfqpoint{1.530771in}{3.039312in}}% +\pgfpathlineto{\pgfqpoint{1.567563in}{3.094560in}}% +\pgfpathlineto{\pgfqpoint{1.608866in}{3.148757in}}% +\pgfpathlineto{\pgfqpoint{1.654617in}{3.201724in}}% +\pgfpathlineto{\pgfqpoint{1.704739in}{3.253284in}}% +\pgfpathlineto{\pgfqpoint{1.759139in}{3.303261in}}% +\pgfpathlineto{\pgfqpoint{1.817712in}{3.351482in}}% +\pgfpathlineto{\pgfqpoint{1.880337in}{3.397779in}}% +\pgfpathlineto{\pgfqpoint{1.946878in}{3.441987in}}% +\pgfpathlineto{\pgfqpoint{2.017189in}{3.483947in}}% +\pgfpathlineto{\pgfqpoint{2.091106in}{3.523502in}}% +\pgfpathlineto{\pgfqpoint{2.168456in}{3.560505in}}% +\pgfpathlineto{\pgfqpoint{2.249051in}{3.594812in}}% +\pgfpathlineto{\pgfqpoint{2.332692in}{3.626287in}}% +\pgfpathlineto{\pgfqpoint{2.419167in}{3.654802in}}% +\pgfpathlineto{\pgfqpoint{2.508254in}{3.680236in}}% +\pgfpathlineto{\pgfqpoint{2.599721in}{3.702477in}}% +\pgfpathlineto{\pgfqpoint{2.693325in}{3.721420in}}% +\pgfpathlineto{\pgfqpoint{2.788815in}{3.736972in}}% +\pgfpathlineto{\pgfqpoint{2.885929in}{3.749048in}}% +\pgfpathlineto{\pgfqpoint{2.984401in}{3.757573in}}% +\pgfpathlineto{\pgfqpoint{3.083956in}{3.762482in}}% +\pgfpathlineto{\pgfqpoint{3.184313in}{3.763721in}}% +\pgfpathlineto{\pgfqpoint{3.285185in}{3.761247in}}% +\pgfpathlineto{\pgfqpoint{3.386283in}{3.755030in}}% +\pgfpathlineto{\pgfqpoint{3.487312in}{3.745047in}}% +\pgfpathlineto{\pgfqpoint{3.587975in}{3.731291in}}% +\pgfpathlineto{\pgfqpoint{3.687976in}{3.713763in}}% +\pgfpathlineto{\pgfqpoint{3.787015in}{3.692479in}}% +\pgfpathlineto{\pgfqpoint{3.884793in}{3.667466in}}% +\pgfpathlineto{\pgfqpoint{3.981014in}{3.638761in}}% +\pgfpathlineto{\pgfqpoint{4.075383in}{3.606416in}}% +\pgfpathlineto{\pgfqpoint{4.167608in}{3.570491in}}% +\pgfpathlineto{\pgfqpoint{4.257402in}{3.531061in}}% +\pgfpathlineto{\pgfqpoint{4.344483in}{3.488212in}}% +\pgfpathlineto{\pgfqpoint{4.428575in}{3.442040in}}% +\pgfpathlineto{\pgfqpoint{4.509409in}{3.392654in}}% +\pgfpathlineto{\pgfqpoint{4.586726in}{3.340173in}}% +\pgfpathlineto{\pgfqpoint{4.660274in}{3.284726in}}% +\pgfpathlineto{\pgfqpoint{4.729811in}{3.226454in}}% +\pgfpathlineto{\pgfqpoint{4.795106in}{3.165506in}}% +\pgfpathlineto{\pgfqpoint{4.855942in}{3.102043in}}% +\pgfpathlineto{\pgfqpoint{4.912111in}{3.036232in}}% +\pgfpathlineto{\pgfqpoint{4.963422in}{2.968251in}}% +\pgfpathlineto{\pgfqpoint{5.009694in}{2.898286in}}% +\pgfpathlineto{\pgfqpoint{5.050764in}{2.826529in}}% +\pgfpathlineto{\pgfqpoint{5.086484in}{2.753180in}}% +\pgfpathlineto{\pgfqpoint{5.116721in}{2.678445in}}% +\pgfpathlineto{\pgfqpoint{5.141359in}{2.602536in}}% +\pgfpathlineto{\pgfqpoint{5.160300in}{2.525669in}}% +\pgfpathlineto{\pgfqpoint{5.173463in}{2.448067in}}% +\pgfpathlineto{\pgfqpoint{5.180785in}{2.369952in}}% +\pgfpathlineto{\pgfqpoint{5.182222in}{2.291554in}}% +\pgfpathlineto{\pgfqpoint{5.177748in}{2.213101in}}% +\pgfpathlineto{\pgfqpoint{5.167356in}{2.134824in}}% +\pgfpathlineto{\pgfqpoint{5.151058in}{2.056956in}}% +\pgfpathlineto{\pgfqpoint{5.128885in}{1.979727in}}% +\pgfpathlineto{\pgfqpoint{5.100889in}{1.903368in}}% +\pgfpathlineto{\pgfqpoint{5.067139in}{1.828106in}}% +\pgfpathlineto{\pgfqpoint{5.027723in}{1.754170in}}% +\pgfpathlineto{\pgfqpoint{4.982750in}{1.681779in}}% +\pgfpathlineto{\pgfqpoint{4.932344in}{1.611154in}}% +\pgfpathlineto{\pgfqpoint{4.876652in}{1.542506in}}% +\pgfpathlineto{\pgfqpoint{4.815834in}{1.476045in}}% +\pgfpathlineto{\pgfqpoint{4.750070in}{1.411970in}}% +\pgfpathlineto{\pgfqpoint{4.679558in}{1.350476in}}% +\pgfpathlineto{\pgfqpoint{4.604510in}{1.291749in}}% +\pgfpathlineto{\pgfqpoint{4.525155in}{1.235965in}}% +\pgfpathlineto{\pgfqpoint{4.441736in}{1.183293in}}% +\pgfpathlineto{\pgfqpoint{4.354511in}{1.133891in}}% +\pgfpathlineto{\pgfqpoint{4.263751in}{1.087905in}}% +\pgfpathlineto{\pgfqpoint{4.169739in}{1.045473in}}% +\pgfpathlineto{\pgfqpoint{4.072771in}{1.006718in}}% +\pgfpathlineto{\pgfqpoint{3.973152in}{0.971752in}}% +\pgfpathlineto{\pgfqpoint{3.871197in}{0.940676in}}% +\pgfpathlineto{\pgfqpoint{3.767229in}{0.913575in}}% +\pgfpathlineto{\pgfqpoint{3.661580in}{0.890524in}}% +\pgfpathlineto{\pgfqpoint{3.554585in}{0.871580in}}% +\pgfpathlineto{\pgfqpoint{3.446588in}{0.856789in}}% +\pgfpathlineto{\pgfqpoint{3.337933in}{0.846182in}}% +\pgfpathlineto{\pgfqpoint{3.228969in}{0.839775in}}% +\pgfpathlineto{\pgfqpoint{3.120045in}{0.837570in}}% +\pgfpathlineto{\pgfqpoint{3.011510in}{0.839554in}}% +\pgfpathlineto{\pgfqpoint{2.903711in}{0.845700in}}% +\pgfpathlineto{\pgfqpoint{2.796996in}{0.855965in}}% +\pgfpathlineto{\pgfqpoint{2.691704in}{0.870292in}}% +\pgfpathlineto{\pgfqpoint{2.588172in}{0.888611in}}% +\pgfpathlineto{\pgfqpoint{2.486731in}{0.910835in}}% +\pgfpathlineto{\pgfqpoint{2.387702in}{0.936865in}}% +\pgfpathlineto{\pgfqpoint{2.291399in}{0.966589in}}% +\pgfpathlineto{\pgfqpoint{2.198124in}{0.999880in}}% +\pgfpathlineto{\pgfqpoint{2.108170in}{1.036599in}}% +\pgfpathlineto{\pgfqpoint{2.021817in}{1.076595in}}% +\pgfpathlineto{\pgfqpoint{1.939329in}{1.119704in}}% +\pgfpathlineto{\pgfqpoint{1.860959in}{1.165753in}}% +\pgfpathlineto{\pgfqpoint{1.786942in}{1.214556in}}% +\pgfpathlineto{\pgfqpoint{1.717497in}{1.265917in}}% +\pgfpathlineto{\pgfqpoint{1.652825in}{1.319634in}}% +\pgfpathlineto{\pgfqpoint{1.593111in}{1.375492in}}% +\pgfpathlineto{\pgfqpoint{1.538518in}{1.433273in}}% +\pgfpathlineto{\pgfqpoint{1.489191in}{1.492748in}}% +\pgfpathlineto{\pgfqpoint{1.445255in}{1.553685in}}% +\pgfpathlineto{\pgfqpoint{1.406811in}{1.615845in}}% +\pgfpathlineto{\pgfqpoint{1.373942in}{1.678985in}}% +\pgfpathlineto{\pgfqpoint{1.346708in}{1.742861in}}% +\pgfpathlineto{\pgfqpoint{1.325146in}{1.807224in}}% +\pgfpathlineto{\pgfqpoint{1.309273in}{1.871824in}}% +\pgfpathlineto{\pgfqpoint{1.299080in}{1.936413in}}% +\pgfpathlineto{\pgfqpoint{1.294539in}{2.000742in}}% +\pgfpathlineto{\pgfqpoint{1.295597in}{2.064562in}}% +\pgfpathlineto{\pgfqpoint{1.302181in}{2.127631in}}% +\pgfpathlineto{\pgfqpoint{1.314193in}{2.189706in}}% +\pgfpathlineto{\pgfqpoint{1.331516in}{2.250553in}}% +\pgfpathlineto{\pgfqpoint{1.354010in}{2.309939in}}% +\pgfpathlineto{\pgfqpoint{1.381515in}{2.367643in}}% +\pgfpathlineto{\pgfqpoint{1.413849in}{2.423446in}}% +\pgfpathlineto{\pgfqpoint{1.450813in}{2.477142in}}% +\pgfpathlineto{\pgfqpoint{1.492188in}{2.528532in}}% +\pgfpathlineto{\pgfqpoint{1.537736in}{2.577427in}}% +\pgfpathlineto{\pgfqpoint{1.587204in}{2.623650in}}% +\pgfpathlineto{\pgfqpoint{1.640320in}{2.667036in}}% +\pgfpathlineto{\pgfqpoint{1.696801in}{2.707432in}}% +\pgfpathlineto{\pgfqpoint{1.756347in}{2.744698in}}% +\pgfpathlineto{\pgfqpoint{1.818645in}{2.778709in}}% +\pgfpathlineto{\pgfqpoint{1.883375in}{2.809351in}}% +\pgfpathlineto{\pgfqpoint{1.950201in}{2.836530in}}% +\pgfpathlineto{\pgfqpoint{2.018783in}{2.860164in}}% +\pgfpathlineto{\pgfqpoint{2.088772in}{2.880188in}}% +\pgfpathlineto{\pgfqpoint{2.159813in}{2.896553in}}% +\pgfpathlineto{\pgfqpoint{2.231548in}{2.909226in}}% +\pgfpathlineto{\pgfqpoint{2.303615in}{2.918191in}}% +\pgfpathlineto{\pgfqpoint{2.375650in}{2.923449in}}% +\pgfpathlineto{\pgfqpoint{2.447293in}{2.925018in}}% +\pgfpathlineto{\pgfqpoint{2.518182in}{2.922932in}}% +\pgfpathlineto{\pgfqpoint{2.587962in}{2.917243in}}% +\pgfpathlineto{\pgfqpoint{2.656280in}{2.908019in}}% +\pgfpathlineto{\pgfqpoint{2.722791in}{2.895345in}}% +\pgfpathlineto{\pgfqpoint{2.787160in}{2.879320in}}% +\pgfpathlineto{\pgfqpoint{2.849060in}{2.860061in}}% +\pgfpathlineto{\pgfqpoint{2.908175in}{2.837700in}}% +\pgfpathlineto{\pgfqpoint{2.964202in}{2.812384in}}% +\pgfpathlineto{\pgfqpoint{3.016854in}{2.784273in}}% +\pgfpathlineto{\pgfqpoint{3.065857in}{2.753541in}}% +\pgfpathlineto{\pgfqpoint{3.110956in}{2.720376in}}% +\pgfpathlineto{\pgfqpoint{3.151913in}{2.684977in}}% +\pgfpathlineto{\pgfqpoint{3.188509in}{2.647555in}}% +\pgfpathlineto{\pgfqpoint{3.220546in}{2.608331in}}% +\pgfpathlineto{\pgfqpoint{3.247848in}{2.567535in}}% +\pgfpathlineto{\pgfqpoint{3.270260in}{2.525407in}}% +\pgfpathlineto{\pgfqpoint{3.287651in}{2.482194in}}% +\pgfpathlineto{\pgfqpoint{3.299914in}{2.438148in}}% +\pgfpathlineto{\pgfqpoint{3.306966in}{2.393527in}}% +\pgfpathlineto{\pgfqpoint{3.308750in}{2.348595in}}% +\pgfpathlineto{\pgfqpoint{3.305234in}{2.303616in}}% +\pgfpathlineto{\pgfqpoint{3.296412in}{2.258858in}}% +\pgfpathlineto{\pgfqpoint{3.282304in}{2.214588in}}% +\pgfpathlineto{\pgfqpoint{3.262956in}{2.171075in}}% +\pgfpathlineto{\pgfqpoint{3.238442in}{2.128582in}}% +\pgfpathlineto{\pgfqpoint{3.208860in}{2.087372in}}% +\pgfpathlineto{\pgfqpoint{3.174335in}{2.047704in}}% +\pgfpathlineto{\pgfqpoint{3.135016in}{2.009829in}}% +\pgfpathlineto{\pgfqpoint{3.091079in}{1.973992in}}% +\pgfpathlineto{\pgfqpoint{3.042724in}{1.940431in}}% +\pgfpathlineto{\pgfqpoint{2.990172in}{1.909375in}}% +\pgfpathlineto{\pgfqpoint{2.933672in}{1.881042in}}% +\pgfpathlineto{\pgfqpoint{2.873489in}{1.855637in}}% +\pgfpathlineto{\pgfqpoint{2.809913in}{1.833356in}}% +\pgfpathlineto{\pgfqpoint{2.743253in}{1.814379in}}% +\pgfpathlineto{\pgfqpoint{2.673836in}{1.798872in}}% +\pgfpathlineto{\pgfqpoint{2.602005in}{1.786987in}}% +\pgfpathlineto{\pgfqpoint{2.528120in}{1.778858in}}% +\pgfpathlineto{\pgfqpoint{2.452556in}{1.774604in}}% +\pgfpathlineto{\pgfqpoint{2.375698in}{1.774324in}}% +\pgfpathlineto{\pgfqpoint{2.297944in}{1.778100in}}% +\pgfpathlineto{\pgfqpoint{2.219701in}{1.785996in}}% +\pgfpathlineto{\pgfqpoint{2.141383in}{1.798056in}}% +\pgfpathlineto{\pgfqpoint{2.063408in}{1.814303in}}% +\pgfpathlineto{\pgfqpoint{1.986201in}{1.834741in}}% +\pgfpathlineto{\pgfqpoint{1.910185in}{1.859354in}}% +\pgfpathlineto{\pgfqpoint{1.835785in}{1.888106in}}% +\pgfpathlineto{\pgfqpoint{1.763423in}{1.920939in}}% +\pgfpathlineto{\pgfqpoint{1.693517in}{1.957776in}}% +\pgfpathlineto{\pgfqpoint{1.626479in}{1.998518in}}% +\pgfpathlineto{\pgfqpoint{1.562713in}{2.043049in}}% +\pgfpathlineto{\pgfqpoint{1.502612in}{2.091230in}}% +\pgfpathlineto{\pgfqpoint{1.446558in}{2.142906in}}% +\pgfpathlineto{\pgfqpoint{1.394917in}{2.197899in}}% +\pgfpathlineto{\pgfqpoint{1.348042in}{2.256018in}}% +\pgfpathlineto{\pgfqpoint{1.306267in}{2.317050in}}% +\pgfpathlineto{\pgfqpoint{1.269906in}{2.380768in}}% +\pgfpathlineto{\pgfqpoint{1.239253in}{2.446928in}}% +\pgfpathlineto{\pgfqpoint{1.214580in}{2.515272in}}% +\pgfpathlineto{\pgfqpoint{1.196132in}{2.585529in}}% +\pgfpathlineto{\pgfqpoint{1.184133in}{2.657412in}}% +\pgfpathlineto{\pgfqpoint{1.178776in}{2.730626in}}% +\pgfpathlineto{\pgfqpoint{1.180228in}{2.804864in}}% +\pgfpathlineto{\pgfqpoint{1.188627in}{2.879810in}}% +\pgfpathlineto{\pgfqpoint{1.204081in}{2.955141in}}% +\pgfpathlineto{\pgfqpoint{1.226666in}{3.030528in}}% +\pgfpathlineto{\pgfqpoint{1.256428in}{3.105635in}}% +\pgfpathlineto{\pgfqpoint{1.293380in}{3.180124in}}% +\pgfpathlineto{\pgfqpoint{1.337503in}{3.253658in}}% +\pgfpathlineto{\pgfqpoint{1.388744in}{3.325894in}}% +\pgfpathlineto{\pgfqpoint{1.447019in}{3.396495in}}% +\pgfpathlineto{\pgfqpoint{1.512210in}{3.465126in}}% +\pgfpathlineto{\pgfqpoint{1.584166in}{3.531453in}}% +\pgfpathlineto{\pgfqpoint{1.662704in}{3.595153in}}% +\pgfpathlineto{\pgfqpoint{1.747610in}{3.655906in}}% +\pgfpathlineto{\pgfqpoint{1.838637in}{3.713404in}}% +\pgfpathlineto{\pgfqpoint{1.935508in}{3.767349in}}% +\pgfpathlineto{\pgfqpoint{2.037919in}{3.817453in}}% +\pgfpathlineto{\pgfqpoint{2.145534in}{3.863445in}}% +\pgfpathlineto{\pgfqpoint{2.257991in}{3.905064in}}% +\pgfpathlineto{\pgfqpoint{2.374904in}{3.942071in}}% +\pgfpathlineto{\pgfqpoint{2.495859in}{3.974238in}}% +\pgfpathlineto{\pgfqpoint{2.620422in}{4.001362in}}% +\pgfpathlineto{\pgfqpoint{2.748138in}{4.023254in}}% +\pgfpathlineto{\pgfqpoint{2.878531in}{4.039750in}}% +\pgfpathlineto{\pgfqpoint{3.011109in}{4.050706in}}% +\pgfpathlineto{\pgfqpoint{3.145365in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.280778in}{4.055535in}}% +\pgfpathlineto{\pgfqpoint{3.416817in}{4.049236in}}% +\pgfpathlineto{\pgfqpoint{3.552942in}{4.037055in}}% +\pgfpathlineto{\pgfqpoint{3.688607in}{4.018967in}}% +\pgfpathlineto{\pgfqpoint{3.823262in}{3.994974in}}% +\pgfpathlineto{\pgfqpoint{3.956358in}{3.965102in}}% +\pgfpathlineto{\pgfqpoint{4.087344in}{3.929405in}}% +\pgfpathlineto{\pgfqpoint{4.215673in}{3.887962in}}% +\pgfpathlineto{\pgfqpoint{4.340807in}{3.840876in}}% +\pgfpathlineto{\pgfqpoint{4.462213in}{3.788277in}}% +\pgfpathlineto{\pgfqpoint{4.579373in}{3.730321in}}% +\pgfpathlineto{\pgfqpoint{4.691779in}{3.667186in}}% +\pgfpathlineto{\pgfqpoint{4.798942in}{3.599076in}}% +\pgfpathlineto{\pgfqpoint{4.900389in}{3.526218in}}% +\pgfpathlineto{\pgfqpoint{4.995669in}{3.448862in}}% +\pgfpathlineto{\pgfqpoint{5.084354in}{3.367277in}}% +\pgfpathlineto{\pgfqpoint{5.166040in}{3.281756in}}% +\pgfpathlineto{\pgfqpoint{5.240352in}{3.192609in}}% +\pgfpathlineto{\pgfqpoint{5.306942in}{3.100165in}}% +\pgfpathlineto{\pgfqpoint{5.365493in}{3.004769in}}% +\pgfpathlineto{\pgfqpoint{5.415722in}{2.906782in}}% +\pgfpathlineto{\pgfqpoint{5.457379in}{2.806579in}}% +\pgfpathlineto{\pgfqpoint{5.490248in}{2.704547in}}% +\pgfpathlineto{\pgfqpoint{5.514153in}{2.601084in}}% +\pgfpathlineto{\pgfqpoint{5.528953in}{2.496594in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.391493in}}% +\pgfpathlineto{\pgfqpoint{5.530870in}{2.286198in}}% +\pgfpathlineto{\pgfqpoint{5.517903in}{2.181131in}}% +\pgfpathlineto{\pgfqpoint{5.495663in}{2.076715in}}% +\pgfpathlineto{\pgfqpoint{5.464209in}{1.973373in}}% +\pgfpathlineto{\pgfqpoint{5.423640in}{1.871526in}}% +\pgfpathlineto{\pgfqpoint{5.374095in}{1.771589in}}% +\pgfpathlineto{\pgfqpoint{5.315755in}{1.673972in}}% +\pgfpathlineto{\pgfqpoint{5.248837in}{1.579077in}}% +\pgfpathlineto{\pgfqpoint{5.173599in}{1.487296in}}% +\pgfpathlineto{\pgfqpoint{5.090337in}{1.399006in}}% +\pgfpathlineto{\pgfqpoint{4.999382in}{1.314576in}}% +\pgfpathlineto{\pgfqpoint{4.901101in}{1.234353in}}% +\pgfpathlineto{\pgfqpoint{4.795895in}{1.158673in}}% +\pgfpathlineto{\pgfqpoint{4.684196in}{1.087847in}}% +\pgfpathlineto{\pgfqpoint{4.566469in}{1.022172in}}% +\pgfpathlineto{\pgfqpoint{4.443204in}{0.961917in}}% +\pgfpathlineto{\pgfqpoint{4.314919in}{0.907332in}}% +\pgfpathlineto{\pgfqpoint{4.182156in}{0.858640in}}% +\pgfpathlineto{\pgfqpoint{4.045477in}{0.816040in}}% +\pgfpathlineto{\pgfqpoint{3.905465in}{0.779704in}}% +\pgfpathlineto{\pgfqpoint{3.762718in}{0.749775in}}% +\pgfpathlineto{\pgfqpoint{3.617848in}{0.726369in}}% +\pgfpathlineto{\pgfqpoint{3.471479in}{0.709571in}}% +\pgfpathlineto{\pgfqpoint{3.324242in}{0.699440in}}% +\pgfpathlineto{\pgfqpoint{3.176772in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.029708in}{0.699249in}}% +\pgfpathlineto{\pgfqpoint{2.883687in}{0.709151in}}% +\pgfpathlineto{\pgfqpoint{2.739343in}{0.725643in}}% +\pgfpathlineto{\pgfqpoint{2.597303in}{0.748629in}}% +\pgfpathlineto{\pgfqpoint{2.458183in}{0.777984in}}% +\pgfpathlineto{\pgfqpoint{2.322587in}{0.813555in}}% +\pgfpathlineto{\pgfqpoint{2.191105in}{0.855158in}}% +\pgfpathlineto{\pgfqpoint{2.064305in}{0.902583in}}% +\pgfpathlineto{\pgfqpoint{1.942735in}{0.955590in}}% +\pgfpathlineto{\pgfqpoint{1.826920in}{1.013917in}}% +\pgfpathlineto{\pgfqpoint{1.717358in}{1.077273in}}% +\pgfpathlineto{\pgfqpoint{1.614517in}{1.145346in}}% +\pgfpathlineto{\pgfqpoint{1.518835in}{1.217801in}}% +\pgfpathlineto{\pgfqpoint{1.430713in}{1.294283in}}% +\pgfpathlineto{\pgfqpoint{1.350521in}{1.374417in}}% +\pgfpathlineto{\pgfqpoint{1.278588in}{1.457812in}}% +\pgfpathlineto{\pgfqpoint{1.215205in}{1.544060in}}% +\pgfpathlineto{\pgfqpoint{1.160622in}{1.632741in}}% +\pgfpathlineto{\pgfqpoint{1.115048in}{1.723423in}}% +\pgfpathlineto{\pgfqpoint{1.078645in}{1.815664in}}% +\pgfpathlineto{\pgfqpoint{1.051536in}{1.909017in}}% +\pgfpathlineto{\pgfqpoint{1.033796in}{2.003028in}}% +\pgfpathlineto{\pgfqpoint{1.025455in}{2.097239in}}% +\pgfpathlineto{\pgfqpoint{1.026497in}{2.191195in}}% +\pgfpathlineto{\pgfqpoint{1.036862in}{2.284441in}}% +\pgfpathlineto{\pgfqpoint{1.056444in}{2.376523in}}% +\pgfpathlineto{\pgfqpoint{1.085090in}{2.466998in}}% +\pgfpathlineto{\pgfqpoint{1.122607in}{2.555429in}}% +\pgfpathlineto{\pgfqpoint{1.168753in}{2.641389in}}% +\pgfpathlineto{\pgfqpoint{1.223249in}{2.724464in}}% +\pgfpathlineto{\pgfqpoint{1.285772in}{2.804255in}}% +\pgfpathlineto{\pgfqpoint{1.355959in}{2.880381in}}% +\pgfpathlineto{\pgfqpoint{1.433412in}{2.952479in}}% +\pgfpathlineto{\pgfqpoint{1.517694in}{3.020205in}}% +\pgfpathlineto{\pgfqpoint{1.608337in}{3.083239in}}% +\pgfpathlineto{\pgfqpoint{1.704840in}{3.141285in}}% +\pgfpathlineto{\pgfqpoint{1.806675in}{3.194072in}}% +\pgfpathlineto{\pgfqpoint{1.913286in}{3.241357in}}% +\pgfpathlineto{\pgfqpoint{2.024094in}{3.282924in}}% +\pgfpathlineto{\pgfqpoint{2.138499in}{3.318587in}}% +\pgfpathlineto{\pgfqpoint{2.255885in}{3.348190in}}% +\pgfpathlineto{\pgfqpoint{2.375622in}{3.371609in}}% +\pgfpathlineto{\pgfqpoint{2.497065in}{3.388752in}}% +\pgfpathlineto{\pgfqpoint{2.619567in}{3.399557in}}% +\pgfpathlineto{\pgfqpoint{2.742471in}{3.403999in}}% +\pgfpathlineto{\pgfqpoint{2.865123in}{3.402082in}}% +\pgfpathlineto{\pgfqpoint{2.986868in}{3.393845in}}% +\pgfpathlineto{\pgfqpoint{3.107060in}{3.379359in}}% +\pgfpathlineto{\pgfqpoint{3.225059in}{3.358729in}}% +\pgfpathlineto{\pgfqpoint{3.340240in}{3.332090in}}% +\pgfpathlineto{\pgfqpoint{3.451992in}{3.299610in}}% +\pgfpathlineto{\pgfqpoint{3.559723in}{3.261486in}}% +\pgfpathlineto{\pgfqpoint{3.662865in}{3.217945in}}% +\pgfpathlineto{\pgfqpoint{3.760871in}{3.169242in}}% +\pgfpathlineto{\pgfqpoint{3.853226in}{3.115660in}}% +\pgfpathlineto{\pgfqpoint{3.939445in}{3.057508in}}% +\pgfpathlineto{\pgfqpoint{4.019074in}{2.995115in}}% +\pgfpathlineto{\pgfqpoint{4.091697in}{2.928837in}}% +\pgfpathlineto{\pgfqpoint{4.156936in}{2.859048in}}% +\pgfpathlineto{\pgfqpoint{4.214451in}{2.786140in}}% +\pgfpathlineto{\pgfqpoint{4.263947in}{2.710521in}}% +\pgfpathlineto{\pgfqpoint{4.305170in}{2.632616in}}% +\pgfpathlineto{\pgfqpoint{4.337913in}{2.552858in}}% +\pgfpathlineto{\pgfqpoint{4.362013in}{2.471691in}}% +\pgfpathlineto{\pgfqpoint{4.377356in}{2.389567in}}% +\pgfpathlineto{\pgfqpoint{4.383875in}{2.306941in}}% +\pgfpathlineto{\pgfqpoint{4.381551in}{2.224272in}}% +\pgfpathlineto{\pgfqpoint{4.370413in}{2.142017in}}% +\pgfpathlineto{\pgfqpoint{4.350540in}{2.060631in}}% +\pgfpathlineto{\pgfqpoint{4.322056in}{1.980563in}}% +\pgfpathlineto{\pgfqpoint{4.285135in}{1.902256in}}% +\pgfpathlineto{\pgfqpoint{4.239995in}{1.826140in}}% +\pgfpathlineto{\pgfqpoint{4.186900in}{1.752635in}}% +\pgfpathlineto{\pgfqpoint{4.126159in}{1.682145in}}% +\pgfpathlineto{\pgfqpoint{4.058121in}{1.615056in}}% +\pgfpathlineto{\pgfqpoint{3.983177in}{1.551736in}}% +\pgfpathlineto{\pgfqpoint{3.901754in}{1.492532in}}% +\pgfpathlineto{\pgfqpoint{3.814316in}{1.437766in}}% +\pgfpathlineto{\pgfqpoint{3.721361in}{1.387736in}}% +\pgfpathlineto{\pgfqpoint{3.623415in}{1.342711in}}% +\pgfpathlineto{\pgfqpoint{3.521035in}{1.302936in}}% +\pgfpathlineto{\pgfqpoint{3.414799in}{1.268621in}}% +\pgfpathlineto{\pgfqpoint{3.305307in}{1.239949in}}% +\pgfpathlineto{\pgfqpoint{3.193179in}{1.217069in}}% +\pgfpathlineto{\pgfqpoint{3.079047in}{1.200096in}}% +\pgfpathlineto{\pgfqpoint{2.963554in}{1.189114in}}% +\pgfpathlineto{\pgfqpoint{2.847352in}{1.184170in}}% +\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% +\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% -- cgit v1.2.1 From b3b175c9b728bb9e4224167ad91e34e6b3bd07f6 Mon Sep 17 00:00:00 2001 From: runterer Date: Thu, 2 Jun 2022 21:18:57 +0200 Subject: minor presentation improvements --- buch/papers/zeta/presentation/presentation.tex | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/presentation/presentation.tex b/buch/papers/zeta/presentation/presentation.tex index be3e12c..e106089 100644 --- a/buch/papers/zeta/presentation/presentation.tex +++ b/buch/papers/zeta/presentation/presentation.tex @@ -109,10 +109,10 @@ \end{frame} %Inhaltsverzeichnis - \begin{frame} - \frametitle{Inhalt} - \tableofcontents - \end{frame} +% \begin{frame} +% \frametitle{Inhalt} +% \tableofcontents +% \end{frame} \section{Motivation} @@ -187,14 +187,18 @@ \begin{align} \zeta(s) &= + \RD{ \sum_{n=1}^{\infty} \frac{1}{n^s} \label{zeta:align1} + } \\ \frac{1}{2^{s-1}} \zeta(s) &= + \BL{ \sum_{n=1}^{\infty} \frac{2}{(2n)^s} \label{zeta:align2} + } \end{align} \pause \eqref{zeta:align1} - \eqref{zeta:align2}: @@ -202,10 +206,10 @@ \left(1 - \frac{1}{2^{s-1}} \right) \zeta(s) &= - \frac{1}{1^s} - \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} - + \frac{1}{3^s} - \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + \RD{\frac{1}{1^s}} + \underbrace{-\BL{\frac{2}{2^s}} + \RD{\frac{1}{2^s}}}_{-\frac{1}{2^s}} + + \RD{\frac{1}{3^s}} + \underbrace{-\BL{\frac{2}{4^s}} + \RD{\frac{1}{4^s}}}_{-\frac{1}{4^s}} \ldots \\ &= \eta(s) @@ -308,6 +312,7 @@ + \ldots \right) + \ldots \\ = 1 -- cgit v1.2.1 From e0fb3e7b5861b9199eb2d361311cd1b768f8bed4 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Thu, 9 Jun 2022 15:53:28 +0200 Subject: Korrektur Feedback --- buch/papers/kreismembran/main.tex | 4 +- buch/papers/kreismembran/references.bib | 24 ++++++- buch/papers/kreismembran/teil1.tex | 95 +++++++++++++++++----------- buch/papers/kreismembran/teil2.tex | 107 ++++++++++++++++---------------- buch/papers/kreismembran/teil3.tex | 40 +++++++----- 5 files changed, 161 insertions(+), 109 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/main.tex b/buch/papers/kreismembran/main.tex index e63a118..e19c64a 100644 --- a/buch/papers/kreismembran/main.tex +++ b/buch/papers/kreismembran/main.tex @@ -3,8 +3,8 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Schwingungen einer kreisförmligen Membran\label{chapter:kreismembran}} -\lhead{Schwingungen einer kreisförmligen Membran} +\chapter{Schwingungen einer kreisförmigen Membran\label{chapter:kreismembran}} +\lhead{Schwingungen einer kreisförmigen Membran} \begin{refsection} \chapterauthor{Andrea Mozzini Vellen und Tim Tönz} diff --git a/buch/papers/kreismembran/references.bib b/buch/papers/kreismembran/references.bib index 0b6a683..1aef90b 100644 --- a/buch/papers/kreismembran/references.bib +++ b/buch/papers/kreismembran/references.bib @@ -24,7 +24,7 @@ } @article{kreismembran:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, + author = { Tabea Méndez and Andreas Müller }, title = { Noncommutative harmonic analysis and image registration }, journal = { Appl. Comput. Harmon. Anal.}, year = 2019, @@ -33,3 +33,25 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@book{lokenath_debnath_integral_2015, + edition = {Third Edition}, + title = {Integral Tansforms and Their Applications}, + publisher = {{CRC} Press}, + author = {{Lokenath Debnath} and Dambaru Bhatta}, + date = {2015}, +} + +@thesis{nishanth_p_vibrations_2018, + title = {Vibrations of a Circular Membrane - Some Undergraduadte Exercises}, + type = {phdthesis}, + author = {{Nishanth P.} and {Udayanandan K. M.}}, + date = {2018}, +} + +@thesis{prof_dr_horst_knorrer_kreisformige_2013, + title = {Kreisförmige Membranen}, + institution = {{ETHZ}}, + type = {phdthesis}, + author = {{Prof. Dr. Horst Knörrer}}, + date = {2013}, +} \ No newline at end of file diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index aef5b79..38bcfe4 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -7,13 +7,14 @@ \section{Lösungsmethode 1: Separationsmethode  \label{kreismembran:section:teil1}} \rhead{Lösungsmethode 1: Separationsmethode} -An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmetode gelöst. +An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. +\subsection{Aufgabestellung\label{sub:aufgabestellung}} Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: \begin{equation*} - \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation*} -Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt: +Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator \begin{equation*} \Delta = @@ -23,78 +24,98 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d \frac{\partial}{\partial r} + \frac{1}{r 2} - \frac{\partial^2}{\partial\varphi^2}. + \frac{\partial^2}{\partial\varphi^2} \label{buch:pde:kreis:laplace} \end{equation*} +ergibt. -Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. +Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. -Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran. +Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ (r,\varphi,t) &\longmapsto u(r,\varphi,t) \end{align*} -Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt: +Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013} \begin{equation*} - u\big|_{\Gamma} = 0 + u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0 \end{equation*} +gilt. + Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ - \frac{\partial}{\partial t} u(r,\varphi, 0) &= g(r,\varphi) + u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} + +\subsection{Lösung\label{sub:lösung1}} +\subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} -Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetz in der Differenzialgleichung ergibt: +Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: \begin{equation*} - \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)} + \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Grunden suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: -\begin{gather*} - T''(t) + c^2\kappa^2T(t) = 0\\ - r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 = - \frac{G''(\varphi)}{G(\varphi)} -\end{gather*} +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +\begin{align*} + T''(t) + c^2\kappa^2T(t) &= 0\\ + r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. +\end{align*} In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: -\begin{gather*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \\ - G''(\varphi) = \nu G(\varphi) -\end{gather*} -$G$ kann in einer Fourierreihe entwickelt werden, so dass man sieht, dass $\nu$ die Form $n^2$ mit einer positiven ganzen Zahl sein muss, also: +\begin{align*} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) &= 0 \\ + G''(\varphi) &= \nu G(\varphi). +\end{align*} + +\subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} +Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also: \begin{equation*} G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) + \label{eq:cos_sin_überlagerung} \end{equation*} -Die Gleichung $F$ hat die Gestalt -\begin{equation*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \quad (*) -\end{equation*} -Wir bereits in der Vorlesung von Prof. Müller gezeigt, sind die Besselfunktionen + +\subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} +Die Gleichung für $F$ hat die Gestalt +\begin{align} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 + \label{eq:2nd_degree_PDE} +\end{align} +Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Besselfunktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} -Lösungen der "Besselschen Differenzialgleichung" +Lösungen der Besselschen Differenzialgleichung \begin{equation*} x^2 y'' + xy' + (x^2 - \nu^2)y = 0 \end{equation*} -Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung $(*)$. Die +Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion $J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich viele Nullstellen \begin{equation*} \alpha_{1n} < \alpha_{2n} < ... \end{equation*} -haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergit sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass +haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass \begin{equation*} - F(r) = J_n (\kappa_{mn}r) \quad mit \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} + F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} \end{equation*} -Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. Durch Überlagerung aller Ergebnisse erhält man die Lösung -\begin{equation} - u(r, \varphi, t) = \displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=0}^{\infty} J_n (k_{mn}r)\cos(n\varphi)[a_{mn}\cos(c \kappa_{mn} t)+b_{mn}\sin(c \kappa_{mn} t)] -\end{equation} -Dabei sind m und n ganze Zahlen, wobei m für die Anzahl der Knotenkreise und n -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei kmn die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. -An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche und Diskussion mit Prof. Müller wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. +\subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}} +Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. + +\subsubsection{Zusammenfassung der Lösungen\label{subsub:zusammenfassung_lösungen}} +Durch Überlagerung aller Ergebnisse erhält man die Lösung +\begin{align} + u(r, \varphi, t) = \displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=0}^{\infty} J_n (k_{mn}r)[a_{mn}\cos(n\varphi) + b_{mn}\sin(n\varphi)](n\varphi)[c_{mn}\cos(c \kappa_{mn} t)+d_{mn}\sin(c \kappa_{mn} t)] + \label{eq:lösung_endliche_generelle} +\end{align} + +Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. + + +An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 8afe817..6efda49 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -5,95 +5,98 @@ \section{Die Hankel Transformation \label{kreismembran:section:teil2}} \rhead{Die Hankel Transformation} -Hermann Hankel (1839-1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analyse und insbesondere für seine namensgebende Transformation bekannt ist. -Diese Transformation tritt bei der Untersuchung von funktionen auf, die nur von der Enternung des Ursprungs abhängen. -Er studierte auch funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. -Die Hankel Transformation mit Bessel Funktionen al Kern taucht natürlich bei achsensymmetrischen Problemen auf, die in Zylindrischen Polarkoordinaten formuliert sind. -In diesem Kapitel werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. - - -Wir führen die Definition der Hankel Transformation aus der zweidimensionalen Fourier Transformation und ihrer Umkehrung ein, die durch: +Hermann Hankel (1839--1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analysis und insbesondere für die nach ihm benannte Transformation bekannt ist. +Diese Transformation tritt bei der Untersuchung von Funktionen auf, die nur von der Entfernung des Ursprungs abhängen. +Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. +Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind. +In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. + +\subsubsection{Hankel-Transformation \label{subsub:hankel_tansformation}} +Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Transformation und ihrer Umkehrung ein, die durch: \begin{align} - \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) dx dy,\label{equation:fourier_transform}\\ - \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) dx dy \label{equation:inv_fourier_transform} + \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx dy,\label{equation:fourier_transform}\\ + \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) \; dx dy \label{equation:inv_fourier_transform} \end{align} -wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Wie bereits erwähnt, sind Polarkoordinaten für diese Art von Problemen am besten geeignet, also mit, $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$, findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problemen am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: \begin{align} - F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) d\phi. + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi. \label{equation:F_ohne_variable_wechsel} \end{align} Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: \begin{align} - F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} d\alpha, + F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha, \label{equation:F_ohne_bessel} \end{align} wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. -Unter Verwendung der Integral Darstellung der Besselfunktion vom Ordnung n -\begin{align} - J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} d\alpha +Unter Verwendung der Integraldarstellung der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} +\begin{equation*} + J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha \label{equation:bessel_n_ordnung} -\end{align} +\end{equation*} \eqref{equation:F_ohne_bessel} wird sie zu: \begin{align} - F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr \label{equation:F_mit_bessel_step_1} \\ + F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), \label{equation:F_mit_bessel_step_2} \end{align} -wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel Transformation} von $f(r)$ und ist formell definiert durch: +wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel-Transformation} von $f(r)$ und ist formell definiert durch: \begin{align} - \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) dr. + \mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)=\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr. \label{equation:hankel} \end{align} +\subsubsection{Inverse Hankel-Transformation \label{subsub:inverse_hankel_tansformation}} Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}: -\begin{align} - e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) d\phi\\ - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} d\phi, -\end{align} +\begin{align*} + e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa \; d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) \; d\phi \\ + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} \; d\phi, +\end{align*} was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, -\begin{align} - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} d\alpha \nonumber \\ - &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa,\quad \text{von \eqref{equation:bessel_n_ordnung}} -\end{align} +\begin{align*} + &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} \; d\alpha \\ + &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa, +\end{align*} -Also, die inverse \textit{Hankel Transformation} ist so definiert: +von \eqref{equation:bessel_n_ordnung} also ist, die inverse \textit{Hankel-Transformation} so definiert: \begin{align} - \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) d\kappa. + \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa. \label{equation:inv_hankel} \end{align} -Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel Transformation verwendet, indem die Ordnung angegeben wird. +Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. \eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. -Alternativ kann auch die berühmte Hankel Transformationsformel verwendet werden, +Alternativ kann auch die berühmte Hankel-Transformationsformel verwendet werden, -\begin{align} - f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) dp, +\begin{align*} + f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) \; d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) \; dp, \label{equation:hankel_integral_formula} -\end{align} -um die Hankel Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. -Insbesondere die Hankel Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. - -\subsection{Operative Eigenschaften der Hankel Transformation\label{sub:op_properties_hankel}} -In diesem Kapitel werden die operativen Eigenschaften der Hankel Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. +\end{align*} +um die Hankel-Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. +Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. -\subsubsection{Theorem 1: Skalierung \label{subsub:skalierung}} -Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: +\subsection{Operative Eigenschaften der Hankel-Transformation\label{sub:op_properties_hankel}} +In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. -\begin{equation*} - \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. -\end{equation*} +\begin{satz}{Skalierung:} + Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: + + \begin{equation*} + \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. + \end{equation*} +\end{satz} -\subsubsection{Theorem 2: Persevalsche Relation \label{subsub:perseval}} +\begin{satz}{Persevalsche Relation (Skalarprodukt bleibt erhalten):} Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: \begin{equation*} - \int_{0}^{\infty}rf(r) dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) d\kappa. + \int_{0}^{\infty}rf(r)g(r) \; dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) \; d\kappa. \end{equation*} +\end{satz} -\subsubsection{Theorem 3: Hankel Transformationen von Ableitungen \label{subsub:ableitungen}} +\begin{satz}{Hankel-Transformationen von Ableitungen:} Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: \begin{align*} @@ -101,13 +104,13 @@ Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$. +\end{satz} -\subsubsection{Theorem 4 \label{subsub:thorem4}} +\begin{satz} Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: \begin{equation*} \mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa), \end{equation*} -bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden als $r\to0$ und $r\to\infty$. - - +bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$. +\end{satz} diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index bef8b5f..10338e7 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,7 +6,10 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion u nur von der Entfernung zum Ausgangspunkt abhängt. Wir führen also das Konzept einer unendlichen und achsensymmetrischen Membran ein: +Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. + +\subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} +Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: \begin{equation*} \frac{\partial^2u}{\partial t^2} = @@ -18,16 +21,15 @@ Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwen \end{equation*} \begin{align} - u(r,0)=f(r), \quad \frac{\partial}{\partial t} u(r,0) = g(r), \quad \text{für} \quad 0 Date: Wed, 20 Jul 2022 17:52:10 +0200 Subject: Write citations --- buch/papers/kreismembran/references.bib | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) (limited to 'buch') diff --git a/buch/papers/kreismembran/references.bib b/buch/papers/kreismembran/references.bib index 1aef90b..f642aa8 100644 --- a/buch/papers/kreismembran/references.bib +++ b/buch/papers/kreismembran/references.bib @@ -4,6 +4,25 @@ % (c) 2020 Autor, Hochschule Rapperswil % +@online{kreismembran:Duden:Membrane, + title = {Duden:Membrane}, + url = {https://www.duden.de/rechtschreibung/Membrane}, + date = {2022-07-20}, + year = {2022}, + month = {7}, + day = {20} +} + +@online{kreismembran:wellengleichung_herleitung, + title = {Derivation of the 2D Wave Equation}, + author = {Dr. Christopher Lum}, + url = {https://www.youtube.com/watch?v=KAS7JBztw8E&t=0s}, + date = {2022-07-20}, + year = {2022}, + month = {7}, + day = {20} +} + @online{kreismembran:bibtex, title = {BibTeX}, url = {https://de.wikipedia.org/wiki/BibTeX}, -- cgit v1.2.1 From 8e792d7a9df5de84e24147758a4875e280426d3c Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 20 Jul 2022 18:23:51 +0200 Subject: Begin writing intro, Einleitung & Annahmen --- buch/papers/kreismembran/teil0.tex | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 1552259..804640e 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,6 +5,23 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Einleitung} +Eine naheliegende kreisförmige Membrane ist eine Runde Trommel. +Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. +Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen". +Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. - +\paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: +\begin{enumerate}[i] + \item Die Membrane ist homogen. + Dies bedeutet, dass die Membrane über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membrane unter gleichmässiger Spannung $ T $. + \item Die Membrane ist perfekt flexibel. + Daraus folgt, dass die Membrane ohne Kraftaufwand verbogen werden kann. + Die Membrane ist dadurch nicht alleine schwing-fähig, hierzu muss sie gespannt werden mit der Kraft $ T $. + \item Die Membrane kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. + Auslenkungen in der ebene der Membrane sind nicht möglich. + \item Die Membrane erfährt keine Art von Dämpfung. + Neben der perfekten Flexibilität wird die Membrane auch nicht durch ihr umliegendes Medium aus gebremst. + Dadurch entsteht kein dämpfender Term abhängig von der Geschwindigkeit der Membrane in der Differenzialgleichung. +\end{enumerate} -- cgit v1.2.1 From 741a16165ff886bd411445a23b5963750c636a30 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 20 Jul 2022 18:58:36 +0200 Subject: Einleitung verbesserungen schreiben --- buch/papers/kreismembran/teil0.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 804640e..6f5e907 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -4,11 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{kreismembran:section:teil0}} -\rhead{Einleitung} -Eine naheliegende kreisförmige Membrane ist eine Runde Trommel. +\rhead{Membrane} +Eine naheliegendes Beispiel einer kreisförmigen Membrane ist eine Runde Trommel. Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. -Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen". -Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. +Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., ...". +Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird vorerst das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. \paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: \begin{enumerate}[i] -- cgit v1.2.1 From f56d6490331812f1228bacee54845d7778d8fe10 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 22 Jul 2022 22:52:37 +0200 Subject: gitgnore --- buch/papers/parzyl/.gitignore | 1 + 1 file changed, 1 insertion(+) create mode 100644 buch/papers/parzyl/.gitignore (limited to 'buch') diff --git a/buch/papers/parzyl/.gitignore b/buch/papers/parzyl/.gitignore new file mode 100644 index 0000000..75ec3f0 --- /dev/null +++ b/buch/papers/parzyl/.gitignore @@ -0,0 +1 @@ +.vscode/* \ No newline at end of file -- cgit v1.2.1 From 330b5694c49f16cd21ae30446aec261fe114d2b3 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 22 Jul 2022 22:54:00 +0200 Subject: aller anfang ist schwer --- buch/papers/parzyl/.gitignore | 2 +- buch/papers/parzyl/main.tex | 22 ++++------------------ buch/papers/parzyl/teil0.tex | 2 +- buch/papers/parzyl/teil1.tex | 33 ++++++++++++++++++--------------- buch/papers/parzyl/teil2.tex | 2 +- 5 files changed, 25 insertions(+), 36 deletions(-) (limited to 'buch') diff --git a/buch/papers/parzyl/.gitignore b/buch/papers/parzyl/.gitignore index 75ec3f0..dbe9c82 100644 --- a/buch/papers/parzyl/.gitignore +++ b/buch/papers/parzyl/.gitignore @@ -1 +1 @@ -.vscode/* \ No newline at end of file +.vscode/ \ No newline at end of file diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index ff21c9f..01a8d59 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -8,24 +8,10 @@ \begin{refsection} \chapterauthor{Thierry Schwaller, Alain Keller} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} +Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +In diesem Kapitel wird die Lösung der Laplace-Gliechung im +parabolischen Zyplinderkoordinatensystem genauer untersucht. \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 09b4024..5f5b22f 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{parzyl:section:teil0}} +\section{Elektrisches feld\label{parzyl:section:teil0}} \rhead{Teil 0} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 9ea60e2..6027f71 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -3,16 +3,10 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Parabolische Zylinderfunktion \label{parzyl:section:teil1}} \rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt +Die Parabolischen Zylinderfunktion sind spezielle funktionen \begin{equation} \int_a^b x^2\, dx = @@ -31,14 +25,23 @@ Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? -\subsection{De finibus bonorum et malorum +\subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - +Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit +\begin{align} + x & = \sigma \tau \\ + y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + z & = z. +\end{align} +Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +\begin{equation} + y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) +\end{equation} +und +\begin{equation} + y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). +\end{equation} Et harum quidem rerum facilis est et expedita distinctio \ref{parzyl:section:loesung}. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 75ba259..8bba905 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 +\section{Parabolische Zylinderfunkltion \label{parzyl:section:teil2}} \rhead{Teil 2} Sed ut perspiciatis unde omnis iste natus error sit voluptatem -- cgit v1.2.1 From 94fdbadada6397bba2e155abce7bdb855342045b Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 22 Jul 2022 22:58:20 +0200 Subject: ok --- buch/papers/parzyl/.gitignore | 1 - 1 file changed, 1 deletion(-) delete mode 100644 buch/papers/parzyl/.gitignore (limited to 'buch') diff --git a/buch/papers/parzyl/.gitignore b/buch/papers/parzyl/.gitignore deleted file mode 100644 index dbe9c82..0000000 --- a/buch/papers/parzyl/.gitignore +++ /dev/null @@ -1 +0,0 @@ -.vscode/ \ No newline at end of file -- cgit v1.2.1 From 585150092dfc7fe9f3043a2dd0966e1a597e9258 Mon Sep 17 00:00:00 2001 From: Alain Date: Sat, 23 Jul 2022 12:09:19 +0200 Subject: umstelung struktur --- buch/papers/parzyl/teil0.tex | 24 +++++++++++++++++++++++- buch/papers/parzyl/teil1.tex | 21 ++------------------- buch/papers/parzyl/teil2.tex | 2 +- 3 files changed, 26 insertions(+), 21 deletions(-) (limited to 'buch') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 5f5b22f..ff927b7 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,8 +3,30 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Elektrisches feld\label{parzyl:section:teil0}} +\section{Problem\label{parzyl:section:teil0}} \rhead{Teil 0} + +\subsection{Laplace Gleichung} + +\subsection{Parabolische Zylinderkoordinaten +\label{parzyl:subsection:finibus}} +Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit +\begin{align} + x & = \sigma \tau \\ + y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + z & = z. +\end{align} +Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +\begin{equation} + y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) +\end{equation} +und +\begin{equation} + y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). +\end{equation} + +\subsection{Differnetialgleichung} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua \cite{parzyl:bibtex}. diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 6027f71..7d5c1a4 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -3,10 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Parabolische Zylinderfunktion +\section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} -Die Parabolischen Zylinderfunktion sind spezielle funktionen \begin{equation} \int_a^b x^2\, dx = @@ -25,23 +24,7 @@ Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? -\subsection{Parabolische Zylinderkoordinaten -\label{parzyl:subsection:finibus}} -Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. -Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit -\begin{align} - x & = \sigma \tau \\ - y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ - z & = z. -\end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln -\begin{equation} - y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) -\end{equation} -und -\begin{equation} - y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). -\end{equation} + Et harum quidem rerum facilis est et expedita distinctio \ref{parzyl:section:loesung}. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 8bba905..c1bd723 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Parabolische Zylinderfunkltion +\section{Physik sache \label{parzyl:section:teil2}} \rhead{Teil 2} Sed ut perspiciatis unde omnis iste natus error sit voluptatem -- cgit v1.2.1 From 5e25727877da020b0b23132fec8c0ea70288a18b Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 12:03:25 +0200 Subject: add presentation files --- buch/papers/kra/images/simple_mass_spring.tex | 2 +- buch/papers/kra/presentation/presentation.tex | 491 ++++++++++++++++++++++++++ buch/papers/kra/scripts/animation.py | 243 +++++++++++++ buch/papers/kra/scripts/simulation.py | 40 +++ 4 files changed, 775 insertions(+), 1 deletion(-) create mode 100644 buch/papers/kra/presentation/presentation.tex create mode 100644 buch/papers/kra/scripts/animation.py create mode 100644 buch/papers/kra/scripts/simulation.py (limited to 'buch') diff --git a/buch/papers/kra/images/simple_mass_spring.tex b/buch/papers/kra/images/simple_mass_spring.tex index 207f1e0..e0e869a 100644 --- a/buch/papers/kra/images/simple_mass_spring.tex +++ b/buch/papers/kra/images/simple_mass_spring.tex @@ -14,7 +14,7 @@ } \tikzmath{ - \hWall = 1.5; + \hWall = 1.2; \wWall = 0.3; \lWall = 3.5; \hMass = 0.6; diff --git a/buch/papers/kra/presentation/presentation.tex b/buch/papers/kra/presentation/presentation.tex new file mode 100644 index 0000000..eb6541b --- /dev/null +++ b/buch/papers/kra/presentation/presentation.tex @@ -0,0 +1,491 @@ +\documentclass[ngerman, aspectratio=169, xcolor={rgb}]{beamer} + +% style +\mode{ + \usetheme{Frankfurt} +} +%packages +\usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +\usepackage[english]{babel} +\usepackage{graphicx} +\usepackage{array} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\usepackage{ragged2e} + +\usepackage{bm} % bold math +\usepackage{amsfonts} +\usepackage{amssymb} +\usepackage{mathtools} +\usepackage{amsmath} +\usepackage{multirow} % multi row in tables +\usepackage{booktabs} %toprule midrule bottomrue in tables +\usepackage{scrextend} +\usepackage{textgreek} +\usepackage[rgb]{xcolor} + +\usepackage[normalem]{ulem} % \sout + +\usepackage{ marvosym } % \Lightning + +\usepackage{multimedia} % embedded videos + +\usepackage{tikz} +\usepackage{pgf} +\usepackage{pgfplots} + +\usepackage{algorithmic} + +%citations +\usepackage[style=verbose,backend=biber]{biblatex} +\addbibresource{references.bib} + + +%math font +\usefonttheme[onlymath]{serif} + +%Beamer Template modifications +%\definecolor{mainColor}{HTML}{0065A3} % HSR blue +\definecolor{mainColor}{HTML}{D72864} % OST pink +\definecolor{invColor}{HTML}{28d79b} % OST pink +\definecolor{dgreen}{HTML}{38ad36} % Dark green + +%\definecolor{mainColor}{HTML}{000000} % HSR blue +\setbeamercolor{palette primary}{bg=white,fg=mainColor} +\setbeamercolor{palette secondary}{bg=orange,fg=mainColor} +\setbeamercolor{palette tertiary}{bg=yellow,fg=red} +\setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic +\setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) +\setbeamercolor{section in toc}{fg=black} % TOC sections +\setbeamertemplate{section in toc}[sections numbered] +\setbeamertemplate{subsection in toc}{% + \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} + +\setbeamertemplate{itemize items}[circle] +\setbeamertemplate{description item}[circle] +\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] +\beamertemplatenavigationsymbolsempty + +\setbeamercolor{footline}{fg=gray} +\setbeamertemplate{footline}{% + \hfill\usebeamertemplate***{navigation symbols} + \hspace{0.5cm} + \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} +} + +\usepackage{caption} +\captionsetup{labelformat=empty} + +%Title Page +\title{KRA} +\subtitle{Kalman Riccati Abel} +\author{Samuel Niederer} +% \institute{OST Ostschweizer Fachhochschule} +% \institute{\includegraphics[scale=0.3]{../img/ost_logo.png}} +\date{\today} + +\input{../packages.tex} + +\newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}% + +\newcommand*{\HL}{\textcolor{mainColor}} +\newcommand*{\RD}{\textcolor{red}} +\newcommand*{\BL}{\textcolor{blue}} +\newcommand*{\GN}{\textcolor{dgreen}} +\newcommand{\dt}[0]{\frac{d}{dt}} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + + +\makeatletter +\newcount\my@repeat@count +\newcommand{\myrepeat}[2]{% + \begingroup + \my@repeat@count=\z@ + \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% + \endgroup +} +\makeatother + +\usetikzlibrary{automata,arrows,positioning,calc,shapes.geometric, fadings} + +\begin{document} + +\begin{frame} + \titlepage +\end{frame} + +\begin{frame} + \frametitle{Content} + \tableofcontents +\end{frame} + +\section{Einführung} + +\begin{frame} + \begin{itemize} + \item<1|only@1> \textbf{K}alman + \item<1|only@1> \textbf{R}iccati + \item<1|only@1> \textbf{A}bel + + \item<2|only@2> \textcolor{red}{\sout{\textbf{K}alman}} + \item<2|only@2> \textbf{R}iccati + \item<2|only@2> \textbf{A}bel + + \item<3|only@3> \textcolor{red}{\sout{\textbf{K}alman}} \textcolor{green}{Federmassesytem} + \item<3|only@3> \textbf{R}iccati + \item<3|only@3> \textbf{A}bel + + \item<4|only@4> \textcolor{red}{\sout{\textbf{K}alman}} \textcolor{green}{Federmassesytem} + \item<4|only@4> \textbf{R}iccati + \item<4|only@4> \uwave{\textbf{A}bel} + \end{itemize} +\end{frame} + +\section{Riccati} + +\begin{frame} + \frametitle{Riccatische Differentialgleichung} + \begin{equation*} + % y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) + x'(t) = f(t)x^2(t) + g(t)x(t) + h(t) + \end{equation*} + + \pause + + \begin{equation*} + \dot{X}(t) = - X(t)BX(t) - X(t)A + DX(t) + C + \end{equation*} + + % \pause + % Anwendungen + % \begin{itemize} + % \item Zeitkontinuierlicher Kalmanfilter + % \item Regelungstechnik LQ-Regler + % \item Federmassesyteme + % \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Auftreten der Gleichung} + \begin{columns} + \column{0.4 \textwidth} + \begin{equation*} + \dt + \begin{pmatrix} + X \\ + Y + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + A & B \\ + C & D + \end{pmatrix} + }_{H} + \begin{pmatrix} + X \\ + Y + \end{pmatrix} + \end{equation*} + + \pause + + \column{0.4 \textwidth} + \begin{equation*} + U = YX^{-1} \qquad \dt U = ? + \end{equation*} + \end{columns} + + \pause + + \begin{align*} + \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ + \uncover<4->{ & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1})\\} + \uncover<5->{ & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1})\\} + \uncover<6->{ & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U})\\} + \uncover<7->{ & = C + DU - UA - UBU} + \end{align*} +\end{frame} + +\begin{frame} + \frametitle{Lösen der Gleichung} + \begin{equation*} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + \end{equation*} + + \pause + + \begin{equation*} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) U_0(t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) U_0(t) + \end{pmatrix} + ^{-1} + \end{equation*} + + \pause + + % wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. + + \begin{equation*} + \Phi(t_0, t) = e^{H(t - t_0)} + \end{equation*} +\end{frame} + +\section{Federmassystem} +\begin{frame} + \frametitle{Federmassesystem} + \begin{columns} + \column{0.5 \textwidth} + \input{../images/simple_mass_spring.tex} + + \column{0.5 \textwidth} + \begin{align*} + \uncover<2->{F_R & = k \Delta_x \\} + \uncover<3->{F_a & = am = \ddot{x} m \\} + \uncover<4->{F_R & = F_a \Leftrightarrow k \Delta_x = \ddot{x} m\\} + \uncover<5->{\ddot{x} & = \frac{k \Delta_x}{m} \\} + \uncover<6->{x(t) & = A \cos(\omega_0 + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}}} + \end{align*} + \end{columns} +\end{frame} + +\begin{frame} + \frametitle{Phasenraum} + \begin{columns} + \column{0.3 \textwidth} + \begin{tikzpicture}[scale=3] + \draw[->, thick] (0, 0) -- (1,0) node[right] {$q$}; + \draw[->, thick] (0.5, -0.5) -- (0.5,0.5) node[above]{$p$}; + \end{tikzpicture} + \column{0.7 \textwidth} + Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n}), \quad p=mv$ \\ + Ortskoordinaten $q = (q_{1}, q_{2}, ..., q_{n})$ \\ + + + + \begin{align*} + \uncover<2->{\mathcal{H}(q, p) & = \underbrace{T(p)}_{E_{kin}} + \underbrace{V(q)}_{E_{pot}} = E_{tot} \\} + \uncover<3->{ & = \frac{p^2}{2m}+ \frac{k q^2}{2}} + \end{align*} + + + + \begin{equation*} + \uncover<4->{ + \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k} + \qquad + \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} + } + \end{equation*} + + \pause + + \begin{equation*} + \uncover<5->{ + \begin{pmatrix} + \dot{q} \\ + \dot{p} + \end{pmatrix} + = + \begin{pmatrix} + 0 & \frac{1}{m} \\ + -k & 0 + \end{pmatrix} + \begin{pmatrix} + q \\ + p + \end{pmatrix} + } + \end{equation*} + + \end{columns} +\end{frame} + +\begin{frame} + \frametitle{Phasenraum} + \input{../images/phase_space.tex} +\end{frame} + +\begin{frame} + \frametitle{Federmassesystem} + \begin{columns} + \column{0.6 \textwidth} + \scalebox{0.8}{\input{../images/multi_mass_spring.tex}} + \begin{align*} + \uncover<2->{\mathcal{H} & = T + V \\} + \uncover<7->{ & = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}} + \end{align*} + + \column{0.4 \textwidth} + \begin{align*} + \uncover<3->{T & = T_1 + T_2} \\ + \uncover<5->{ & = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} } \\ + \uncover<4->{V & = V_1 + V_c + V_2 } \\ + \uncover<6->{ & = \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}} + \end{align*} + \end{columns} +\end{frame} + +\begin{frame} + \frametitle{Federmassesystem} + \begin{equation*} + \begin{pmatrix} + \dot{q_1} \\ + \dot{q_2} \\ + \dot{p_1} \\ + \dot{p_2} \\ + \end{pmatrix} + = + \begin{pmatrix} + 0 & 0 & \frac{1}{2m_1} & 0 \\ + 0 & 0 & 0 & \frac{1}{2m_2} \\ + -(k_1 + k_c) & k_c & 0 & 0 \\ + k_c & -(k_c + k_2) & 0 & 0 \\ + \end{pmatrix} + \begin{pmatrix} + q_1 \\ + q_2 \\ + p_1 \\ + p_2 \\ + \end{pmatrix} + \Leftrightarrow + \dt + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} + \underbrace{ + \begin{pmatrix} + 0 & M \\ + K & 0 + \end{pmatrix} + }_{H} + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} + \end{equation*} + + \pause + + $U = PQ^{-1} \qquad \dt U = ?$ + + \pause + + \begin{align*} + \dt U & = C + DU - UA - UBU \\ + & = K - UMU + \end{align*} + +\end{frame} + +\begin{frame} + \frametitle{Einfluss der Anfangsbedingung:} + \begin{columns} + \column{0.4 \textwidth} + \begin{equation*} + \uncover<2->{q_0 = + \begin{pmatrix} + q_{10} \\ + q_{20} + \end{pmatrix} + = + \begin{pmatrix} + 3 \\ + 1 + \end{pmatrix} + } + \end{equation*} + \begin{equation*} + \uncover<3->{q_0 = + \begin{pmatrix} + q_{10} \\ + q_{20} + \end{pmatrix} + = + \begin{pmatrix} + 3 \\ + 3 + \end{pmatrix} + } + \end{equation*} + \begin{equation*} + \uncover<4->{q_0 = + \begin{pmatrix} + q_{10} \\ + q_{20} + \end{pmatrix} + = + \begin{pmatrix} + 2 \\ + -2 + \end{pmatrix} + } + \end{equation*} + \column{0.6 \textwidth} + \scalebox{0.8}{\input{../images/multi_mass_spring.tex}} + \end{columns} +\end{frame} + +\section{Schlussteil} +\begin{frame} + \frametitle{Zusammenfassung} + \begin{itemize} + \pause + \item{Riccatische Differentialgleichung} + \pause + \begin{itemize} + \item{Ausgansgleichung} + \pause + \item{Lösung} + \end{itemize} + \pause + \item{Harmonischer Ozillator} + \pause + \begin{itemize} + \item{Hamiltonfunktion} + \pause + \item{Phasenraum} + \end{itemize} + \pause + \item{Gekoppelter harmonischer Ozillator} + \pause + \begin{itemize} + \item{Riccatische Differentialgleichung} + \pause + \item{Einfluss der Anfangsbedingungen} + \end{itemize} + \pause + \item{\uwave{Abel}} + \begin{itemize} + \pause + \item{Nichtlineare Federkonstante} + \end{itemize} + + \end{itemize} +\end{frame} + +\end{document} diff --git a/buch/papers/kra/scripts/animation.py b/buch/papers/kra/scripts/animation.py new file mode 100644 index 0000000..5e805ae --- /dev/null +++ b/buch/papers/kra/scripts/animation.py @@ -0,0 +1,243 @@ +import numpy as np +import matplotlib.pyplot as plt +import matplotlib.patches +import matplotlib.transforms +import matplotlib.text +from matplotlib.animation import FuncAnimation +import imageio + +from simulation import Simulation + + +class Mass: + def __init__(self, x_0, width, height, **kwargs): + self._x_0 = x_0 + xy = (x_0, 0) + self._rect = matplotlib.patches.Rectangle(xy, width, height, **kwargs) + + @property + def patch(self): + return self._rect + + @property + def x(self): + return self._rect.get_x() + + @property + def width(self): + return self._rect.get_width() + + def move(self, x): + self._rect.set_x(self._x_0 + x) + + +class Spring: + def __init__(self, n, height, ax, resolution=1000, **kwargs): + self._n = n + self._height = height + self._N = resolution + (self._line,) = ax.plot([], [], "-", **kwargs) + + def set(self, x_0, x_1): + T = (x_1 - x_0) / self._n + x = np.linspace(x_0, x_1, self._N, endpoint=True) + t = np.linspace(0, x_1 - x_0, self._N) + y = (np.sin(2 * np.pi * t / T) + 1.5) * self._height / 2 + self.line.set_data(x, y) + + @property + def line(self): + return self._line + + +class LinePlot: + def __init__(self, ax, **kwargs): + (self._line,) = ax.plot([], [], "-", **kwargs) + self._x = [] + self._y = [] + + @property + def line(self): + return self._line + + def update(self, x, y): + self._x.append(x) + self._y.append(y) + self._line.set_data(self._x, self._y) + + +class ScatterPlot: + def __init__(self, ax, **kwargs): + self._color = kwargs.get("color", "tab:green") + self._line = ax.scatter([], [], **kwargs) + self._ax = ax + self._x = [] + self._y = [] + + @property + def line(self): + return self._line + + def update(self, x, y, **kwargs): + self._x.append(x) + self._y.append(y) + self._line.remove() + self._line = self._ax.scatter(self._x, self._y, color=self._color, **kwargs) + + +class QuiverPlot: + def __init__(self, ax, **kwargs): + self.x = [] + self.y = [] + self.u = [] + self.v = [] + self.ax = ax + self.ln = self.ax.quiver([], [], [], []) + + def update(self, x, y, u, v): + self.x.append(x) + self.y.append(y) + self.u.append(u) + self.v.append(v) + self.ln.remove() + self.ln = self.ax.quiver(self.x, self.y, self.u, self.v) + + @property + def line(self): + return self.ln + + +anim_folder = "anim_0" +img_counter = 0 + +sim = Simulation() +params = { + "x_0": [2, -2], + "k_1": 1, + "k_c": 2, + "k_2": 1, + "m_1": 0.5, + "m_2": 0.5, +} + +time = 2.1 + + +# create axis +fig = plt.figure(figsize=(20, 15), constrained_layout=True) +fig.suptitle( + " ,".join([f"${key} = {val}$" for (key, val) in params.items()]), fontsize=20 +) +spec = fig.add_gridspec(3, 4) +ax0 = fig.add_subplot(spec[-1, :]) +ax1 = fig.add_subplot(spec[:-1, :2]) +ax2 = fig.add_subplot(spec[:-1, 2:]) + +ax0.set_yticks([]) + +mass_height = 0.5 +spring_height = 0.6 * mass_height +x_max = 21 +y_max = 2 * mass_height + +mass_1 = Mass( + 7, + 2, + mass_height, + color="tab:red", +) +mass_2 = Mass(14, 2, mass_height, color="tab:blue") +masses = [mass_1, mass_2] +patches = [mass.patch for mass in masses] + +spring_1 = Spring(4, spring_height, ax0, color="tab:red", linewidth=10) +spring_2 = Spring(4, spring_height, ax0, color="tab:gray", linewidth=10) +spring_3 = Spring(4, spring_height, ax0, color="tab:blue", linewidth=10) +springs = [spring_1, spring_2, spring_3] + +linePlot_1 = LinePlot(ax1, color="tab:red", label="$m_1$", alpha=1) +linePlot_2 = LinePlot(ax1, color="tab:blue", label="$m_2$", alpha=1) +linePlots = [linePlot_1, linePlot_2] + +# quiverPlot = QuiverPlot(ax2) +scatterPlot = ScatterPlot(ax2) + +lines = [spring.line for spring in springs] +lines.extend([plot.line for plot in linePlots]) +# lines.append(quiverPlot.line) +lines.append(scatterPlot.line) + +objects = lines + patches + +ax0.plot( + np.repeat(mass_1.x, 2), + [0, y_max], + "--", + color="tab:red", + label="Ruhezustand $m_1$", +) +ax0.plot( + np.repeat(mass_2.x, 2), + [0, y_max], + "--", + color="tab:blue", + label="Ruhezustand $m_2$", +) + + +def init(): + ax0.set_xlim(0, x_max) + ax0.set_ylim(0, y_max) + + ax1.set_xlim(0, time) + ax1.set_ylim(-4, 4) + ax1.set_xlabel("time", fontsize=20) + ax1.set_ylabel("$q$", fontsize=20) + + ax2.set_xlim(-4, 4) + ax2.set_ylim(-4, 4) + ax2.set_xlabel("$q_1$", fontsize=20) + ax2.set_ylabel("$q_2$", fontsize=20) + + for patch in patches: + ax0.add_patch(patch) + + spring_1.set(0, mass_1.x) + spring_2.set(mass_1.x + mass_1.width, mass_2.x) + spring_2.set(mass_2.x + mass_2.width, x_max) + + return objects + + +def update(frame): + global img_counter + x_1, x_2 = sim(frame, **params) + + mass_1.move(x_1) + mass_2.move(x_2) + + spring_1.set(0, mass_1.x) + spring_2.set(mass_1.x + mass_1.width, mass_2.x) + spring_3.set(mass_2.x + mass_2.width, x_max) + + linePlot_1.update(frame, x_1) + linePlot_2.update(frame, x_2) + + scatterPlot.update(x_1, x_2, alpha=0.25) + + img_counter += 1 + return objects + + +anim = FuncAnimation( + fig, + update, + frames=np.linspace(0, time, int(time * 30)), + init_func=init, + blit=False, +) + +ax0.legend(fontsize=20) +ax1.legend(fontsize=20) +FFwriter = matplotlib.animation.FFMpegWriter(fps=30) +anim.save("animation.mp4", writer=FFwriter) diff --git a/buch/papers/kra/scripts/simulation.py b/buch/papers/kra/scripts/simulation.py new file mode 100644 index 0000000..8bccb6a --- /dev/null +++ b/buch/papers/kra/scripts/simulation.py @@ -0,0 +1,40 @@ +import sympy as sp + + +class Simulation: + def __init__(self): + self.k_1, self.k_2, self.k_c = sp.symbols("k_1 k_2 k_c") + self.m_1, self.m_2 = sp.symbols("m_1 m_2") + self.t = sp.symbols("t") + K = sp.Matrix( + [[-(self.k_1 + self.k_c), self.k_c], [self.k_c, -(self.k_2 + self.k_c)]] + ) + M = sp.Matrix([[1 / self.m_1, 0], [0, 1 / self.m_2]]) + A = M * K + + self.eigenvecs = [] + self.eigenvals = [] + for ev, mult, vecs in A.eigenvects(): + self.eigenvecs.append(sp.Matrix(vecs)) + self.eigenvals.extend([ev] * mult) + + def __call__(self, t, x_0, k_1, k_c, k_2, m_1, m_2): + params = { + self.k_1: k_1, + self.k_c: k_c, + self.k_2: k_2, + self.m_1: m_1, + self.m_2: m_2, + } + x_0 = sp.Matrix(x_0) + eig_mat = sp.Matrix.hstack(*self.eigenvecs).subs(params) + g = eig_mat.inv() * x_0 + L = sp.Matrix( + [ + g[0] * sp.cos(self.eigenvals[0].subs(params) * self.t), + g[1] * sp.cos(self.eigenvals[1].subs(params) * self.t), + ] + ) + x = eig_mat * L + f = sp.lambdify(self.t, x, "numpy") + return f(t).squeeze() -- cgit v1.2.1 From 433b838cd7a68bb45abf0023edfb5439097693f2 Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 12:03:46 +0200 Subject: update packages --- buch/papers/kra/packages.tex | 12 ++++++++++++ 1 file changed, 12 insertions(+) (limited to 'buch') diff --git a/buch/papers/kra/packages.tex b/buch/papers/kra/packages.tex index df34dcf..b16f074 100644 --- a/buch/papers/kra/packages.tex +++ b/buch/papers/kra/packages.tex @@ -8,3 +8,15 @@ % following example %\usepackage{packagename} +\usepackage{physics} +\usepackage{pgfplots} +\usepackage{tikz} +\usepackage[outline]{contour} +\pgfplotsset{compat=1.16} +\usetikzlibrary{patterns} +\usetikzlibrary{snakes} +\usetikzlibrary{math} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{decorations} +\usetikzlibrary{decorations.markings} +\usetikzlibrary{calc} \ No newline at end of file -- cgit v1.2.1 From c5a26d2d7bde694d08bff948c48b2615a7e2e973 Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 12:16:02 +0200 Subject: add current work --- buch/papers/kra/hamilton.tex | 185 +++++++++++++++++++++++++++++++++++++++++ buch/papers/kra/main.tex | 32 ++----- buch/papers/kra/references.bib | 41 ++++----- buch/papers/kra/riccati.tex | 93 +++++++++++++++++++++ buch/papers/kra/teil0.tex | 22 ----- buch/papers/kra/teil1.tex | 55 ------------ buch/papers/kra/teil2.tex | 40 --------- buch/papers/kra/teil3.tex | 40 --------- buch/papers/kra/test.tex | 12 +++ 9 files changed, 313 insertions(+), 207 deletions(-) create mode 100644 buch/papers/kra/hamilton.tex create mode 100644 buch/papers/kra/riccati.tex delete mode 100644 buch/papers/kra/teil0.tex delete mode 100644 buch/papers/kra/teil1.tex delete mode 100644 buch/papers/kra/teil2.tex delete mode 100644 buch/papers/kra/teil3.tex create mode 100644 buch/papers/kra/test.tex (limited to 'buch') diff --git a/buch/papers/kra/hamilton.tex b/buch/papers/kra/hamilton.tex new file mode 100644 index 0000000..14a5e8c --- /dev/null +++ b/buch/papers/kra/hamilton.tex @@ -0,0 +1,185 @@ +\newcommand{\dt}[0]{\frac{d}{dt}} + +\section{Teil abc\label{kra:section:teilabc}} +\rhead{Teil abc} + +\subsection{Hamilton-Funktion} +Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. +Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten +$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, +wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. +Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. +Im Falle des einfachen Federmassesystems, Abbildung \ref{kra:fig:simple_spring_mass}, +setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. + +\begin{equation} + \label{hamilton} + \begin{split} + \mathcal{H}(q, p) &= T(p) + V(q) = E \\ + &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} + \end{split} +\end{equation} + +Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} +\begin{equation} + \label{kra:hamilton:bewegungsgleichung} + \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k} + \qquad + \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} +\end{equation} + +daraus folgt + +\[ + \dot{q} = \frac{p}{m} + \qquad + \dot{p} = -kq +\] + +in Matrixschreibweise erhalten wir also + +\[ + \begin{pmatrix} + \dot{q} \\ + \dot{p} + \end{pmatrix} + = + \begin{pmatrix} + 0 & \frac{1}{m} \\ + -k & 0 + \end{pmatrix} + \begin{pmatrix} + q \\ + p + \end{pmatrix} +\] + +Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_spring_mass}, können wir analog vorgehen. +Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. +Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. + +\begin{align*} + \begin{split} + T &= T_1 + T_2 \\ + &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \end{split} + \\ + \begin{split} + V &= V_1 + V_c + V_2 \\ + &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} + \end{split} +\end{align*} + +Die Hamilton-Funktion ist also + +\begin{align*} + \begin{split} + \mathcal{H} &= T + V \\ + &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} + \end{split} +\end{align*} + +Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern +\begin{align*} + \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k} + \Rightarrow + \left\{ + \begin{alignedat}{2} + \dot{q_1} &= \frac{2p_1}{2m_1} &&= \frac{p_1}{m_1}\\ + \dot{q_2} &= \frac{2p_2}{2m_2} &&= \frac{p_2}{m_2} + \end{alignedat} + \right. + \\ + -\frac{\partial \mathcal{H}}{\partial q_k} & = \dot{p_k} + \Rightarrow + \left\{ + \begin{alignedat}{2} + \dot{p_1} &= -(\frac{2k_1q_1}{2} - \frac{2k_c(q_2-q_1)}{2}) &&= -q_1(k_1+k_c) + q_2k_c \\ + \dot{p_1} &= -(\frac{2k_c(q_2-q_1)}{2} - \frac{2k_2q_2}{2}) &&= q_1k_c - (k_c + k_2) + \end{alignedat} + \right. +\end{align*} + +In Matrixschreibweise erhalten wir + +\begin{equation} + \label{kra:hamilton:multispringmass} + \begin{pmatrix} + \dot{q_1} \\ + \dot{q_2} \\ + \dot{p_1} \\ + \dot{p_2} \\ + \end{pmatrix} + = + \begin{pmatrix} + 0 & 0 & \frac{1}{2m_1} & 0 \\ + 0 & 0 & 0 & \frac{1}{2m_2} \\ + -(k_1 + k_c) & k_c & 0 & 0 \\ + k_c & -(k_c + k_2) & 0 & 0 \\ + \end{pmatrix} + \begin{pmatrix} + q_1 \\ + q_2 \\ + p_1 \\ + p_2 \\ + \end{pmatrix} + \Leftrightarrow + \dt + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} + \underbrace{ + \begin{pmatrix} + 0 & M \\ + K & 0 + \end{pmatrix} + }_{G} + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} +\end{equation} + + +Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, +wir suchen also die Grösse $\Theta = \dt U$. + +Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir +\begin{equation} + \dt + \begin{pmatrix} + Q \\ + P + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + A & B \\ + C & D + \end{pmatrix} + }_{\tilde{G}} + \begin{pmatrix} + Q \\ + P + \end{pmatrix} +\end{equation} + +Mit einsetzten folgt + +\begin{align*} + \dot{Q} = AQ + BP \\ + \dot{P} = CQ + DP +\end{align*} +\begin{equation} + \begin{split} + \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\ + &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\ + &= C\underbrace{QQ^{-1}}_\text{I} + D\underbrace{PQ^{-1}}_\text{U} - P(Q^{-1} (AQ + BP) Q^{-1}) \\ + &= C + DU - \underbrace{PQ^{-1}}_\text{U}(A\underbrace{QQ^{-1}}_\text{I} + B\underbrace{PQ^{-1}}_\text{U}) \\ + &= C + DU - UA - UBU + \end{split} +\end{equation} + +was uns auf die zeitkontinuierliche Matrix-Riccati-Gleichung führt. + diff --git a/buch/papers/kra/main.tex b/buch/papers/kra/main.tex index fcee25b..456b6ee 100644 --- a/buch/papers/kra/main.tex +++ b/buch/papers/kra/main.tex @@ -6,31 +6,9 @@ \chapter{Kalman, Riccati und Abel\label{chapter:kra}} \lhead{Kalman, Riccati und Abel} \begin{refsection} - \chapterauthor{Samuel Niederer} - - Ein paar Hinweise für die korrekte Formatierung des Textes - \begin{itemize} - \item - Absätze werden gebildet, indem man eine Leerzeile einfügt. - Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. - \item - Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende - Optionen werden gelöscht. - Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. - \item - Beginnen Sie jeden Satz auf einer neuen Zeile. - Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen - in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt - anzuwenden. - \item - Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren - Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. - \end{itemize} - - \input{papers/kra/teil0.tex} - \input{papers/kra/teil1.tex} - \input{papers/kra/teil2.tex} - \input{papers/kra/teil3.tex} - - \printbibliography[heading=subbibliography] + \chapterauthor{Samuel Niederer} + \input{papers/kra/hamilton.tex} + \newpage + \input{papers/kra/riccati.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kra/references.bib b/buch/papers/kra/references.bib index f13c3d8..7f972ec 100644 --- a/buch/papers/kra/references.bib +++ b/buch/papers/kra/references.bib @@ -4,32 +4,27 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{kra:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@online{kra:hamilton, + title = {Hamilton-Funktion}, + url = {https://de.wikipedia.org/wiki/Hamilton-Funktion}, + date = {2022-05-26} } -@book{kra:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} +@misc{kra:kanonischegleichungen, + title = {Kanonische Gleichungen}, + url = {https://de.wikipedia.org/wiki/Kanonische_Gleichungen}, + date = {2022-05-26} } -@article{kra:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} +@misc{kra:newton, + title = {Newtonsche Gesetze}, + url = {https://de.wikipedia.org/wiki/Newtonsche_Gesetze}, + date = {2022-05-26} } +@misc{kra:kalmanisae, + author = {D.Alazard}, + title = {Introduction to Kalman filtering}, + url = {https://pagespro.isae-supaero.fr/IMG/pdf/introKalman_e_151211.pdf}, + date = {2022-05-26} +} diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex new file mode 100644 index 0000000..df2921d --- /dev/null +++ b/buch/papers/kra/riccati.tex @@ -0,0 +1,93 @@ +\section{Riccati + \label{kra:section:riccati}} +\rhead{Riccati} + +\begin{equation} + y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) +\end{equation} +% einfache (normale riccati gleichung und ihre loesung) +% (kann man diese bei einfachem federmasse system benutzten?) +% matrix riccati gleichung + + +Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form +\begin{equation} + \label{kra:riccati:riccatiequation} + \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t) +\end{equation} + +Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation} + +\begin{equation} + \label{kra:riccati:derivation} + \dt + \begin{pmatrix} + X \\ + Y + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + A & B \\ + C & D + \end{pmatrix} + }_{H} + \begin{pmatrix} + X \\ + Y + \end{pmatrix} +\end{equation} + +interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten + +\begin{align*} + \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ + & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\ + & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\ + & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\ + & = C + DU - UA - UBU +\end{align*} + +was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt. +Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen +\begin{equation} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} +\end{equation} + +\begin{equation} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) + \end{pmatrix} + ^{-1} +\end{equation} + +wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. + +\begin{equation} + \Phi(t_0, t) = e^{H(t - t_0)} +\end{equation} + + + diff --git a/buch/papers/kra/teil0.tex b/buch/papers/kra/teil0.tex deleted file mode 100644 index d06a055..0000000 --- a/buch/papers/kra/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{kra:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{kra:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/kra/teil1.tex b/buch/papers/kra/teil1.tex deleted file mode 100644 index 0c0977d..0000000 --- a/buch/papers/kra/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{kra:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{kra:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{kra:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{kra:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{kra:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/kra/teil2.tex b/buch/papers/kra/teil2.tex deleted file mode 100644 index 249f078..0000000 --- a/buch/papers/kra/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{kra:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kra:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/kra/teil3.tex b/buch/papers/kra/teil3.tex deleted file mode 100644 index 2515c7d..0000000 --- a/buch/papers/kra/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{kra:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{kra:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/kra/test.tex b/buch/papers/kra/test.tex new file mode 100644 index 0000000..ebe0aa0 --- /dev/null +++ b/buch/papers/kra/test.tex @@ -0,0 +1,12 @@ +\begin{figure} + \input{papers/kra/images/phase_space.tex} + % \begin{minipage}{.45\textwidth} + % \input{papers/kra/images/phase_space_small_omega.tex} + % \end{minipage} + % \begin{minipage}{.45\textwidth} + % \input{papers/kra/images/phase_space_large_omega.tex} + % \end{minipage} + % \begin{minipage}[.5\textwidth] + % \input{papers/kra/images/phase_space_large_omega.tex} + % \end{minipage} +\end{figure} \ No newline at end of file -- cgit v1.2.1 From 1d78360ee72a8d0d6cd4b440a2244624c284887f Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 17:12:49 +0200 Subject: update paper --- buch/papers/kra/Makefile.inc | 11 +- buch/papers/kra/anwendung.tex | 235 +++++++++++++++++++++++++++++++++++++++++ buch/papers/kra/einleitung.tex | 14 +++ buch/papers/kra/hamilton.tex | 185 -------------------------------- buch/papers/kra/loesung.tex | 47 +++++++++ buch/papers/kra/main.tex | 10 +- buch/papers/kra/riccati.tex | 93 ---------------- 7 files changed, 306 insertions(+), 289 deletions(-) create mode 100644 buch/papers/kra/anwendung.tex create mode 100644 buch/papers/kra/einleitung.tex delete mode 100644 buch/papers/kra/hamilton.tex create mode 100644 buch/papers/kra/loesung.tex delete mode 100644 buch/papers/kra/riccati.tex (limited to 'buch') diff --git a/buch/papers/kra/Makefile.inc b/buch/papers/kra/Makefile.inc index f453e6e..a521e4b 100644 --- a/buch/papers/kra/Makefile.inc +++ b/buch/papers/kra/Makefile.inc @@ -4,11 +4,10 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # dependencies-kra = \ - papers/kra/packages.tex \ + papers/kra/packages.tex \ papers/kra/main.tex \ - papers/kra/references.bib \ - papers/kra/teil0.tex \ - papers/kra/teil1.tex \ - papers/kra/teil2.tex \ - papers/kra/teil3.tex + papers/kra/references.bib \ + papers/kra/einleitung.tex \ + papers/kra/loesung.tex \ + papers/kra/anwendung.tex \ diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex new file mode 100644 index 0000000..4d4d351 --- /dev/null +++ b/buch/papers/kra/anwendung.tex @@ -0,0 +1,235 @@ +\section{Anwendungen \label{kra:section:anwendung}} +\rhead{Anwendungen} +\newcommand{\dt}[0]{\frac{d}{dt}} + +Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalmanfilter. +Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:matrixriccati}) ein Feder-Masse-System untersuchen können. + +\subsection{Feder-Masse-System} +Die Einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. +Es besteht aus einer Masse $m$ welche reibungsfrei gelagert ist und einer Feder mit der Federkonstante $k$. +Die im System wirkenden Kräfte teilen sich auf in die auf dem hookeschen Gesetz basierenden Rückstellkraft $F_R = k \Delta_x$ und der auf dem Aktionsprinzip basierenden Kraft $F_a = am = \ddot{x} m$. +Das Kräftegleichgewicht fordert $F_R = F_a$ woraus folgt, dass + +\begin{equation*} + k \Delta_x = \ddot{x} m \Leftrightarrow \ddot{x} = \frac{k \Delta_x}{m} +\end{equation*} +Die funktion die diese Differentialgleichung löst ist die harmonische Schwingung +\begin{equation} + x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}} +\end{equation} + + +\begin{figure} + \input{papers/kra/images/simple_mass_spring.tex} + \caption{Einfaches Feder-Masse-System.} + \label{kra:fig:simple_mass_spring} +\end{figure} + +\begin{figure} + \input{papers/kra/images/multi_mass_spring.tex} + \caption{Feder-Masse-System mit zwei Massen und drei Federn.} + \label{kra:fig:multi_mass_spring} +\end{figure} + + +\subsection{Hamilton-Funktion} +Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. +Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten +$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. +Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. +Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_spring}, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. + +\begin{equation} + \label{kra:harmonischer_oszillator} + \begin{split} + \mathcal{H}(q, p) &= T(p) + V(q) = E \\ + &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} + \end{split} +\end{equation} + +Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} +\begin{equation} + \label{kra:hamilton:bewegungsgleichung} + \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k} + \qquad + \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} +\end{equation} + +daraus folgt + +\[ + \dot{q} = \frac{p}{m} + \qquad + \dot{p} = -kq +\] + +in Matrixschreibweise erhalten wir also + +\[ + \begin{pmatrix} + \dot{q} \\ + \dot{p} + \end{pmatrix} + = + \begin{pmatrix} + 0 & \frac{1}{m} \\ + -k & 0 + \end{pmatrix} + \begin{pmatrix} + q \\ + p + \end{pmatrix} +\] + +Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_mass_spring}, können wir analog vorgehen. +Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. +Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. + +\begin{align*} + \begin{split} + T &= T_1 + T_2 \\ + &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \end{split} + \\ + \begin{split} + V &= V_1 + V_c + V_2 \\ + &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} + \end{split} +\end{align*} + +Die Hamilton-Funktion ist also + +\begin{align*} + \begin{split} + \mathcal{H} &= T + V \\ + &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} + \end{split} +\end{align*} + +Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern +\begin{align*} + \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k} + \Rightarrow + \left\{ + \begin{alignedat}{2} + \dot{q_1} &= \frac{2p_1}{2m_1} &&= \frac{p_1}{m_1}\\ + \dot{q_2} &= \frac{2p_2}{2m_2} &&= \frac{p_2}{m_2} + \end{alignedat} + \right. + \\ + -\frac{\partial \mathcal{H}}{\partial q_k} & = \dot{p_k} + \Rightarrow + \left\{ + \begin{alignedat}{2} + \dot{p_1} &= -(\frac{2k_1q_1}{2} - \frac{2k_c(q_2-q_1)}{2}) &&= -q_1(k_1+k_c) + q_2k_c \\ + \dot{p_1} &= -(\frac{2k_c(q_2-q_1)}{2} - \frac{2k_2q_2}{2}) &&= q_1k_c - (k_c + k_2) + \end{alignedat} + \right. +\end{align*} + +In Matrixschreibweise erhalten wir + +\begin{equation} + \label{kra:hamilton:multispringmass} + \begin{pmatrix} + \dot{q_1} \\ + \dot{q_2} \\ + \dot{p_1} \\ + \dot{p_2} \\ + \end{pmatrix} + = + \begin{pmatrix} + 0 & 0 & \frac{1}{2m_1} & 0 \\ + 0 & 0 & 0 & \frac{1}{2m_2} \\ + -(k_1 + k_c) & k_c & 0 & 0 \\ + k_c & -(k_c + k_2) & 0 & 0 \\ + \end{pmatrix} + \begin{pmatrix} + q_1 \\ + q_2 \\ + p_1 \\ + p_2 \\ + \end{pmatrix} + \Leftrightarrow + \dt + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + 0 & M \\ + K & 0 + \end{pmatrix} + }_{G} + \begin{pmatrix} + Q \\ + P \\ + \end{pmatrix} +\end{equation} + +\subsection{Phasenraum} +Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen System durch einen Punkt. +Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme. + +\subsubsection{Harmonischer Oszillator} +Die Hamiltonfunktion des harmonischen Oszillators \ref{kra:harmonischer_oszillator} führt auf eine Lösung der Form +\begin{equation*} + q(t) = A \cos(\omega_0 T + \Phi), \quad p(t) = -m \omega_0 A \sin(\omega_0 t + \Phi) +\end{equation*} +die Phasenraumtrajektorien bilden also Ellipsen mit Zentrum $q=0, p=0$ und Halbachsen $A$ und $m \omega A$. +Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien $E_{x \in \{A, B, C, D\}}$ und verschiedenen Werten von $\omega$. + +\begin{figure} + \input{papers/kra/images/phase_space.tex} + \caption{Phasenraumdarstellung des einfachen Feder-Masse-Systems.} + \label{kra:fig:phasenraum} +\end{figure} + +\subsubsection{Erweitertes Feder-Masse-System} +Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, +wir suchen also die Grösse $\Theta = \dt U$. + +Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir +\begin{equation} + \dt + \begin{pmatrix} + Q \\ + P + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + A & B \\ + C & D + \end{pmatrix} + }_{\tilde{G}} + \begin{pmatrix} + Q \\ + P + \end{pmatrix} +\end{equation} + +Mit einsetzten folgt + +\begin{align*} + \dot{Q} = AQ + BP \\ + \dot{P} = CQ + DP +\end{align*} +\begin{equation} + \begin{split} + \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\ + &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\ + &= C\underbrace{QQ^{-1}}_\text{I} + D\underbrace{PQ^{-1}}_\text{U} - P(Q^{-1} (AQ + BP) Q^{-1}) \\ + &= C + DU - \underbrace{PQ^{-1}}_\text{U}(A\underbrace{QQ^{-1}}_\text{I} + B\underbrace{PQ^{-1}}_\text{U}) \\ + &= C + DU - UA - UBU + \end{split} +\end{equation} + +was uns auf die Matrix-Riccati Gleichung \ref{kra:matrixriccati} führt. + + +\subsection{Fazit} +% @TODO diff --git a/buch/papers/kra/einleitung.tex b/buch/papers/kra/einleitung.tex new file mode 100644 index 0000000..1a347a8 --- /dev/null +++ b/buch/papers/kra/einleitung.tex @@ -0,0 +1,14 @@ +\section{Einleitung} \label{kra:section:einleitung} +\rhead{Einleitung} +Die riccatische Differentialgleichung ist eine nichtlineare gewöhnliche Differentialgleichunge erster Ordnung der form +\begin{equation} + \label{kra:riccati} + y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) +\end{equation} +Sie ist bennant nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste und Methoden zur Verringerung der Ordnung von Gleichungen entwickelte. +Als Riccati Gleichung werden auch Matrixgleichugen der Form +\begin{equation} + \label{kra:matrixriccati} + \dot{U}(t) = DU(t) - UA(t) - U(t)BU(t) % +Q ? +\end{equation} +bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse ähnlichkeit aufweisen. \ No newline at end of file diff --git a/buch/papers/kra/hamilton.tex b/buch/papers/kra/hamilton.tex deleted file mode 100644 index 14a5e8c..0000000 --- a/buch/papers/kra/hamilton.tex +++ /dev/null @@ -1,185 +0,0 @@ -\newcommand{\dt}[0]{\frac{d}{dt}} - -\section{Teil abc\label{kra:section:teilabc}} -\rhead{Teil abc} - -\subsection{Hamilton-Funktion} -Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. -Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten -$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, -wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. -Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. -Im Falle des einfachen Federmassesystems, Abbildung \ref{kra:fig:simple_spring_mass}, -setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. - -\begin{equation} - \label{hamilton} - \begin{split} - \mathcal{H}(q, p) &= T(p) + V(q) = E \\ - &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} - \end{split} -\end{equation} - -Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} -\begin{equation} - \label{kra:hamilton:bewegungsgleichung} - \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k} - \qquad - \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} -\end{equation} - -daraus folgt - -\[ - \dot{q} = \frac{p}{m} - \qquad - \dot{p} = -kq -\] - -in Matrixschreibweise erhalten wir also - -\[ - \begin{pmatrix} - \dot{q} \\ - \dot{p} - \end{pmatrix} - = - \begin{pmatrix} - 0 & \frac{1}{m} \\ - -k & 0 - \end{pmatrix} - \begin{pmatrix} - q \\ - p - \end{pmatrix} -\] - -Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_spring_mass}, können wir analog vorgehen. -Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. -Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. - -\begin{align*} - \begin{split} - T &= T_1 + T_2 \\ - &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} - \end{split} - \\ - \begin{split} - V &= V_1 + V_c + V_2 \\ - &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} - \end{split} -\end{align*} - -Die Hamilton-Funktion ist also - -\begin{align*} - \begin{split} - \mathcal{H} &= T + V \\ - &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} - \end{split} -\end{align*} - -Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern -\begin{align*} - \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k} - \Rightarrow - \left\{ - \begin{alignedat}{2} - \dot{q_1} &= \frac{2p_1}{2m_1} &&= \frac{p_1}{m_1}\\ - \dot{q_2} &= \frac{2p_2}{2m_2} &&= \frac{p_2}{m_2} - \end{alignedat} - \right. - \\ - -\frac{\partial \mathcal{H}}{\partial q_k} & = \dot{p_k} - \Rightarrow - \left\{ - \begin{alignedat}{2} - \dot{p_1} &= -(\frac{2k_1q_1}{2} - \frac{2k_c(q_2-q_1)}{2}) &&= -q_1(k_1+k_c) + q_2k_c \\ - \dot{p_1} &= -(\frac{2k_c(q_2-q_1)}{2} - \frac{2k_2q_2}{2}) &&= q_1k_c - (k_c + k_2) - \end{alignedat} - \right. -\end{align*} - -In Matrixschreibweise erhalten wir - -\begin{equation} - \label{kra:hamilton:multispringmass} - \begin{pmatrix} - \dot{q_1} \\ - \dot{q_2} \\ - \dot{p_1} \\ - \dot{p_2} \\ - \end{pmatrix} - = - \begin{pmatrix} - 0 & 0 & \frac{1}{2m_1} & 0 \\ - 0 & 0 & 0 & \frac{1}{2m_2} \\ - -(k_1 + k_c) & k_c & 0 & 0 \\ - k_c & -(k_c + k_2) & 0 & 0 \\ - \end{pmatrix} - \begin{pmatrix} - q_1 \\ - q_2 \\ - p_1 \\ - p_2 \\ - \end{pmatrix} - \Leftrightarrow - \dt - \begin{pmatrix} - Q \\ - P \\ - \end{pmatrix} - \underbrace{ - \begin{pmatrix} - 0 & M \\ - K & 0 - \end{pmatrix} - }_{G} - \begin{pmatrix} - Q \\ - P \\ - \end{pmatrix} -\end{equation} - - -Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, -wir suchen also die Grösse $\Theta = \dt U$. - -Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir -\begin{equation} - \dt - \begin{pmatrix} - Q \\ - P - \end{pmatrix} - = - \underbrace{ - \begin{pmatrix} - A & B \\ - C & D - \end{pmatrix} - }_{\tilde{G}} - \begin{pmatrix} - Q \\ - P - \end{pmatrix} -\end{equation} - -Mit einsetzten folgt - -\begin{align*} - \dot{Q} = AQ + BP \\ - \dot{P} = CQ + DP -\end{align*} -\begin{equation} - \begin{split} - \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\ - &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\ - &= C\underbrace{QQ^{-1}}_\text{I} + D\underbrace{PQ^{-1}}_\text{U} - P(Q^{-1} (AQ + BP) Q^{-1}) \\ - &= C + DU - \underbrace{PQ^{-1}}_\text{U}(A\underbrace{QQ^{-1}}_\text{I} + B\underbrace{PQ^{-1}}_\text{U}) \\ - &= C + DU - UA - UBU - \end{split} -\end{equation} - -was uns auf die zeitkontinuierliche Matrix-Riccati-Gleichung führt. - diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex new file mode 100644 index 0000000..ece0f15 --- /dev/null +++ b/buch/papers/kra/loesung.tex @@ -0,0 +1,47 @@ +\section{Lösungsmethoden} \label{kra:section:loesung} +\rhead{Lösungsmethoden} +% @TODO Lösung normal riccati +Lösung der Riccatischen Differentialgleichung \ref{kra:riccati}. + + +% Lösung matrix riccati +Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen +\begin{equation} + \label{kra:matrixriccati-solution} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} +\end{equation} + +\begin{equation} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) + \end{pmatrix} + ^{-1} +\end{equation} + +wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. + +\begin{equation} + \Phi(t_0, t) = e^{H(t - t_0)} +\end{equation} diff --git a/buch/papers/kra/main.tex b/buch/papers/kra/main.tex index 456b6ee..a84ebaf 100644 --- a/buch/papers/kra/main.tex +++ b/buch/papers/kra/main.tex @@ -3,12 +3,12 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Kalman, Riccati und Abel\label{chapter:kra}} -\lhead{Kalman, Riccati und Abel} +\chapter{Riccati Differentialgleichung\label{chapter:kra}} +\lhead{Riccati Differentialgleichung} \begin{refsection} \chapterauthor{Samuel Niederer} - \input{papers/kra/hamilton.tex} - \newpage - \input{papers/kra/riccati.tex} + \input{papers/kra/einleitung.tex} + \input{papers/kra/loesung.tex} + \input{papers/kra/anwendung.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex deleted file mode 100644 index df2921d..0000000 --- a/buch/papers/kra/riccati.tex +++ /dev/null @@ -1,93 +0,0 @@ -\section{Riccati - \label{kra:section:riccati}} -\rhead{Riccati} - -\begin{equation} - y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) -\end{equation} -% einfache (normale riccati gleichung und ihre loesung) -% (kann man diese bei einfachem federmasse system benutzten?) -% matrix riccati gleichung - - -Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form -\begin{equation} - \label{kra:riccati:riccatiequation} - \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t) -\end{equation} - -Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation} - -\begin{equation} - \label{kra:riccati:derivation} - \dt - \begin{pmatrix} - X \\ - Y - \end{pmatrix} - = - \underbrace{ - \begin{pmatrix} - A & B \\ - C & D - \end{pmatrix} - }_{H} - \begin{pmatrix} - X \\ - Y - \end{pmatrix} -\end{equation} - -interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten - -\begin{align*} - \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ - & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\ - & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\ - & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\ - & = C + DU - UA - UBU -\end{align*} - -was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt. -Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen -\begin{equation} - \begin{pmatrix} - X(t) \\ - Y(t) - \end{pmatrix} - = - \Phi(t_0, t) - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} - = - \begin{pmatrix} - \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ - \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} -\end{equation} - -\begin{equation} - U(t) = - \begin{pmatrix} - \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) - \end{pmatrix} - ^{-1} -\end{equation} - -wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. - -\begin{equation} - \Phi(t_0, t) = e^{H(t - t_0)} -\end{equation} - - - -- cgit v1.2.1 From 68df1dfae4ea68c42fd97860280fac5ef3d672fb Mon Sep 17 00:00:00 2001 From: Alain Date: Sun, 24 Jul 2022 22:11:37 +0200 Subject: =?UTF-8?q?wenig=20isch=20besser=20als=20n=C3=BCt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil0.tex | 31 ++++++++++++++++++++++++++++++- 1 file changed, 30 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ff927b7..2fc8737 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -7,7 +7,36 @@ \rhead{Teil 0} \subsection{Laplace Gleichung} - +Die partielle Differentialgleichung +\begin{equation} + \Delta f = 0 +\end{equation} +ist als Laplace Gleichung bekannt. +Sie ist eine spezielle Form der poisson Gleichung +\begin{equation} + \Delta f = g +\end{equation} +mit g als beliebige Funktion. +In der Physik hat die Laplace Gleichung in verschieden Gebieten +verwendet, zum Beispiel im Elektromagnetismus. +Das Gaussche Gesetz in den Maxwellgleichungen +\begin{equation} + \nabla \cdot E = \frac{\varrho}{\epsilon_0} +\label{parzyl:eq:max1} +\end{equation} +besagt das die Divergenz eines Elektrischen Feldes an einem +Punkt gleich der Ladung an diesem Punkt ist. +Das elektrische Feld ist hierbei der Gradient des elektrischen +Potentials +\begin{equation} + \nabla \phi = E. +\end{equation} +Eingesetzt in \eqref{parzyl:eq:max1} resultiert +\begin{equation} + \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, +\end{equation} +was eine Possion gleichung ist. +An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. -- cgit v1.2.1 From 02fad480aad27d6d2fa1192eeab5c6654557b884 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Tue, 26 Jul 2022 09:31:35 +0200 Subject: svae between --- buch/papers/fm/01_AM-FM.tex | 37 ++++++++++++++++++++++--------------- buch/papers/fm/main.tex | 2 +- buch/papers/fm/references.bib | 11 +++++++++++ 3 files changed, 34 insertions(+), 16 deletions(-) (limited to 'buch') diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex index ef55d55..2267d39 100644 --- a/buch/papers/fm/01_AM-FM.tex +++ b/buch/papers/fm/01_AM-FM.tex @@ -7,30 +7,37 @@ \rhead{AM- FM} Das sinusförmige Trägersignal hat die übliche Form: -\(x_c(t) = A_c \cdot cos(\omega_c(t)+\varphi)\). +\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. \newblockpunct -Jedoch ist das für die Vilfalt der Modulationsarten keine Einschrenkung. +Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. Mathematisch wird dann daraus \[ \omega_i = \omega_c + \frac{d \varphi(t)}{dt} \] -mit der Ableitung der Phase. +mit der Ableitung der Phase\cite{fm:NAT}. +Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, +die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): \newline \newline -TODO: -Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[cos( cos x)\] - - - -%Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -%nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{fm:bibtex}. -%At vero eos et accusam et justo duo dolores et ea rebum. -%Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -%dolor sit amet. - +To do: Bilder jeder Modulationsart +\subsection{AM - Amplitudenmodulation} +Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideeen in FM. +Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal +\[ + x_c(t) = A_c \cdot \cos(\omega_ct). +\] +Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt +und das Trägersignal nur zwei komplexe Schwingungen besitzt. +Dies sieht man besonders in der Eulerischen Formel +\[ + x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. +\] +Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. +\newline +TODO: +Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex index fcf4d1a..6af3386 100644 --- a/buch/papers/fm/main.tex +++ b/buch/papers/fm/main.tex @@ -27,7 +27,7 @@ welches Digital einfach umzusetzten ist, genauso als Trägersignal genutzt werden kann. Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzspektrum verhalten. Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt. -Nun zur Modulation im nächsten Abschnitt. +Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT} \input{papers/fm/01_AM-FM.tex} \input{papers/fm/02_frequenzyspectrum.tex} diff --git a/buch/papers/fm/references.bib b/buch/papers/fm/references.bib index 76eb265..21b910b 100644 --- a/buch/papers/fm/references.bib +++ b/buch/papers/fm/references.bib @@ -23,6 +23,17 @@ volume = {2} } +@book{fm:NAT, + title = {Nachrichtentechnik 1 + 2}, + author = {Thomas Kneubühler}, + publisher = {None}, + year = {2021}, + isbn = {}, + inseries = {Script for students}, + volume = {} +} + + @article{fm:mendezmueller, author = { Tabea Méndez and Andreas Müller }, title = { Noncommutative harmonic analysis and image registration }, -- cgit v1.2.1 From a5b1d13fd6d9d5df3d7289093e57cf67ae5cb81c Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Tue, 26 Jul 2022 15:04:22 +0200 Subject: Kapitel TODOs --- buch/papers/fm/01_AM-FM.tex | 4 +++ buch/papers/fm/02_frequenzyspectrum.tex | 2 ++ buch/papers/fm/03_bessel.tex | 24 ++++++---------- buch/papers/fm/04_fazit.tex | 32 ++------------------- buch/papers/fm/FM presentation/A2-14.pdf | Bin 0 -> 259673 bytes buch/papers/fm/FM presentation/FM_presentation.pdf | Bin 0 -> 357597 bytes ...quency modulation (FM) and Bessel functions.pdf | Bin 0 -> 159598 bytes ...l2022_Book_H\303\266hereMathematikImAlltag.pdf" | Bin 0 -> 4118379 bytes 8 files changed, 17 insertions(+), 45 deletions(-) create mode 100644 buch/papers/fm/FM presentation/A2-14.pdf create mode 100644 buch/papers/fm/FM presentation/FM_presentation.pdf create mode 100644 buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf create mode 100644 "buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" (limited to 'buch') diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex index 2267d39..163c792 100644 --- a/buch/papers/fm/01_AM-FM.tex +++ b/buch/papers/fm/01_AM-FM.tex @@ -38,6 +38,10 @@ Dies sieht man besonders in der Eulerischen Formel x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. \] Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. +Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. +\newline \newline TODO: Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] +so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). +Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] diff --git a/buch/papers/fm/02_frequenzyspectrum.tex b/buch/papers/fm/02_frequenzyspectrum.tex index 1c6044d..80e1c65 100644 --- a/buch/papers/fm/02_frequenzyspectrum.tex +++ b/buch/papers/fm/02_frequenzyspectrum.tex @@ -7,7 +7,9 @@ \label{fm:section:teil1}} \rhead{Problemstellung} +TODO Hier Beschreiben ich das Frequenzspektrum und wie AM und FM aussehen und generiert werden. +Somit auch die Herleitung des Frequenzspektrum. %Sed ut perspiciatis unde omnis iste natus error sit voluptatem %accusantium doloremque laudantium, totam rem aperiam, eaque ipsa %quae ab illo inventore veritatis et quasi architecto beatae vitae diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index fdaa0d1..aed084e 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -7,22 +7,16 @@ \label{fm:section:teil2}} \rhead{Teil 2} + +TODO Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile. -%Sed ut perspiciatis unde omnis iste natus error sit voluptatem -%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -%quae ab illo inventore veritatis et quasi architecto beatae vitae -%dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -%aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -%eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -%est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -%velit, sed quia non numquam eius modi tempora incidunt ut labore -%et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -%veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -%nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -%reprehenderit qui in ea voluptate velit esse quam nihil molestiae -%consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -%pariatur? -% +\begin{itemize} + \item Zuerest einmal die Herleitung von FM zu der Besselfunktion + \item Im Frequenzspektrum darstellen mit Farben, ersichtlich machen. + \item Parameter tuing der Trägerfrequenz, Modulierende frequenz und Beta. +\end{itemize} + + %\subsection{De finibus bonorum et malorum %\label{fm:subsection:bonorum}} diff --git a/buch/papers/fm/04_fazit.tex b/buch/papers/fm/04_fazit.tex index 8c6c002..8d5eca4 100644 --- a/buch/papers/fm/04_fazit.tex +++ b/buch/papers/fm/04_fazit.tex @@ -6,35 +6,7 @@ \section{Fazit \label{fm:section:fazit}} \rhead{Zusamenfassend} -%Sed ut perspiciatis unde omnis iste natus error sit voluptatem -%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -%quae ab illo inventore veritatis et quasi architecto beatae vitae -%dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -%aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -%eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -%est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -%velit, sed quia non numquam eius modi tempora incidunt ut labore -%et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -%veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -%nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -%reprehenderit qui in ea voluptate velit esse quam nihil molestiae -%consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -%pariatur? -% -%\subsection{De finibus bonorum et malorum -%\label{fm:subsection:malorum}} -%At vero eos et accusamus et iusto odio dignissimos ducimus qui -%blanditiis praesentium voluptatum deleniti atque corrupti quos -%dolores et quas molestias excepturi sint occaecati cupiditate non -%provident, similique sunt in culpa qui officia deserunt mollitia -%animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -%est et expedita distinctio. Nam libero tempore, cum soluta nobis -%est eligendi optio cumque nihil impedit quo minus id quod maxime -%placeat facere possimus, omnis voluptas assumenda est, omnis dolor -%repellendus. Temporibus autem quibusdam et aut officiis debitis aut -%rerum necessitatibus saepe eveniet ut et voluptates repudiandae -%sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -%sapiente delectus, ut aut reiciendis voluptatibus maiores alias -%consequatur aut perferendis doloribus asperiores repellat. + +TODO Anwendungen erklären und Sinn des Ganzen. diff --git a/buch/papers/fm/FM presentation/A2-14.pdf b/buch/papers/fm/FM presentation/A2-14.pdf new file mode 100644 index 0000000..7348cca Binary files /dev/null and b/buch/papers/fm/FM presentation/A2-14.pdf differ diff --git a/buch/papers/fm/FM presentation/FM_presentation.pdf b/buch/papers/fm/FM presentation/FM_presentation.pdf new file mode 100644 index 0000000..496e35e Binary files /dev/null and b/buch/papers/fm/FM presentation/FM_presentation.pdf differ diff --git a/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf new file mode 100644 index 0000000..a6e701c Binary files /dev/null and b/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf differ diff --git "a/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" "b/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" new file mode 100644 index 0000000..2a0bddd Binary files /dev/null and "b/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" differ -- cgit v1.2.1 From 80f1ac88befc8c0471a47f4400dd727cbd47eff4 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Tue, 26 Jul 2022 15:14:53 +0200 Subject: Ordner sturuktur angepasst --- buch/papers/fm/FM presentation/A2-14.pdf | Bin 259673 -> 0 bytes buch/papers/fm/FM presentation/FM_presentation.tex | 125 +++++++++++++++++++++ ...quency modulation (FM) and Bessel functions.pdf | Bin 159598 -> 0 bytes buch/papers/fm/FM presentation/README.txt | 1 + ...l2022_Book_H\303\266hereMathematikImAlltag.pdf" | Bin 4118379 -> 0 bytes buch/papers/fm/FM presentation/images/100HZ.png | Bin 0 -> 8601 bytes buch/papers/fm/FM presentation/images/200HZ.png | Bin 0 -> 8502 bytes buch/papers/fm/FM presentation/images/300HZ.png | Bin 0 -> 9059 bytes buch/papers/fm/FM presentation/images/400HZ.png | Bin 0 -> 9949 bytes buch/papers/fm/FM presentation/images/bessel.png | Bin 0 -> 40393 bytes buch/papers/fm/FM presentation/images/bessel2.png | Bin 0 -> 102494 bytes .../fm/FM presentation/images/bessel_beta1.png | Bin 0 -> 40696 bytes .../fm/FM presentation/images/bessel_frequenz.png | Bin 0 -> 11264 bytes .../fm/FM presentation/images/beta_0.001.png | Bin 0 -> 6233 bytes buch/papers/fm/FM presentation/images/beta_0.1.png | Bin 0 -> 6630 bytes buch/papers/fm/FM presentation/images/beta_0.5.png | Bin 0 -> 8167 bytes buch/papers/fm/FM presentation/images/beta_1.png | Bin 0 -> 11303 bytes buch/papers/fm/FM presentation/images/beta_2.png | Bin 0 -> 14703 bytes buch/papers/fm/FM presentation/images/beta_3.png | Bin 0 -> 20377 bytes buch/papers/fm/FM presentation/images/fm_10Hz.png | Bin 0 -> 6781 bytes buch/papers/fm/FM presentation/images/fm_20hz.png | Bin 0 -> 7834 bytes buch/papers/fm/FM presentation/images/fm_30Hz.png | Bin 0 -> 8601 bytes buch/papers/fm/FM presentation/images/fm_3Hz.png | Bin 0 -> 6558 bytes buch/papers/fm/FM presentation/images/fm_40Hz.png | Bin 0 -> 8795 bytes buch/papers/fm/FM presentation/images/fm_5Hz.png | Bin 0 -> 5766 bytes buch/papers/fm/FM presentation/images/fm_7Hz.png | Bin 0 -> 6337 bytes .../fm/FM presentation/images/fm_frequenz.png | Bin 0 -> 11042 bytes .../fm/FM presentation/images/fm_in_time.png | Bin 0 -> 27400 bytes buch/papers/fm/Quellen/A2-14.pdf | Bin 0 -> 259673 bytes buch/papers/fm/Quellen/FM_presentation.pdf | Bin 0 -> 357597 bytes ...quency modulation (FM) and Bessel functions.pdf | Bin 0 -> 159598 bytes ...l2022_Book_H\303\266hereMathematikImAlltag.pdf" | Bin 0 -> 4118379 bytes buch/papers/fm/RS presentation/FM_presentation.pdf | Bin 357597 -> 0 bytes buch/papers/fm/RS presentation/FM_presentation.tex | 125 --------------------- ...quency modulation (FM) and Bessel functions.pdf | Bin 159598 -> 0 bytes buch/papers/fm/RS presentation/README.txt | 1 - buch/papers/fm/RS presentation/RS.tex | 123 -------------------- buch/papers/fm/RS presentation/images/100HZ.png | Bin 8601 -> 0 bytes buch/papers/fm/RS presentation/images/200HZ.png | Bin 8502 -> 0 bytes buch/papers/fm/RS presentation/images/300HZ.png | Bin 9059 -> 0 bytes buch/papers/fm/RS presentation/images/400HZ.png | Bin 9949 -> 0 bytes buch/papers/fm/RS presentation/images/bessel.png | Bin 40393 -> 0 bytes buch/papers/fm/RS presentation/images/bessel2.png | Bin 102494 -> 0 bytes .../fm/RS presentation/images/bessel_beta1.png | Bin 40696 -> 0 bytes .../fm/RS presentation/images/bessel_frequenz.png | Bin 11264 -> 0 bytes .../fm/RS presentation/images/beta_0.001.png | Bin 6233 -> 0 bytes buch/papers/fm/RS presentation/images/beta_0.1.png | Bin 6630 -> 0 bytes buch/papers/fm/RS presentation/images/beta_0.5.png | Bin 8167 -> 0 bytes buch/papers/fm/RS presentation/images/beta_1.png | Bin 11303 -> 0 bytes buch/papers/fm/RS presentation/images/beta_2.png | Bin 14703 -> 0 bytes buch/papers/fm/RS presentation/images/beta_3.png | Bin 20377 -> 0 bytes buch/papers/fm/RS presentation/images/fm_10Hz.png | Bin 6781 -> 0 bytes buch/papers/fm/RS presentation/images/fm_20hz.png | Bin 7834 -> 0 bytes buch/papers/fm/RS presentation/images/fm_30Hz.png | Bin 8601 -> 0 bytes buch/papers/fm/RS presentation/images/fm_3Hz.png | Bin 6558 -> 0 bytes buch/papers/fm/RS presentation/images/fm_40Hz.png | Bin 8795 -> 0 bytes buch/papers/fm/RS presentation/images/fm_5Hz.png | Bin 5766 -> 0 bytes buch/papers/fm/RS presentation/images/fm_7Hz.png | Bin 6337 -> 0 bytes .../fm/RS presentation/images/fm_frequenz.png | Bin 11042 -> 0 bytes .../fm/RS presentation/images/fm_in_time.png | Bin 27400 -> 0 bytes 60 files changed, 126 insertions(+), 249 deletions(-) delete mode 100644 buch/papers/fm/FM presentation/A2-14.pdf create mode 100644 buch/papers/fm/FM presentation/FM_presentation.tex delete mode 100644 buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf create mode 100644 buch/papers/fm/FM presentation/README.txt delete mode 100644 "buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" create mode 100644 buch/papers/fm/FM presentation/images/100HZ.png create mode 100644 buch/papers/fm/FM presentation/images/200HZ.png create mode 100644 buch/papers/fm/FM presentation/images/300HZ.png create mode 100644 buch/papers/fm/FM presentation/images/400HZ.png create mode 100644 buch/papers/fm/FM presentation/images/bessel.png create mode 100644 buch/papers/fm/FM presentation/images/bessel2.png create mode 100644 buch/papers/fm/FM presentation/images/bessel_beta1.png create mode 100644 buch/papers/fm/FM presentation/images/bessel_frequenz.png create mode 100644 buch/papers/fm/FM presentation/images/beta_0.001.png create mode 100644 buch/papers/fm/FM presentation/images/beta_0.1.png create mode 100644 buch/papers/fm/FM presentation/images/beta_0.5.png create mode 100644 buch/papers/fm/FM presentation/images/beta_1.png create mode 100644 buch/papers/fm/FM presentation/images/beta_2.png create mode 100644 buch/papers/fm/FM presentation/images/beta_3.png create mode 100644 buch/papers/fm/FM presentation/images/fm_10Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_20hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_30Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_3Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_40Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_5Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_7Hz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_frequenz.png create mode 100644 buch/papers/fm/FM presentation/images/fm_in_time.png create mode 100644 buch/papers/fm/Quellen/A2-14.pdf create mode 100644 buch/papers/fm/Quellen/FM_presentation.pdf create mode 100644 buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf create mode 100644 "buch/papers/fm/Quellen/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" delete mode 100644 buch/papers/fm/RS presentation/FM_presentation.pdf delete mode 100644 buch/papers/fm/RS presentation/FM_presentation.tex delete mode 100644 buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf delete mode 100644 buch/papers/fm/RS presentation/README.txt delete mode 100644 buch/papers/fm/RS presentation/RS.tex delete mode 100644 buch/papers/fm/RS presentation/images/100HZ.png delete mode 100644 buch/papers/fm/RS presentation/images/200HZ.png delete mode 100644 buch/papers/fm/RS presentation/images/300HZ.png delete mode 100644 buch/papers/fm/RS presentation/images/400HZ.png delete mode 100644 buch/papers/fm/RS presentation/images/bessel.png delete mode 100644 buch/papers/fm/RS presentation/images/bessel2.png delete mode 100644 buch/papers/fm/RS presentation/images/bessel_beta1.png delete mode 100644 buch/papers/fm/RS presentation/images/bessel_frequenz.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_0.001.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_0.1.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_0.5.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_1.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_2.png delete mode 100644 buch/papers/fm/RS presentation/images/beta_3.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_10Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_20hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_30Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_3Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_40Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_5Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_7Hz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_frequenz.png delete mode 100644 buch/papers/fm/RS presentation/images/fm_in_time.png (limited to 'buch') diff --git a/buch/papers/fm/FM presentation/A2-14.pdf b/buch/papers/fm/FM presentation/A2-14.pdf deleted file mode 100644 index 7348cca..0000000 Binary files a/buch/papers/fm/FM presentation/A2-14.pdf and /dev/null differ diff --git a/buch/papers/fm/FM presentation/FM_presentation.tex b/buch/papers/fm/FM presentation/FM_presentation.tex new file mode 100644 index 0000000..2801e69 --- /dev/null +++ b/buch/papers/fm/FM presentation/FM_presentation.tex @@ -0,0 +1,125 @@ +%% !TeX root = .tex + +\documentclass[11pt,aspectratio=169]{beamer} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{lmodern} +\usepackage[ngerman]{babel} +\usepackage{tikz} +\usetheme{Hannover} + +\begin{document} + \author{Joshua Bär} + \title{FM - Bessel} + \subtitle{} + \logo{} + \institute{OST Ostschweizer Fachhochschule} + \date{16.5.2022} + \subject{Mathematisches Seminar - Spezielle Funktionen} + %\setbeamercovered{transparent} + \setbeamercovered{invisible} + \setbeamertemplate{navigation symbols}{} + \begin{frame}[plain] + \maketitle + \end{frame} +%------------------------------------------------------------------------------- +\section{Einführung} + \begin{frame} + \frametitle{Frequenzmodulation} + + \visible<1->{ + \begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt)) + \end{equation}} + + \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}} + \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}} + \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}} + + + \end{frame} +%------------------------------------------------------------------------------- +\section{Proof} +\begin{frame} + \frametitle{Bessel} + + \visible<1->{\begin{align} + \cos(\beta\sin\varphi) + &= + J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) + \\ + \sin(\beta\sin\varphi) + &= + J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) + \\ + J_{-n}(\beta) &= (-1)^n J_n(\beta) + \end{align}} + \visible<2->{\begin{align} + \cos(A + B) + &= + \cos(A)\cos(B)-\sin(A)\sin(B) + \\ + 2\cos (A)\cos (B) + &= + \cos(A-B)+\cos(A+B) + \\ + 2\sin(A)\sin(B) + &= + \cos(A-B)-\cos(A+B) + \end{align}} +\end{frame} + +%------------------------------------------------------------------------------- +\begin{frame} + \frametitle{Prof->Done} + \begin{align} + \cos(\omega_ct+\beta\sin(\omega_mt)) + &= + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) + \end{align} + \end{frame} +%------------------------------------------------------------------------------- + \begin{frame} + \begin{figure} + \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}} + \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}} + \end{figure} + \end{frame} +%------------------------------------------------------------------------------- +\section{Input Parameter} + \begin{frame} + \frametitle{Träger-Frequenz Parameter} + \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} + \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}} + \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}} + \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}} + \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}} + \end{frame} +%------------------------------------------------------------------------------- +\begin{frame} +\frametitle{Modulations-Frequenz Parameter} +\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} +\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}} +\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}} +\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}} +\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}} +\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}} +\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}} +\end{frame} +%------------------------------------------------------------------------------- +\begin{frame} +\frametitle{Beta Parameter} + \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)\end{equation}} + \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}} + \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}} + \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}} + \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}} + \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}} + \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}} + \only<7>{\includegraphics[scale=0.7]{images/bessel.png}} +\end{frame} +%------------------------------------------------------------------------------- +\begin{frame} + \includegraphics[scale=0.5]{images/beta_1.png} + \includegraphics[scale=0.5]{images/bessel.png} +\end{frame} +\end{document} diff --git a/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf deleted file mode 100644 index a6e701c..0000000 Binary files a/buch/papers/fm/FM presentation/Frequency modulation (FM) and Bessel functions.pdf and /dev/null differ diff --git a/buch/papers/fm/FM presentation/README.txt b/buch/papers/fm/FM presentation/README.txt new file mode 100644 index 0000000..65f390d --- /dev/null +++ b/buch/papers/fm/FM presentation/README.txt @@ -0,0 +1 @@ +Dies ist die Presentation des FM - Bessel \ No newline at end of file diff --git "a/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" "b/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" deleted file mode 100644 index 2a0bddd..0000000 Binary files "a/buch/papers/fm/FM presentation/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" and /dev/null differ diff --git a/buch/papers/fm/FM presentation/images/100HZ.png b/buch/papers/fm/FM presentation/images/100HZ.png new file mode 100644 index 0000000..371b9bf Binary files /dev/null and b/buch/papers/fm/FM presentation/images/100HZ.png differ diff --git a/buch/papers/fm/FM presentation/images/200HZ.png b/buch/papers/fm/FM presentation/images/200HZ.png new file mode 100644 index 0000000..f6836bd Binary files /dev/null and b/buch/papers/fm/FM presentation/images/200HZ.png differ diff --git a/buch/papers/fm/FM presentation/images/300HZ.png b/buch/papers/fm/FM presentation/images/300HZ.png new file mode 100644 index 0000000..6762c1a Binary files /dev/null and b/buch/papers/fm/FM presentation/images/300HZ.png differ diff --git a/buch/papers/fm/FM presentation/images/400HZ.png b/buch/papers/fm/FM presentation/images/400HZ.png new file mode 100644 index 0000000..236c428 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/400HZ.png differ diff --git a/buch/papers/fm/FM presentation/images/bessel.png b/buch/papers/fm/FM presentation/images/bessel.png new file mode 100644 index 0000000..f4c83ea Binary files /dev/null and b/buch/papers/fm/FM presentation/images/bessel.png differ diff --git a/buch/papers/fm/FM presentation/images/bessel2.png b/buch/papers/fm/FM presentation/images/bessel2.png new file mode 100644 index 0000000..ccda3f9 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/bessel2.png differ diff --git a/buch/papers/fm/FM presentation/images/bessel_beta1.png b/buch/papers/fm/FM presentation/images/bessel_beta1.png new file mode 100644 index 0000000..1f5c47e Binary files /dev/null and b/buch/papers/fm/FM presentation/images/bessel_beta1.png differ diff --git a/buch/papers/fm/FM presentation/images/bessel_frequenz.png b/buch/papers/fm/FM presentation/images/bessel_frequenz.png new file mode 100644 index 0000000..4f228b9 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/bessel_frequenz.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_0.001.png b/buch/papers/fm/FM presentation/images/beta_0.001.png new file mode 100644 index 0000000..7e4e276 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_0.001.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_0.1.png b/buch/papers/fm/FM presentation/images/beta_0.1.png new file mode 100644 index 0000000..e7722b3 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_0.1.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_0.5.png b/buch/papers/fm/FM presentation/images/beta_0.5.png new file mode 100644 index 0000000..5261b43 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_0.5.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_1.png b/buch/papers/fm/FM presentation/images/beta_1.png new file mode 100644 index 0000000..6d3535c Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_1.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_2.png b/buch/papers/fm/FM presentation/images/beta_2.png new file mode 100644 index 0000000..6930eae Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_2.png differ diff --git a/buch/papers/fm/FM presentation/images/beta_3.png b/buch/papers/fm/FM presentation/images/beta_3.png new file mode 100644 index 0000000..c6df82c Binary files /dev/null and b/buch/papers/fm/FM presentation/images/beta_3.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_10Hz.png b/buch/papers/fm/FM presentation/images/fm_10Hz.png new file mode 100644 index 0000000..51bddc7 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_10Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_20hz.png b/buch/papers/fm/FM presentation/images/fm_20hz.png new file mode 100644 index 0000000..126ecf3 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_20hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_30Hz.png b/buch/papers/fm/FM presentation/images/fm_30Hz.png new file mode 100644 index 0000000..371b9bf Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_30Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_3Hz.png b/buch/papers/fm/FM presentation/images/fm_3Hz.png new file mode 100644 index 0000000..d4098af Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_3Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_40Hz.png b/buch/papers/fm/FM presentation/images/fm_40Hz.png new file mode 100644 index 0000000..4cf11d4 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_40Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_5Hz.png b/buch/papers/fm/FM presentation/images/fm_5Hz.png new file mode 100644 index 0000000..e495b5c Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_5Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_7Hz.png b/buch/papers/fm/FM presentation/images/fm_7Hz.png new file mode 100644 index 0000000..b3dd7e3 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_7Hz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_frequenz.png b/buch/papers/fm/FM presentation/images/fm_frequenz.png new file mode 100644 index 0000000..26bfd86 Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_frequenz.png differ diff --git a/buch/papers/fm/FM presentation/images/fm_in_time.png b/buch/papers/fm/FM presentation/images/fm_in_time.png new file mode 100644 index 0000000..068eafc Binary files /dev/null and b/buch/papers/fm/FM presentation/images/fm_in_time.png differ diff --git a/buch/papers/fm/Quellen/A2-14.pdf b/buch/papers/fm/Quellen/A2-14.pdf new file mode 100644 index 0000000..7348cca Binary files /dev/null and b/buch/papers/fm/Quellen/A2-14.pdf differ diff --git a/buch/papers/fm/Quellen/FM_presentation.pdf b/buch/papers/fm/Quellen/FM_presentation.pdf new file mode 100644 index 0000000..496e35e Binary files /dev/null and b/buch/papers/fm/Quellen/FM_presentation.pdf differ diff --git a/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf new file mode 100644 index 0000000..a6e701c Binary files /dev/null and b/buch/papers/fm/Quellen/Frequency modulation (FM) and Bessel functions.pdf differ diff --git "a/buch/papers/fm/Quellen/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" "b/buch/papers/fm/Quellen/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" new file mode 100644 index 0000000..2a0bddd Binary files /dev/null and "b/buch/papers/fm/Quellen/Seydel2022_Book_H\303\266hereMathematikImAlltag.pdf" differ diff --git a/buch/papers/fm/RS presentation/FM_presentation.pdf b/buch/papers/fm/RS presentation/FM_presentation.pdf deleted file mode 100644 index 496e35e..0000000 Binary files a/buch/papers/fm/RS presentation/FM_presentation.pdf and /dev/null differ diff --git a/buch/papers/fm/RS presentation/FM_presentation.tex b/buch/papers/fm/RS presentation/FM_presentation.tex deleted file mode 100644 index 92cb501..0000000 --- a/buch/papers/fm/RS presentation/FM_presentation.tex +++ /dev/null @@ -1,125 +0,0 @@ -%% !TeX root = RS.tex - -\documentclass[11pt,aspectratio=169]{beamer} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{lmodern} -\usepackage[ngerman]{babel} -\usepackage{tikz} -\usetheme{Hannover} - -\begin{document} - \author{Joshua Bär} - \title{FM - Bessel} - \subtitle{} - \logo{} - \institute{OST Ostschweizer Fachhochschule} - \date{16.5.2022} - \subject{Mathematisches Seminar} - %\setbeamercovered{transparent} - \setbeamercovered{invisible} - \setbeamertemplate{navigation symbols}{} - \begin{frame}[plain] - \maketitle - \end{frame} -%------------------------------------------------------------------------------- -\section{Einführung} - \begin{frame} - \frametitle{Frequenzmodulation} - - \visible<1->{ - \begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt)) - \end{equation}} - - \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}} - \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}} - \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}} - - - \end{frame} -%------------------------------------------------------------------------------- -\section{Proof} -\begin{frame} - \frametitle{Bessel} - - \visible<1->{\begin{align} - \cos(\beta\sin\varphi) - &= - J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) - \\ - \sin(\beta\sin\varphi) - &= - J_0(\beta) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) - \\ - J_{-n}(\beta) &= (-1)^n J_n(\beta) - \end{align}} - \visible<2->{\begin{align} - \cos(A + B) - &= - \cos(A)\cos(B)-\sin(A)\sin(B) - \\ - 2\cos (A)\cos (B) - &= - \cos(A-B)+\cos(A+B) - \\ - 2\sin(A)\sin(B) - &= - \cos(A-B)-\cos(A+B) - \end{align}} -\end{frame} - -%------------------------------------------------------------------------------- -\begin{frame} - \frametitle{Prof->Done} - \begin{align} - \cos(\omega_ct+\beta\sin(\omega_mt)) - &= - \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) - \end{align} - \end{frame} -%------------------------------------------------------------------------------- - \begin{frame} - \begin{figure} - \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}} - \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}} - \end{figure} - \end{frame} -%------------------------------------------------------------------------------- -\section{Input Parameter} - \begin{frame} - \frametitle{Träger-Frequenz Parameter} - \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} - \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}} - \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}} - \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}} - \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}} - \end{frame} -%------------------------------------------------------------------------------- -\begin{frame} -\frametitle{Modulations-Frequenz Parameter} -\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} -\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}} -\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}} -\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}} -\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}} -\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}} -\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}} -\end{frame} -%------------------------------------------------------------------------------- -\begin{frame} -\frametitle{Beta Parameter} - \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)\end{equation}} - \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}} - \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}} - \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}} - \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}} - \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}} - \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}} - \only<7>{\includegraphics[scale=0.7]{images/bessel.png}} -\end{frame} -%------------------------------------------------------------------------------- -\begin{frame} - \includegraphics[scale=0.5]{images/beta_1.png} - \includegraphics[scale=0.5]{images/bessel.png} -\end{frame} -\end{document} diff --git a/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf b/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf deleted file mode 100644 index a6e701c..0000000 Binary files a/buch/papers/fm/RS presentation/Frequency modulation (FM) and Bessel functions.pdf and /dev/null differ diff --git a/buch/papers/fm/RS presentation/README.txt b/buch/papers/fm/RS presentation/README.txt deleted file mode 100644 index 4d0620f..0000000 --- a/buch/papers/fm/RS presentation/README.txt +++ /dev/null @@ -1 +0,0 @@ -Dies ist die Presentation des Reed-Solomon-Code \ No newline at end of file diff --git a/buch/papers/fm/RS presentation/RS.tex b/buch/papers/fm/RS presentation/RS.tex deleted file mode 100644 index 8a67619..0000000 --- a/buch/papers/fm/RS presentation/RS.tex +++ /dev/null @@ -1,123 +0,0 @@ -%% !TeX root = RS.tex - -\documentclass[11pt,aspectratio=169]{beamer} -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{lmodern} -\usepackage[ngerman]{babel} -\usepackage{tikz} -\usetheme{Hannover} - -\begin{document} - \author{Joshua Bär} - \title{FM - Bessel} - \subtitle{} - \logo{} - \institute{OST Ostschweizer Fachhochschule} - \date{16.5.2022} - \subject{Mathematisches Seminar- Spezielle Funktionen} - %\setbeamercovered{transparent} - \setbeamercovered{invisible} - \setbeamertemplate{navigation symbols}{} - \begin{frame}[plain] - \maketitle - \end{frame} -%------------------------------------------------------------------------------- -\section{Einführung} - \begin{frame} - \frametitle{Frequenzmodulation} - - \visible<1->{\begin{equation} \cos(\omega_c t+\beta\sin(\omega_mt))\end{equation}} - - \only<2>{\includegraphics[scale= 0.7]{images/fm_in_time.png}} - \only<3>{\includegraphics[scale= 0.7]{images/fm_frequenz.png}} - \only<4>{\includegraphics[scale= 0.7]{images/bessel_frequenz.png}} - - - \end{frame} -%------------------------------------------------------------------------------- -\section{Proof} -\begin{frame} - \frametitle{Bessel} - - \visible<1->{\begin{align} - \cos(\beta\sin\varphi) - &= - J_0(\beat) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) - \\ - \sin(\beta\sin\varphi) - &= - J_0(\beat) + 2\sum_{m=1}^\infty J_{2m}(\beta) \cos(2m\varphi) - \\ - J_{-n}(\beat) &= (-1)^n J_n(\beta) - \end{align}} - \visible<2->{\begin{align} - \cos(A + B) - &= - \cos(A)\cos(B)-\sin(A)\sin(B) - \\ - 2\cos (A)\cos (B) - &= - \cos(A-B)+\cos(A+B) - \\ - 2\sin(A)\sin(B) - &= - \cos(A-B)-\cos(A+B) - \end{align}} -\end{frame} - -%------------------------------------------------------------------------------- -\begin{frame} - \frametitle{Prof->Done} - \begin{align} - \cos(\omega_ct+\beta\sin(\omega_mt)) - &= - \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omgea_m)t) - \end{align} - \end{frame} -%------------------------------------------------------------------------------- - \begin{frame} - \begin{figure} - \only<1>{\includegraphics[scale = 0.75]{images/fm_frequenz.png}} - \only<2>{\includegraphics[scale = 0.75]{images/bessel_frequenz.png}} - \end{figure} - \end{frame} -%------------------------------------------------------------------------------- -\section{Input Parameter} - \begin{frame} - \frametitle{Träger-Frequenz Parameter} - \onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} - \only<1>{\includegraphics[scale=0.75]{images/100HZ.png}} - \only<2>{\includegraphics[scale=0.75]{images/200HZ.png}} - \only<3>{\includegraphics[scale=0.75]{images/300HZ.png}} - \only<4>{\includegraphics[scale=0.75]{images/400HZ.png}} - \end{frame} -%------------------------------------------------------------------------------- -\begin{frame} -\frametitle{Modulations-Frequenz Parameter} -\onslide<1->{\begin{equation}\cos(\omega_ct+\beta\sin(\omega_mt))\end{equation}} -\only<1>{\includegraphics[scale=0.75]{images/fm_3Hz.png}} -\only<2>{\includegraphics[scale=0.75]{images/fm_5Hz.png}} -\only<3>{\includegraphics[scale=0.75]{images/fm_7Hz.png}} -\only<4>{\includegraphics[scale=0.75]{images/fm_10Hz.png}} -\only<5>{\includegraphics[scale=0.75]{images/fm_20Hz.png}} -\only<6>{\includegraphics[scale=0.75]{images/fm_30Hz.png}} -\end{frame} -%------------------------------------------------------------------------------- -\begin{frame} -\frametitle{Beta Parameter} - \onslide<1->{\begin{equation}\sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omgea_m)t)\end{equation}} - \only<1>{\includegraphics[scale=0.7]{images/beta_0.001.png}} - \only<2>{\includegraphics[scale=0.7]{images/beta_0.1.png}} - \only<3>{\includegraphics[scale=0.7]{images/beta_0.5.png}} - \only<4>{\includegraphics[scale=0.7]{images/beta_1.png}} - \only<5>{\includegraphics[scale=0.7]{images/beta_2.png}} - \only<6>{\includegraphics[scale=0.7]{images/beta_3.png}} - \only<7>{\includegraphics[scale=0.7]{images/bessel.png}} -\end{frame} -%------------------------------------------------------------------------------- -\begin{frame} - \includegraphics[scale=0.5]{images/beta_1.png} - \includegraphics[scale=0.5]{images/bessel.png} -\end{frame} -\end{document} diff --git a/buch/papers/fm/RS presentation/images/100HZ.png b/buch/papers/fm/RS presentation/images/100HZ.png deleted file mode 100644 index 371b9bf..0000000 Binary files a/buch/papers/fm/RS presentation/images/100HZ.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/200HZ.png b/buch/papers/fm/RS presentation/images/200HZ.png deleted file mode 100644 index f6836bd..0000000 Binary files a/buch/papers/fm/RS presentation/images/200HZ.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/300HZ.png b/buch/papers/fm/RS presentation/images/300HZ.png deleted file mode 100644 index 6762c1a..0000000 Binary files a/buch/papers/fm/RS presentation/images/300HZ.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/400HZ.png b/buch/papers/fm/RS presentation/images/400HZ.png deleted file mode 100644 index 236c428..0000000 Binary files a/buch/papers/fm/RS presentation/images/400HZ.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/bessel.png b/buch/papers/fm/RS presentation/images/bessel.png deleted file mode 100644 index f4c83ea..0000000 Binary files a/buch/papers/fm/RS presentation/images/bessel.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/bessel2.png b/buch/papers/fm/RS presentation/images/bessel2.png deleted file mode 100644 index ccda3f9..0000000 Binary files a/buch/papers/fm/RS presentation/images/bessel2.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/bessel_beta1.png b/buch/papers/fm/RS presentation/images/bessel_beta1.png deleted file mode 100644 index 1f5c47e..0000000 Binary files a/buch/papers/fm/RS presentation/images/bessel_beta1.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/bessel_frequenz.png b/buch/papers/fm/RS presentation/images/bessel_frequenz.png deleted file mode 100644 index 4f228b9..0000000 Binary files a/buch/papers/fm/RS presentation/images/bessel_frequenz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_0.001.png b/buch/papers/fm/RS presentation/images/beta_0.001.png deleted file mode 100644 index 7e4e276..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_0.001.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_0.1.png b/buch/papers/fm/RS presentation/images/beta_0.1.png deleted file mode 100644 index e7722b3..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_0.1.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_0.5.png b/buch/papers/fm/RS presentation/images/beta_0.5.png deleted file mode 100644 index 5261b43..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_0.5.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_1.png b/buch/papers/fm/RS presentation/images/beta_1.png deleted file mode 100644 index 6d3535c..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_1.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_2.png b/buch/papers/fm/RS presentation/images/beta_2.png deleted file mode 100644 index 6930eae..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_2.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/beta_3.png b/buch/papers/fm/RS presentation/images/beta_3.png deleted file mode 100644 index c6df82c..0000000 Binary files a/buch/papers/fm/RS presentation/images/beta_3.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_10Hz.png b/buch/papers/fm/RS presentation/images/fm_10Hz.png deleted file mode 100644 index 51bddc7..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_10Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_20hz.png b/buch/papers/fm/RS presentation/images/fm_20hz.png deleted file mode 100644 index 126ecf3..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_20hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_30Hz.png b/buch/papers/fm/RS presentation/images/fm_30Hz.png deleted file mode 100644 index 371b9bf..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_30Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_3Hz.png b/buch/papers/fm/RS presentation/images/fm_3Hz.png deleted file mode 100644 index d4098af..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_3Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_40Hz.png b/buch/papers/fm/RS presentation/images/fm_40Hz.png deleted file mode 100644 index 4cf11d4..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_40Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_5Hz.png b/buch/papers/fm/RS presentation/images/fm_5Hz.png deleted file mode 100644 index e495b5c..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_5Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_7Hz.png b/buch/papers/fm/RS presentation/images/fm_7Hz.png deleted file mode 100644 index b3dd7e3..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_7Hz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_frequenz.png b/buch/papers/fm/RS presentation/images/fm_frequenz.png deleted file mode 100644 index 26bfd86..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_frequenz.png and /dev/null differ diff --git a/buch/papers/fm/RS presentation/images/fm_in_time.png b/buch/papers/fm/RS presentation/images/fm_in_time.png deleted file mode 100644 index 068eafc..0000000 Binary files a/buch/papers/fm/RS presentation/images/fm_in_time.png and /dev/null differ -- cgit v1.2.1 From f064b343115255b4a6ae19cb09f397dcd8c6f25a Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 26 Jul 2022 16:23:27 +0200 Subject: 0f1, Mathe done --- buch/papers/0f1/references.bib | 92 ++++++++++++++++++------ buch/papers/0f1/teil0.tex | 2 +- buch/papers/0f1/teil1.tex | 82 ++++++++++++++-------- buch/papers/0f1/teil2.tex | 155 ++++++++++++++++++++++++++++++++++------- buch/papers/0f1/teil3.tex | 9 ++- 5 files changed, 255 insertions(+), 85 deletions(-) (limited to 'buch') diff --git a/buch/papers/0f1/references.bib b/buch/papers/0f1/references.bib index fb9cd8b..2d3f874 100644 --- a/buch/papers/0f1/references.bib +++ b/buch/papers/0f1/references.bib @@ -4,32 +4,78 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{0f1:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@online{0f1:library-gsl, + title = {GNU Scientific Library}, + url ={https://www.gnu.org/software/gsl/}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {19} } -@book{0f1:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} +@online{0f1:wiki-airyFunktion, + title = {Airy-Funktion}, + url ={https://de.wikipedia.org/wiki/Airy-Funktion}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {25} } -@article{0f1:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} +@online{0f1:wiki-kettenbruch, + title = {Kettenbruch}, + url ={https://de.wikipedia.org/wiki/Kettenbruch}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {25} } +@online{0f1:double, + title = {C - Data Types}, + url ={https://www.tutorialspoint.com/cprogramming/c_data_types.htm}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {25} +} + +@online{0f1:wolfram-0f1, + title = {Hypergeometric 0F1}, + url ={https://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Hypergeometric0F1}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {25} +} + +@online{0f1:wiki-fraction, + title = {Gauss continued fraction}, + url ={https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {25} +} + +@book{0f1:SeminarNumerik, + title = {Mathematisches Seminar Numerik}, + author = {Andreas Müller, Benjamin Bouhafs-Keller, Daniel Bucher, Manuel Cattaneo +Patrick Elsener, Reto Fritsche, Niccolò Galliani, Tobias Grab +Thomas Kistler, Fabio Marti, Joël Rechsteiner, Cédric Renda +Michael Schmid, Mike Schmid, Michael Schneeberger +Martin Stypinski, Manuel Tischhauser, Nicolas Tobler +Raphael Unterer, Severin Weiss}, + publisher = {Andreas Müller}, + year = {2022}, +} + +@article{0f1:kettenbrueche, + author = { Benjamin Bouhafs-Keller }, + title = { Kettenbrüche }, + journal = { Mathematisches Seminar Numerik }, + year = 2020, + volume = 13, + pages = {363--376}, + url = {https://github.com/AndreasFMueller/SeminarNumerik} +} \ No newline at end of file diff --git a/buch/papers/0f1/teil0.tex b/buch/papers/0f1/teil0.tex index bfc265f..780d432 100644 --- a/buch/papers/0f1/teil0.tex +++ b/buch/papers/0f1/teil0.tex @@ -7,7 +7,7 @@ \rhead{Ausgangslage} Die Hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt, zum Beispiel um die Airy Funktion zu berechnen. -In der GNU Scientific Library \cite{library-gsl} +In der GNU Scientific Library \cite{0f1:library-gsl} ist die Funktion $\mathstrut_0F_1$ vorhanden. Allerdings wirft die Funktion, bei negativen Übergabenwerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+, eine Exception. Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht. diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index 910e8bb..2a60737 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -6,16 +6,40 @@ \section{Mathematischer Hintergrund \label{0f1:section:mathHintergrund}} \rhead{Mathematischer Hintergrund} +Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion} +und dem Seminarbuch Numerik \cite{0f1:kettenbrueche}, werden im nachfolgenden Abschnitt nochmals die Resultate +beschrieben. + +\subsection{Hypergeometrische Funktion +\label{0f1:subsection:hypergeometrisch}} +Als Grundlage der umgesetzten Algorithmen dient die Hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Unterfunktion der allgemein definierten Funktion $\mathstrut_pF_q$. -\subsection{Hypergeometrische Funktion $\mathstrut_0F_1$ -\label{0f1:subsection:0f1}} -Wie in Kapitel \ref{buch:rekursion:section:hypergeometrische-funktion} beschrieben, -wird die Funktion $\mathstrut_0F_1$ folgendermassen definiert. \begin{definition} - \label{0f1:rekursion:hypergeometrisch:def} - Die hypergeometrische Funktion - $\mathstrut_0F_1$ ist definiert durch die Reihe - \[ + \label{0f1:math:qFp:def} + Die hypergeometrische Funktion + $\mathstrut_pF_q$ ist definiert durch die Reihe + \[ + \mathstrut_pF_q + \biggl( + \begin{matrix} + a_1,\dots,a_p\\ + b_1,\dots,b_q + \end{matrix} + ; + x + \biggr) + = + \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x) + = + \sum_{k=0}^\infty + \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}. + \] +\end{definition} + +Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$: + +\begin{equation} + \label{0f1:math:0f1:eq} \mathstrut_0F_1 \biggl( \begin{matrix} @@ -29,26 +53,29 @@ wird die Funktion $\mathstrut_0F_1$ folgendermassen definiert. \mathstrut_0F_1(;b_1;x) = \sum_{k=0}^\infty - \frac{1}{(b_1)_k}\frac{x^k}{k!}. - \] -\end{definition} + \frac{x^k}{(b_1)_k \cdot k!}. +\end{equation} + + \subsection{Airy Funktion \label{0f1:subsection:airy}} -Wie in \ref{buch:differentialgleichungen:section:hypergeometrisch} dargestellt, ist die Airy-Differentialgleichung -folgendermassen definiert. +Die Airy-Funktion $Ai(x)$ und die verwandte Funktion $Bi(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung. \cite{0f1:wiki-airyFunktion} + \begin{definition} - y'' - xy = 0 - \label{0f1:airy:eq:differentialgleichung} + \label{0f1:airy:differentialgleichung:def} + Die Differentialgleichung + $y'' - xy = 0$ + heisst die {\em Airy-Differentialgleichung}. \cite{0f1:wiki-airyFunktion} \end{definition} -Daraus ergibt sich wie in Aufgabe~\ref{503} gefundenen Lösungen der -Airy-Differentialgleichung als hypergeometrische Funktionen. +Die Airy Funktion lässt sich auf verschiedene Arten darstellen. \cite{0f1:wiki-airyFunktion} +Als hypergeometrische Funktion berechnet, ergibt sich wie in Kapitel \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $A(0)=1$ und $A'(0)=0$, sowie $B(0)=0$ und $B'(0)=0$. - -\begin{align*} -y_1(x) +\begin{align} +\label{0f1:airy:hypergeometrisch:eq} +Ai(x) = \sum_{k=0}^\infty \frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k @@ -57,7 +84,7 @@ y_1(x) \begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9} \biggr). \\ -y_2(x) +Bi(x) = \sum_{k=0}^\infty \frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k @@ -67,14 +94,9 @@ x\cdot\mathstrut_0F_1\biggl( \frac{x^3}{9} \biggr). \qedhere -\end{align*} +\end{align} + +In diesem speziellem Fall wird die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} +benutzt, um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen. -\begin{figure} - \centering - \includegraphics{papers/0f1/images/airy.pdf} - \caption{Plot der Lösungen der Airy-Differentialgleichung $y''-xy=0$ - zu den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$ in {\color{red}rot} - und $y(0)=0$ und $y'(0)=1$ in {\color{blue}blau}. - \label{0f1:airy:plot:vorgabe}} -\end{figure} \ No newline at end of file diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 07e17c0..446bc93 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -6,56 +6,158 @@ \section{Umsetzung \label{0f1:section:teil2}} \rhead{Umsetzung} -Zur Umsetzung wurden drei Ansätze gewählt und -Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. +Zur Umsetzung wurden drei verschiedene Ansätze gewählt. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe. +Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double} -\begin{equation} - \label{0f1:rekursion:hypergeometrisch:eq} +\begin{align} + \label{0f1:umsetzung:0f1:eq} \mathstrut_0F_1(;b;z) - = + &= \sum_{k=0}^\infty \frac{z^k}{(b)_k \cdot k!} -\end{equation} + &= + \frac{1}{b} + +\frac{z^1}{(1+b) \cdot 1} + + \cdots + + \frac{z^{20}}{(20+b) \cdot 2.4 \cdot 10^{18}} +\end{align} -\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:potenzreihe}]{papers/0f1/listings/potenzreihe.c} +\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}]{papers/0f1/listings/potenzreihe.c} \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} Ein endlicher Kettenbruch ist ein Bruch der Form +\begin{equation*} +a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} +\end{equation*} +in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. + +Die Kurzschreibweise für einen allgemeinen Kettenbruch ist +\begin{equation*} + a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots +\end{equation*} +und ist somit verknüpfbar mit der Potenzreihe. +\cite{0f1:wiki-kettenbruch} + +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +\begin{equation*} + \mathstrut_0F_1(;b;z) = 1 + \frac{z}{a1!} + \frac{z^2}{a(a+1)2!} + \frac{z^3}{a(a+1)(a+2)3!} + \cdots +\end{equation*} +\cite{0f1:wiki-fraction} + +Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} \begin{equation} -a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{n-1}}{a_{n-1} + \cfrac{b_n}{a_n}}}}} + \label{0f1:math:kettenbruch:0f1:eq} + \mathstrut_0F_1(;b;z) = 1 + \cfrac{\cfrac{z}{b}}{1+\cfrac{-\cfrac{z}{2(1+b)}}{1+\cfrac{z}{2(1+b)}+\cfrac{-\cfrac{z}{3(2+b)}}{1+\cfrac{z}{5(4+b)} + \cdots}}}, \end{equation} -in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen -darstellen. +der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. +\cite{0f1:wolfram-0f1} -{\color{red}TODO: Bessere Beschreibung mit Verknüpfung zur Potenzreihe} +\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}]{papers/0f1/listings/kettenbruchIterativ.c} -%Gauss hat durch - -\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}]{papers/0f1/listings/kettenbruchIterativ.c} \subsection{Rekursionsformel \label{0f1:subsection:rekursionsformel}} -Wesentlich effizienter zur Berechnung eines Kettenbruches ist die Rekursionsformel. +Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche}) + +\subsubsection{Verkürzte Herleitung} +Ein Näherungsbruch in der Form +\begin{align*} + \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}} +\end{align*} +lässt sich zu +\begin{align*} + \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} +\end{align*} +umformen. +Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: +\begin{equation*} + \begin{pmatrix} + A_k\\ + B_k + \end{pmatrix} + = \begin{pmatrix} + b_{k+1} \cdot q\\ + a_{k+1} \cdot q + p + \end{pmatrix} + =\begin{pmatrix} + 0& b_{k+1}\\ + 1& a_{k+1} + \end{pmatrix} + \begin{pmatrix} + p \\ + q + \end{pmatrix}. + %\label{0f1:math:rekursionsformel:herleitung} +\end{equation*} + +Wendet man dies nun auf den Kettenbruch in der Form +\begin{equation*} + \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} +\end{equation*} +an, ergibt sich folgende Matrixdarstellungen: \begin{align*} -\frac{A_n}{B_n} -= -a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{n-1}}{a_{n-1} + \cfrac{b_n}{a_n}}}}} + \begin{pmatrix} + A_k\\ + B_k + \end{pmatrix} + &= + \begin{pmatrix} + 1& a_0\\ + 0& 1 + \end{pmatrix} + \begin{pmatrix} + 0& b_1\\ + 1& a_1 + \end{pmatrix} + \cdots + \begin{pmatrix} + 0& b_{k-1}\\ + 1& a_{k-1} + \end{pmatrix} + \begin{pmatrix} + b_k\\ + a_k + \end{pmatrix} \end{align*} -Die Berechnung von $A_n, B_n$ kann man auch ohne die Matrizenschreibweise -aufschreiben: +Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix +\begin{equation} + \label{0f1:math:matrix:ende:eq} + \begin{pmatrix} + A_{k}\\ + B_{k} + \end{pmatrix} + = + \begin{pmatrix} + A_{k-2}& A_{k-1}\\ + B_{k-2}& B_{k-1} + \end{pmatrix} + \begin{pmatrix} + b_k\\ + a_k + \end{pmatrix}. +\end{equation} + +Und Schlussendlich kann der Näherungsbruch +\[ +\frac{Ak}{Bk} +\] +berechnet werden. + + +\subsubsection{Lösung} +Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise aufschreiben: \cite{0f1:wiki-fraction} \begin{itemize} -\item Start: +\item Startbedingungen: \begin{align*} A_{-1} &= 0 & A_0 &= a_0 \\ B_{-1} &= 1 & B_0 &= 1 \end{align*} -$\rightarrow$ 0-te Näherung: $\displaystyle\frac{A_0}{B_0} = a_0$ \item Schritt $k\to k+1$: \[ \begin{aligned} @@ -67,9 +169,10 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k \end{aligned} \] \item -Näherungsbruch $n$: \qquad$\displaystyle\frac{A_n}{B_n}$ +Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ \end{itemize} -{\color{red}TODO: Verweis Numerik} +Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Folgefehler entstehen können. -\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file +%Code +\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index 44a4600..76d6e32 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -10,15 +10,14 @@ Im Verlauf des Seminares hat sich gezeigt, das ein einfacher mathematischer Algorithmus zu implementieren gar nicht so einfach ist. So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen x in der Funktion $\mathstrut_0F_1(;b;x)$. Ebenso wird, je grösser der Wert x wird $\mathstrut_0F_1(;b;x)$, desto mehr weichen die berechneten Resultate -von den erwarteten ab. -{\color{red}TODO cite wolfram alpha rechner} +von den Erwarteten ab. \cite{0f1:wolfram-0f1} \subsection{Auswertung \label{0f1:subsection:auswertung}} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzAiry.pdf} - \caption{Konvergenz nach drei Iterationen, dargestellt anhand der Airy Funktion. + \caption{Konvergenz nach drei Iterationen, dargestellt anhand der Airy Funktion zu den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$. \label{0f1:ausblick:plot:airy:konvergenz}} \end{figure} @@ -52,6 +51,6 @@ von den erwarteten ab. \subsection{Ausblick \label{0f1:subsection:ausblick}} - - +Eine mögliche Lösung zum Problem ist \cite{0f1:SeminarNumerik} +{\color{red} TODO beschreiben Lösung} -- cgit v1.2.1 From 336251607dae5947b3690bbc91e4c57036910d7b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 26 Jul 2022 18:53:07 +0200 Subject: fix references.bib --- buch/papers/0f1/references.bib | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/0f1/references.bib b/buch/papers/0f1/references.bib index 2d3f874..ce9b8da 100644 --- a/buch/papers/0f1/references.bib +++ b/buch/papers/0f1/references.bib @@ -60,12 +60,7 @@ @book{0f1:SeminarNumerik, title = {Mathematisches Seminar Numerik}, - author = {Andreas Müller, Benjamin Bouhafs-Keller, Daniel Bucher, Manuel Cattaneo -Patrick Elsener, Reto Fritsche, Niccolò Galliani, Tobias Grab -Thomas Kistler, Fabio Marti, Joël Rechsteiner, Cédric Renda -Michael Schmid, Mike Schmid, Michael Schneeberger -Martin Stypinski, Manuel Tischhauser, Nicolas Tobler -Raphael Unterer, Severin Weiss}, + author = {Andreas Müller et al}, publisher = {Andreas Müller}, year = {2022}, } @@ -78,4 +73,4 @@ Raphael Unterer, Severin Weiss}, volume = 13, pages = {363--376}, url = {https://github.com/AndreasFMueller/SeminarNumerik} -} \ No newline at end of file +} -- cgit v1.2.1 From c53e9fe25866376d1b3086579c01725444a04702 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 26 Jul 2022 21:27:23 +0200 Subject: 0f1, Code ueberarbeitet --- buch/papers/0f1/listings/kettenbruchIterativ.c | 16 +++++-- buch/papers/0f1/listings/kettenbruchRekursion.c | 22 ++++++---- buch/papers/0f1/listings/potenzreihe.c | 56 +++++++++++++++++++++++++ buch/papers/0f1/teil2.tex | 6 +-- 4 files changed, 86 insertions(+), 14 deletions(-) (limited to 'buch') diff --git a/buch/papers/0f1/listings/kettenbruchIterativ.c b/buch/papers/0f1/listings/kettenbruchIterativ.c index befea8e..d897b8f 100644 --- a/buch/papers/0f1/listings/kettenbruchIterativ.c +++ b/buch/papers/0f1/listings/kettenbruchIterativ.c @@ -1,5 +1,13 @@ -static double fractionRekursion0f1(const double c, const double x, unsigned int n) +/** + * @brief Calculates the Hypergeometric Function 0F1(;b;z) + * @param b0 in 0F1(;b0;z) + * @param z in 0F1(;b0;z) + * @param n number of itertions (precision) + * @return Result + */ +static double fractionRekursion0f1(const double c, const double z, unsigned int n) { + //declaration double a = 0.0; double b = 0.0; double Ak = 0.0; @@ -21,15 +29,15 @@ static double fractionRekursion0f1(const double c, const double x, unsigned int else if (k == 1) { a = 1.0; //a1 - b = x/c; //b1 + b = z/c; //b1 //recursion fomula for A1, B1 Ak = a * Ak_1 + b * 1.0; Bk = a * Bk_1; } else { - a = 1 + (x / (k * ((k - 1) + c)));//ak - b = -(x / (k * ((k - 1) + c))); //bk + a = 1 + (z / (k * ((k - 1) + c)));//ak + b = -(z / (k * ((k - 1) + c))); //bk //recursion fomula for Ak, Bk Ak = a * Ak_1 + b * Ak_2; Bk = a * Bk_1 + b * Bk_2; diff --git a/buch/papers/0f1/listings/kettenbruchRekursion.c b/buch/papers/0f1/listings/kettenbruchRekursion.c index 958d4e1..143683f 100644 --- a/buch/papers/0f1/listings/kettenbruchRekursion.c +++ b/buch/papers/0f1/listings/kettenbruchRekursion.c @@ -1,18 +1,26 @@ -static double fractionIter0f1(const double b0, const double z, unsigned int n) +/** + * @brief Calculates the Hypergeometric Function 0F1(;c;z) + * @param c in 0F1(;c;z) + * @param z in 0F1(;c;z) + * @param k number of itertions (precision) + * @return Result + */ +static double fractionIter0f1(const double c, const double z, unsigned int k) { + //declaration double a = 0.0; double b = 0.0; - double abn = 0.0; + double abk = 0.0; double temp = 0.0; - for (; n > 0; --n) + for (; k > 0; --k) { - abn = z / (n * ((n - 1) + b0)); //abn = ak, bk + abk = z / (k * ((k - 1) + c)); //abk = ak, bk - a = n > 1 ? (1 + abn) : 1; //a0, a1 - b = n > 1 ? -abn : abn; //b1 + a = k > 1 ? (1 + abk) : 1; //a0, a1 + b = k > 1 ? -abk : abk; //b1 - temp = b / (a + temp); + temp = b / (a + temp); ////bk / (ak + last result) } return a + temp; //a0 + temp diff --git a/buch/papers/0f1/listings/potenzreihe.c b/buch/papers/0f1/listings/potenzreihe.c index bfaa0e3..3eb9b86 100644 --- a/buch/papers/0f1/listings/potenzreihe.c +++ b/buch/papers/0f1/listings/potenzreihe.c @@ -1,5 +1,61 @@ #include +/** + * @brief Calculates pochhammer + * @param (a+n-1)! + * @return Result + */ +static double pochhammer(const double x, double n) +{ + double temp = x; + + if (n > 0) + { + while (n > 1) + { + temp *= (x + n - 1); + --n; + } + + return temp; + } + else + { + return 1; + } +} + +/** + * @brief Calculates the Factorial + * @param n! + * @return Result + */ +static double fac(int n) +{ + double temp = n; + + if (n > 0) + { + while (n > 1) + { + --n; + temp *= n; + } + return temp; + } + else + { + return 1; + } +} + +/** + * @brief Calculates the Hypergeometric Function 0F1(;b;z) + * @param b0 in 0F1(;b0;z) + * @param z in 0F1(;b0;z) + * @param n number of itertions (precision) + * @return Result + */ static double powerseries(const double b, const double z, unsigned int n) { double temp = 0.0; diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 446bc93..ca48e6e 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -26,7 +26,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings is + \frac{z^{20}}{(20+b) \cdot 2.4 \cdot 10^{18}} \end{align} -\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}]{papers/0f1/listings/potenzreihe.c} +\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c} \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} @@ -57,7 +57,7 @@ Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. \cite{0f1:wolfram-0f1} -\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}]{papers/0f1/listings/kettenbruchIterativ.c} +\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} \subsection{Rekursionsformel \label{0f1:subsection:rekursionsformel}} @@ -175,4 +175,4 @@ Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Folgefehler entstehen können. %Code -\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file +\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file -- cgit v1.2.1 From 7a1207f6d66f245cda06e06ecbae1ec0d6a99b02 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 00:14:54 +0200 Subject: eqref->ref, Improved some sentences --- buch/papers/lambertw/teil0.tex | 48 ++++++++++++++++++++++-------------------- buch/papers/lambertw/teil1.tex | 30 +++++++++++++------------- 2 files changed, 40 insertions(+), 38 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 36ef7c3..6ab0bae 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,10 +7,10 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie welchen Pfad begeht ein Hund während er einer Katze nachrennt. +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. -Der Pfad, der der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. +Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. @@ -30,64 +30,66 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline - \text{}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ + \text{Strategie}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ \hline - \text{Strategie 1} + \text{Jagd} & \text{konstant} & \text{-} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 2} + \text{Beschattung} & \text{-} & \text{konstant} & \text{direkt auf Ziel hinzu}\\ - \text{Strategie 3} + \text{Vorhalt} & \text{konstant} & \text{-} & \text{etwas voraus Zielen}\\ \hline \end{tabular} \caption{mögliche Verfolgungsstrategien} \label{lambertw:table:Strategien} \end{table} - +% \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} \caption{Vektordarstellung Strategie 1} \label{lambertw:grafic:pursuerDGL2} \end{figure} - -In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. +% +In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. Im Folgenden wird nur noch auf die Strategie 1 eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. -In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, -wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. + +In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, +wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} - |\dot{\vec{V}}| + |\dot{v}| = \operatorname{const} = A \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}| + \frac{z-v}{|z-v|}\cdot|\dot{v}| = - \dot{\vec{V}} + \dot{v} \end{equation} beschrieben werden. -Die Differenz der Ortsvektoren $\vec{V}$ und $\vec{Z}$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. +Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich +Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}|\cdot\dot{\vec{V}} + \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} &= - |\dot{\vec{V}}|^2 + |\dot{v}|^2 \\ \label{lambertw:pursuerDGL} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} + \frac{z-v}{|z-v|}\cdot \frac{\dot{v}}{|\dot{v}|} &= 1 \text{.} \end{align} Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. - +% \subsection{Ziel \label{lambertw:subsection:Ziel}} Als nächstes gehen wir auf das Ziel ein. @@ -96,14 +98,14 @@ Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschri Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung \begin{equation} - \vec{Z}(t) + z(t) = \left( \begin{array}{c} 0 \\ t \end{array} \right) \end{equation} - +% beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve immer komplexer. +Für die Fluchtkurve kann eine beliebige Form gewählt werden, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve komplexer. diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index fa7deb1..2e75a19 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -15,7 +15,7 @@ Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel bet %\subsection{Ziel erreichen (überarbeiten) %\label{lambertw:subsection:ZielErreichen}} Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für Startbedingung im ersten Quadranten +Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Startbedingung im ersten Quadranten verwendet, welche \begin{align*} x\left(t\right) &= @@ -25,15 +25,16 @@ Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für S \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ \chi &= - \frac{r_0+y_0}{r_0-y_0}\\ + \frac{r_0+y_0}{r_0-y_0}, \quad \eta - &= - \left(\frac{x}{x_0}\right)^2\\ + = + \left(\frac{x}{x_0}\right)^2,\quad r_0 - &= - \sqrt{x_0^2+y_0^2} \text{.}\\ + = + \sqrt{x_0^2+y_0^2} \end{align*} % +sind. Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es @@ -60,7 +61,7 @@ und der Verfolger durch \text{.} \end{equation} % - Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen + Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen \begin{align*} 0 @@ -73,12 +74,11 @@ und der Verfolger durch &= y(t) = - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right) - \\ + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} \end{align*} % -, welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. -Zuerst wird die Bedingung der x-Koordinate betrachtet. +welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. +Zuerst wird die Bedingung der $x$-Koordinate betrachtet. Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt \begin{equation} 0 @@ -107,10 +107,10 @@ Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingu Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. -Aus der Symmetrie des Problems an der y-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. +Aus der Symmetrie des Problems an der $y$-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. -Wenn die Wertemenge der Anfangsbedingung um die positive y-Achse erweitert wird, kann das Ziel wiederum erreicht werden. -Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. +Wenn die Wertemenge der Anfangsbedingung um die positive $y$-Achse erweitert wird, kann das Ziel wiederum erreicht werden. +Sobald der Verfolger auf der positiven $y$-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. Die Verfolgungskurve kann in diesem Fall mit @@ -141,7 +141,7 @@ Daraus folgt \end{equation} % führt. -Nun ist klar, dass lediglich Anfangspunkte auf der positiven y-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. -- cgit v1.2.1 From 220b382cf4b7019b199c3023ddab73ba2658e27a Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 27 Jul 2022 13:08:39 +0200 Subject: 0f1, bilder --- buch/papers/0f1/images/airy.pdf | Bin 25568 -> 0 bytes buch/papers/0f1/images/konvergenzAiry.pdf | Bin 15137 -> 15785 bytes buch/papers/0f1/images/konvergenzNegativ.pdf | Bin 16312 -> 18155 bytes buch/papers/0f1/images/konvergenzPositiv.pdf | Bin 18924 -> 18581 bytes buch/papers/0f1/images/stabilitaet.pdf | Bin 20944 -> 19612 bytes buch/papers/0f1/listings/kettenbruchRekursion.c | 8 +- buch/papers/0f1/listings/potenzreihe.c | 8 +- buch/papers/0f1/main.tex | 48 ++-- buch/papers/0f1/teil0.tex | 30 +- buch/papers/0f1/teil1.tex | 204 +++++++------- buch/papers/0f1/teil2.tex | 354 ++++++++++++------------ buch/papers/0f1/teil3.tex | 112 ++++---- 12 files changed, 382 insertions(+), 382 deletions(-) delete mode 100644 buch/papers/0f1/images/airy.pdf (limited to 'buch') diff --git a/buch/papers/0f1/images/airy.pdf b/buch/papers/0f1/images/airy.pdf deleted file mode 100644 index 672d789..0000000 Binary files a/buch/papers/0f1/images/airy.pdf and /dev/null differ diff --git a/buch/papers/0f1/images/konvergenzAiry.pdf b/buch/papers/0f1/images/konvergenzAiry.pdf index 2e635ea..206cd3a 100644 Binary files a/buch/papers/0f1/images/konvergenzAiry.pdf and b/buch/papers/0f1/images/konvergenzAiry.pdf differ diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf index 3b58be4..03b2ba1 100644 Binary files a/buch/papers/0f1/images/konvergenzNegativ.pdf and b/buch/papers/0f1/images/konvergenzNegativ.pdf differ diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf index 24e3fd5..2e45129 100644 Binary files a/buch/papers/0f1/images/konvergenzPositiv.pdf and b/buch/papers/0f1/images/konvergenzPositiv.pdf differ diff --git a/buch/papers/0f1/images/stabilitaet.pdf b/buch/papers/0f1/images/stabilitaet.pdf index be4af42..13dea39 100644 Binary files a/buch/papers/0f1/images/stabilitaet.pdf and b/buch/papers/0f1/images/stabilitaet.pdf differ diff --git a/buch/papers/0f1/listings/kettenbruchRekursion.c b/buch/papers/0f1/listings/kettenbruchRekursion.c index 143683f..3caaf43 100644 --- a/buch/papers/0f1/listings/kettenbruchRekursion.c +++ b/buch/papers/0f1/listings/kettenbruchRekursion.c @@ -17,11 +17,11 @@ static double fractionIter0f1(const double c, const double z, unsigned int k) { abk = z / (k * ((k - 1) + c)); //abk = ak, bk - a = k > 1 ? (1 + abk) : 1; //a0, a1 - b = k > 1 ? -abk : abk; //b1 + a = k > 1 ? (1 + abk) : 1; //a0, a1 + b = k > 1 ? -abk : abk; //b1 - temp = b / (a + temp); ////bk / (ak + last result) + temp = b / (a + temp); //bk / (ak + last result) } - return a + temp; //a0 + temp + return a + temp; //a0 + temp } \ No newline at end of file diff --git a/buch/papers/0f1/listings/potenzreihe.c b/buch/papers/0f1/listings/potenzreihe.c index 3eb9b86..23fdfea 100644 --- a/buch/papers/0f1/listings/potenzreihe.c +++ b/buch/papers/0f1/listings/potenzreihe.c @@ -51,18 +51,18 @@ static double fac(int n) /** * @brief Calculates the Hypergeometric Function 0F1(;b;z) - * @param b0 in 0F1(;b0;z) - * @param z in 0F1(;b0;z) + * @param c in 0F1(;c;z) + * @param z in 0F1(;c;z) * @param n number of itertions (precision) * @return Result */ -static double powerseries(const double b, const double z, unsigned int n) +static double powerseries(const double c, const double z, unsigned int n) { double temp = 0.0; for (unsigned int k = 0; k < n; ++k) { - temp += pow(z, k) / (factorial(k) * pochhammer(b, k)); + temp += pow(z, k) / (factorial(k) * pochhammer(c, k)); } return temp; diff --git a/buch/papers/0f1/main.tex b/buch/papers/0f1/main.tex index b8cdc21..0b1020f 100644 --- a/buch/papers/0f1/main.tex +++ b/buch/papers/0f1/main.tex @@ -1,24 +1,24 @@ -% -% main.tex -- Paper zum Thema <0f1> -% -% (c) 2020 Hochschule Rapperswil -% -% - - - -\chapter{Algorithmus zur Berechnung von $\mathstrut_0F_1$\label{chapter:0f1}} -\lhead{Algorithmus zur Berechnung von $\mathstrut_0F_1$} -\begin{refsection} -\chapterauthor{Fabian Dünki} - - - - -\input{papers/0f1/teil0.tex} -\input{papers/0f1/teil1.tex} -\input{papers/0f1/teil2.tex} -\input{papers/0f1/teil3.tex} - -\printbibliography[heading=subbibliography] -\end{refsection} +% +% main.tex -- Paper zum Thema <0f1> +% +% (c) 2020 Hochschule Rapperswil +% +% + + + +\chapter{Algorithmus zur Berechnung von $\mathstrut_0F_1$\label{chapter:0f1}} +\lhead{Algorithmus zur Berechnung von $\mathstrut_0F_1$} +\begin{refsection} +\chapterauthor{Fabian Dünki} + + + + +\input{papers/0f1/teil0.tex} +\input{papers/0f1/teil1.tex} +\input{papers/0f1/teil2.tex} +\input{papers/0f1/teil3.tex} + +\printbibliography[heading=subbibliography] +\end{refsection} diff --git a/buch/papers/0f1/teil0.tex b/buch/papers/0f1/teil0.tex index 780d432..adccac7 100644 --- a/buch/papers/0f1/teil0.tex +++ b/buch/papers/0f1/teil0.tex @@ -1,15 +1,15 @@ -% -% einleitung.tex -- Einleitung -% -% (c) 2022 Fabian Dünki, Hochschule Rapperswil -% -\section{Ausgangslage\label{0f1:section:ausgangslage}} -\rhead{Ausgangslage} -Die Hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt, -zum Beispiel um die Airy Funktion zu berechnen. -In der GNU Scientific Library \cite{0f1:library-gsl} -ist die Funktion $\mathstrut_0F_1$ vorhanden. -Allerdings wirft die Funktion, bei negativen Übergabenwerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+, eine Exception. -Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht. -So kann die Funktion unter Windows fehlerfrei aufgerufen werden, beim Mac OS und Linux sind negative Übergabeparameter im Moment nicht möglich. -Ziel dieser Arbeit war es zu evaluieren, ob es mit einfachen mathematischen Operationen möglich ist, die Hypergeometrische Funktion $\mathstrut_0F_1$ zu implementieren. +% +% einleitung.tex -- Einleitung +% +% (c) 2022 Fabian Dünki, Hochschule Rapperswil +% +\section{Ausgangslage\label{0f1:section:ausgangslage}} +\rhead{Ausgangslage} +Die Hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt, +zum Beispiel um die Airy Funktion zu berechnen. +In der GNU Scientific Library \cite{0f1:library-gsl} +ist die Funktion $\mathstrut_0F_1$ vorhanden. +Allerdings wirft die Funktion, bei negativen Übergabenwerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+, eine Exception. +Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht. +So kann die Funktion unter Windows fehlerfrei aufgerufen werden, beim Mac OS und Linux sind negative Übergabeparameter im Moment nicht möglich. +Ziel dieser Arbeit war es zu evaluieren, ob es mit einfachen mathematischen Operationen möglich ist, die Hypergeometrische Funktion $\mathstrut_0F_1$ zu implementieren. diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index 2a60737..f8d70a8 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -1,102 +1,102 @@ -% -% teil1.tex -- Mathematischer Hintergrund -% -% (c) 2022 Fabian Dünki, Hochschule Rapperswil -% -\section{Mathematischer Hintergrund -\label{0f1:section:mathHintergrund}} -\rhead{Mathematischer Hintergrund} -Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion} -und dem Seminarbuch Numerik \cite{0f1:kettenbrueche}, werden im nachfolgenden Abschnitt nochmals die Resultate -beschrieben. - -\subsection{Hypergeometrische Funktion -\label{0f1:subsection:hypergeometrisch}} -Als Grundlage der umgesetzten Algorithmen dient die Hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Unterfunktion der allgemein definierten Funktion $\mathstrut_pF_q$. - -\begin{definition} - \label{0f1:math:qFp:def} - Die hypergeometrische Funktion - $\mathstrut_pF_q$ ist definiert durch die Reihe - \[ - \mathstrut_pF_q - \biggl( - \begin{matrix} - a_1,\dots,a_p\\ - b_1,\dots,b_q - \end{matrix} - ; - x - \biggr) - = - \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x) - = - \sum_{k=0}^\infty - \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}. - \] -\end{definition} - -Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$: - -\begin{equation} - \label{0f1:math:0f1:eq} - \mathstrut_0F_1 - \biggl( - \begin{matrix} - \\ - b_1 - \end{matrix} - ; - x - \biggr) - = - \mathstrut_0F_1(;b_1;x) - = - \sum_{k=0}^\infty - \frac{x^k}{(b_1)_k \cdot k!}. -\end{equation} - - - - -\subsection{Airy Funktion -\label{0f1:subsection:airy}} -Die Airy-Funktion $Ai(x)$ und die verwandte Funktion $Bi(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung. \cite{0f1:wiki-airyFunktion} - -\begin{definition} - \label{0f1:airy:differentialgleichung:def} - Die Differentialgleichung - $y'' - xy = 0$ - heisst die {\em Airy-Differentialgleichung}. \cite{0f1:wiki-airyFunktion} -\end{definition} - -Die Airy Funktion lässt sich auf verschiedene Arten darstellen. \cite{0f1:wiki-airyFunktion} -Als hypergeometrische Funktion berechnet, ergibt sich wie in Kapitel \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $A(0)=1$ und $A'(0)=0$, sowie $B(0)=0$ und $B'(0)=0$. - -\begin{align} -\label{0f1:airy:hypergeometrisch:eq} -Ai(x) -= -\sum_{k=0}^\infty -\frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k -= -\mathstrut_0F_1\biggl( -\begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9} -\biggr). -\\ -Bi(x) -= -\sum_{k=0}^\infty -\frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k -= -x\cdot\mathstrut_0F_1\biggl( -\begin{matrix}\text{---}\\\frac43\end{matrix}; -\frac{x^3}{9} -\biggr). -\qedhere -\end{align} - -In diesem speziellem Fall wird die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} -benutzt, um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen. - - +% +% teil1.tex -- Mathematischer Hintergrund +% +% (c) 2022 Fabian Dünki, Hochschule Rapperswil +% +\section{Mathematischer Hintergrund +\label{0f1:section:mathHintergrund}} +\rhead{Mathematischer Hintergrund} +Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion} +und dem Seminarbuch Numerik \cite{0f1:kettenbrueche}, werden im nachfolgenden Abschnitt nochmals die Resultate +beschrieben. + +\subsection{Hypergeometrische Funktion +\label{0f1:subsection:hypergeometrisch}} +Als Grundlage der umgesetzten Algorithmen dient die Hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Unterfunktion der allgemein definierten Funktion $\mathstrut_pF_q$. + +\begin{definition} + \label{0f1:math:qFp:def} + Die hypergeometrische Funktion + $\mathstrut_pF_q$ ist definiert durch die Reihe + \[ + \mathstrut_pF_q + \biggl( + \begin{matrix} + a_1,\dots,a_p\\ + b_1,\dots,b_q + \end{matrix} + ; + x + \biggr) + = + \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x) + = + \sum_{k=0}^\infty + \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}. + \] +\end{definition} + +Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$: + +\begin{equation} + \label{0f1:math:0f1:eq} + \mathstrut_0F_1 + \biggl( + \begin{matrix} + \\ + b_1 + \end{matrix} + ; + x + \biggr) + = + \mathstrut_0F_1(;b_1;x) + = + \sum_{k=0}^\infty + \frac{x^k}{(b_1)_k \cdot k!}. +\end{equation} + + + + +\subsection{Airy Funktion +\label{0f1:subsection:airy}} +Die Airy-Funktion $Ai(x)$ und die verwandte Funktion $Bi(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung. \cite{0f1:wiki-airyFunktion} + +\begin{definition} + \label{0f1:airy:differentialgleichung:def} + Die Differentialgleichung + $y'' - xy = 0$ + heisst die {\em Airy-Differentialgleichung}. \cite{0f1:wiki-airyFunktion} +\end{definition} + +Die Airy Funktion lässt sich auf verschiedene Arten darstellen. \cite{0f1:wiki-airyFunktion} +Als hypergeometrische Funktion berechnet, ergibt sich wie in Kapitel \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $A(0)=1$ und $A'(0)=0$, sowie $B(0)=0$ und $B'(0)=0$. + +\begin{align} +\label{0f1:airy:hypergeometrisch:eq} +Ai(x) += +\sum_{k=0}^\infty +\frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k += +\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9} +\biggr). +\\ +Bi(x) += +\sum_{k=0}^\infty +\frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k += +x\cdot\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac43\end{matrix}; +\frac{x^3}{9} +\biggr). +\qedhere +\end{align} + +In diesem speziellem Fall wird die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} +benutzt, um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen. + + diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index ca48e6e..3c2b5cd 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -1,178 +1,178 @@ -% -% teil2.tex -- Umsetzung in C Programmen -% -% (c) 2022 Fabian Dünki, Hochschule Rapperswil -% -\section{Umsetzung -\label{0f1:section:teil2}} -\rhead{Umsetzung} -Zur Umsetzung wurden drei verschiedene Ansätze gewählt. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. -Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. - -\subsection{Potenzreihe -\label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double} - -\begin{align} - \label{0f1:umsetzung:0f1:eq} - \mathstrut_0F_1(;b;z) - &= - \sum_{k=0}^\infty - \frac{z^k}{(b)_k \cdot k!} - &= - \frac{1}{b} - +\frac{z^1}{(1+b) \cdot 1} - + \cdots - + \frac{z^{20}}{(20+b) \cdot 2.4 \cdot 10^{18}} -\end{align} - -\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c} - -\subsection{Kettenbruch -\label{0f1:subsection:kettenbruch}} -Ein endlicher Kettenbruch ist ein Bruch der Form -\begin{equation*} -a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} -\end{equation*} -in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. - -Die Kurzschreibweise für einen allgemeinen Kettenbruch ist -\begin{equation*} - a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots -\end{equation*} -und ist somit verknüpfbar mit der Potenzreihe. -\cite{0f1:wiki-kettenbruch} - -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: -\begin{equation*} - \mathstrut_0F_1(;b;z) = 1 + \frac{z}{a1!} + \frac{z^2}{a(a+1)2!} + \frac{z^3}{a(a+1)(a+2)3!} + \cdots -\end{equation*} -\cite{0f1:wiki-fraction} - -Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} -\begin{equation} - \label{0f1:math:kettenbruch:0f1:eq} - \mathstrut_0F_1(;b;z) = 1 + \cfrac{\cfrac{z}{b}}{1+\cfrac{-\cfrac{z}{2(1+b)}}{1+\cfrac{z}{2(1+b)}+\cfrac{-\cfrac{z}{3(2+b)}}{1+\cfrac{z}{5(4+b)} + \cdots}}}, -\end{equation} -der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. -\cite{0f1:wolfram-0f1} - -\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} - -\subsection{Rekursionsformel -\label{0f1:subsection:rekursionsformel}} -Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche}) - -\subsubsection{Verkürzte Herleitung} -Ein Näherungsbruch in der Form -\begin{align*} - \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}} -\end{align*} -lässt sich zu -\begin{align*} - \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} -\end{align*} -umformen. -Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: -\begin{equation*} - \begin{pmatrix} - A_k\\ - B_k - \end{pmatrix} - = \begin{pmatrix} - b_{k+1} \cdot q\\ - a_{k+1} \cdot q + p - \end{pmatrix} - =\begin{pmatrix} - 0& b_{k+1}\\ - 1& a_{k+1} - \end{pmatrix} - \begin{pmatrix} - p \\ - q - \end{pmatrix}. - %\label{0f1:math:rekursionsformel:herleitung} -\end{equation*} - -Wendet man dies nun auf den Kettenbruch in der Form -\begin{equation*} - \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} -\end{equation*} -an, ergibt sich folgende Matrixdarstellungen: - -\begin{align*} - \begin{pmatrix} - A_k\\ - B_k - \end{pmatrix} - &= - \begin{pmatrix} - 1& a_0\\ - 0& 1 - \end{pmatrix} - \begin{pmatrix} - 0& b_1\\ - 1& a_1 - \end{pmatrix} - \cdots - \begin{pmatrix} - 0& b_{k-1}\\ - 1& a_{k-1} - \end{pmatrix} - \begin{pmatrix} - b_k\\ - a_k - \end{pmatrix} -\end{align*} - -Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix -\begin{equation} - \label{0f1:math:matrix:ende:eq} - \begin{pmatrix} - A_{k}\\ - B_{k} - \end{pmatrix} - = - \begin{pmatrix} - A_{k-2}& A_{k-1}\\ - B_{k-2}& B_{k-1} - \end{pmatrix} - \begin{pmatrix} - b_k\\ - a_k - \end{pmatrix}. -\end{equation} - -Und Schlussendlich kann der Näherungsbruch -\[ -\frac{Ak}{Bk} -\] -berechnet werden. - - -\subsubsection{Lösung} -Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise aufschreiben: \cite{0f1:wiki-fraction} -\begin{itemize} -\item Startbedingungen: -\begin{align*} -A_{-1} &= 0 & A_0 &= a_0 \\ -B_{-1} &= 1 & B_0 &= 1 -\end{align*} -\item Schritt $k\to k+1$: -\[ -\begin{aligned} -k &\rightarrow k + 1: -& -A_{k+1} &= A_{k-1} \cdot b_k + A_k \cdot a_k \\ -&& -B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k -\end{aligned} -\] -\item -Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ -\end{itemize} - -Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Folgefehler entstehen können. - -%Code +% +% teil2.tex -- Umsetzung in C Programmen +% +% (c) 2022 Fabian Dünki, Hochschule Rapperswil +% +\section{Umsetzung +\label{0f1:section:teil2}} +\rhead{Umsetzung} +Zur Umsetzung wurden drei verschiedene Ansätze gewählt. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. + +\subsection{Potenzreihe +\label{0f1:subsection:potenzreihe}} +Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double} + +\begin{align} + \label{0f1:umsetzung:0f1:eq} + \mathstrut_0F_1(;c;z) + &= + \sum_{k=0}^\infty + \frac{z^k}{(c)_k \cdot k!} + &= + \frac{1}{c} + +\frac{z^1}{(c+1) \cdot 1} + + \cdots + + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}} +\end{align} + +\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c} + +\subsection{Kettenbruch +\label{0f1:subsection:kettenbruch}} +Ein endlicher Kettenbruch ist ein Bruch der Form +\begin{equation*} +a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} +\end{equation*} +in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. + +Die Kurzschreibweise für einen allgemeinen Kettenbruch ist +\begin{equation*} + a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots +\end{equation*} +und ist somit verknüpfbar mit der Potenzreihe. +\cite{0f1:wiki-kettenbruch} + +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +\begin{equation*} + \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots +\end{equation*} +\cite{0f1:wiki-fraction} + +Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} +\begin{equation} + \label{0f1:math:kettenbruch:0f1:eq} + \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, +\end{equation} +der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. +\cite{0f1:wolfram-0f1} + +\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} + +\subsection{Rekursionsformel +\label{0f1:subsection:rekursionsformel}} +Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche}) + +\subsubsection{Verkürzte Herleitung} +Ein Näherungsbruch in der Form +\begin{align*} + \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}} +\end{align*} +lässt sich zu +\begin{align*} + \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} +\end{align*} +umformen. +Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: +\begin{equation*} + \begin{pmatrix} + A_k\\ + B_k + \end{pmatrix} + = \begin{pmatrix} + b_{k+1} \cdot q\\ + a_{k+1} \cdot q + p + \end{pmatrix} + =\begin{pmatrix} + 0& b_{k+1}\\ + 1& a_{k+1} + \end{pmatrix} + \begin{pmatrix} + p \\ + q + \end{pmatrix}. + %\label{0f1:math:rekursionsformel:herleitung} +\end{equation*} + +Wendet man dies nun auf den Kettenbruch in der Form +\begin{equation*} + \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} +\end{equation*} +an, ergibt sich folgende Matrixdarstellungen: + +\begin{align*} + \begin{pmatrix} + A_k\\ + B_k + \end{pmatrix} + &= + \begin{pmatrix} + 1& a_0\\ + 0& 1 + \end{pmatrix} + \begin{pmatrix} + 0& b_1\\ + 1& a_1 + \end{pmatrix} + \cdots + \begin{pmatrix} + 0& b_{k-1}\\ + 1& a_{k-1} + \end{pmatrix} + \begin{pmatrix} + b_k\\ + a_k + \end{pmatrix} +\end{align*} + +Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix +\begin{equation} + \label{0f1:math:matrix:ende:eq} + \begin{pmatrix} + A_{k}\\ + B_{k} + \end{pmatrix} + = + \begin{pmatrix} + A_{k-2}& A_{k-1}\\ + B_{k-2}& B_{k-1} + \end{pmatrix} + \begin{pmatrix} + b_k\\ + a_k + \end{pmatrix}. +\end{equation} + +Und Schlussendlich kann der Näherungsbruch +\[ +\frac{Ak}{Bk} +\] +berechnet werden. + + +\subsubsection{Lösung} +Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise aufschreiben: \cite{0f1:wiki-fraction} +\begin{itemize} +\item Startbedingungen: +\begin{align*} +A_{-1} &= 0 & A_0 &= a_0 \\ +B_{-1} &= 1 & B_0 &= 1 +\end{align*} +\item Schritt $k\to k+1$: +\[ +\begin{aligned} +k &\rightarrow k + 1: +& +A_{k+1} &= A_{k-1} \cdot b_k + A_k \cdot a_k \\ +&& +B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k +\end{aligned} +\] +\item +Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ +\end{itemize} + +Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. + +%Code \lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index 76d6e32..355e1b7 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -1,56 +1,56 @@ -% -% teil3.tex -- Resultate und Ausblick -% -% (c) 2022 Fabian Dünki, Hochschule Rapperswil -% -\section{Resultate -\label{0f1:section:teil3}} -\rhead{Resultate} -Im Verlauf des Seminares hat sich gezeigt, -das ein einfacher mathematischer Algorithmus zu implementieren gar nicht so einfach ist. -So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen x in der Funktion $\mathstrut_0F_1(;b;x)$. -Ebenso wird, je grösser der Wert x wird $\mathstrut_0F_1(;b;x)$, desto mehr weichen die berechneten Resultate -von den Erwarteten ab. \cite{0f1:wolfram-0f1} - -\subsection{Auswertung -\label{0f1:subsection:auswertung}} -\begin{figure} - \centering - \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzAiry.pdf} - \caption{Konvergenz nach drei Iterationen, dargestellt anhand der Airy Funktion zu den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$. - \label{0f1:ausblick:plot:airy:konvergenz}} -\end{figure} - -\begin{figure} - \centering - \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf} - \caption{Konvergenz: Logarithmisch dargestellte Differenz vom erwarteten Endresultat. - \label{0f1:ausblick:plot:konvergenz:positiv}} -\end{figure} - -\begin{figure} - \centering - \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf} - \caption{Konvergenz: Logarithmisch dargestellte Differenz vom erwarteten Endresultat. - \label{0f1:ausblick:plot:konvergenz:negativ}} -\end{figure} - -\begin{figure} - \centering - \includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf} - \caption{Stabilität der 3 Algorithmen verglichen mit der GNU Scientific Library. - \label{0f1:ausblick:plot:airy:stabilitaet}} -\end{figure} - -\begin{itemize} - \item Negative Zahlen sind sowohl für die Potenzreihe als auch für den Kettenbruch ein Problem. - \item Die Potenzreihe hat das Problem, je tiefer die Rekursionstiefe, desto mehr machen die Brüche ein Problem. Also der Nenner mit der Fakultät und dem Pochhammer Symbol. - \item Die Rekursionformel liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. -\end{itemize} - - -\subsection{Ausblick -\label{0f1:subsection:ausblick}} -Eine mögliche Lösung zum Problem ist \cite{0f1:SeminarNumerik} -{\color{red} TODO beschreiben Lösung} - +% +% teil3.tex -- Resultate und Ausblick +% +% (c) 2022 Fabian Dünki, Hochschule Rapperswil +% +\section{Resultate +\label{0f1:section:teil3}} +\rhead{Resultate} +Im Verlauf des Seminares hat sich gezeigt, +das ein einfacher mathematischer Algorithmus zu implementieren gar nicht so einfach ist. +So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen z in der Funktion $\mathstrut_0F_1(;c;z)$. +Ebenso wird, je grösser der Wert z wird $\mathstrut_0F_1(;c;z)$, desto mehr weichen die berechneten Resultate +von den Erwarteten ab. \cite{0f1:wolfram-0f1} + +\subsection{Auswertung +\label{0f1:subsection:auswertung}} +\begin{figure} + \centering + \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzAiry.pdf} + \caption{Konvergenz nach drei Iterationen, dargestellt anhand der Airy Funktion zu den Anfangsbedingungen $Ai(0)=1$ und $Ai'(0)=0$. + \label{0f1:ausblick:plot:airy:konvergenz}} +\end{figure} + +\begin{figure} + \centering + \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf} + \caption{Konvergenz: Logarithmisch dargestellte Differenz vom erwarteten Endresultat. + \label{0f1:ausblick:plot:konvergenz:positiv}} +\end{figure} + +\begin{figure} + \centering + \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf} + \caption{Konvergenz: Logarithmisch dargestellte Differenz vom erwarteten Endresultat. + \label{0f1:ausblick:plot:konvergenz:negativ}} +\end{figure} + +\begin{figure} + \centering + \includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf} + \caption{Stabilität der 3 Algorithmen verglichen mit der GNU Scientific Library. + \label{0f1:ausblick:plot:airy:stabilitaet}} +\end{figure} + +\begin{itemize} + \item Negative Zahlen sind sowohl für die Potenzreihe als auch für den Kettenbruch ein Problem. + \item Die Potenzreihe hat das Problem, je tiefer die Rekursionstiefe, desto mehr machen die Brüche ein Problem. Also der Nenner mit der Fakultät und dem Pochhammer Symbol. + \item Die Rekursionformel liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. +\end{itemize} + + +\subsection{Ausblick +\label{0f1:subsection:ausblick}} +Eine mögliche Lösung zum Problem ist \cite{0f1:SeminarNumerik} +{\color{red} TODO beschreiben Lösung} + -- cgit v1.2.1 From 20f444f3f3782440539b51125dec4cb72777f793 Mon Sep 17 00:00:00 2001 From: daHugen Date: Wed, 27 Jul 2022 13:45:38 +0200 Subject: Update to next version, which includes changes in syntax and text structure --- buch/papers/lambertw/teil4.tex | 251 +++++++++++++++++++++++++---------------- 1 file changed, 153 insertions(+), 98 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index 84a0ec7..c959715 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -6,19 +6,19 @@ \section{Beispiel einer Verfolgungskurve \label{lambertw:section:teil4}} \rhead{Beispiel einer Verfolgungskurve} -In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve mit der Verfolgungsstrategie 1 beschreiben. Dafür werden zuerst Bewegungsraum, Anfangspositionen und Bewegungsverhalten definiert, in einem nächsten Schritt soll eine Differentialgleichung dafür aufgestellt werden und anschliessend gelöst werden. +In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve mit der Verfolgungsstrategie 1 beschreiben. Dafür werden zuerst Bewegungsraum, Anfangspositionen und Bewegungsverhalten definiert, in einem nächsten Schritt soll eine Differentialgleichung dafür aufgestellt und anschliessend gelöst werden. \subsection{Anfangsbedingungen definieren und einsetzen \label{lambertw:subsection:Anfangsbedingungen}} -Das zu verfolgende Ziel \(\vec{Z}\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(v = 1\), beginnend beim Ursprung des Kartesischen Koordinatensystems. Der Verfolger \(\vec{V}\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{V}| = 1\) in Richtung Ziel. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: +Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(v = 1\), beginnend beim Ursprung des Kartesischen Koordinatensystems. Der Verfolger \(V\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{V}| = 1\) in Richtung Ziel. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: \begin{equation} - \vec{Z} + Z = \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) = \left( \begin{array}{c} 0 \\ t \end{array} \right) ,\: - \vec{V} + V = \left( \begin{array}{c} x \\ y \end{array} \right) \:\text{und}\:\: @@ -28,7 +28,7 @@ Das zu verfolgende Ziel \(\vec{Z}\) bewegt sich entlang der \(y\)-Achse mit kons \label{lambertw:Anfangsbed} \end{equation} Wir haben nun die Anfangsbedingungen definiert, jetzt fehlt nur noch eine DGL, welche die fortlaufende Änderung der Position und Bewegungsrichtung des Verfolgers beschreibt. -Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} definiert, und zwar Gleichung \eqref{lambertw:pursuerDGL}. Wenn man die Startpunkte einfügt ergibt sich folgender Ausdruck: +Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} definiert, und zwar Gleichung \eqref{lambertw:pursuerDGL}. Wenn man die Startpunkte einfügt, ergibt sich folgender Ausdruck: \begin{equation} \frac{\left( \begin{array}{c} 0-x \\ t-y \end{array} \right)}{\sqrt{x^2 + (t-y)^2}} \cdot @@ -38,57 +38,71 @@ Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} defin \label{lambertw:eqMitAnfangsbed} \end{equation} -\subsection{DGL vereinfachen +\subsection{Differentialgleichung vereinfachen \label{lambertw:subsection:DGLvereinfach}} -Nun haben wir eine Gleichung, es stellt sich aber die Frage ob es überhaupt eine geschlossene Lösung dafür gibt. Eine Funktion welche die Beziehung \(y(x)\) beschreibt oder sogar \(x(t)\) und \(y(t)\) liefert. Zum jetzigen Zeitpunkt mag es nicht trivial scheinen, aber mit den gewählten Anfangsbedingungen \eqref{lambertw:Anfangsbed} ist es möglich eine geschlossene Lösung für die Gleichung \eqref{lambertw:eqMitAnfangsbed} zu finden. -Auf dem Weg dahin muss die definierte DGL zuerst wesentlich vereinfacht werden, sei es mittels algebraische Umformungen oder mit den Tools aus der Analysis. Also legen wir los! +Nun haben wir eine Gleichung, es stellt sich aber die Frage, ob es überhaupt eine geschlossene Lösung dafür gibt. Eine Funktion welche die Beziehung \(y(x)\) beschreibt oder sogar \(x(t)\) und \(y(t)\) liefert. Zum jetzigen Zeitpunkt mag es nicht trivial scheinen, aber mit den gewählten Anfangsbedingungen \eqref{lambertw:Anfangsbed} ist es möglich eine geschlossene Lösung für die Gleichung \eqref{lambertw:eqMitAnfangsbed} zu finden. -Zuerst müssen wir den Bruch in \eqref{lambertw:eqMitAnfangsbed} los werden, der sieht so nicht handlich aus. Dafür multiplizieren wir beidseitig mit dem Nenner: -\begin{equation} - \left( \begin{array}{c} 0-x \\ t-y \end{array} \right) - \cdot - \left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) - = \sqrt{x^2 + (t-y)^2}. - \label{lambertw:eqOhneBruch} -\end{equation} -In einem weiteren Schritt, lösen wir das Skalarprodukt auf und erhalten folgende Gleichung \eqref{lambertw:eqOhneSkalarprod} ohne vektorielle Grössen: +Auf dem Weg dahin muss die definierte DGL zuerst wesentlich vereinfacht werden, sei es mittels algebraischer Umformungen oder mit den Tools aus der Analysis. Da die nächsten Schritte sehr algebralastig sind und sie das Lesen dieses Papers einfach nur mühsam machen würden, werden wir uns hier nur die wesentlichsten Schritte konzentrieren, welche notwendig sind, um den Lösungsweg nachvollziehen zu können. + +\subsubsection{Skalarprodukt auflösen + \label{lambertw:subsubsection:SkalProdAufl}} +Zuerst müssen wir den Bruch und das Skalarprodukt in \eqref{lambertw:eqMitAnfangsbed} wegbringen, damit wir eine. Dies führt zu: \begin{equation} -x \cdot \dot{x} + (t-y) \cdot \dot{y} = \sqrt{x^2 + (t-y)^2}. \label{lambertw:eqOhneSkalarprod} \end{equation} -Im letzten Schritt, fällt die Nützlichkeit des Skalarproduktes in der Verfolgungsgleichung \eqref{lambertw:pursuerDGL} markant auf. Meiner Meinung ziemlich elegant und nicht selbstverständlich in der Lage zu sein, das Problem auf eine einzige Gleichung reduzieren zu können. +Im letzten Schritt, fällt die Nützlichkeit des Skalarproduktes in der Verfolgungsgleichung \eqref{lambertw:pursuerDGL} markant auf. Anstatt zwei gekoppelte Differentialgleichungen zu erhalten, eine für die \(x\) und die andere für die \(y\)-Komponente, erhält man einen einzigen Ausdruck, was in der Regel mit weniger Lösungsaufwand verbunden ist. -Die nächsten Schritte sind sehr algebralastig und würden das lesen dieses Papers einfach nur mühsam machen, also werde ich diese auslassen. Hingegen werden ich die algebraische Hauptschritte erwähnen, die notwendig wären falls man es trotzdem selber ausprobieren möchte: -\begin{itemize} - \item - Quadrieren und erweitern. - \item - Gruppieren. - \item - Substitution von einzelnen Thermen mittels der Beziehung \(\dot{x}^2 + \dot{y}^2 = 1\). - \item - Und das erkennen des Musters einer Binomischen Formel. -\end{itemize} -Das Resultat aller dieser Vereinfachungen führen zu folgender Gleichung \eqref{lambertw:eqAlgVerinfacht}, die viel handhabbarer ist als zuvor: +\subsubsection{Quadrieren und Gruppieren + \label{lambertw:subsubsection:QuadUndGrup}} +Mit der Quadratwurzel in \ref{lambertw:eqOhneSkalarprod} kann man nichts anfangen, sie steht nur im Weg, also muss man sie loswerden. Wenn man dies macht, kann \eqref{lambertw:eqOhneSkalarprod} auf folgende Form gebracht werden: +\begin{equation} + \left(\dot{x}^2-1\right) \cdot x^2 -2x \left(t-y\right) \dot{x}\dot{y} + \left(\dot{y}^2-1\right) \cdot \left(t-y\right)^2 + =0. + \label{lambertw:eqOhneWurzel} +\end{equation} +Diese Form mag auf den ersten Blick nicht gerade nützlich sein, aber man kann sie mit einer Substitution weiter vereinfachen. + +\subsubsection{Wichtige Substitution + \label{lambertw:subsubsection:WichtSubst}} +Wenn man beachtet, dass die Geschwindigkeit des Verfolgers konstant und gleich 1 ist, dann kann man folgende Gleichung aufstellen: +\begin{equation} + \dot{x}^2 + \dot{y}^2 + = 1. + \label{lambertw:eqGeschwSubst} +\end{equation} +Umformungen der Gleichung \eqref{lambertw:eqGeschwSubst} können in \eqref{lambertw:eqOhneWurzel} erkannt werden. Ersetzt führen sie zu folgendem Ausdruck: +\begin{equation} + \dot{y}^2 \cdot x^2 +2x \left(t-y\right) \dot{x}\dot{y} + \dot{x}^2 \cdot \left(t-y\right)^2 + =0. + \label{lambertw:eqGeschwSubstituiert} +\end{equation} +Diese unscheinbare Substitution führt dazu, dass weitere Vereinfachungen durchgeführt werden können. + +\subsubsection{Binom erkennen und vereinfachen + \label{lambertw:subsubsection:BinomVereinfach}} +Versteckt im Ausdruck \eqref{lambertw:eqGeschwSubstituiert} befindet sich die erste binomische Formel, welche zu folgender Gleichung führt: \begin{equation} (x \dot{y} + (t-y) \dot{x})^2 = 0. \label{lambertw:eqAlgVerinfacht} \end{equation} -Da der linke Term gleich Null ist, muss auch der Inhalt des Quadrates gleich Null sein, somit folgt eine weitere Vereinfachung, welche zu einer im Vergleich zu \eqref{lambertw:eqOhneSkalarprod} wesentlich einfachere DGL führt: +Da der linke Term gleich Null ist, muss auch der Inhalt des Quadrates gleich Null sein, somit folgt eine weitere Vereinfachung, welche zu einer im Vergleich zu \eqref{lambertw:eqOhneSkalarprod} wesentlich einfacheren DGL führt: \begin{equation} x \dot{y} + (t-y) \dot{x} = 0. \label{lambertw:eqGanzVerinfacht} \end{equation} -Kompakt, ohne Wurzelterme und Quadrate, nur elementare Operationen und Ableitungen. Nun stellt sich die Frage wie es weiter gehen soll, bei der Gleichung \eqref{lambertw:eqGanzVerinfacht} scheinen keine weiteren Vereinfachungen möglich zu sein. Wir brauchen einen neuen Ansatz um unser Ziel einer möglichen Lösung zu verfolgen. +Kompakt, ohne Wurzelterme und Quadrate, nur elementare Operationen und Ableitungen. Nun stellt sich die Frage wie es weiter gehen soll, bei der Gleichung \eqref{lambertw:eqGanzVerinfacht} scheinen keine weiteren Vereinfachungen möglich zu sein. Wir brauchen einen neuen Ansatz, um unser Ziel einer möglichen Lösung zu verfolgen. \subsection{Zeitabhängigkeit loswerden \label{lambertw:subsection:ZeitabhLoswerden}} -Der nächste logischer Schritt schient irgendwie die Zeitabhängigkeit in der Gleichung \eqref{lambertw:eqGanzVerinfacht} loszuwerden, aber wieso? Nun, wie am Anfang von Abschnitt \ref{lambertw:subsection:DGLvereinfach} beschrieben, suchen wir eine Lösung der Art \(y(x)\), dies ist natürlich erst möglich wenn wir die Abhängigkeit nach \(t\) eliminieren können. +Der nächste logischer Schritt scheint irgendwie die Zeitabhängigkeit in der Gleichung \eqref{lambertw:eqGanzVerinfacht} loszuwerden, aber wieso? Nun, wie am Anfang von Abschnitt \ref{lambertw:subsection:DGLvereinfach} beschrieben, suchen wir eine Lösung der Art \(y(x)\), dies ist natürlich erst möglich wenn wir die Abhängigkeit nach \(t\) eliminieren können. -Der erste Schritt auf dem Weg dahin, ist es die zeitlichen Ableitung los zu werden, dafür wird \eqref{lambertw:eqGanzVerinfacht} beidseitig mit \(\dot{x}\) dividiert, was erlaubt ist, weil diese Änderung ungleich Null ist: +\subsubsection{Zeitliche Ableitungen loswerden + \label{lambertw:subsubsection:ZeitAbleit}} +Der erste Schritt auf dem Weg zur Funktion \(y(x)\), ist es die zeitlichen Ableitungen los zu werden, dafür wird \eqref{lambertw:eqGanzVerinfacht} beidseitig mit \(\dot{x}\) dividiert, was erlaubt ist, weil diese Änderung ungleich Null ist: \begin{equation} x \frac{\dot{y}}{\dot{x}} + (t-y) \frac{\dot{x}}{\dot{x}} = 0. @@ -103,13 +117,17 @@ Der Grund dafür ist, dass \label{lambertw:eqQuotZeitAbleit} \end{equation} und somit kann der Quotient dieser zeitlichen Ableitungen in eine Ableitung nach \(x\) umgewandelt werden. -Nach dem diese Eigenschaft \eqref{lambertw:eqQuotZeitAbleit} in \eqref{lambertw:eqVorKeineZeitAbleit} eingesetzt wird und vereinfacht wurde, entsteht folgende neue Gleichung: +Nach dem die Eigenschaft \eqref{lambertw:eqQuotZeitAbleit} in \eqref{lambertw:eqVorKeineZeitAbleit} eingesetzt wird und vereinfacht wurde, entsteht die neue Gleichung \begin{equation} x y^{\prime} + t - y = 0. \label{lambertw:DGLmitT} \end{equation} -Hier wäre es natürlich passend wenn man die Abhängigkeit nach \(t\) komplett wegbringen könnte. Um dies zu erreichen muss man auf die Definition der Bogenlänge aus der Analysis zurückgreifen, wobei die Strecke \(s\) folgendem entspricht: + +\subsubsection{Variable \(t\) eliminieren + \label{lambertw:subsubsection:ZeitAbleit}} +Hier wäre es natürlich passend, wenn man die Abhängigkeit nach \(t\) komplett wegbringen könnte. Um dies zu erreichen, muss man auf die Definition der Bogenlänge zurückgreifen. +Die Strecke \(s\) entspricht \begin{equation} s = @@ -122,13 +140,16 @@ Hier wäre es natürlich passend wenn man die Abhängigkeit nach \(t\) komplett \int_{\displaystyle x_0}^{\displaystyle x_{\text{end}}}\sqrt{1+y^{\prime\, 2}} \: dx. \label{lambertw:eqZuBogenlaenge} \end{equation} -Nicht gerade auffällig ist die Richtung in welche hier integriert wird. Wenn der Verfolger sich wie vorgesehen am Anfang im ersten Quadranten befindet, dann muss sich dieser nach links bewegen, was nicht der üblichen Integrationsrichtung entspricht. Um eine Integration wie üblich von links nach rechts ausführen zu können, müssen die Integrationsgenerzen vertauscht werden, was in einem Vorzeichenwechsel resultiert. Wenn man nun \eqref{lambertw:eqZuBogenlaenge} in die DGL \eqref{lambertw:DGLmitT} einfügt, dann ergibt sich folgender Ausdruck: + +Nicht gerade auffällig ist die Richtung, in welche hier integriert wird. Wenn der Verfolger sich wie vorgesehen am Anfang im ersten Quadranten befindet, dann muss sich dieser nach links bewegen, was nicht der üblichen Integrationsrichtung entspricht. Um eine Integration wie üblich von links nach rechts ausführen zu können, müssen die Integrationsgenerzen vertauscht werden, was in einem Vorzeichenwechsel resultiert. + +Wenn man nun \eqref{lambertw:eqZuBogenlaenge} in die DGL \eqref{lambertw:DGLmitT} einfügt, dann ergibt sich folgender Ausdruck: \begin{equation} x y^{\prime} - \int\sqrt{1+y^{\prime\, 2}} \: dx - y = 0. \label{lambertw:DGLohneT} \end{equation} -Um das Integral los zu werden, leitet man den vorherigen Ausdruck \eqref{lambertw:DGLohneT} nach \(x\) ab und erhaltet folgende DGL \eqref{lambertw:DGLohneInt}: +Um das Integral los zu werden, leitet man den vorherigen Ausdruck \eqref{lambertw:DGLohneT} nach \(x\) ab und erhaltet folgende DGL zweiter Ordnung \eqref{lambertw:DGLohneInt}: \begin{align} y^{\prime}+ xy^{\prime\prime} - \sqrt{1+y^{\prime\, 2}} - y^{\prime} &= 0, \\ @@ -138,16 +159,22 @@ Um das Integral los zu werden, leitet man den vorherigen Ausdruck \eqref{lambert \end{align} Nun sind wir unserem Ziel einen weiteren Schritt näher. Die Gleichung \eqref{lambertw:DGLohneInt} mag auf den ersten Blick nicht gerade einfach sein, aber im Nächsten Abschnitt werden wir sehen, dass sie relativ einfach zu lösen ist. -\subsection{DGL lösen +\subsection{Differentialgleichung lösen \label{lambertw:subsection:DGLloes}} -Die Gleichung \eqref{lambertw:DGLohneInt} ist eine DGL zweiter Ordnung und kann -mittels der Substitution \(y^{\prime} = u\) in eine DGL erster Ordnung umgewandelt werden: +Die Gleichung \eqref{lambertw:DGLohneInt} ist eine DGL zweiter Ordnung, in der \(y\) nicht vorkommt. Sie kann mittels der Substitution \(y^{\prime} = u\) in eine DGL erster Ordnung umgewandelt werden: \begin{equation} xu^{\prime} - \sqrt{1+u^2} = 0. \label{lambertw:DGLmitU} \end{equation} -Diese \eqref{lambertw:DGLmitU} zu lösen ist ziemlich einfach da sie separierbar ist, aus diesem Grund werde ich direkt zur Lösung \eqref{lambertw:loesDGLmitU} übergehen: +Diese Gleichung ist separierbar, was sie viel handlicher macht. In der separierten Form +\begin{equation} + \int{\frac{1}{\sqrt{1+u^2}}\:du} + = + \int{\frac{1}{x}\:dx}, +\end{equation} +lässt sich die Gleichung mittels einer Integrationstabelle sehr rasch lösen. +Mit dem Ergebnis: \begin{align} \operatorname{arsinh}(u) &= @@ -157,20 +184,20 @@ Diese \eqref{lambertw:DGLmitU} zu lösen ist ziemlich einfach da sie separierbar \operatorname{sinh}(\operatorname{ln}(x) + C). \label{lambertw:loesDGLmitU} \end{align} -Indem man die Substitution rückgängig macht, erhält man eine weitere DGL erster Ordnung die bereits separiert ist und erhält folgende Gleichung: +Wenn man in \eqref{lambertw:loesDGLmitU} die Substitution rückgängig macht, erhält man folgende DGL erster Ordnung, die bereits separiert ist: \begin{equation} y^{\prime} = \operatorname{sinh}(\operatorname{ln}(x) + C). \label{lambertw:loesDGLmitY} \end{equation} -Diese \eqref{lambertw:loesDGLmitY} kann mit den selben Methoden gelöst werden wie \eqref{lambertw:DGLmitU}, diesmal aber in Kombination mit der exponentiellen Definition der \(\operatorname{sinh}\)-Funktion: +Ersetzt man den \(\operatorname{sinh}\) mit seiner exponentiellen Definition \(\operatorname{sinh}(x)=\frac{1}{2}(e^x-e^{-x})\), so resultiert auf sehr einfache Art folgende Lösung für \eqref{lambertw:loesDGLmitY}: \begin{equation} y = C_1 + C_2 x^2 - \frac{\operatorname{ln}(x)}{8 \cdot C_2}. \end{equation} -Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die Frage ob sie überhaupt plausibel ist. Dieser Frage werden wir in nächsten Abschnitt \ref{lambertw:subsection:LoesAnalys} nachgehen. +Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die Frage, ob sie überhaupt plausibel ist. Dieser Frage werden wir im nächsten Abschnitt nachgehen. \subsection{Lösung analysieren \label{lambertw:subsection:LoesAnalys}} @@ -178,7 +205,7 @@ Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die \begin{figure} \centering \includegraphics{papers/lambertw/Bilder/VerfolgungskurveBsp.png} - \caption[Graph der Verfolgungskurve]{Graph der Verfolgungskurve wobei, ({\color{red}rot}) die Funktion \ensuremath{y(x)} ist, ({\color{darkgreen}grün}) der quadratische Teil und ({\color{blue}blau}) dem \ensuremath{ln(x)}-Teil entspricht. + \caption[Graph der Verfolgungskurve]{Graph der Verfolgungskurve wobei, ({\color{red}rot}) die Funktion \ensuremath{y(x)} ist, ({\color{darkgreen}grün}) der quadratische Teil und ({\color{blue}blau}) dem \ensuremath{\operatorname{ln}(x)}-Teil entspricht. \label{lambertw:BildFunkLoes} } \end{figure} @@ -190,24 +217,30 @@ Das Resultat, wie ersichtlich, ist folgende Funktion \eqref{lambertw:funkLoes} w C_1 + C_2 {\color{darkgreen}{x^2}} {\color{blue}{-}} \frac{\color{blue}{\operatorname{ln}(x)}}{8 \cdot C_2}. \label{lambertw:funkLoes} \end{equation} -Für die Koeffizienten \(C_1\) und \(C_2\) ergibt sich ein Anfangswertproblem, welches für deren Bestimmung gelöst werden muss. Zuerst soll aber eine qualitative Intuition, oder Idee für das Aussehen der Funktion \(y(x)\) geschaffen werden: +Für die Koeffizienten \(C_1\) und \(C_2\) ergibt sich ein Anfangswertproblem, welches für deren Bestimmung gelöst werden muss. Zuerst soll aber eine qualitative Intuition oder Idee für das Aussehen der Funktion \(y(x)\) geschaffen werden: \begin{itemize} \item Für grosse \(x\)-Werte, welche in der Regel in der Nähe von \(x_0\) sein sollten, ist der quadratisch Term in der Funktion \eqref{lambertw:funkLoes} dominant. \item - Für immer kleiner werdende \(x\) geht der Verfolger in Richtung \(y\)-Achse, wobei seine Steigung stetig sinkt, was Sinn macht wenn der Verfolgte entlang der \(y\)-Achse steigt. Irgendwann werden Verfolger und Ziel auf gleicher Höhe sein. + Für immer kleiner werdende \(x\) geht der Verfolger in Richtung \(y\)-Achse, wobei seine Steigung stetig sinkt, was Sinn macht wenn der Verfolgte entlang der \(y\)-Achse steigt. Irgendwann werden Verfolger und Ziel auf gleicher Höhe sein, also gleiche \(y\) aber verschiedene \(x\)-Koordinate besitzen. \item - Für \(x\)-Werte in der Nähe von \(0\) ist das asymptotische Verhalten des Logarithmus dominant, dies macht auch Sinn da sich der Verfolgte auf der \(y\)-Achse bewegt und der Verfolger im nachgeht. + Für \(x\)-Werte in der Nähe von \(0\) ist das asymptotische Verhalten des Logarithmus dominant, dies macht auch Sinn, da sich der Verfolgte auf der \(y\)-Achse bewegt und der Verfolger ihm nachgeht. \item Aufgrund des Monotoniewechsels in der Kurve \eqref{lambertw:funkLoes} muss diese auch ein Minimum aufweisen. Es stellt sich nun die Frage: Wo befindet sich dieser Punkt? - Eine Abschätzung darüber kann getroffen werden und zwar, dass dieser dann entsteht, wenn \(A\) und \(P\) die gleiche \(y\)-Koordinaten besitzen. In diesem Moment ändert die Richtung der \(y\)-Komponente der Geschwindigkeit des Verfolgers, somit auch sein Vorzeichen und dadurch entsteht auch das Minimum. \end{itemize} -Alle diese Eigenschafte stimmen mit dem überein, was man von einer Kurve dieser Art erwarten würde, welche durch die Grafik \ref{lambertw:BildFunkLoes} repräsentiert wurde. Nun stellt sich die Frage wie die Kurve wirklich aussieht. Dies wird im folgenden Abschnitt \ref{lambertw:subsection:AllgLoes} behandelt. +Alle diese Eigenschaften stimmen mit dem überein, was man von einer Kurve dieser Art erwarten würde, welche durch die Grafik \ref{lambertw:BildFunkLoes} repräsentiert wurde. \subsection{Anfangswertproblem \label{lambertw:subsection:AllgLoes}} -Wie üblich bei der Suche nach einer exakten Lösung, kommt ein Anfangswertproblem vor. Um dieses zu lösen, müssen wir zuerst die Anfangswerte definieren. Da wir das Problem allgemein lösen wollen, ergeben sich folgende zwei Anfangswerte: +In diesem Abschnitt soll eine Parameterfunktion hergeleitet werden, bei der jeder beliebige Anfangspunkt im ersten Quadranten eingesetzt werden kann, ausser der Ursprung im Koordinatensystem. Diese Aufgabe erfordert ein Anfangswertproblem. + +Das Lösen des Anfangswertproblems ist ein Problem aus der Algebra, auf welches hier nicht explizit eingegangen wird. Zur Vollständigkeit und Nachvollziehbarkeit, wird aber das Gleichungssystem präsentiert, welches notwendig ist, um das Anfangswertproblem zu lösen. + +\subsubsection{Anfangswerte bestimmen + \label{lambertw:subsubsection:Anfangswerte}} +Der erste Schritt auf dem Weg zur gesuchten Parameterfunktion ist, die Anfangswerte \eqref{lambertw:eq1Anfangswert} zu definieren. +Die Anfangswerte sind: \begin{equation} y(x)\big \vert_{t=0} = @@ -227,50 +260,63 @@ und \end{equation} Der zweite Anfangswert \eqref{lambertw:eq2Anfangswert} mag nicht grade offensichtlich sein. Die Erklärung dafür ist aber simpel: Der Verfolger wird sich zum Zeitpunkt \(t=0\) in Richtung Koordinatenursprung bewegen wollen, wo sich das Ziel befindet. Somit entsteht das Steigungsdreieck mit \(\Delta x = x_0\) und \(\Delta y = y_0\). -Das Lösen des Anfangswertproblems ist ein Problem aus der Algebra, auf welches ich nicht unbedingt eingehen möchte. Zur Vollständigkeit und Nachvollziehbarkeit, werde ich aber das Gleichungssystem \eqref{lambertw:eqGleichungssystem} präsentieren, welches notwendig ist um das Anfangswertproblem zu lösen, sowie auch die allgemeine Lösung \eqref{lambertw:eqAllgLoes} die sich nach dem einsetzen der Koeffizienten \(C_1\) und \(C_2\) in die Funktion \eqref{lambertw:funkLoes} ergibt. - -\begin{itemize} - \item - Gleichungssystem: - \begin{subequations} - \begin{align} - y_0 - &= - C_1 + C_2 x^2_0 - \frac{\operatorname{ln}(x_0)}{8 \cdot C_2}, \\ - \frac{y_0}{x_0} - &= - 2 \cdot C_2 x_0 - \frac{1}{8 \cdot C_2 \cdot x_0}. - \end{align} - \label{lambertw:eqGleichungssystem} - \end{subequations} - \item - Die allgemeine Funktion: - \begin{equation} - y(x) - = - \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right) - \label{lambertw:eqAllgLoes} - \end{equation} - Damit die Funkion \eqref{lambertw:eqAllgLoes} trotzdem noch übersichtlich bleibt, wurden \(\eta\) und \(r_0\) wie folgt definiert: - \begin{equation} - \eta - = - \left(\frac{x}{x_0}\right)^2 - \:\:\text{und}\:\: - r_0 - = - \sqrt{x_0^2+y_0^2}. - \end{equation} -\end{itemize} -Diese neue allgemein Funktion \eqref{lambertw:eqAllgLoes} weist immer noch die selbe Struktur wie die vorherig hergeleitete Funktion \eqref{lambertw:funkLoes} auf, einerseits einen quadratischen Teil der in \(\eta\) enthalten ist, anderseits den \(\operatorname{ln}\)-Teil. Aus dieser Ähnlichkeit kann geschlossen werden, dass sich \eqref{lambertw:eqAllgLoes} auf eine ähnliche Art verhalten wird. +\subsubsection{Gleichungssystem aufstellen und lösen + \label{lambertw:subsubsection:GlSys}} +Wenn man die Anfangswerte \eqref{lambertw:eq1Anfangswert} und \eqref{lambertw:eq2Anfangswert} in die Gleichung \eqref{lambertw:funkLoes} und deren Ableitung \(y^{\prime}(x)\) einsetzt, dann ergibt sich folgendes Gleichungssystem: +\begin{subequations} + \begin{align} + y_0 + &= + C_1 + C_2 x^2_0 - \frac{\operatorname{ln}(x_0)}{8 \cdot C_2}, \\ + \frac{y_0}{x_0} + &= + 2 \cdot C_2 x_0 - \frac{1}{8 \cdot C_2 \cdot x_0}. + \end{align} + \label{lambertw:eqGleichungssystem} +\end{subequations} +Damit die gesuchte Funktion im ersten Quadranten bleibt, werden nur die positiven Lösungen des Gleichungssystems gewählt, welche wie folgt aussehen: +\begin{subequations} + \begin{align} + \label{lambertw:eqKoeff1} + C_1 + &= + \frac{2\cdot\operatorname{ln}(x_0)\left(\sqrt{x_0^2 + y_0^2} - y_0 \right) - \sqrt{x_0^2 + y_0^2} + 3 y_0}{4}, \\ + \label{lambertw:eqKoeff2} + C_2 + &= + \frac{\sqrt{x_0^2 + y_0^2} + y_0}{4x_0^2}. + \end{align} +\end{subequations} +\subsubsection{Gesuchte Parameterfunktion aufstellen + \label{lambertw:subsubsection:ParamFunk}} +Wenn man die Koeffizienten \eqref{lambertw:eqKoeff1} und \eqref{lambertw:eqKoeff2} in die Funktion \eqref{lambertw:funkLoes} einsetzt, dann ergibt sich nach dem Vereinfachen die gesuchte Parameterfunktion: +\begin{equation} + y(x) + = + \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right). + \label{lambertw:eqAllgLoes} +\end{equation} +Damit die Funktion \eqref{lambertw:eqAllgLoes} trotzdem übersichtlich bleibt, wurden Anfangssteigung \(\eta\) und Anfangsentfernung \(r_0\) wie folgt definiert: +\begin{equation} + \eta + = + \left(\frac{x}{x_0}\right)^2 + \:\:\text{und}\:\: + r_0 + = + \sqrt{x_0^2+y_0^2}. +\end{equation} +Diese neue allgemeine Funktion \eqref{lambertw:eqAllgLoes} weist immer noch die selbe Struktur wie die vorher hergeleitete Funktion \eqref{lambertw:funkLoes} auf. Sie enthält einerseits einen quadratischen Teil, der in \(\eta\) enthalten ist, anderseits den \(\operatorname{ln}\)-Teil. Aus dieser Ähnlichkeit kann geschlossen werden, dass sich \eqref{lambertw:eqAllgLoes} auf eine ähnliche Art verhalten wird. -Nun sind wir soweit, dass wir eine \(y(x)\)-Beziehung für beliebige Anfangswerte darstellen können, unser erstes Ziel wurde erreicht. Ist das alles? Nein, wir können einen Schritt weiter gehen und uns Fragen: Ist es analytisch möglich herauszufinden, wo sich Verfolger und Ziel zu jedem Zeitpunkt befinden? Dieser Frage werden wir im nächsten Abschnitt nachgehen. +Nun sind wir soweit, dass wir eine \(y(x)\)-Beziehung für beliebige Anfangswerte darstellen können, unser erstes Ziel wurde erreicht. Wir können aber einen Schritt weiter gehen und uns Fragen: Ist es analytisch möglich herauszufinden, wo sich Verfolger und Ziel zu jedem Zeitpunkt befinden? Dieser Frage werden wir im nächsten Abschnitt nachgehen. \subsection{Funktion nach der Zeit \label{lambertw:subsection:FunkNachT}} -Lieber Leser sei mir nicht böse, aber in diesem Abschnitt werde ich ein wenig mehr bei den algebraischen Umformungen ins Detail gehen. Dies hat auch einen bestimmten Grund, ich möchte den Einsatz einer speziellen Funktion aufzeigen, sowie auch wann und wieso diese vorkommt. Welche spezielle Funktion? Fragst du dich wahrscheinlich in diesem Moment. Nun, um diese Frage zu kurz zu beantworten, es ist "YouTube's favorite special function" laut dem Mathematiker Michael Penn, die Lambert-W-Funktion \(W(x)\) welche übrigens im Kapitel \ref{buch:section:lambertw} bereits beschrieben wurde. +In diesem Abschnitt werden algebraischen Umformungen ein wenig detaillierter als zuvor beschrieben. Dies hat auch einen bestimmten Grund: Den Einsatz einer speziellen Funktion aufzeigen, sowie auch wann und wieso diese vorkommt. Welche spezielle Funktion? Fragst du dich wahrscheinlich in diesem Moment. Nun, um diese Frage kurz zu beantworten, es ist ``YouTube's favorite special function'' laut dem Mathematiker Michael Penn, die Lambert-\(W\)-Funktion \(W(x)\) welche im Kapitel \ref{buch:section:lambertw} bereits beschrieben wurde. -Also fangen wir an. Der erste Schritt ist es herauszufinden, wie die Zeitabhängigkeit wieder hinein gebracht werden kann. Dafür greifen wir auf die letzte Gleichung zu, in welcher \(t\) noch enthalten war, und zwar DGL \eqref{lambertw:DGLmitT}, welche zur Übersichtlichkeit hier nochmals aufgeführt wird: +\subsubsection{Zeitabhängigkeit wiederherstellen + \label{lambertw:subsubsection:ZeitabhWiederherst}} +Der erste Schritt ist es herauszufinden, wie die Zeitabhängigkeit wieder hineingebracht werden kann. Dafür greifen wir auf die letzte Gleichung zu, in welcher \(t\) noch enthalten war, und zwar DGL \eqref{lambertw:DGLmitT}, welche zur Übersichtlichkeit hier nochmals aufgeführt wird: \begin{equation} x y^{\prime} + t - y = 0. @@ -289,6 +335,7 @@ Wie in \eqref{lambertw:eqDGLmitTnochmals} zu sehen ist, werden \(y\) und deren A \end{align} \label{lambertw:eqFunkUndAbleit} \end{subequations} + Wenn man diese Gleichungen \ref{lambertw:eqFunkUndAbleit} in die DGL \label{lambertw:eqDGLmitTnochmals} einfügt, vereinfacht und nach \(t\) auflöst, dann ergibt sich folgenden Ausdruck: \begin{equation} -4t @@ -296,6 +343,12 @@ Wenn man diese Gleichungen \ref{lambertw:eqFunkUndAbleit} in die DGL \label{lamb \left(y_0+r_0\right)\left(\eta-1\right)+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right). \label{lambertw:eqFunkUndAbleitEingefuegt} \end{equation} + +\subsubsection{Umformungen die zur Funktion nach der Zeit führen + \label{lambertw:subsubsection:UmformBisZumZiel}} +Mit dem Ausdruck \eqref{lambertw:eqFunkUndAbleitEingefuegt}, welcher Terme mit \(x\) und \(t\) verbindet, kann nun nach der gesuchten Variable \(x\) aufgelöst werden. + + In einem nächsten Schritt wird alles mit \(x\) auf die eine Seite gebracht, der Rest auf die andere Seite und anschliessend beidseitig exponentiert, was wie folgt aussieht: \begin{align} -4t+\left(y_0+r_0\right) @@ -306,7 +359,7 @@ In einem nächsten Schritt wird alles mit \(x\) auf die eine Seite gebracht, der e^{\displaystyle \left(y_0+r_0\right)\eta}\cdot\eta^{\displaystyle \left(r_0-y_0\right)}. \label{lambertw:eqMitExp} \end{align} -Auf dem rechten Term von \eqref{lambertw:eqMitExp} beginnen wir langsam eine ähnliche Struktur wie \(\eta e^\eta\) zu erkennen, dies schreit nach der Struktur die benötigt wird um \(\eta\) mittels der Lambert-W-Funktion \(W(x)\) zu erhalten. Dies macht durchaus Sinn, wenn wir die Funktion \(x(t)\) finden wollen und \(W(x)\) die Umkehrfunktion von \(x e^x\) ist. +Auf dem rechten Term von \eqref{lambertw:eqMitExp} beginnen wir langsam eine ähnliche Struktur wie \(\eta e^\eta\) zu erkennen, dies schreit nach der Struktur die benötigt wird um \(\eta\) mittels der Lambert-\(W\)-Funktion \(W(x)\) zu erhalten. Dies macht durchaus Sinn, wenn wir die Funktion \(x(t)\) finden wollen und \(W(x)\) die Umkehrfunktion von \(x e^x\) ist. Die erste Sache die uns in \eqref{lambertw:eqMitExp} stört ist, dass \(\eta\) als Potenz da steht. Dieses Problem können wir loswerden, indem wir beidseitig mit \(\:\displaystyle \frac{1}{r_0-y_0}\:\) potenzieren: \begin{equation} @@ -324,14 +377,14 @@ Das nächste Problem auf welches wir in \eqref{lambertw:eqOhnePotenz} treffen is \end{equation} Es gäbe natürlich andere Substitutionen wie z.B. \[\displaystyle \chi=\frac{y_0+r_0}{r_0-y_0}\cdot\eta,\] -die auf das selbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir folgende Gleichung: +die auf dasselbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir folgende Gleichung: \begin{equation} \chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}} = \chi\eta\cdot e^{\displaystyle \chi\eta}. \label{lambertw:eqNachSubst} \end{equation} -Schön oder? Nun sind wir endlich soweit, dass wir die angedeutete Lambert-W-Funktion \(W(x)\)einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir folgenden Ausdruck: +Nun sind wir endlich soweit, dass wir die angedeutete Lambert-\(W\)-Funktion \(W(x)\)einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir folgenden Ausdruck: \begin{equation} W\left(\chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}}\right) = @@ -354,9 +407,11 @@ Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir di \label{lambertw:eqFunktionenNachT} \end{subequations} Nun haben wir unser letztes Ziel erreicht und sind in der Lage eine Verfolgung rechnerisch sowie graphisch zu repräsentieren. - -Wir sind aber noch nicht ganz fertig, ich muss gestehen, dass ich in diesem Abschnitt einen wichtigen Teil verschwiegen habe. Und zwar wieso, dass ich schon bei der Gleichung \eqref{lambertw:eqFunkUndAbleitEingefuegt} wusste, dass man nach einigen Umformungen die Lambert-W-Funktion eingesetzt werden kann. -Der Grund dafür ist die Struktur + +\subsubsection{Hinweise zur Lambert-\(W\)-Funktion + \label{lambertw:subsubsection:HinwLambertW}} +Wir sind aber noch nicht ganz fertig, eine Frage muss noch beantwortet werden. Und zwar wieso, dass man schon bei der Gleichung \eqref{lambertw:eqFunkUndAbleitEingefuegt} weiss, dass die Lambert-\(W\)-Funktion zum Einsatz kommen wird. +Nun, der Grund dafür ist die Struktur \begin{equation} y = @@ -365,4 +420,4 @@ Der Grund dafür ist die Struktur \end{equation} bei welcher \(p(x)\) eine beliebige Potenz von \(x\) darstellt. -Jedes mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oftmals vorkommt, was die Lambert-W-Funktion so wichtig macht. \ No newline at end of file +Jedes Mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oftmals vorkommt, was die Lambert-\(W\)-Funktion so wichtig macht. \ No newline at end of file -- cgit v1.2.1 From 70c7a56a5b596a09cb63f5749eee342ab2086770 Mon Sep 17 00:00:00 2001 From: daHugen Date: Wed, 27 Jul 2022 14:06:50 +0200 Subject: made some changes --- buch/papers/lambertw/teil4.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index c959715..c79aa0c 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -363,9 +363,9 @@ Auf dem rechten Term von \eqref{lambertw:eqMitExp} beginnen wir langsam eine äh Die erste Sache die uns in \eqref{lambertw:eqMitExp} stört ist, dass \(\eta\) als Potenz da steht. Dieses Problem können wir loswerden, indem wir beidseitig mit \(\:\displaystyle \frac{1}{r_0-y_0}\:\) potenzieren: \begin{equation} - e^{\displaystyle \frac{-4t}{r_0-y_0}+\frac{y_0+r_0}{r_0-y_0}} + \operatorname{exp}\left(\displaystyle \frac{-4t}{r_0-y_0}+\frac{y_0+r_0}{r_0-y_0}\right) = - \eta\cdot e^{\displaystyle \frac{y_0+r_0}{r_0-y_0}\eta} . + \eta\cdot \operatorname{exp}\left(\displaystyle \frac{y_0+r_0}{r_0-y_0}\eta\right). \label{lambertw:eqOhnePotenz} \end{equation} Das nächste Problem auf welches wir in \eqref{lambertw:eqOhnePotenz} treffen ist, dass \(\eta\) nicht alleine im Exponent steht. Dies kann elegant mit folgender Substitution gelöst werden: @@ -379,14 +379,14 @@ Es gäbe natürlich andere Substitutionen wie z.B. \[\displaystyle \chi=\frac{y_0+r_0}{r_0-y_0}\cdot\eta,\] die auf dasselbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir folgende Gleichung: \begin{equation} - \chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}} + \chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right) = \chi\eta\cdot e^{\displaystyle \chi\eta}. \label{lambertw:eqNachSubst} \end{equation} Nun sind wir endlich soweit, dass wir die angedeutete Lambert-\(W\)-Funktion \(W(x)\)einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir folgenden Ausdruck: \begin{equation} - W\left(\chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}}\right) + W\left(\chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right)\right) = \chi\eta. \end{equation} @@ -396,7 +396,7 @@ Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir di \label{lambertw:eqFunkXNachT} x(t) &= - x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\displaystyle \chi-\frac{4t}{r_0-y_0}}\right)}{\chi}}, \\ + x_0\cdot\sqrt{\frac{W\left(\chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right)\right)}{\chi}}, \\ \label{lambertw:eqFunkYNachT} y(x(t)) = -- cgit v1.2.1 From e7f4d8d568bf62c76f4bf0ffdc0fe009134c184d Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Wed, 27 Jul 2022 17:45:10 +0200 Subject: Herleitung Kapitel Bessel --- buch/papers/fm/03_bessel.tex | 123 +++++++++++++++++++++++++++++++++++++++++-- buch/papers/fm/Makefile | 8 +-- buch/papers/fm/packages.tex | 2 +- 3 files changed, 126 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index aed084e..7a0e20e 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -4,9 +4,126 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{FM und Besselfunktion -\label{fm:section:teil2}} -\rhead{Teil 2} - +\label{fm:section:proof}} +\rhead{Herleitung} +Die momentane Trägerkreisfrequenz \(\omega_i\) wie schon in (ref) beschrieben ist, bringt die Vorigen Kapittel beschreiben. (Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich). +Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das Modulierende Signal \(m(t)\) ist. +Somit haben wir unser \(x_c\) welches +\[ +\cos(\omega_c t+\beta\sin(\omega_mt)) +\] +ist. +\subsection{Herleitung} +Das Ziel ist es Unser moduliertes Signal mit der Besselfunktion so auszudrücken: +\begin{align} + \cos(\omega_ct+\beta\sin(\omega_mt)) + &= + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) + \label{fm:eq:proof} +\end{align} +Doch dazu brauchen wir die Hilfe der Additionsthoerme +\begin{align} + \cos(A + B) + &= + \cos(A)\cos(B)-\sin(A)\sin(B) + \label{fm:eq:addth1} + \\ + 2\cos (A)\cos (B) + &= + \cos(A-B)+\cos(A+B) + \label{fm:eq:addth2} + \\ + 2\sin(A)\sin(B) + &= + \cos(A-B)-\cos(A+B) + \label{fm:eq:addth3} +\end{align} +und die drei Besselfunktions indentitäten, +\begin{align} + \cos(\beta\sin\phi) + &= + J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi) + \label{fm:eq:besselid1} + \\ + \sin(\beta\sin\phi) + &= + J_0(\beta) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi) + \label{fm:eq:besselid2} + \\ + J_{-n}(\beta) &= (-1)^n J_n(\beta) + \label{fm:eq:besselid3} +\end{align} +welche man im Kapitel (ref), ref, ref findet. +\newline +Mit dem \refname{fm:eq:addth1} wird aus dem modulierten Signal +\[ +\cos(\omega_c t + \beta\sin(\omega_mt)) +\] +das Signal +\[ + \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)). + \label{fm:eq:start} +\] +Zu beginn wird der erste Teil +\[ + \cos(\omega_c)\cos(\beta\sin(\omega_mt)) +\] +mit hilfe der Bessel indentität \ref{fm:eq:besselid1} zum +\[ + J_0(\beta)\cos(\omega_c) + \sum_{k=1}^\infty J_{2k}(\beta) 2\cos(\omega_c t)\cos(2k\omega_m t) +\] +\newline +TODO 2 und \(\cos( )\) in lime. +wobei mit dem \colorbox{lime}{Additionstheorem} \ref{fm:eq:addth2} zum +\[ + J_0(\beta)\dot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} +\] +wird. +Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term +\[ + \sum_{n\, gerade} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) + \label{fm:eq:gerade} +\] +\newline +nun zum zweiten Teil des Term \ref{fm:eq:start} +\[ + \sin(\omega_c)\sin(\beta\sin(\omega_m t)). +\] +Dieser wird mit der \ref{fm:eq:besselid2} Bessel indentität zu +\[ + J_0(\beta) \dot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t). +\] +Auch hier wird ein Additionstheorem \ref{fm:eq:addth3} gebraucht um aus dem Sumanden diesen Term +\[ + J_0(\beta) \dot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{Teil1} - \cos((\omega_c+(2k+1)\omega_m) t) \} +\]zu gewinnen. +Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. +Zusätzlich dabei noch die letzte Bessel indentität \ref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1 J_n(\beta)\). +Somit wird Teil1 zum negativen Term und die Summe vereinfacht sich zu +\[ + \sum_{n\, ungerade} -1 J_{n}(\beta) \cos((\omega_c + n\omega_m) t). + \label{fm:eq:ungerade} +\] +Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. +Beide Teile \ref{fm:eq:gerade} Gerade und \ref{fm:eq:ungerade} Ungerade ergeben zusammen +\[ + \cos(\omega_ct+\beta\sin(\omega_mt)) + = + \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t). +\] +Somit ist \ref{fm:eq:proof} bewiesen. +\newpage +\subsection{Bessel und Frequenzspektrum} +Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. +\begin{figure} + \centering + \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png} + \caption{Bessle Funktion \(J_{k}(\beta)\)} + \label{fig:bessel} +\end{figure} +TODO Grafik einfügen, +\newline +Nun einmal das Modulierte FM signal im Frequenzspektrum mit den einzelen Summen dargestellt TODO Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile. diff --git a/buch/papers/fm/Makefile b/buch/papers/fm/Makefile index c84963f..aee954f 100644 --- a/buch/papers/fm/Makefile +++ b/buch/papers/fm/Makefile @@ -16,15 +16,17 @@ SOURCES := \ #FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES)) -#.PHONY: images -#images: $(FIGURES) +all: images standalone + +.PHONY: images +images: $(FIGURES) #figures/%.pdf: tikz/%.tex # mkdir -p figures # pdflatex --output-directory=figures $< .PHONY: standalone -standalone: standalone.tex $(SOURCES) #$(FIGURES) +standalone: standalone.tex $(SOURCES) $(FIGURES) mkdir -p standalone cd ../..; \ pdflatex \ diff --git a/buch/papers/fm/packages.tex b/buch/papers/fm/packages.tex index 4cba2b6..f0ca8cc 100644 --- a/buch/papers/fm/packages.tex +++ b/buch/papers/fm/packages.tex @@ -7,4 +7,4 @@ % if your paper needs special packages, add package commands as in the % following example %\usepackage{packagename} - +\usepackage{xcolor} -- cgit v1.2.1 From 66adfe693cae143039fe70c473d3b0a6b7d64687 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:07:36 +0200 Subject: Notation in Teil0 adjusted --- buch/papers/lambertw/teil0.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 6ab0bae..1431faa 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,7 +7,7 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} -Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt.". +Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. @@ -25,7 +25,7 @@ Der Verfolger hat nur einen direkten Einfluss auf seinen Geschwindigkeitsvektor. Mit diesem kann er neben Richtung und Betrag auch den Abstand zwischen Verfolger und Ziel kontrollieren. Wenn zwei dieser drei Parameter durch die Strategie definiert werden, ist der dritte nicht mehr frei. Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um den Verfolger komplett zu beschreiben. - +% \begin{table} \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} @@ -64,7 +64,7 @@ Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A - \quad A\in\mathbb{R}>0 + \text{,}\quad A\in\mathbb{R}^+ \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung \begin{equation} @@ -77,6 +77,7 @@ Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. + Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} -- cgit v1.2.1 From 141e6d40c59f7cc3eda4ae04b5b1b57e7c7f4075 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 18:10:05 +0200 Subject: adjusted notation in Teil0 --- buch/papers/lambertw/teil0.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 1431faa..f0589e5 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -49,32 +49,32 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} - \caption{Vektordarstellung Strategie 1} + \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} % In der Tabelle \ref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. -Im Folgenden wird nur noch auf die Strategie 1 eingegangen. +Im Folgenden wird nur noch auf die Jagdstrategie eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. - In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. +Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} -darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung +darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} -beschrieben werden. +beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, die Länge auf eins festgelegt. +Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. @@ -89,7 +89,7 @@ Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssyst &= 1 \text{.} \end{align} -Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Strategie 1 verwendet. +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} -- cgit v1.2.1 From 18378909d070e684c0d7ee0b539be7baeee62cea Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 27 Jul 2022 18:45:06 +0200 Subject: 0f1, abgabe --- buch/papers/0f1/references.bib | 19 ++++++++++++----- buch/papers/0f1/teil1.tex | 3 +-- buch/papers/0f1/teil2.tex | 20 +++++++----------- buch/papers/0f1/teil3.tex | 46 +++++++++++++++++++++++++----------------- 4 files changed, 49 insertions(+), 39 deletions(-) (limited to 'buch') diff --git a/buch/papers/0f1/references.bib b/buch/papers/0f1/references.bib index 2d3f874..ca1b558 100644 --- a/buch/papers/0f1/references.bib +++ b/buch/papers/0f1/references.bib @@ -10,7 +10,7 @@ date = {2022-07-07}, year = {2022}, month = {7}, - day = {19} + day = {7} } @online{0f1:wiki-airyFunktion, @@ -19,7 +19,7 @@ date = {2022-07-07}, year = {2022}, month = {7}, - day = {25} + day = {7} } @online{0f1:wiki-kettenbruch, @@ -37,7 +37,7 @@ date = {2022-07-07}, year = {2022}, month = {7}, - day = {25} + day = {7} } @online{0f1:wolfram-0f1, @@ -46,7 +46,7 @@ date = {2022-07-07}, year = {2022}, month = {7}, - day = {25} + day = {7} } @online{0f1:wiki-fraction, @@ -55,7 +55,16 @@ date = {2022-07-07}, year = {2022}, month = {7}, - day = {25} + day = {7} +} + +@online{0f1:code, + title = {Vollständiger C-Code}, + url ={https://github.com/AndreasFMueller/SeminarSpezielleFunktionen/tree/master/buch/papers/0f1/listings}, + date = {2022-07-07}, + year = {2022}, + month = {7}, + day = {7} } @book{0f1:SeminarNumerik, diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index f8d70a8..2ca9647 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -6,8 +6,7 @@ \section{Mathematischer Hintergrund \label{0f1:section:mathHintergrund}} \rhead{Mathematischer Hintergrund} -Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion} -und dem Seminarbuch Numerik \cite{0f1:kettenbrueche}, werden im nachfolgenden Abschnitt nochmals die Resultate +Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate beschrieben. \subsection{Hypergeometrische Funktion diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 3c2b5cd..9269961 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -6,7 +6,7 @@ \section{Umsetzung \label{0f1:section:teil2}} \rhead{Umsetzung} -Zur Umsetzung wurden drei verschiedene Ansätze gewählt. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Zur Umsetzung wurden drei verschiedene Ansätze gewählt.\cite{0f1:code} Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. \subsection{Potenzreihe @@ -35,20 +35,16 @@ Ein endlicher Kettenbruch ist ein Bruch der Form a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} \end{equation*} in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. - Die Kurzschreibweise für einen allgemeinen Kettenbruch ist \begin{equation*} a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots \end{equation*} und ist somit verknüpfbar mit der Potenzreihe. \cite{0f1:wiki-kettenbruch} - -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies\cite{0f1:wiki-fraction}: \begin{equation*} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation*} -\cite{0f1:wiki-fraction} - Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} @@ -57,13 +53,13 @@ Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. \cite{0f1:wolfram-0f1} -\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} +\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} \subsection{Rekursionsformel \label{0f1:subsection:rekursionsformel}} -Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche}) +Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche} -\subsubsection{Verkürzte Herleitung} +\subsubsection{Herleitung} Ein Näherungsbruch in der Form \begin{align*} \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}} @@ -93,7 +89,6 @@ Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: \end{pmatrix}. %\label{0f1:math:rekursionsformel:herleitung} \end{equation*} - Wendet man dies nun auf den Kettenbruch in der Form \begin{equation*} \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} @@ -124,7 +119,6 @@ an, ergibt sich folgende Matrixdarstellungen: a_k \end{pmatrix} \end{align*} - Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix \begin{equation} \label{0f1:math:matrix:ende:eq} @@ -142,7 +136,6 @@ Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix a_k \end{pmatrix}. \end{equation} - Und Schlussendlich kann der Näherungsbruch \[ \frac{Ak}{Bk} @@ -161,6 +154,7 @@ B_{-1} &= 1 & B_0 &= 1 \item Schritt $k\to k+1$: \[ \begin{aligned} +\label{0f1:math:loesung:eq} k &\rightarrow k + 1: & A_{k+1} &= A_{k-1} \cdot b_k + A_k \cdot a_k \\ @@ -175,4 +169,4 @@ Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. %Code -\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file +\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index 355e1b7..2855e26 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -3,17 +3,37 @@ % % (c) 2022 Fabian Dünki, Hochschule Rapperswil % -\section{Resultate +\section{Auswertung \label{0f1:section:teil3}} \rhead{Resultate} Im Verlauf des Seminares hat sich gezeigt, das ein einfacher mathematischer Algorithmus zu implementieren gar nicht so einfach ist. -So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen z in der Funktion $\mathstrut_0F_1(;c;z)$. -Ebenso wird, je grösser der Wert z wird $\mathstrut_0F_1(;c;z)$, desto mehr weichen die berechneten Resultate -von den Erwarteten ab. \cite{0f1:wolfram-0f1} +So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen $z$ in der Funktion $\mathstrut_0F_1(;c;z)$. +Ebenso kann festgestellt werden,dass je grösser der Wert $z$ in $\mathstrut_0F_1(;c;z)$ wird, desto mehr weichen die berechneten Resultate von den Erwarteten ab. \cite{0f1:wolfram-0f1} + +\subsection{Konvergenz +\label{0f1:subsection:konvergenz}} +Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass schon nach drei Iterationen ($k = 3$) die Funktionen schon genaue Resultate im Bereich von -2 bis 2 liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich sogar mit der Referenzfunktion $Ai(x)$ übereinstimmt. Da die Rekursionsformel \ref{0f1:listing:kettenbruchRekursion} eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. + +Erst wenn mehrere Durchläufe gemacht werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen, bezüglich Konvergenz überlegen. +Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach einschwingt. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von k bis zum Abbruch kleiner. +\ref{0f1:ausblick:plot:konvergenz:positiv} +Dieses Phänomen ist auf die Lösung der Rekursionsformel zurück zu führen.\ref{0f1:math:loesung:eq} Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. + +Ist $z$ negativ wie im Abbild \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu einer Gegenseitigen Kompensation von negativen und positiven Termen so bricht die Rekursionsformel hier zusammen mit der Potenzreihe ab. +Die ansteigende Differenz mit anschliessender, ist aufgrund der sich alternierenden Termen mit wechselnden Vorzeichens zu erklären. + +\subsection{Stabilität +\label{0f1:subsection:Stabilitaet}} +Verändert sich der Wert von z in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion \ref{0f1:listing:kettenbruchIterativ} \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das, bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden. + +Wohingegen die Potenzreihe \ref{0f1:listing:potenzreihe} das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät und irgendwann gibt es eine Bereichsüberschreitung von \verb+double+. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück. +Die Rekursionformel \ref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Stabilität zu gewährleisten, muss wie in \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden. + +Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Fakultät im Nenner, was zum Phänomen der Auslöschung führt.\cite{0f1:SeminarNumerik} Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind sowohl der Kettenbruch, als auch die Rekursionsformel bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da beide auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Das unterschiedliche Verhalten kann damit erklärt werden, dass beim Kettenbruch jeweils eine zusätzliche Division stattfindet. Diese Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} festzustellen. + + -\subsection{Auswertung -\label{0f1:subsection:auswertung}} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzAiry.pdf} @@ -38,19 +58,7 @@ von den Erwarteten ab. \cite{0f1:wolfram-0f1} \begin{figure} \centering \includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf} - \caption{Stabilität der 3 Algorithmen verglichen mit der GNU Scientific Library. + \caption{Stabilität der 3 Algorithmen verglichen mit der Referenz Funktion $Ai(x)$. \label{0f1:ausblick:plot:airy:stabilitaet}} \end{figure} -\begin{itemize} - \item Negative Zahlen sind sowohl für die Potenzreihe als auch für den Kettenbruch ein Problem. - \item Die Potenzreihe hat das Problem, je tiefer die Rekursionstiefe, desto mehr machen die Brüche ein Problem. Also der Nenner mit der Fakultät und dem Pochhammer Symbol. - \item Die Rekursionformel liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. -\end{itemize} - - -\subsection{Ausblick -\label{0f1:subsection:ausblick}} -Eine mögliche Lösung zum Problem ist \cite{0f1:SeminarNumerik} -{\color{red} TODO beschreiben Lösung} - -- cgit v1.2.1 From 166573a69495056cfeaf76624373a74326374170 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Wed, 27 Jul 2022 19:28:06 +0200 Subject: Reorganized Kapitel --- buch/papers/fm/00_modulation.tex | 28 ++++++++++++++++ buch/papers/fm/01_AM-FM.tex | 47 --------------------------- buch/papers/fm/01_AM.tex | 29 +++++++++++++++++ buch/papers/fm/02_FM.tex | 56 ++++++++++++++++++++++++++++++++ buch/papers/fm/02_frequenzyspectrum.tex | 57 --------------------------------- buch/papers/fm/Makefile | 5 +-- buch/papers/fm/Makefile.inc | 5 +-- buch/papers/fm/main.tex | 6 ++-- 8 files changed, 123 insertions(+), 110 deletions(-) create mode 100644 buch/papers/fm/00_modulation.tex delete mode 100644 buch/papers/fm/01_AM-FM.tex create mode 100644 buch/papers/fm/01_AM.tex create mode 100644 buch/papers/fm/02_FM.tex delete mode 100644 buch/papers/fm/02_frequenzyspectrum.tex (limited to 'buch') diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex new file mode 100644 index 0000000..dc99b40 --- /dev/null +++ b/buch/papers/fm/00_modulation.tex @@ -0,0 +1,28 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\subsection{Modulationsarten\label{fm:section:modulation}} + +Das sinusförmige Trägersignal hat die übliche Form: +\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). +Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. +Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), +steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. +\newblockpunct +Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. +Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. +Mathematisch wird dann daraus +\[ + \omega_i = \omega_c + \frac{d \varphi(t)}{dt} +\] +mit der Ableitung der Phase\cite{fm:NAT}. +Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, +die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): +\newline +\newline +To do: Bilder jeder Modulationsart + + + diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex deleted file mode 100644 index 163c792..0000000 --- a/buch/papers/fm/01_AM-FM.tex +++ /dev/null @@ -1,47 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{AM - FM\label{fm:section:teil0}} -\rhead{AM- FM} - -Das sinusförmige Trägersignal hat die übliche Form: -\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). -Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. -Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), -steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. -\newblockpunct -Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. -Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. -Mathematisch wird dann daraus -\[ - \omega_i = \omega_c + \frac{d \varphi(t)}{dt} -\] -mit der Ableitung der Phase\cite{fm:NAT}. -Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, -die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): -\newline -\newline -To do: Bilder jeder Modulationsart - -\subsection{AM - Amplitudenmodulation} -Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideeen in FM. -Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal -\[ - x_c(t) = A_c \cdot \cos(\omega_ct). -\] -Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt -und das Trägersignal nur zwei komplexe Schwingungen besitzt. -Dies sieht man besonders in der Eulerischen Formel -\[ - x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. -\] -Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. -Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. -\newline -\newline -TODO: -Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] -so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). -Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] diff --git a/buch/papers/fm/01_AM.tex b/buch/papers/fm/01_AM.tex new file mode 100644 index 0000000..921fcf2 --- /dev/null +++ b/buch/papers/fm/01_AM.tex @@ -0,0 +1,29 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Amplitudenmodulation\label{fm:section:teil0}} +\rhead{AM} + +Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideen in FM. +Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal +\[ + x_c(t) = A_c \cdot \cos(\omega_ct). +\] +Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt +und das Trägersignal nur zwei komplexe Schwingungen besitzt. +Dies sieht man besonders in der Eulerischen Formel +\[ + x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. +\] +Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. +Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. +\newline +\newline +TODO: +Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] +so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). +Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] + +\subsection{Frequenzspektrum} \ No newline at end of file diff --git a/buch/papers/fm/02_FM.tex b/buch/papers/fm/02_FM.tex new file mode 100644 index 0000000..fedfaaa --- /dev/null +++ b/buch/papers/fm/02_FM.tex @@ -0,0 +1,56 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{FM +\label{fm:section:teil1}} +\rhead{FM} +\subsection{Frequenzspektrum} +TODO +Hier Beschreiben ich FM und FM im Frequenzspektrum. +%Sed ut perspiciatis unde omnis iste natus error sit voluptatem +%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +%quae ab illo inventore veritatis et quasi architecto beatae vitae +%dicta sunt explicabo. +%Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit +%aut fugit, sed quia consequuntur magni dolores eos qui ratione +%voluptatem sequi nesciunt +%\begin{equation} +%\int_a^b x^2\, dx +%= +%\left[ \frac13 x^3 \right]_a^b +%= +%\frac{b^3-a^3}3. +%\label{fm:equation1} +%\end{equation} +%Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, +%consectetur, adipisci velit, sed quia non numquam eius modi tempora +%incidunt ut labore et dolore magnam aliquam quaerat voluptatem. +% +%Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis +%suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? +%Quis autem vel eum iure reprehenderit qui in ea voluptate velit +%esse quam nihil molestiae consequatur, vel illum qui dolorem eum +%fugiat quo voluptas nulla pariatur? +% +%\subsection{De finibus bonorum et malorum +%\label{fm:subsection:finibus}} +%At vero eos et accusamus et iusto odio dignissimos ducimus qui +%blanditiis praesentium voluptatum deleniti atque corrupti quos +%dolores et quas molestias excepturi sint occaecati cupiditate non +%provident, similique sunt in culpa qui officia deserunt mollitia +%animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. +% +%Et harum quidem rerum facilis est et expedita distinctio +%\ref{fm:section:loesung}. +%Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil +%impedit quo minus id quod maxime placeat facere possimus, omnis +%voluptas assumenda est, omnis dolor repellendus +%\ref{fm:section:folgerung}. +%Temporibus autem quibusdam et aut officiis debitis aut rerum +%necessitatibus saepe eveniet ut et voluptates repudiandae sint et +%molestiae non recusandae. +%Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis +%voluptatibus maiores alias consequatur aut perferendis doloribus +%asperiores repellat. diff --git a/buch/papers/fm/02_frequenzyspectrum.tex b/buch/papers/fm/02_frequenzyspectrum.tex deleted file mode 100644 index 80e1c65..0000000 --- a/buch/papers/fm/02_frequenzyspectrum.tex +++ /dev/null @@ -1,57 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{AM-FM im Frequenzspektrum -\label{fm:section:teil1}} -\rhead{Problemstellung} - -TODO -Hier Beschreiben ich das Frequenzspektrum und wie AM und FM aussehen und generiert werden. -Somit auch die Herleitung des Frequenzspektrum. -%Sed ut perspiciatis unde omnis iste natus error sit voluptatem -%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -%quae ab illo inventore veritatis et quasi architecto beatae vitae -%dicta sunt explicabo. -%Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -%aut fugit, sed quia consequuntur magni dolores eos qui ratione -%voluptatem sequi nesciunt -%\begin{equation} -%\int_a^b x^2\, dx -%= -%\left[ \frac13 x^3 \right]_a^b -%= -%\frac{b^3-a^3}3. -%\label{fm:equation1} -%\end{equation} -%Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -%consectetur, adipisci velit, sed quia non numquam eius modi tempora -%incidunt ut labore et dolore magnam aliquam quaerat voluptatem. -% -%Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -%suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -%Quis autem vel eum iure reprehenderit qui in ea voluptate velit -%esse quam nihil molestiae consequatur, vel illum qui dolorem eum -%fugiat quo voluptas nulla pariatur? -% -%\subsection{De finibus bonorum et malorum -%\label{fm:subsection:finibus}} -%At vero eos et accusamus et iusto odio dignissimos ducimus qui -%blanditiis praesentium voluptatum deleniti atque corrupti quos -%dolores et quas molestias excepturi sint occaecati cupiditate non -%provident, similique sunt in culpa qui officia deserunt mollitia -%animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. -% -%Et harum quidem rerum facilis est et expedita distinctio -%\ref{fm:section:loesung}. -%Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -%impedit quo minus id quod maxime placeat facere possimus, omnis -%voluptas assumenda est, omnis dolor repellendus -%\ref{fm:section:folgerung}. -%Temporibus autem quibusdam et aut officiis debitis aut rerum -%necessitatibus saepe eveniet ut et voluptates repudiandae sint et -%molestiae non recusandae. -%Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -%voluptatibus maiores alias consequatur aut perferendis doloribus -%asperiores repellat. diff --git a/buch/papers/fm/Makefile b/buch/papers/fm/Makefile index aee954f..f30c4a9 100644 --- a/buch/papers/fm/Makefile +++ b/buch/papers/fm/Makefile @@ -5,8 +5,9 @@ # SOURCES := \ - 01_AM-FM.tex \ - 02_frequenzyspectrum.tex \ + 00_modulation.tex \ + 01_AM.tex \ + 02_FM.tex \ 03_bessel.tex \ 04_fazit.tex \ main.tex diff --git a/buch/papers/fm/Makefile.inc b/buch/papers/fm/Makefile.inc index e5cd9f6..b686b98 100644 --- a/buch/papers/fm/Makefile.inc +++ b/buch/papers/fm/Makefile.inc @@ -6,8 +6,9 @@ dependencies-fm = \ papers/fm/packages.tex \ papers/fm/main.tex \ - papers/fm/01_AM-FM.tex \ - papers/fm/02_frequenzyspectrum.tex \ + papers/fm/01_modulation.tex \ + papers/fm/01_AM.tex \ + papers/fm/02_FM.tex \ papers/fm/03_bessel.tex \ papers/fm/04_fazit.tex \ papers/fm/references.bib diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex index 6af3386..731f56f 100644 --- a/buch/papers/fm/main.tex +++ b/buch/papers/fm/main.tex @@ -29,8 +29,10 @@ Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzsp Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt. Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT} -\input{papers/fm/01_AM-FM.tex} -\input{papers/fm/02_frequenzyspectrum.tex} + +\input{papers/fm/00_modulation.tex} +\input{papers/fm/01_AM.tex} +\input{papers/fm/02_FM.tex} \input{papers/fm/03_bessel.tex} \input{papers/fm/04_fazit.tex} -- cgit v1.2.1 From 8210e25cc561db3dea0464019dea50eb5dc482ed Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Wed, 27 Jul 2022 21:39:05 +0200 Subject: adjusted errors in teil1 and improved some sentences and structure --- buch/papers/lambertw/Bilder/pursuerDGL2.png | Bin 0 -> 48606 bytes buch/papers/lambertw/teil0.tex | 2 +- buch/papers/lambertw/teil1.tex | 97 ++++++++++++++++------------ 3 files changed, 58 insertions(+), 41 deletions(-) create mode 100644 buch/papers/lambertw/Bilder/pursuerDGL2.png (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/pursuerDGL2.png b/buch/papers/lambertw/Bilder/pursuerDGL2.png new file mode 100644 index 0000000..f41dffe Binary files /dev/null and b/buch/papers/lambertw/Bilder/pursuerDGL2.png differ diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index f0589e5..5007867 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -48,7 +48,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} + \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2e75a19..a330838 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -10,16 +10,35 @@ Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird. -Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel betrachtet. +Diese beiden Fragen werden in diesem Kapitel behandelt und am Beispiel aus \ref{lambertw:section:teil4} betrachtet. +Das Beispiel wird bei dieser Betrachtung noch etwas erweitert indem alle Punkte auf der gesamtem $xy$-Ebene als Startwerte zugelassen werden. + +Nun gilt es zu definieren, wann das Ziel erreicht wird. +Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. +Somit gilt es + +\begin{equation*} + z(t_1)=v(t_1) +\end{equation*} +% +zu lösen. +Die Parametrisierung von $z(t)$ ist im Beispiel definiert als +\begin{equation} + z(t) + = + \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} +\end{equation} +% +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. + +\subsection{Anfangsbedingung im \RN{1}-Quadranten} % -%\subsection{Ziel erreichen (überarbeiten) -%\label{lambertw:subsection:ZielErreichen}} -Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen. -Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Startbedingung im ersten Quadranten verwendet, welche +$ x_0$ $\boldsymbol{x}$ dd +Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche \begin{align*} x\left(t\right) &= - x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\ + x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp(\chi-\frac{4t}{r_0-y_0})\right)} \\ y(t) &= \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ @@ -34,34 +53,16 @@ Dazu werden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} mit Star \sqrt{x_0^2+y_0^2} \end{align*} % -sind. -Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. -Somit gilt es - -\begin{equation*} - \vec{Z}(t_1)=\vec{V}(t_1) -\end{equation*} -% -zu lösen. -Aus dem vorangegangenem Beispiel, ist die Parametrisierung des Verfolgers und des Ziels bekannt. -Das Ziel wird parametrisiert durch - -\begin{equation} - \vec{Z}(t) - = - \left( \begin{array}{c} 0 \\ t \end{array} \right) -\end{equation} -% -und der Verfolger durch - +Der Folger ist durch \begin{equation} - \vec{V}(t) + v(t) = \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right) \text{.} \end{equation} % - Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen +parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. +Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen \begin{align*} 0 @@ -107,27 +108,41 @@ Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingu Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. -Aus der Symmetrie des Problems an der $y$-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen. -Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht. -Wenn die Wertemenge der Anfangsbedingung um die positive $y$-Achse erweitert wird, kann das Ziel wiederum erreicht werden. -Sobald der Verfolger auf der positiven $y$-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet. -Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird. -Die Verfolgungskurve kann in diesem Fall mit + +\subsection{Anfangsbedingung $y_0<0$} +Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. +Dies kann veranschaulicht werden anhand + +\begin{equation} + v(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) + \leq + z(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) + = + 1\text{.} +\end{equation} +% +Da der $y$-Anteil der Geschwindigkeit des Ziels grösser-gleich der des Verfolgers ist, können die $y$-Koordinaten nie übereinstimmen. + +\subsection{Anfangsbedingung auf positiven $y$-Achse} +Wenn der Verfolger auf der positiven $y$-Achse startet, befindet er sich direkt auf der Fluchtgeraden des Ziels. +Dies führt dazu, dass der Verfolger und das Ziel sich direkt aufeinander zu bewegen, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt. +Die Folge ist, dass das Ziel zwingend erreicht wird. +Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit \begin{equation} - \vec{V}(t) + v(t) = \left( \begin{array}{c} 0 \\ y_0-t \end{array} \right) \end{equation} % parametrisiert werden. Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden. -Daraus folgt +Woraus folgt \begin{equation} 0 = - |\vec{V}(t_1)-\vec{Z}(t_1)| + |v(t_1)-z(t_1)| = y_0-2t_1 \end{equation} @@ -141,7 +156,9 @@ Daraus folgt \end{equation} % führt. -Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Somit wird das Ziel immer erreicht bei $t_1$, wenn der Verfolger auf der positiven $y$-Achse startet. +\subsection{Fazit} +Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen in den Quadranten \RN{1} und \RN{2} zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. @@ -150,14 +167,14 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit \begin{equation} - |\vec{V}-\vec{Z}|0 + |v-z| 0 + |v-z|^2 Date: Wed, 27 Jul 2022 22:00:28 +0200 Subject: comment out bessel.png --- buch/papers/fm/03_bessel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index 7a0e20e..edb932b 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -117,7 +117,7 @@ Somit ist \ref{fm:eq:proof} bewiesen. Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering - \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png} +% \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png} \caption{Bessle Funktion \(J_{k}(\beta)\)} \label{fig:bessel} \end{figure} -- cgit v1.2.1 From 1666b63c2f4d5e8392c40ab6f6c8e9e71f20f4a3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 28 Jul 2022 07:14:37 +0200 Subject: Resolve error in orthogonality proof --- buch/papers/laguerre/eigenschaften.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 6ba9135..1411f7c 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -97,38 +97,38 @@ Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung \begin{align*} x \frac{dp}{dx} = --(\nu + 1 - x) p +(\nu + 1 - x) p \end{align*} erfüllen muss. Durch Separation erhalten wir dann \begin{align*} \int \frac{dp}{p} & = --\int \frac{\nu + 1 - x}{x} \, dx +\int \frac{\nu + 1 - x}{x} \, dx = --\int \frac{\nu + 1}{x} \, dx - \int 1\, dx +\int \frac{\nu + 1}{x} \, dx - \int 1\, dx \\ \log p & = --(\nu + 1)\log x - x + c +(\nu + 1)\log x - x + c \\ p(x) & = --C x^{\nu + 1} e^{-x} +C x^{\nu + 1} e^{-x} . \end{align*} Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich \begin{align*} \frac{C}{w(x)} \left( -x^{\nu+1} e^{-x} \frac{d^2}{dx^2} + +-x^{\nu+1} e^{-x} \frac{d^2}{dx^2} - (\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx} \right) = x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. \end{align*} Mittels Koeffizientenvergleich kann nun abgelesen werden, -dass $w(x) = x^\nu e^{-x}$ und $C=1$ mit $\nu > -1$. +dass $w(x) = x^\nu e^{-x}$ und $C=-1$ mit $\nu \geq 0$. Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den Definitionsbereich $(0, \infty)$. -- cgit v1.2.1 From 8daaabab904020da2111d6bee3ce26db3b4b6df0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 28 Jul 2022 07:30:31 +0200 Subject: Redescribe why definition range of Laguerre is (0,\infty) --- buch/papers/laguerre/eigenschaften.tex | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 1411f7c..b007c2d 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -128,10 +128,11 @@ Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. \end{align*} Mittels Koeffizientenvergleich kann nun abgelesen werden, -dass $w(x) = x^\nu e^{-x}$ und $C=-1$ mit $\nu \geq 0$. -Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, -deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den -Definitionsbereich $(0, \infty)$. +dass $w(x) = x^\nu e^{-x}$ und $C=-1$. %mit $\nu \geq 0$. +Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an. +Ausserdem hat die Gewichtsfunktion $w(x)$ für negative $\nu$ einen Pol bei $x=0$, +daher ist die Laguerre-Gewichtsfunktion nur für den +Definitionsbereich $(0, \infty)$ geeignet. \subsubsection{Randbedingungen} Bleibt nur noch sicherzustellen, dass die Randbedingungen -- cgit v1.2.1 From b4c0297a9cf2e2bc38fcb9110f7b5c89ae0fe9fa Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Thu, 28 Jul 2022 17:49:24 +0200 Subject: Kapitel bessel unterteilt --- buch/papers/fm/03_bessel.tex | 87 ++++++++++++++++--------- buch/papers/fm/Python animation/Bessel-FM.ipynb | 26 ++++---- 2 files changed, 70 insertions(+), 43 deletions(-) (limited to 'buch') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index edb932b..bf485b1 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -13,14 +13,18 @@ Somit haben wir unser \(x_c\) welches \cos(\omega_c t+\beta\sin(\omega_mt)) \] ist. + \subsection{Herleitung} -Das Ziel ist es Unser moduliertes Signal mit der Besselfunktion so auszudrücken: +Das Ziel ist es unser moduliertes Signal mit der Besselfunktion so auszudrücken: \begin{align} + x_c(t) + = \cos(\omega_ct+\beta\sin(\omega_mt)) &= \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) \label{fm:eq:proof} \end{align} +\subsubsection{Hilfsmittel} Doch dazu brauchen wir die Hilfe der Additionsthoerme \begin{align} \cos(A + B) @@ -54,70 +58,89 @@ und die drei Besselfunktions indentitäten, \label{fm:eq:besselid3} \end{align} welche man im Kapitel (ref), ref, ref findet. -\newline -Mit dem \refname{fm:eq:addth1} wird aus dem modulierten Signal -\[ -\cos(\omega_c t + \beta\sin(\omega_mt)) -\] -das Signal + +\subsubsection{Anwenden des Additionstheorem} +Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal \[ + x_c(t) + = + \cos(\omega_c t + \beta\sin(\omega_mt)) + = \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)). \label{fm:eq:start} \] -Zu beginn wird der erste Teil +\subsubsection{Cos-Teil} +Zu beginn wird der Cos-Teil \[ \cos(\omega_c)\cos(\beta\sin(\omega_mt)) \] -mit hilfe der Bessel indentität \ref{fm:eq:besselid1} zum -\[ - J_0(\beta)\cos(\omega_c) + \sum_{k=1}^\infty J_{2k}(\beta) 2\cos(\omega_c t)\cos(2k\omega_m t) -\] -\newline -TODO 2 und \(\cos( )\) in lime. -wobei mit dem \colorbox{lime}{Additionstheorem} \ref{fm:eq:addth2} zum +mit hilfe der Bessel indentität \eqref{fm:eq:besselid1} zum +\begin{align*} + \cos(\omega_c t) \cdot [\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\omega_m t)\, ] + &=\\ + J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) + \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{Additionstheorem} +\end{align*} +wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum \[ - J_0(\beta)\dot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} + J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} \] wird. Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term \[ - \sum_{n\, gerade} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t), \label{fm:eq:gerade} \] -\newline -nun zum zweiten Teil des Term \ref{fm:eq:start} +dabei gehen nun die Terme von \(-\infty \to \infty\), dabei bleibt n Ganzzahlig. + +\subsubsection{Sin-Teil} +Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ \sin(\omega_c)\sin(\beta\sin(\omega_m t)). \] -Dieser wird mit der \ref{fm:eq:besselid2} Bessel indentität zu +Dieser wird mit der \eqref{fm:eq:besselid2} Bessel indentität zu +\begin{align*} + \sin(\omega_c t) \cdot [J_0(\beta) \sin(\omega_c t) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\omega_m t)] + &=\\ + J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{Additionstheorem}. +\end{align*} +Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), +somit wird daraus \[ - J_0(\beta) \dot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t). -\] -Auch hier wird ein Additionstheorem \ref{fm:eq:addth3} gebraucht um aus dem Sumanden diesen Term -\[ - J_0(\beta) \dot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{Teil1} - \cos((\omega_c+(2k+1)\omega_m) t) \} -\]zu gewinnen. + J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{neg.Teil} - \cos((\omega_c+(2k+1)\omega_m) t) \} +\]dieser Term. Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. -Zusätzlich dabei noch die letzte Bessel indentität \ref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1 J_n(\beta)\). -Somit wird Teil1 zum negativen Term und die Summe vereinfacht sich zu +Zusätzlich dabei noch die letzte Bessel indentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). +Somit wird negTeil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\)und die Summe vereinfacht sich zu \[ - \sum_{n\, ungerade} -1 J_{n}(\beta) \cos((\omega_c + n\omega_m) t). + \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} \] Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. -Beide Teile \ref{fm:eq:gerade} Gerade und \ref{fm:eq:ungerade} Ungerade ergeben zusammen + +\subsubsection{Summe Zusammenführen} +Beide Teile \eqref{fm:eq:gerade} Gerade +\[ + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\]und \eqref{fm:eq:ungerade} Ungerade +\[ + \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\] +ergeben zusammen \[ \cos(\omega_ct+\beta\sin(\omega_mt)) = \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t). \] -Somit ist \ref{fm:eq:proof} bewiesen. +Somit ist \eqref{fm:eq:proof} bewiesen. \newpage + +%---------------------------------------------------------------------------- \subsection{Bessel und Frequenzspektrum} Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering -% \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png} +% \input{./PyPython animation/bessel.pgf} \caption{Bessle Funktion \(J_{k}(\beta)\)} \label{fig:bessel} \end{figure} diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb index bfbb83d..6f099a7 100644 --- a/buch/papers/fm/Python animation/Bessel-FM.ipynb +++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 117, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -11,6 +11,9 @@ "from scipy.fft import fft, ifft, fftfreq\n", "import scipy.special as sc\n", "import scipy.fftpack\n", + "import matplotlib as mpl\n", + "# Use the pgf backend (must be set before pyplot imported)\n", + "#mpl.use('pgf')\n", "import matplotlib.pyplot as plt\n", "from matplotlib.widgets import Slider\n", "def fm(beta):\n", @@ -94,12 +97,12 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACeZUlEQVR4nOyddXhTVxvAfyeppO7uhQrubsVhDBtDNpiyMbYxd3dhLsyYMmBjsDHcpbgXK9DSUkrd3SPn+yOwMaxpm7bs2/09T582ybnnvLlN7nvPq0JKiYKCgoKCQn1QNbcACgoKCgr/XhQloqCgoKBQbxQloqCgoKBQbxQloqCgoKBQbxQloqCgoKBQbyyaW4DGwNnZWbZs2bK5xbguKC8vx87OrrnFuC5QzsXfKOfib5Rz8TeHDh3Kk1J61OWY/0sl4uXlxcGDB5tbjOuC6OhooqKimluM6wLlXPyNci7+RjkXfyOEOFfXYxRzloKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvVGUiIKCgoJCvWl2JSKE+EEIkSOEiL3K60II8ZkQIlEIcUwI0bmpZVRQUFBQuDLNrkSAn4AR13h9JBB2/mcG8FUTyKSgoKCgYALNnicipdwuhAi+xpCxwM/SWLN+rxDCWQjhI6XMvNoBuko4vCEFjb0lzl62uPnZYaVp9reqoKCg8H/Hv+HK6gekXvQ47fxz/1AiQogZGHcqBLiHs3tp4kUvgq0b2PsInILByk40tszXDWVlZURHRze3GNcFyrn4G+Vc/I1yLhrGv0GJmISUci4wFyAiIkLe+3F/KkpqKMquIOtsMamnCsmJLSEnFgJaudBlRBB+4S7NLHXjo2Tj/o1yLv5GORd/o5yLhvFvUCLpQMBFj/3PP3dNrGwssLKxwNnLluD27vQcCyX5lcTtyeLEjnSWfXQYvwgX+kxoiUegQ6MJr6CgoPD/zPXgWK+NFcDt56O0egLF1/KHXAtHNxu63xjCbW/0ou/EMAoyyljyzgF2/p6AtlpvXqkVFBQU/gM0+05ECPErEAW4CyHSgFcASwAp5dfAGuAGIBGoAO5q6JoWVmo6DA4goqc3e5ad4eimVM4dz2fYPW3wCFB2JQoKCgqm0uxKREp5Sy2vS+DBxlhbY2fJwKmRhHf1YuMPJ/hj9iH6TQ6jTT+/xlhOQUFB4f+Of4M5q9Hxi3Bh8ovd8Qt3JnphPDuXJGAwyOYWS0FBQeG6R1Ei57FxsGLUrA60H+TP0c2prPvmODqt4idRUFBQuBaKErkIlUrQb1I4/SaHc/ZYHmu+PIa2RlEkCgoKCldDUSJXoP1Afwbf3orUuEJWf3FUidxSUFBQuAqKErkKkb18GHJnazJOF7H6y2PotYbmFklBQUHhukNRItcgooc3g+9oRXp8IZt+OolUnO0KCgoK/6DZQ3yvdyJ6+lBRomX30kRsHK3oNykMIf47tbcUFBQUroWiREyg07BAKkqqObIpFSd3GzoMDqj9IAUFBYX/AIo5y0R639SSkA7u7PojkdRTBc0tjoKCgsJ1gaJETESoBEPuao2Lty3rv42lKKeiuUVSUFBQaHYUJVIHrDQW3HB/exCw9uvj6JQcEgUFhf84ihKpI04eNgy7uw0FGeXsWJLQ3OIoKCgoNCuKEqkHgW3c6Dw8iJM7Mkg4kN3c4igoKCg0G4oSqSfdx4TgHerI1oVxin9EQUHhP4uiROqJWq1i6PQ2qFSCjd+fwKBXMtoVFBT+eyhKpAE4utkQNTWSnHOlxKxPaW5xFBQUFJqcZlciQogRQoh4IUSiEOLZK7weKITYKoQ4LIQ4JoS4oTnkvBotu3jSsqsnB1afJS+ttLnFUVBQUGhSmlWJCCHUwBfASKA1cIsQovUlw14EFkspOwFTgC+bVsraGTAlAms7Szb9eAq9TjFrKSgo/Hdo7p1IdyBRSpkkpawBFgFjLxkjAcfzfzsBGU0on0lo7C0ZOC2S/PQyDq5Jbm5xFBQUFJqM5q6d5QekXvQ4DehxyZhXgQ1CiIcAO2DIlSYSQswAZgB4eHgQHR1tbllrxSkYDq5NplCeQ+N0fRRpLCsra5ZzcT2inIu/Uc7F3yjnomE0txIxhVuAn6SUHwohegHzhRBtpZT/sBtJKecCcwEiIiJkVFRUkwta2bWGX17ZR3m8LcOf7IxQNb8iiY6OpjnOxfWIci7+RjkXf6Oci4bR3OasdODikrj+55+7mOnAYgAp5R5AA7g3iXR1xMbeij43tyQrqZiTu647q5uCgoKC2WluJXIACBNChAghrDA6zldcMiYFGAwghGiFUYnkNqmUdSCipzd+4c7s+fMM5cXVzS2OgoKCQqPSrEpESqkDZgHrgVMYo7BOCCFeF0KMOT/sCeBeIcRR4FfgTinlddtiUAjBgFsjcI5cyO4tzzS3OAoKCgqNSrP7RKSUa4A1lzz38kV/nwT6NLVcDcHF2w73kBxK86tIiy/EP8KluUVSUFBQaBSa25z1f4u9iwa1pYqdi08rJVEUFBT+b1GUSCMhVAJHdxvy08s5sUNxsisoKPx/oiiRRsTGwRK/CGf2rUyiqlzb3OIoKCgomB1FiTQqgr4Tw6mp0LF/5dnmFkZBQUHB7ChKpJFx97enTX8/Yrenk59e1tziKCgoKJgVRYk0AT1Gh2KlUbNTaaeroKDwf4aiRJoAjb0l3UaFkBZXSMrJ/OYWR0FBQcFsKEqkiWjb3w8HNw17/jyDNFy3uZIKCgoKdUJRIk2E2lJFz7Gh5KWWcfpAdnOLo6CgoGAWFCXShIR19cIj0IF9K5LQa5UERAUFhX8/ihJpQoRK0Gt8C0rzqzi+La25xVFQUFBoMIoSaWICWrkS0MqFg2uTqa5QEhAVFBT+3ShKpBnoNb4l1eU6YtanNLcoCgoKCg1CUSLNgEegA2HdvDi2NZWKkprmFkdBQUGh3ihKpJnofmMIep0kZt255hZFQUFBod4oSqSZcPayJaKnN7Hb0ykrVDogKigo/DtpdiUihBghhIgXQiQKIZ69yphJQoiTQogTQohfmlrGxqLbDcFIg+TQuuTmFkVBQUGhXjSrEhFCqIEvgJFAa+AWIUTrS8aEAc8BfaSUbYBHm1rOxsLR3YbIPj6c3JlBSX5lc4ujoKCgUGeaeyfSHUiUUiZJKWuARcDYS8bcC3whpSwEkFLmNLGMjUrXkcEg4NCa5OYWRUFBQaHONHePdT8g9aLHaUCPS8aEAwghdgFq4FUp5bpLJxJCzABmAHh4eBAdHd0Y8pqM3lAEYJIcziGSk7sz0TpnYeUgzCpHWVlZs5+L6wXlXPyNci7+RjkXDaO5lYgpWABhQBTgD2wXQrSTUhZdPEhKOReYCxARESGjoqKaVspLOBQzF4AunWuXo7xTNfNf3IMq35Oo0a1rHX8BKSXlhQWUFxehq65GGgxY29mhsXfA3sUVoVIRHR1Nc5+L6wXlXPyNci7+RjkXDaO5lUg6EHDRY//zz11MGrBPSqkFzgohTmNUKgeaRsTGx87JmrYD/Di2OZWuI4Nx9rK94jhtTTXJR2NIO3Gc9PiT5Kenoqu+cmSXhbU1bn4BGGwdSLTTENi2PVY2V55XQUFBob40txI5AIQJIUIwKo8pwK2XjFkG3AL8KIRwx2jeSmpKIZuCzsOCOLEtnUNrkxl859+7ESklGfGnOLpxDYkH96GtqsTC0gqfsAjaDx6Bs7cP9i6uWFprEEJFdWU5lSXFFGSkk5eSTFrccZbHHsbCypoWXXvQNmoIQe07IYR5zWYKCgr/TZpViUgpdUKIWcB6jP6OH6SUJ4QQrwMHpZQrzr82TAhxEtADT0kp/+86O9k6WtG6ny/Ho9PpdmMIDm4azhzaz76li8g6k4C1nR2RvfsR0as/fq3aYGFpadK8WzZvIszbk/g9O4nfs4P43dtxDwii25gJRPYdgEqlbuR3pqCg8P9Mc+9EkFKuAdZc8tzLF/0tgcfP//xf02loELHb09m+aAfleVtIOxWLs7cPg6c/QJv+g7DUaOo8p0ptQUCb9gS0aU/UHfcSv3s7B1cuZe0XH3Fg5VIGTLub4A6dG+HdKCgo/BdodiWi8DfWNhJ7h/3E79iBjYMTg6c/QLtBw1BbmOffZGFpSZsBg2ndfxCn9+5ixy8/8sfbLxPapTtD73kQe1c3s6yjoKDw30FRItcJaXEnWPflxxRnZ2Gh6USrqIl0HNa+UdYSQhDRqy8tuvYgZs1y9iz5hZ+efICBd8ygdf9Bir9EQUHBZJo72fA/j5SSgyuXsvi15wCY9Mo7tB18K/H7CigvbtyaWhaWlnQfezO3v/857gFBrPvyY1Z/9j41VUr2vIKCgmkoSqQZqamqZNUns9m24AdadOnBbe9+RkDrdnQZEYRBZ+DIptTaJzEDLj5+TH7lXfpOuZ3Te3ay8LnHyEtVqgsrKCjUjqJEmonyokIWv/Y8Cft203/qXYx54nmsbY15HM6etoR18yJ2ezqVZU3Tb0SoVPQYP4mbX3yTqvIyfnnxSZKPHGqStRUUFP69KEqkGSjMTOfXl58iPy2FsU+9QLcxEy7zQ3QZEYyuRs/RzU2zG7lAYNv2THv3E5y9vFk6+zWObV7fpOsrKCj8u1CUSBOTn5bColeeoaaigkkvv02LLpeWCjPi6mtHi04eHN+a1uS92B1c3Zny2myC2ndi49zP2fXbfIyR1goKCgr/RInOakLy01JY/PrzCCGY9Nps3PwCrjm+y8hgzsTkcjw6na43BDeNkOexsrFl3FMvsem7L9m79De01VUMuO2eOkVuFRcXkpOZTkVpGdUVVeh1OtQWFlhYWWLn5IibpycuLu6o1UrCo4LCvxVFiTQR/1Agr7yDq69/rcd4BDgQ2MaNY1tT6TgkAAurpr3Yqi0sGHbfQ1haW3No9XL0Oh2D7rwPobp8A5udncGZYyeoOFeAJkeFe7kj9npbbAAb42znfwAMQBFVFJEsYsm2L6TCVYd1kBMtO7XFx+faylVBQeH6QVEiTUBxTjZL3nihTgrkAl1GBPLnh4c5tTuTdlGmH2cuhBAMvHMGaktLDq5cijQYGDz9AYQQnDl9iuT9J7BNFgSUeRKIhmrhTqZDAWmBhahdK7Fxc0Bjb4e1nQ1qtQV6vQ5djZaKohIqC8vQFlRinSfwT3PB/pwt+u3JHLA5RHGojtA+7QgNjWjy96ygoGA6ihJpZCpKivnj7ZfRaWuY8tp7dVIgAD4tnfEOdeTwxhTa9PNFpW56N5YQgv5T70KoVBxZsQJdnsBR50lgmRdheJDimEN8x1x827WgRXgkLSyt67yGXq/nTEIcaccTsDhTQ/gJL1QnctjtcBzZ1YFuUVFYWdd9XgUFhcZFUSKNiDQYWDb7dUrzcrn5xTdxDwiq8xxCCDoPD2LNV8dJPJRDeHfvRpC0dnJyMqmusmVU0ANYF1mTo8oloVsB7Qb0pK/7gAbPr1arCY9sQ3hkG+N62Zmc2LEfh1gLvLfacnrHZrLbVtFz9FDs7BwavJ6CgoJ5UJRIYyEl+ekpZJ2pYPQTz+EXaXqzqUsJbueOi48dMetTCOvm1aRlSbIy04hdtpMWKV6ESy8SfTIor0gh4egOhg5+CHd3r0ZZ19PLB8+bx6Ifr+fIvt2U7Swl4ogvZ2N3kNtZS+9Rw7G2rntBSgUFBfNSJyUihLADqqSU+kaS5/+G4txsqkpLibrjOcK69WrQXEIl6DwskM3zTpFyooCgto1fKLGkpIj9f24kJM6VFnhxJjibiBHdGRw0AL1Oy7L3K9j07RfYu7oS2qlbo8mhVqvp0rsf9IbYI4coXJdJ2H4fYo+uR4xwp3OvPo22toKCQu1cU4kIIVQYG0VNBboB1YC1ECIPWA18I6VMbHQp/2XE79lBaV4uds4udBpxo1nmDOvmxb4VScSsP9eoSsRgMLBr7TrcdquI1HsT75tOxE09GeI/8K8xagtLxjz2HIteeYZVn7zHLa+/h0dQSKPJdIG2HbtgaN+Jw3t3wwbwXG5gy75FtLmlP15evlc9rlqn40hmDuuKK1i1bR/ZNTpy9QZKJGgRaBFIwAqJFRI7wNNChY+1JS3sbenu7U57Lw8slFBkBYXLqG0nshXYBDwHxEopDQBCCFdgIDBbCPGnlHJB44r57yEnOYl1X31C+FhbnH18zWZ6Uluo6DgkkJ1LEsg8U4xPCyezzHsxSYnxpC85SkixD2edMlGN9WVw635XHGup0TDumZf45fnH+XP269z61ofYu7iaXaZLUalUdOndl+ouVez8YzXBxz0o/Ow4Z6JO0HvoUADSi0tZk3SO7XnFnNBJsq1s0KvU4OgLBrBEhSNaHNBjg8QJYyJlDVCNIAMVp4QVWr0FFOugOAvLk2n4ayvporFgsLcHw1sEYmtl1ejvV0Hheqc2JTLkfG/zfyClLAD+AP4QQpjWYu8qCCFGAJ9iTCL4Tkr57lXGTQB+B7pJKQ82ZM3GorKslOUfvInGzh63gECMGznz0bqvLwfWnCVm/TlGPWC+MvE11dVsX7ySFifd8FA5cbZfKb1HTKg1CdDB1Z1xT7/MolefYdl7bzD51XewbCI/hbW1hsG3TuBcciJZCw9TuteFOzOXcdzdjXQbo+NdLTQEUcEwWUUbWzts8rKYMrA/bram9ZrPKSvnSHYuh3ILiC2t4hSC36WG37PKsEo7Skd9FWO9XZnUqiUOSuSYwn+UayqRixWIEKIz0BeQwC4pZcylY+qKEEINfAEMBdKAA0KIFVLKk5eMcwAeAfbVd63GRkrJ+q8+oayggCmvzyaj5DWzr2Fprab9wAAOrDpLfkYZbr72DZ4zKSme7F9iiSzzIt4vnQ63DCSyDs5yr9CWjHroKZZ/+BYbvvmcGx56sskc/ylFxXydWsCazr5ka+wAd7xLixlVkceYliEMCQnA7qLdQnR0tMkKBMDT3o5h9nYMaxH813NZpWWsTExmbU4ph9TW7C/U8sa2o0SptNwfGUIP/6ub1RQU/h8xybEuhHgZmAgsPf/Uj0KIJVLKNxu4fncgUUqZdH6dRcBY4OQl494AZgNPNXC9RuPw2hWcObiPqNvvxadlBBkxjbNO+yh/Dm84x5ENKQy+s/4RXwaDgR0rVuO/zxZnlR3pw7UMHjilXnO17NaTPhOnsmvxAnzCIug8cky95aoNg8HA4lMJ/JCSQ6yVHQaVFX7UcI+lll6qagK2lGGn05AhTmMX0cLs63s72HNvp7bcC1Rpdfwel8CCtFI2qO1Yl5BD2PEzPBrkzfjIFqiukNl/KdU6PakFleSWVlNUUUNRpZbyah16g8QgQSKxs7LA3toCe40FHg7W+Dnb4GFvjUqlNA9TaH6EKYX1hBDxQAcpZdX5xzbAESllg9KJhRA3AyOklPecf3wb0ENKOeuiMZ2BF6SUE4QQ0cCTVzJnCSFmADMAPDw8uixevLghotWJ8pxM4v/8FcfAEFqMGIcQAr3hPQDUqqfNvl5mjIGCBAi7UWBld+0LSVlZGfb2/9yxVFVWoDqcT+uSYOIczlHd0RE7O8cGySSl5MzaZRSnniVizCTsfcybXV9tMLC+pIqNlg7k2jpgo62mc3khw60F4bZ/m5IqK8uwPlRMeFkghzxOY98x+C+z3JXOhbnIrdGyulzHdlsXKqw0+JYVM1ZW0M9Bg0oI9AZJZrkkuURPcrGBtDIDORWSwipJfUpbWgjwsBUEOqgIdFQR5KiihbMaGwvTFEtjnot/G8q5+JuBAwceklJ2rcsxpob4ZgAaoOr8Y2sgvS4L1Yfz0WEfAXfWNlZKOReYCxARESGjoqIaVbYLVFeUM/+Zh7F3cWPqS29iY2+0xx+KmQtAl87ml6O0fRULXtyDTbkf/UaFX3NsdHQ0F5+LU8ePUL2kFCetPwndCxg07laT7phNoXeP7ix8/jHSotcz7d1PzeJoL66s4q0DR/mjBsqdXPGsKucxG8msPp3+Yaq6GO0QLdvm/0mX0+GcOZRB55kjcHB0uuxcmJuJQElVNR/HxPJLtRVfWTuxoqyYkDwDJ5KqqdQaI+NtrdREeDsSFWRHoJstQW62eDlocLa1wtnWEnuNBWohUJ/faZRX6yir1lFapSOntIr0wkrSiio5k1POqcwS9mUZO1GqVYIO/k70buHOwEgPOgW4XHW30tjn4t+Eci4aRm0hvp9j9IEUAyeEEBvPPx4K7DfD+unAxdX2/PmncnIA2gLR5+3s3sAKIcSY68W5vuWHrynJy2Xyq7P/UiCNjYOrhvDuXpzcmUHXG4Kxsa89SshgMLBj1RoC99hRbQnVU10Z2HZgrcfVBWtbO8Y8/jwLX3yClR+/y6SX30ZtUb981pKqat49cJRFlZIKS2vC9KXc7+vElNbta1V6lpaWDLl7EttXriZ4lxcnP9lM4L2Nl8tygSqtnn1JRZSkWWAbl4u9Rx55oZ6kB1sT5pTP7d4hDGzpS4i7/V8KwhQ0lmrc7C/sti6PyiuqqOFYWjF7k/LZk5TPV9vOMGdrIl6O1gxv482odj50D3Ft0iRVhf8OtX3DL1yoDwF/XvR8tJnWPwCECSFCMCqPKcCtF16UUhYD7hceX8uc1Rwk7NvNyR1b6TnhFvwiWjXp2p2GBRG3N4vjW9PoPjr0mmMrKyvY9f0KItP8OOOaQft7BuPi6n7NY+qLe2Aww+97mNWfvc/uJQvpd8sddTpeq9cze98RfirVUmaloYW+lKeD3Bkb0bHOsvQfPYoY9124rHQg78tjFHWqqPMctaHTG9h2Opelh9OJjsuhvEaPg8aCIa286R/uToSPLR+fiGONkzNvlJeQmVjG824d+buiccNxtrWif7gH/cM9ACip0rI1Loe1x7NYfDCVn/ecI8TdjsndApjQ2R8PByWSTMF81BadNa8xF5dS6oQQs4D1GL9VP0gpTwghXgcOSilXNOb6DaG8qJCN387BM6QFPW+a3OTru/raEdzenWPRaXQaFoSl9ZUvSuXlJRz5cA3hZT7Et8lmwC0TsKjn7sBUIvsMIPXEcfYv/52ANu0Jbt/JpOMWnYjn7ZQ8cjR2BBkqme1lx4TWHRskS+defUhwOwHzk4k45EBc+FEi23Zo0JwAiTmlLDmYxtLD6eSWVuNqZ8WYjn6MaOtNr1A3rCz+3i19692bmIwsHjqawJfVDqzasIfP24bSI6BxIrkcNZaM7ejH2I5+VNToWHs8i0UHUnh3bRwfbohnTAc/OtkYGmVthf8e13SsCyFWYvQzrLs0lFcIEYrRV5EspfyhMYWsKxERETI+Pr7R5pdSsuz9Nzh37DC3vfspbv6Bl405FGPcUHXp/EujyZF5ppil7x+i76QwOgy6vAdH/MnjVP2SjK3BhsLhFnQfENVoslyKtrqKhc8/TmVpCbe/9zl2zi5XHXsgPZNnjiVyUuOAU3Ulj3jYM7NTG7P5agBSzyWR910sdnobqm92pl3nupu3dHoD609k89PusxxILkStEgyM8GRSV38GRnpiWUuFZYPBwEcHjjGnuAatSs10jYFXe3cx6/u8Fok5Zczfk8zig2lUavUMjPDgocFhdA68+v/mv4DiE/kbIUSdHeu1KRFv4HFgAlAA5GJ0sIcAicAcKeXyekvcSDS2EondupH1X39K1O330GXUuCuOaQolArD0g0OUFlQx7Y1eqC+6iO2L3oLbegNlFpXYTQ0hLLJto8pxJfJSkln4/OP4tWrDhOdeu6yZVVFlFU/sjmEtGtQGPZOtDLzSs2OjJe6tWrUc74MSl2oHisdoTK67VVhew68HUpi/5xyZxVUEutoyrWcg4zvVzzSUXFjEXXuPc0rjQGRVKd+1b4HPuWSqzyRRc+4c2qxMDGXlGCoqEGo1KltbVI4OWPn7YxkYiCY8HE2rVoh6ZswXltfw+q/RbM8U5JfXMKSVF08ODyfSu2ERev9WFCXyN/VRIrWZs7KAp4GnhRDBgA9QCZyWUprfwPwvoCQvl63z5uLfum2j5kOYSudhQaz+8hiJB7KJ6OmDwWAgeslyWh52Jc2hgKJO1tzQDAoEjP6RgXfOYOO3cziwcindx97812vzjp3ircwiSqxs6VNTxofd2xLs4tyo8tjbOxE8qxVnvtyFxwpBjNhF555XVyRphRV8sy2JJYdSqdIa6NPSjTfGtmVgpGedHOOXEuzizJpQT17bE8N8/3CGHk/h0cXzGLZ7Oyo7Oyx9fVHZ26N2cEAa9OjLStGmpVG6aTNojQYBodFg07499lFROAwbhpW/n8nru9hZMbalFW/e1pcfd53lm+1JjPx0B+M6+vH0iAh8nGzq/d4U/nuYbByXUiYDyY0myb8AKSWbv/8Sg8HAiPsfvWKb2KYmqK0brr52xGxIIaSzG9u/W0pkih+nvdPpdd8Y9u0zRxBd/Wk3eDjnjh9h56KfCWzTnhJndx46cIKjGgfcDZKvfewZF9mxyeRxd/dCPas/p+dsx325E0ct9tGha49/jDmbV85X0YksjUlHCLipkz939w0hwrth0XeGigqKli2j6NdFVCckcIdKRa+hI3hx6FjemTaTpClT+XBwn6sWepR6PdrMTKpiT1ARc4iKffvJee89ct57D0379rhMnoTjDTegsjFNCdhZWzBrUBjTegbx9bYkftx1lvUnsnhoUBjT+4b8w6+joHA1TM1YnwC8C3gC4vyPlFL+p/a/p/fuJCnmAANum46TZ/M0h7qUC2Xit/x0ir3vryay1I+4VlkMnDax1tpXTSKfEAydMYvUhDieWr+V6PDOGCxtmSKqeHtw12YpYuji6k6LB/qQPGcPTksNxFocom3HLpzOLuWLrYmsPJqBpVrFtJ5BzOgfiq9zw+7M9cXF5P/wI4W//oqhpARN27Z4vfQijsOH08rdnQGVVUzbdoDfrB2J3bCbX/p2wsvh8uQ3oVZj5e+Plb8/jiOGA1CTkkLpxo0U/fknmS+8SPbs93C59Rbc7rwTtbOzSfI521rx7MhIpvYI5PVVJ5m9Lo4lh1J5fUxb+oY1ThSfwv8Ppu5EZgOjpZSnGlOY65nKslK2/PgNXqFh14UZ62K8Iqzp4Qiepe4kdi9gyE0Tm1ukf5BUXsXPN9xJsp0zIUW5fNWzPR19GqeZlam4u3uhv787aV8ewH6x5IWDK/jljBobSzX39g/lnr6hDQ6FNVRXU7hgAXlzv8VQUoLD0KG43nknNp06/iNnw9lGw4phfXhl9yG+N9gxcNcxfm4XQlc/n1rXsAoMxG36dFzvvpvKgwcpmL+A/K+/oXD+Alxum4bb3XejdjTtXi/A1ZZvb+/K1vgcXltxgmnf72NKtwCeH9UKR02D6qwq/B9j6n41+7+sQAC2L/iBytISht33EKrr4A7/Arm5WcR/Ho2bSs3Bch0RHaKaW6S/MBgMvL/vCCOOniVdY8+k9DhuWvQpzrkZzS0aAMLGlRWRzpSqKpmaZMXMjhp2PTOI50a2arACKd+7j7NjxpLz/gfYdGhPyJ9L8f/sU2w7d7pi0p9KpeKNvt34yt+JSpUFN59M5c9TprfqEUJg260b/p99SsiK5dj160f+199wZuQNFP3xB9JgekjvwAhP1j3an/ujWrD4YCrDP95OdHyOycebgpQSnVaPXmfAlNJLCtcvpu5EDgohfgOWYWxMBYCUculVj/g/IiX2KLFbN9J97M14Bl87sa8pST2XRO4PsbjVOJI9UkXeCmH2MvH15VxhEffsPc5xjQMhuirmdoogsn87FhyKZv1Xn3DH+1+gaaZ6RcUVWr7efoYfd51Fp5eINnZMPKVl+IkKaqLywK7++Rv6sjKy33mH4j+WYhkYSMD332Hfx/Tui2MjWhDkaM/Uo2d4MKOEpNIjPNG9Y51k0ISH4//Jx1SeuIfsN98i84UXKfxtMT6vv4YmMtK0OSzVPDMikuFtvHlqyVHu/PEAt3QP5OUbW2NjZfpNVE2ljswzxWQnl1CUVU5hdgXlxTVUl2sx6P9WHpbWauycrbFztsLV2w73AAc8ghxw97NHKIUmr2tMVSKOQAUw7KLnJH9X9f2/RVtTzca5c3D29qHnzbc0tzh/cfpULDULU7CR1lTf4kr39p2hJIkDq5MpyCjH1deu2WT79nAsb+dWUGNly53qGt4c1vsvZ/HIWU/w60tPsvmHrxj1cNMWZdYaJN9sO8MXWxMpqdIxtqMvjw8NJ8jNjlMnjmK3MIfkb/Zi8+ggHB2d6zx/5fFY0p94Am1aGm733ov7gw+g0tS9v0pHHy8229tx087DvF/uwJmte5gzoEed80ls2rQh6JeFlKxYQfZ773N24iQ8Hrgft3vvNV2WAGdWPdyXjzaeZu72JA4mF/D5rZ2uGQ5cnFvBmZhczhzOJfdcCVICAhzdNDh72eIZ5IjGzgJLjQVIMOgN1FTpKS+upqygirh9WWi3Gasfaews8Y90IaSjOyHtPa6aVHtNtFWQewqyT0LOSShOhbIc44+2kl7VlXDAEixtwNYVbFzAORDcwsA9HHw7gr1n3df9j2CSEpFS3nWt14UQz0kp3zGPSNcXB5b/TlF2JhNfegtLq+ujXMTRg/uwWVqMXm3A9s4WhLY0FlNuN9CfwxtSOLzxHIPvqH+Z+PqSU1bOjF0x7LVywFuv5ctIP3oH/jP01LtFGD0nTGH34oW06NqDyN79G10uKSXrYrN4eUcluZVxREV48PTwSFr7/n0hbNWmAzFjduG1zJKjX26g+2NjsDaxwZaUkoJ588j58CMs3N0Jmv8ztl26NEhmbwd7Ng3uwbSt+1hq5UDept0sHNwLyzqaUoUQOI0di13//mS/8Sa5n35G6eYtqCea7jeztlDz3MhW9G3pzuOLjzJmzi5eGtWKaT2D/jLN6bUGEmNyiN2WRlZSCQCewY50uSEY3zBnvEOcTFYA0iApya8iK6mY1FMFpJ4sIPFQDhbWakI7uNO6ry++Yc5XrwUmJWQegYRNkLwdUvaB/rwBxUJjVBD2XuDTAazsyM/KxtfXD7QVUFEAFfmQedT4+wKuoRDYC1oMgrChoDF/Z9F/KyaVgq91EiFipJSdzSCPWTBXsmFRViY/PfkAYd171/muubGSDfdt24rHOkmBdQl+M7rg4/vPTPXtv53mxLZ0pr3ZCwdXTZMlUi0+cZoX0goos7RiHNV82LfLVSOvDHo9i15+msLMdO786KtrZrM3lNj0Yl5fdZL9Zwvwtxe8M7kb/cI8rjp+1/r1BG215bR3OgMeqj3CzVBdTdbLL1O8fAX2Qwbj++abJkdFmYLBYOC+rXtZqbKlc3Upvw/q0aCItpJ168h65VW01dUEvPsOjiNG1On4vLJqnlh8lG2nc7mhnTdvjW7L2b1ZHNmYQmWpFidPG9r09aNFFw8c3cyTbyINkozEIk7vz+ZMTA7VFTrcA+zpODiAlt28/k6yzY2Ho4vgxJ9QeNb4nHc7CBkA/t3Aqy24hoDqn//Tq35HKgqMc6YdgNR9kLKHmrJCCrSO5Dt0oNSpLRXWvlRWVGLQ6ZBSItRqNHZ2aOwdcHT3xNXXDxcfP+xc/h0FMM2esV6HhQ9LKU0rkNQEmEuJ/Dn7NVJPxnL3x19j7+pWp2MbQ4nsWL2GwB12pDvk0ur+qCsWUSzJq2TBy3tpP9CfvhPDGl2JFFdW8eDOQ2yysMO1uoKPWvowomVIrcflp6cy/5mHCenYlTFPPG/2L1hOSRXvr4/n95g0XGyteHxoOD4VSQweVHvl4q1LlhF2yI24sEyGTJ901XG63FzSZj1E5dGjeDzyMG4zZzbaheLp7fv4WW9NeFUpK6K64WxT/zbE2owMTk6/B6uzZ3GZNg3Pp59CVQfFZDBI5kafYdPKRHrVWKHRQ0BrVzoNCcQ/0qVRfRjaGj2n92VxdHMqhVkVOLpr6N65kLDir1Gd2w5CDaEDoM14iBgFdrV/b6/1HdFWVZF8/DBpJ46TevI4uSlnubgBjLVah42tBrWdG8JSg16no7qinKqyUgx6/V/j7F1c8Ytsg19ka0I6dsXZu/bIu+bA7BnrdeD/LrzizKF9xpyQaXfXWYGYG4PBQPTiZYQf8eCMawZdH7gBu6uUnXd0tyGsmycnzpeJb0zWJZ7licRM8q3tGKIr54sBXXAy8eLm5hdA74lT2fHLT8Tv2WE2s1aVVs/3O8/yxdZEtHoD9/YL5cGBLXGysSQ6+qxJcwycOI5Nhb8RmeDL9pWr6T961GVjqs+eJWX6dPSFRfh9+imOw4ddYSbz8V7/HrjsjeEzac/Q6IOs7NsR7yvkkpiCpa8vhU88TqsDBymYN4+qEyfwn/M5Fm6mfc7T4wtx2JbHwEor0q0MHHA08OxQHwJaNbx/TG1YWqlp08+P1j09OLdqOXujq9i0wY8Yq8n07TeGgJHjwP7qO01T0Ou0nDm4j/g9xrwwXU01FlbW+IZH0GvCLXgEhuDq549TdTIWx3417nx0lRA2DPo8AkF9kFJSWpBHYUYG+ekpZCbEkxZ3gvg9O4Bv8AgMpmX33rTuN7DJFYrBYKCkpJCcrCxKCwrRVdeg02qR+vpdxs2lRK7/fVod0NZUs+XHubj5B9KpmXNC9Ho9W3/6ncgEX+J90ug38yasaqkt1XlYEKf3ZRO7LQ1MbyluMlVaHY/tOMAyrLEXKj7ztGVSm451nqfrjeNJ2LeLLT98TWDbDtg61t/OLKVk1bFM3l0bR3pRJcNae/H8Da0Idq9fgMGAu25i98dLCdrlxRGvvXTs3vOv16pOniTlHqNzOmj+fGzatqm33HXhuZ6dcYmJ5fVCG0buPMrqPu3xdaxnFr2FBV7PPYtNp45kPPMsyZMmE/D1V1iHhV31kIqSGnb8dprEQzk4etgw6sH2WPjbct/8Q0yfd5BHh4Tx8KCwxm3ba9DD0UWIbbMJLjpHUKuOJPo8y96DoazYXEXLomz63OyIvUvd/ZelBXkc27SOY5vWUVFchK2TM22ihhDeow9+ka1QW1yaKxMILfrD8LfgwPew72v4aRQE9EQMeRXHoF44unsS1L4jjDR+Rouzs0g8uJfEA3vY88ev7Pn9FwLbdaT94BGEde/VKOkDmRmpJB6JpTqtBE2eCs8yZ2wNGmy5cHmwPP9TP8xlznpeSvl2gycyEw01Z+1avJC9f/zKpJffJqBN/cJlzWHOqtFWs+PrP4lI9yMuNIOB0282OQt91ZyjZCeXEDJCx6Ah5ms+tTslnQdPJJOpsaNHTSnf9umMp339I8HyUpKZ/+yjhHXvxY2PPlOvOY6mFvHGqpMcPFdIKx9HXrqxFb1bXG7qq6tpr6SkiPiPt+JQY4tmeijBoWFUHDxI6sz7UTk6EPj991iH1G66Mzfzjp3iudwKPGuqWFNPRXLxuag8fpzUBx5AVlbh9/HH2Pfre9n4pCO5RC+Mo7pSR9eRwXQaFoiFpfGzWKXV8/zS4yw9nM7oDr68f3N7NJaNkEuVshfWPm10evt2gqjnjHf/QqDT6jm8IYVD686hUgl6jAml/UB/k0xrG1auQGSmEBu9EYPBQGinrnQcNoqgDp1QqerwPrSVcHgBbP8AyrIgfCQMeQU8r9xrqDQ/j9jojRzfsoHSvFwcPbzoNvom2gwc0qAgHoPBwMljh8k6kIhzujXeVcYdZqWqmmz7Qqrc9KhcNdi42mPv6oy1RoOltRUWagsCg1uYvYrvhc6GV6IaOAMslFKW1mXRxqYhSqQhzvSLaagSqagoY/8Xq2iZ70d8+xwGThlfpxDPjIRC/vzwMN5dBBPubbgS0er1vLjrEAu0aqz0ep7zsGVGJ/MUdtz7xyJ2LV7AmCeeJ6x7b5OPyyqu4r31cSyNScfd3oonh0UwsWvAVYsj1sc/lJZ6lpKv46m0rMZ/oDOFjz6GpY8Pgd9/h6VP89m15x87xbO5FXjUVLG6d3v8nOqmSC49F9rMTFLvf4Dq06fxef01nG82FsvU1ujZ8dtpTu3KxD3AniF3tsbN73IzmpSSr7ad4b118XQJcmHubV0u6sbYQMpyYP0LcHwxOPjC0Neh3c1wBf9TcW4l2xedJuVEPn7hzgy6o9VVHfwVxUXsXvILxzavQ6VS0XbQcLqOGtdw81JNOez9CnZ9avy7x0wY+BxYX/l/ZDDoSYo5yP7lS8g8HYetkzM9J0yh/eARdeoMmpGewsnN+3A7Y41HtQs1QkuqSy76EGsCOoQREhpRay+hxigFf622dBZAG6CdlHJoXRZtbBqiRJa9/wYpscfq5Uy/mIYokaLCfGK/2kJAiSfJvUsZMObGOs8hpWTp+4fIzy7hnveiUNXS6+JaHM/KYcbheM5qHGhbVcp3PduZteKuXqdj4QuPU15YwJ0ffVVrm+HKGj3f7kjiq+gz6A2S6f1CeCCqBQ61lOaob5DB8cMHcfitBJmfhD5jGcHzfsLCvflrSi04fopncipwr6liVa92BDibXsruSufCUF5O2iOPUr5zJ55PPoHF2FtZ+00s+elldB4WRPfRIahrKcq46lgGjy8+irejhh/v6kYLjwYklEoJsX/Amqegpgx6Pwx9HwPra88ppeTU7kx2Lk4AAf0nhxPR0/vvcGSdjqMb17B78UK01VW4RrRl/IOP4ujeMF/KZVQUwObX4dBP4OANI96B1uOuqPwuyJ12KpbdSxaSdjIWFx9f+t5yB2Hde18zYON4zAFyt52hRbY3IEh2zULdzokOfXrhUEcTcbNEZwkh1kgpb2jA8SOATzF2NvxOSvnuJa8/DtwD6DD2M7lbSnnuWnPWV4mcO36E3998kb633EGPcQ2rP1VfJZKZmUrq3IN4VDmTPdRAz0GD6y1D0pFc1n59nKHTWxPere4FIw0GA7P3H+HLMgNIyUMOFjzZvUOjNFHKSU5i4fOPEdm7PyNnPXHFMVJKVhzNYPbaODKKqxjZ1pvnRrYi0M00x099lUhl7AlSnvkEu3a3k+B7joEPT6vzHI3FwuNxPJ1TjntNFWvqsCO52rmQNTVkPPssSXtTONVxBiqNhqF3tyGorek3VIfOFTLj54PoDJKvp3WhV4t63IyV5cCqxyBuFfh1gbFfgqdp2fYXKMmrZPO8U2QkFBHZ05v+t0aQl5LIhq8/Iy/1HEHtOzHwzhkcTzjTuGHwaQeN7yXrmNH8NvozcLz6bkdKydnDB9m+8Efy01Lwb92WIfc8iJvfP8P5j8ccoHDDWUKLfChTV5DWsphWQ3vg5x9Ub1GbJTqrgQpEDXwBDAXSgANCiBVSypMXDTsMdJVSVggh7gfeA8zej9Zg0LPt5+9w9PCiyw1jzT29SSQlxlP6cwLOOnuKxmvo2b1Xg+YLae+OtSPErE8hrKtXncJPz+QXcs/+WE5pHAjVlvNtl1a08Wy8u2/P4FC6j5vI3j8WEdG7P6GXdB48nFLI66tOcjiliLZ+jnw8uSM9Qhs/aq46MZHU6dNR29uT4H+OsLQgdqxeQ79R9f7Ym5Wp7SIRsXE8lQ2jdx9lfb9OeDTAR4WlJVlDH+JYxVnsi1Pp7ZhCYCvTy7YAdAly4c8H+nD3vAPc8cN+Pp3SkZHt6mAiOrMVlt4LVSVG01XPB0Fd90uVo7sNYx/rxIHVZzmwOpHEA8soz9+DnasbY598kRZdexi/Ewln6jx3nfDvCvduhf1zjTuTL3vCqA+NJrkrIIQgtHM3gjt05viW9ez4dR4/P/UQ3cfdTI9xkziTGE/WypO0KPRFWNiT0K2AHiMHE2nbPGWEmrthQHcgUUqZJKWsARYB/7iCSym3XtQAay/g3xiCxG7dSG5KMv2n3oVFM5QnP3H0ENU/JqM2qJDTvOnUQAUCxjLxbpGC/LQyUk4WmHSMwWDg04NHGRSTwGlLW6Zbatk+rHejKpAL9LxpMu4BQWz8dg7VFeUAZBRV8uiiw4z/cjdphZW8f3N7VjzYt0kUiDY7h5QZM8DKksB5P9H3vskkuWTgv9OGE8diGn19U7m1bSRvuNuQZWXLmB0xFFdW1Wseg97Atl9Ps3f5WVp28WRYtxJ0y34h8/nnkRflPJhCoJstv8/sRVs/Rx74JYaF+65pPDCi18HmN2D+eLB1gxnRxpDZeiiQC6hUgpB2YG3xB2V5u7HQtKX/tFdp2a1n0yb/qS2g1wMwcye4tYQ/psOSO40mr6vJrlbTYegN3PXR10T06kvMn8vZ8cx32PxcgEeJEwld8gl9vj8DJ4zFtpkUCJgpOqveiwtxMzBCSnnP+ce3AT2klLOuMn4OkCWlfPMKr80AZgB4eHh0Wbx4scly6Guqif3lezROLoSPm2KWD5fe8B4AatXTtY7NTUuh8wk/iixLyegqcXA0XwZ3aUkZGVttsXKAkEHXvmfIq9HyRaXglKM7vuXFPKiuooVN05Z6Kc/JJG7pL7hEtOOofxRrz2oxACODLbkh1BIbi/r/b8rKyrA3seijqKzE5cOPUOfmUvjEE+gCjaaEqsoKPHfrsJAq0npLbG0b1qjKnKwtqmCeow+hZYW8ag9W1zA7Xnou9FpJ2h5JWQa4twLP9gIhBHar12C/ciWVPbpTcscdUEdTZrVe8sWRao7l6rkpzJLRoZZX/H5ZVRfQ+uT7OBefJNN7CAlh92JQ1z+hEoxmobyTx0jdtQULjQ1+PYdRfC6YynzwaCvwaGO866/L58IcCIOegNQ/CU7+lRorF062fooSp4irjjcYDOQnnqX9WX9sDBoSSmPICizHt1svhJlDggcOHGhec1Yt0VlIKR+uy2INQQgxDegKDLiKLHOBuWD0idTFxrn9l5/QVVYw9qW38G5x9Tj5unAoZi4AXTpfW46da9fRPTaQDLt8Ws7sQxcP8za7io6OpseoUHb9nkhkUCe8Q67saPv2cCzv5JZTZW/Jrapq3hnRB+s6RIaYC4NBkpmaQ+H+jRwsCmZYj648MyKSANeGJ7yY6hORNTWkzpxJeVYWAV9/TZu+/zTnJITEopqXjeORAro/MazWvJ2mIgpw2hPDZ8KVD6tKWTG011X/hxefi6pyLSs/P0p5ZgkDbo2gbf+L6p1FRZHXIpTcTz7Fy9ML33ffqfOFa1CUgad/P8bSw+k4evjx8o2t/5lLkh4Di+6HqiIYPxefDpNpaNxbTWUFG7/9gpRd2wju0JmRs57A1tEJvdbA1oVxxO/NwtnGi0G3RbJz945m6LE+GNLvQrPkTjoffR4GvwK9Zl2mpNNSz5K08AC9isJJcs7E6wZParYbyNqxF1mczw0PPYmrr+mtkRuD2q4SBxt5/XTgYm+R//nn/oEQYgjwAjBASll96esNoSg7i5jVy2jdf5DZFIgpXOiFHn7YnTMuGXR5cCT29o3TKLJ1X18Orknm8PoURs5s94/XskrLmLHrMPutHfDW6/g5wo++QY1iMayVXYl5vLs2jlPZQdyhceHWmr3MmHA7liYWQjQHUkoyX36F8t178Hn7bez7Xu4PCItsy+5BmQRv9mb7T38y5L4pTSZfbTzfqzNlO/bzg8aByZv38PuQ3ldttwtQWVrDis+OUJBZzoj72hHa8fIIJfeZMwFB7iefgJRGRVKHGwxLtYoPJ3bA1c6K73eepbCihg8mdsBSrYLjv8PyB8HOE6ZvMNa6aiBFWZn8+d7rFGak03fK7XQfe/NfrazVlioG39EKVx879iw7Q0leJU7tm8ka49cF7tsBK2bBxpfg3C4Y9xXYuqLX69m5cg2++23wxoWkPiX0HXUzKpWKiPadaNG1Bxu//YIFzz3K8JkPE9GrX/O8B2pRIlLKeRc/FkLYXuSfMAcHgDAhRAhG5TEFuPWSNTsB32A0e5m3Mw6wY+GPCLWavrfcbu6pr4pOp2PrT3/QKtGXeJ90+s0c36h3s1YaC9oO8OPQunMUZpXj4m10vH57OJbZOWWUW9lxE5V8MLhbs7SrPZFRzLtr49iRkIefsw3vTelKV6tQlrzxPLt+W0DU7fc0mSwFP/5E8bJluM+ahfNN4686rvfQoWxKW0xkvB/bV62h/43Xh6Md4O1+3SnduoclVg7csWUP8wf3vmJEXXlxNcs/OUJJXiWj7m9PYJur+5ncZ94HKhW5H32EUKvxeeftvy7MpqBSCV4c1QpXOyveXx9PdY2WOT5rsdj1EQT2hkk/N7hcCUDqiWOs+MhYUPzmF98ksO3lycJCCDoPD8LZy5aNP5ygIFtS2Onv70WTYuMMk+bD/m9h/fPw7UAKRn7NseXnaJnvxxmXDMKm9aK/X+A/Dgvv2RfvlhGs+nQ2qz6ZTdqpEwy4bToWlk3fgdKkT4EQopcQ4iQQd/5xByHElw1dXEqpA2YB64FTwGIp5QkhxOtCiAv1Rt4H7IElQogjQogVDV33AmknYzm9bxfdx9yMwxWKGTYG5eWl7Pj0d1ol+nKqZQZRsyY2iTmk/cAA1BYqDm9M4Ux+IcPX7uClIh12Bj0/B7ny5cBeTa5AUgsqeHTRYUZ9tpPj6cW8OKoVm58YwE2d/Qls254OQ0cSs2YFmQkNL6ZpCmU7dpLzwQc4DB+O+4MP1Do+6rabOOOaQcAuG04eO9wEEprOpwN6MEJfzmYLex7fvv+y17UVkj8/jKG0oIrRszpcU4FcwH3Gvbg//BDFy5eT/dbbde5IKITgwYEteW1US0YlvITFro/Qdbwdbl9uFgVybNM6fn/rJWydnJn61kdXVCAXE9rRg/FPdMagh6Xvx5B9tqTBMtQLIaDHDLhrDUerA0ifl0dQgSeJPQrp99REfC9RIBdwdPdg8ivv0mXUWI6sX8VvrzxNSa7Z77NrxdRbiU+A4UA+gJTyKGCWinlSyjVSynApZQsp5Vvnn3tZSrni/N9DpJReUsqO53/MUsxKGgxEz/8Oezd3uo6++h2nOcnOzuDYRxsIzfUhsUchQ++ZbHIZk4Zi62hFRE8v5uWfZWBMIrFWttyqqmbfkB4MbRHcJDJcIL+smjdWnWTwh9tYG5vF/VEt2PbUQO7pF/qPchn9br0LO1dX1n/9KTqttlFlqjl3jvQnnsA6LAzft98yKbjCwsKCDvcOodiyjJrf0yjIz21UGeuCSqXiu4E96V5dyiKp4e09f0eTVZTUkLxVUllSw9hHOuIXYXogh/v99+N6110ULlxI7qef1l2wqhLuSHqS0eq9vKu7hTtyb6XC0LAgUSkl2xb8wMZv5xDUriO3vvmByVnnnkGOhAwRWNmoWfZxDOdO5Nd+UCOg1+vZvD0V54KnqFHVoLV9miiXk7VeoNUWFkTdfi9jnniegox0Fjz3KGknY5tE5guY/N+TUqZe8lTdYv6uM+J2bSM7KZF+t9zRJDb3hLhYsubE4F7pSM6NgqjxTVvYMSYji+ed81jfwRfvygqWR/ry0YAeaCybznleWF7D7HVx9HtvKz/uOsv4Tn5EPxXFMyMicbK5fBtubWvL0HsfJD8thX1/mh5tV1f0ZWWkPvAgQqXC/4s5qOxMN2s4u7hhPTkQJ609x7/fgk6nazQ564qFWs3iwb2IqCrl80rB90dOUFWuZcWnR9BWwKhZHfAOrXNGM55PP4XzxInkf/0N+d99Z/rBpVnw0w1wbjeM/4aw8S+yJ6mAO37YT2lV/W4S9Dod67/6hIMrl9Jh2CjGPfMy1rZ1M0tZOwhueqoLzl62rPniGPF7M+slS30pLSlm+ydLiDjuSaJvJhGP9yO8bTeIfgeW3A41tXsQwrr3ZurbH6Oxd2DJmy9ybPP6JpDciKlXkFQhRG9ACiEsgUcwmp/+lei0Wnb+tgDP4Ba06nPFYC+zcmDndpzXVBtz8m/3oVukeWpOmUK5Xs99W3azUlpjYaXh5rQC2hxS0W5I05XtKKqo4dsdSfy0K5kKrZ7R7X15eHAYLT1rD6sM7dSNVv0Gsn/ZYsJ79MYjyLwFD6WUZD7/AjXJyQR+/z1W/nUPKmjVpgPbe6+mxS5fon9dxpDbrpxE1hxoLC34c0BXhm47xMt5BtJ27MQzGwL7CXxbOtdrTiEE3q++gqG8nJwPPkRlb4/LlFqCC/LPwPxxUJ4Pt/4GLYcwAbCyUPHob0eY9v1+fr6rO062ptv0tdVVrPpkNkkxB+g9cSo9J9Q/PN/OyZrxj3dmzdfH2PTTKWqq9LSLavwAk5TkM2TPO0ZopTcJ3QsYOG6S0X817kvwbmusGVZyI9yyqNYWva6+ftz61oes/vQ9Ns79nLzUZKJuu6dRKgNfjKk7kZnAg4AfRgd4x/OP/5Uc3bCaktxs+k29s07OwTojJVt+XYrXKkmeTQneszoT1kQKxGAw8OWh4zyitWW5sKWrtoLoLi15ZUA3DFUGYrdfFgRndoortHy0IZ6+s7fyxdYzREV6suHR/nx2SyeTFMgFom6/B2s7e9Z//dk/Gv2Yg8L5CyjdsAHPxx/HrmePes/Td9RI4gLSiTzhxYGd280oYcNxtbXh965tcKiu4vsIO7wnemHv3bBcKKFW4zv7Xeyjosh67XWKV666+uDcePjxBmMxwjtXQsshf700uoMvX07tzMmMYm75di+F5TUmrV9ZVsqSN1/k7OFDDLnnQXrdfEuD87usbCwYPasjIR3c2b7oNIc3pDRovtqI2bOLim8Tsa+xpeAmawbeNPbvAAghoNeDMGWhsTf8d0Mg93Stc2rs7Bn/zCt0GTWWw2tXsvTdV/9K3G0sTLqCSinzpJRTz/smPKWU06SUzWM8bCBV5WXsXfobQe07Edy+8Zox6vU6itJzCT/qQYJPBu0fH4aXl2+jrXcx+1IzGLB+F6+X6LHR6/jG14EVI/oR6uqCR6ADAa1dObolDV1N41gkM4sreXPVSXq/u5nPtiTSL8yddY/244tbOxPmVffkPFtHJwbfPZPspAQOrVluNjkrjx0j+/33sR80CNe772rQXCqVij53jyHdNheHtZWkpSWbR0gzYDBITi5J5dboMiylgaerSkivMu1ifS2EpSV+n3yMbbduZDz/PGW7dl0+KCvWqECkAe5cbQxrvYThbbyZe3tXEnPLuPW7fbUqkoqSYpa8/jw5SYnc+NgzdBg6ssHv5QJqSxXDZ7SlZRdPdi9N5OAa0xqZ1ZVty1fhtlxHsXU59veFXb1CReQouGu1sf/790MgeWetc6vUaqJuv5dhMx8m9cQxFr3yDKX5eWZ+BxetZ8ogIcR7QghHIYSlEGKzECL3fPLfv44Dy3+nqqyUfrfe2WhrnEtOpCK1EE2NFae75DPwocnY2TV+ZnNSQSGTN+xkXEIWKRYa7rPS8ZGNlrERLf4xrvPwICpLaojbY17bb0J2KU8uOUr/97by4+5khrb2Yu0j/fhqWhcivRuWAxPesy8tuvZk928LKMxs+C5KX1RE+qOPYenpie87b5ulSoGNjS2+d3RESEHqT4eoqqps8JwNRUrJjt9Ok3wsj3E3tOHHCD+qVWreMtiSUdLwDg4qjQb/L+ZgHRpK+kMPU3nixN8vZhyBeTeC2gruWnvVvhoAAyM8+fb2rpzJLWPqd/soqriyIqkoLmLJGy9QmJHOuKdeIrxH3ep6mYJarWLo3a2J6OHNvhVn2bvsTJ0j0a6GwWBg07wltNjjxFm3TNo+PpSAwNBrH+TXBe7ZBPbe8PM4OGaaf7DdwGGMf/ZVSnKz+eXFJ8hNSW6w/FfCVFvOMCllCXAjkAy0BOrfbKOZKM3PI2bNClr1jcIrpEXtB9SDvVu3UDU3CbVUo3MXDJo4rlGq3l5MQUUlD23dw4CYM+xQ2zJIX8GObuG81qcrlldY2y/cGa8QRw6tP4deZ2jQ2lJK9iblc8+8gwz9eDurjmUwtUcQ0U9G8cmUTrTyMU8CpRCCIdPvR21pyYZvPkca6i+3lJKM555Hm5uL3ycfo3aqf0fFSwkICqV4hBUBZZ7s/NF8u6b6cnhDCrHb0uk0NJD2A/3pHxzAJ/4uFFvbMHbX0XrX2boYtYMDAXPnonJ2InXGfdSkpBgr1/48Bqwc4K414N6y1nkGhHsw97YuJF5FkZQXFbL49ecpyspk3NMvE9zx8l2NuVCpjUmJrfv5cmjdOXYtSWywIqmprmbrl4uJPOVNXGA6fR6dcNU215fhEgzT10NgT2Nxyl2fmXRYcPtOTH51NkjJopefJiX2aP3fwFUw9ep2wQE/ClgipSw2uyRNwO4lvyClgT6Tzb+JqqysYNPXi/Bfb0m+bQlqX1vsG9Du1RTKa2p4bfchuu08xhJsaK2tZFUrXxYO7Uug89XXFkLQbVQIZQXVxO/Nqt/a1ToW7D3HiE92MGXuXg6eK+CRwWHsfnYwr45pY5YyJZdi7+rGgNunk3YqlmOb19V7noIff6Js61a8nn4am3YNz5C+lO79o4hrlUXkOT92rF5j9vlN5fT+LPb8eYawrp70Gv/3TdNNrVpyZ1k2qdZ2TIg+QLUZIsosvTwJ/O470OlIufN2dN+MBxtXoynG1fRgiKgIT765rQsJ2WVM+34fxRXGqK2ywgIWv/YcxbnZjH/mFWPL2UZGqARRt0bQfqA/R7eksn3R6XorktKSYvZ8soyIND/i2+UwaOYkLOuaGGjjAtP+gDbjjRnuG14y9lypBc/gUG5580Mc3Nz54+1XOLlja73ew9UwVYmsEkLEAV2AzUIID6DhtzBNSH5aCieiN9Fh2CicPM1bnyrx9EmOv7eeyGQ/4sIz6frUaKwbMWy4tLqaV3YdpOPWGL6qVuOu1/K9nyPrR/ajs69p7y2wjSueQQ4cWpeMXm/6XX1SbhmvrTxBz7c38+KyWCzUgvcmtGfPs4N5bGg4rnaNm7DYNmooge06sn3hj5Tk1T0vo+rkSXI+/hiHoUNwmTa1ESQ0EjV1PEkuGfjutOb0qaaN2wdIiy9k87xT+IY5M/iO1pe1iR3qZMtMaz2xGgembd6LoQE7uwtYh4bi/+bj6LKzSI12wDD5D3C+cqLctRh4XpGczjIqkszMXBa//jyl+XlMePa1WpMIzYkQgr6Twug0NJDYbensqIciycvL5sSnmwku9OJsv1IGT51Qf+uEhTVM+B663QO7PzOWjNHXfhPg6O7BlNffwy+yNWvnfMj+5b/Xb/0rYKpj/VmgN8a+HlqgnEtKtl/vbP/lJyw1GnqMn2S2OXU6HVt/X474MRM7rYacsSqG3D2p0TLQS6qqeWnnATpFH+abGgtcDTo+8bRhz/DejAqvxa56CUIIuo4KoSSvitP7sq85trRKy28HUpj49W4GfbiNBXvPMaiVJ3/c35tVD/VlUrcAbKyaJmlSCMGwGbOMtuVv59TtC11TQ/qTT2Hh4oL36683ailwCwsLWk+PotyiirJFSRQVNV0cSlF2Beu+OY6Tpy0jZ7ZDbXnlr/mrfboyVlaww8qeh7fta/jC2SexjXkGv6FqqgoEaS++i6xnkujASE++vq0zyem5zH3+aUrycrjpuVfxb9104fEXEELQ66YWdBwayPFt6excnGDy5y4zM5XkOXvwqHAid7TaPH1oVGq44QNjj/kjC+G3aSblkmjs7LnpudeI6N2fHb/8xLYFP5jF12NSnogQYiKwTkqpF0K8CHQG3gTqZwtpYtJOxZJ0aD99p9yOrZlMTElJ8WQsOkZYiTeJ7um0uSMKDzNX4L3AmfxC3jt6ivU6C6osrQgxVPGulxs3RbZvkL8luJ0b7gH2HFqbTEQPr3+00NUbJPuS8vn9UBprY7Oo1OoJ9bDjmRGRTOjih6dD0xVFvBQnT2/6TbmdrfO+5dTOaFr3M62HvMMff1CTlETgD99j4WK+cvtXw93di6wJ3rguKuXwdxvp/9jERq9QUFWuZfWXxxAqwY0Ptkdjd22TyVdRPcnZuIvfrRzw3n2IF3vX08+Qlwg/jwW1FQ4vr8SnbwyZL75E5osv4vPuu/VS2H2DHHigZgulFfkcbjuRu4KvXi69sRFC0PumFkiD5OjmVIQQ9JnY8prvK/VcEnnfn8BRZ0f5zQ507dLdnAJB1LPGvitrnoIFN8EtvxpNXtfAwtKSUQ89icbegYMrl1JVVsrQe2c1KJfE1GTDl6SUS4QQfYEhGOtZfQXUP7C+iZBSsn3hj9i7utH5hoZniddUV7Pjz9WEHHXGXeVIclQ5/YdNMrvz3GAwsPlsCp8npHLQ0g6DsKGdvowHA10ZF9nRLGsIIeh2QwhrvzlOwsEcWnbzYv/ZAtYcz2RtbBZ5ZdU4aCwY39mPm7v40ynAuWkb+VyDjiNuJG7PDrb+NJfg9p2wdXK+5vjSrVux3bYd1zvvxK5376YREmjbsQtbk5YTtt+P6MXLGXzLTY22lkFvYMN3sZTkVTL20U44utvUeoxKpeLXQb0YsWkPX0h7fI6cYHrHNnVbuOAszBt9Pox3FbiG4nxzKLrcXHI//QwLT088n7hyy+Oroa2u4s/Zr1OZeY4WUx7k24N6bv9hP/Ond8dR0/RFBsH4felzc0uklBzdkgoq6DPhyookKTGO8nln0BisMNzqSfu2HRpHqO73GhXJ0hnw4yijz+QarXcBhErF4LtnYuPgyN4/fqWqrIxRDz9V72Z8piqRCwkFo4C5UsrVQojLGkNdjyTu30NmQjzD7nu4weVNDu3egdyQT0SVB6c902l3WxSRZt59ZJSU8tWxOFaU1pCtscPSwoZBhkqebNuSjj5eZl0LwKe1Cxp3DesWx7NgQyy55dVoLFUMivTkhnY+DGnl9Y96VtcLKpWa4fc9wvxnHmLzj98w+tFnrjpWl5dH5gsvovXzw+Pxx5pQSiMDxo1ma+pvtDzqS0zILjr3NH9YKsCu3xNJPVXIwNsi8Q1zNvk4jaUFy6K6MTj6IC/nGfA6fYYbw02MXixOM0ZhaSuMeSAef+8W3GbORJuTQ/6332Hh6YXrbaYFtOi0WlZ89A5pcSe44aEnadVnAI4R2Tyw8BC3fd/8iqTvxDCkhKObUlGdN3VdrEjiTh5DLsxACIHlHQG0DG/duEK1vcm4A/ltGvwwDG5bBm7X/v8JIegzaSo2Dg5s/Wkuf7z7Ktt6j6rX8qYqkXQhxDcYe6HPFkJY0/ytdWtFr9Ox49d5uPkH0mbA4HrPk5QYz7llhwnL8yNbI8i8UTKor/l6SJTX1LD4VCK/Z+ZzxNIWvcoSH2qYaaXj/vaReDmYt+taakEF0adziY7LYdeZPAIrYGyFNYP97eg7tjWDIj2xtWr6hlR1xc0/gJ4TbmHXb/NJ6NOfsG6XJ2xJKcl44QUM5eUUz3oQVTOUulepVPS850ZOfLAJh5U2pPufw88/yKxrnNiRzrGtaXQYHEDrPnVPanW20fBnr3YM33uSWefy8bCxoUdALfNUFBhb2VYWGSvxev/TXyGEwPvFF9Hl5pL99ttYeLjjOGLENac0GPSs+fx9ko8cYth9D/9Vlmhoay++uLUzDyyM4Y4f9jPv7uZVJP0mhSENksMbUxAq6DnOqEhijxzCanE+FRZaXO9uTWBw46QSXEaLgXDHSlh4M/ww3Lgj8al999N55Bgsbe15IjGDY+r6lcI39UoxCRgBfCClLBJC+PAvyBOJ3bqBwsx0xj71Ur1sfueSE0lccZCwDB/8VW6c7pRH33E3mMVxfkFx/JmZzxG1hhoLS6zV1gzQV3JvaCADQzo2eI0LpBdVsi8pn31JBew7m09yvtEJF+Bqw+SuAQyI8CBz0VlcSgSj2vpcFslzPdNtzARO793J5u++JKBVOzSXtDkt+m0x5du24/XCC2T5Nk3FgCthZ+eA1x3tqJ6bRMpPB3B70hONpnZzkymkny5k+6+nCWzjSu+b6n/RCnR2YlGHFow/fpbbTqaw2kZDmLvrlQfXVMAvk6HwHNy2FPw6X3GYUKvx++ADUu6eTsZTT6N2dcWu+5V9A1JKtvzwNQn7dhN1+720GzTsH68Pa+PNF1M78+B1okj6TwkHCTHrU4ythIMK0SwppMSqEt8ZnfHxDah9InPi1xnuWmdU7D+dr7cVfO1db5VWx7OVlhwLbUvnhGOsrceyJikRKWWFECIH6AskALrzv69baqoq2b3kF/wiW9Oijg6tuNijpG85RcsMb4KEO6cjsuk8ZiBhbvXveWAwGDiSlcOypFR2lFaRYGmDTm2BtVpDF0MVN7nZMyGydYN7elTU6DiZUcKxtGKOpRWxM76CvHVbAHCysaRbsCvTegYxMNKTUHe7v7bhCaNgw/cnOHM4l5Zdrl3o7XpCbWHB8JmPsPCFx9m24HuGz3zkr9e0mZnkvP8+tr16GsN5t21rRkkhKLgl+4anErDWi50/LGfIAw3fzZbkV7Lum1icPG0Ydk/bfwRH1IcOPp58W1nJnUm5TDhwio19O1y+E9br4Pe7Ie0ATJoHwX2vOadKoyHgyy9InjqNtAdnEbRgAZqI8MvG7Vv6G0c3rqX72JvpMurKwZ/Dr0NFYpCSpI0p9HCAIusK/O7rgrdP83QHxSPcmJQ4f7zR2T7xJ4i4clmY4soqxkYfIE7jwFRVNY/07kh99semRme9grG/eQTwI2AJLAAax7hrBg6tWkZFcRFjn3zBJGdweVkph3fugphSgku8CVC5kRCWTYcxAxhSD7+H3gBJNU6s3n2IgyUVxGNBsbUNYImz0NHfUMVIT7d6Kw6DQZJeVEliThmJOWXEZ5cSm17M6exSDOej9rwcrQlyVPHA4Ah6hroR6e3wz97WF9GiiyfOq85ycM1ZWnTy+FftRrxCW9Jt9E3sX/47kb0HENS+o7E67yuvIA0GfN5447oJCOgxYCCbkpcQecqP7StX0390/ezQADqtnnXfxGLQG7jh/vZY25jHBDk4NIj3Kqp4IlvF+J2H2Ti4B3YXPqNSwurH4fRaY5hpa9Mi/dXOzgR+O5fkKbeQOmMGwYt+xdLnbwfw8a0b2LV4Aa37D6LvLXdcc65LFcnPd3fHobkUiUrg2aacwOOg1aspjwxqPgVyASd/445k4c2waCqM/QI63vKPIVmlZYzZeYRUa3se0hh4oVf9Y6RM/dSNBzoBMQBSygwhhFmKQQkhRgCfYiyU/p2U8t1LXrcGfsaY6JgPTJZSJl9rTmkwcGDlUsK698Y3/Or1ekpLijkZc4iyYzkEZboTLO3Isa4hoVsBXYdGEW5iOHBBRSV70zM5nFfEybIKknSSTOuHqBJGc4WtyooW+hp6W+kYG+JvckJglVZPelElaYWVpBVWkF5o/PtsXjmJOWVUav8uoOhub01bP0eGtfaivb8z7fyd8HLUEB0dTVTf2jOGVSpB1xuC2fTjSRJjcgjran4nfmPS8+ZbSNi/hw1zP+eOD+ZQuWEj5dt34PX8c/Uq796YRE0dz64P/yBgtwdxIUeJrGfkzvZFp8lNKeWG+9vh7GXeCgG3tI0gq/Ios8scmLB5H6uGne/VHv0uxMyDfk8YI4PqgKWvLwHffsu5qVNJufdeghcsQO3sTFLMATbOnUNwh84Mu+9hkxT+xYrk9mZUJCePHcZycT7F1lXk+fqSsK0AjX0S3UfXLW/L7Ni5wR0rjEpk2UyoLDBWBcaYMjB+/0nyrGx4xdmSmZ0blntjqhKpkVJKIYQEEEKYpRmxEEINfIHRYZ8GHBBCrJBSnrxo2HSgUErZUggxBZgNTL7WvNqKcnQ11f/om24wGMjLzSY5Pp6Sc3lYpxsIKPLED0vK1C4kB+bh1aMFHTqM+iuW32AwUFhVRVpxGellZWRVVJFVUcW5yirSa/RkS0GB2pJyyws+EhWWQoM3VfSWR2ilymBMxEO09XRDa4DSKh1l1TqOpxVTWq2ltEpHcYWWvPJq8kpryC+vJq+smvyyGvLKqskr+2ftIAuVwNfZhiA3W27pHkhLT3vCvOxp6WGPixkyxcO6eRGz/hz7Vxp3Iw01jTQlllbWDJv5ML+98gw7fpxLwE+/YtOxIy5TGy8rvb5YWFjQ7p5BpHy6FxaXU+Dji2sdTaUnd2ZwalcmXUYGEdKh4a1lr8Rj3TqQuX0fP2scuHPLXn52ike17V3oOBUGvVSvOTUR4fh/8QWp99xD6oOzsHz+aVZ+/C6ewaGMfvw51Bam76aGt/Fmzq2dmfVL8yiSU8ePoF6US5llFT73daKTtz8WC+I4sDoZhKD7jebtfVNnrB1g6hL44x5j//aKAo60msHkY0lUWFrzkbc9U9o0PPfG1P/Y4vPRWc5CiHuBu4FvG7w6dAcSpZRJAEKIRRgz4S9WImOBV8///TswRwgh5DVSLYssbdk+4i6itxxEEoNAjQo1oMIgwKByRBukRxtShlRJdCo1NSpXatJKqcnYhValRqdWU622RH+ZQ16FQIOdrMahphrvmkpstAasqwWqKgu01RZo9QYGt1yBQcId3x6hrEqHznDtzFA7KzVu9ta421sR4GpLp0BnfJ1s8He1wd/FFn8XGzwdNKgb0cykUgl6jA5l7TfHid+XRavezeeIrg/+kW3oOHwUR9avxkbq6PLmG4gmaj9cV1zdPMiZFIj1wgKOf7eFPk9MwMLEC2h2cgnbFsUT0Nq10e943+3bjezNe1hvYcfTxzP4oOVQGP2pMdmtntj16I7ve7OJf/ZZ9r7xInaenox/5hWs6hFoMKJt8yiSuNijqH7NocKyCu8ZHf9yog+cFomUkgOrziIEdBvVzIrEwtroF1n1GNtitnKXbigGlZpvg90Y0dI8sglT096FEEOBYYAA1kspNzZ4cSFuBkZIKe85//g2oIeUctZFY2LPj0k7//jM+TF5l8w1A5gBYBnWqov3F/MQUiKMbxKBNP6WEhWGi54DS4MWa4MWa30NGn0N1vpqbAzV2Osq8KgpxFVbhKO2DDttBZqaakSNJAc3soQneSpPslVeVKrtsVQJLFRgoYJxLT9BAFtSH8PGQqCxABsLcf6Hv37bWggcrQXW6sZRDmVlZdjbmx4iLKUkaaNEXwUtRwlUjSRXY2Fx6CBHd25E2NoRedcDqC66MNf1XDQFOQln6H0mnH2+8bi1r73Sra5KkrTB+J0NHS6wsK7f/6cu58Ku6CSvVLsQ49mKqUWpjHZpuCVbW1FO/MLvkZWVdHT1RT91WoMU06FsHV8eqSbYUcWT3TTYWJg+V10/F4V5WbSKcaFCXU1GdwP2Ds7/eF0aJBn7JUXJ4NlO4NGm+b9DB0sr+UzjhrVOy5xz89CET0SqLle2AwcOPCSl7FqXuU3eO55XGhuFEO4YfRPXFVLKucBcgNZOTnL5O8/QYu1aVBfCcaU0ZtRe/GPQg9SDrtrYda2m3Jg0deF3ZRFU6KG8BsoroKIKyrKhKNVoY5TAhbp19t7g1Ro8W4NXGw5VWYOlLVNHD2+O0/EX0dHRREVF1emYFp75rPz8KB7qsCZpEWou9CUlJL30Mp3dXditq8EqL5O+U2776/X6nItGJyqKTV8uokdKBOkddPQYcPUSLga9gZWfH8VQU8yEp7vgEVj/i7nJ5yI3Hr6/gyW23gxzeJ9fHf3o5GbDtHZX9zXWRnVFBYtfew69WjCkfVdUi37Ho2t33GfeV+85o4A2bbKY9UsM3562Yl4ddiR1+VzEnTyG98Zqqixq8JzRns7+wVccZ4iSbPn5FPF7swgJCaHrDVce1xTMO3aKj3UVOOuqWWJ1jNZZv4FtDkxeANYNv6m6phIRQvQE3gUKgDeA+YA7oBJC3C6lrH89biPpwMXB1P7nn7vSmDQhhAXgRC1KzODsjC4jk8IFC3GbfveFNwNCjdF/bwaqS40x8kXnjP2jc05Bzgk48B3oqqC9k7FQ2olxENADArobewFYmcWd1KgEtHbFN8yZg2uSieztg2UTFVdsKNmzZ6MrKKDj119RvG0D+5cvIbxnHzyDm9nJWQt97x7L4Q/W4LbegeSABIJDw644bt+Ks6TFFTLo9sgGKRCTKcmABRNAbYXdtEUss/JkyI4jPJdtwMs2maEtgus8pV6nZcVHb5ObcpbxT79McIfOZJRXk/vJJ1h4euJ80/h6i2s0bXVi1i+H/wr/NadpK/7kcViYSZW6Bvd72+J/FQUCRtPwoNtbgYR9K5JAQNeRVx/fWHy0/wjvlxnw0VayrFc7Ap17g6sjrHjIWOts6hKwvUoukInU5jmdA7wN/ApsAe6RUnoD/YF3GrSykQNAmBAiRAhhBUwBVlwyZgVwIebvZmDLtfwhAFKjwa5fP/LmzkVf3EitT6wdjBm6kaOgz8Mw/iu4bzs8lw4PHgD3cLDzgPI82P6eMWZ7drDxH7frM2PfZDN1SzM3Qgh6jA2loqSG49FpzS2OSZTv3k3xH0txu/subNq0YcDt92Dj4Mj6rz5Fb4Z+GY2JRmND4J1d0QsDufNPUFJSdNmYpMO5xKw/R+t+vk3jq6osggU3Q2Wh8ULjGoKHvR1Lu7fGRq9lxpkcYjLqVn9VGgys/+pTUo4fYdh9DxPSqStCpcL3rTex692bzJdeomx7w/rTj2jrw5xbO3EsrZg7fthPaVX9qghfSkJcLIaFGVSrtbjd0wb/ANMiHgfd0YrwHl7sW57EoXXJZpHFVF7ceYD3yiGkupz1/Tr93WOo01SYPB+yjsOPI403Cw2gNiViIaXcIKVcAmRJKfcCSCnjGrTqeaSUOmAWsB44BSyWUp4QQrwuhLhQLfF7wE0IkQg8DjxrytyeTz6BoaSEvLlzzSGq6agtjAk/9p7g1hLu3wnPnDOWIeg+A0qzjA1lvuoFn7SH9S9A2qHrTqH4tnQmsI0rMevPUVN5fV+EDeXlZL70MlbBwbg/aAxjtLF3YPD0+8lJPsPBVX82s4S14+cfRM04ZzwqnYn5Zh26ixRfYVY5m+adxDPYkf6TLk/SMzvaKmNoaN5p48XGt+NfL7Vwc2Fh22AkcOuxsyQXFpk87fZffuLUzmj6TrmdtlFD/npeWFnh99lnWEeEk/bIo1QeP94g8S9VJCUNVCQJcbHo5qdRo9LiOr117e1sL0KlEgy+ozXh3b3Yu6xpFInBYOD+LXv4TmtJ+6pS1g/qjof9JRaQyPPFGovT4fvhkJeIobJ+7ZxrUyIXd6q5dAWzXPWklGuklOFSyhZSyrfOP/eylHLF+b+rpJQTpZQtpZTdL0Ry1YYmIgKnMWMonL8AbUbDNG2D0ThCyyEw/C14cB88dsIY4eIZCfu+ge8GGRXKhheNO5TrhB5jQqku13F4Y0pzi3JNcj79FG16Oj5vvoFK83eRzfAefQjr0Zs9v/9CXiP1lzYnHbr15FyvMlrm+xE9fykANVU61n59HLWFihEz2l61N4jZMBjgz/vg3E4Y9xW0GHTZkG5+PnwZ4k6ZhRU37Y2loKL2i0/MmuUcXLmUDsNG0X3cxMteV9vbEfjNN1i4uZF630xqkpMb9DYuViRTv91HYfmVe7bXRsLpE2jnp6FV6XG9pzUBQXU3japUgsF3tiasm1GRxKw/Vy9ZTEGr13Prpt38KWzoU1PKyqG9cLhamaaQfsaqy9oK9F8NJ+X2W648rhZq+0R2EEKUCCFKgfbn/77w2Px9Rc2MxyMPA5D7+ZxmluQSnPyhy51GM8FTCTD2S6NC2fu1cYfy7WA49JPR79KMeAY5EtbVkyMbUygrrG5WWa5GRcxhCucvwOXWW7HtenlQyeC778fa1o41n3+AwYQOcM3NgLE3EheSTmS8DzvXrmPLz3EUZVcw/J42OLg2cg8XKWH9c3ByGQx7E9pffrG/wA1hobzhYUOmtS1jtx2ktPrqn4/4PTvY+vN3hHXvzaC7Zlw1mdDCw4OAb+eClJy7++4G3/yNaOvD3Nu7EJ9dyuS5e8gpqVsz1sTTJ9HOS0Wv0uM0PaJeCuQCKpVgyJ2tCOvmxZ4/z3Bg9VmzNIS6mIqaGsZu3E20pT2jDBUsGdoH69rCxn07ohu7iHPrrKg8UT8D0zWViJRSLaV0lFI6SCktzv994XHz1BmoA5a+vrhMm0bxsmVUxZ9ubnGujI2L0UY5dQk8EQfD3oKaMlj5CHwQYfydG99s4vUc1wKDlOxfadIGsEkxVFeT+eKLWPh44/H441ccY+fswvCZj5Cbkkz6vh1NLGH96H/3eM46Z+K3TUP+0Vx6jmuBf2TDnJ8msetT2Pc19HwQej9U6/C7OrTmUVtBgsaBcVv2U6W9XEmnxB5j7ZwP8YtoxciHnkClunaQhnVICAHffYuhtIxzd92FLrfuLZAvZlCkFz/d1Y20wkomfrOHtMLaOwACnDl9iuqfz6FX6XGcHkFQcO3h17WhUqsYcmcrInt5s3/lWXb/kWg2RVJQUcmIzfuIsXZgmqqa7wf3NqnHUU1aGskPvUhNuYaAG+sX9PPvSUmuJ+4z7kXl4EDORx82tyi1Y+cOvWfBA3th+iZjn4Cji+CL7sYomcTNTe47cXS3oX2UP6f2ZJKXVtaka9dG3ldfUZOUhM9rr6O+1OZ7EaGdu9Fh2Chyjh7i3LEjTSdgPbGytMZjcDdqDCq6Okh82jVBdNzRRbDpFWg7wbgLMZFnenbiPisdJzQOjNu0h+qLfDm5586y/IM3cfb2ZdxTL2NpZVr1a5s2bQj45ht0uXmk3D0dXWFhnd/OxfRu4c6Ce3pQWF7DxK/3kJR77c9xUmIcVT8nI5HY3xVmFgVyAZVaxaDbWtFuoD9HNqUSvTAeQy2JyLWRWlTCsG2HSLC25xEbAx8MMK0OVtXp05y7dSr64mKCfvoR+1frl/r3f69E1M7OuM+4l/Jt2ynft7+5xTENISCgG4ydY/SfDHzRGEmx4Cb4qjcc/92Y49JEdBkZjLWNBXuWJjbZmrVRdeoU+d99j9O4cdj3u3YVWYAB0+5C4+zKui8/orK0pAkkrD9lhVXsXpzGMStQqQwk/7CXiopGVOCJm2D5gxDS3+gHqWOXztf6dOUOdQ1HNA5M3LQHnV5PSW4Of7zzClY2Ntz03GuXleivDdvOnQj4Yg41586Reu8M9GUNe/+dA11YNKMXWr2BSd/s4VTmlT8DSUnxVPyUhERie3cLQkLNH8ggVMZ+JF1GBnFyZwabfjiBXm+o/cArcDInjxF7Y8m0suENVyue63nlkvyXUnnkCOduux2kJGj+z9h07FjvUN//eyUC4DJtGhbe3uR88IHZ7ZCNjp07DHgKHj0O4742Jkn+MR2+7AnHFjeJMtHYWdL1hmBSThaQcrL580ylTkfmCy+idnbG69mrdzS8GEtrDSFDRlFRUsLGuXOu28+BXmdg3dxYdDUGBj/YhcLhFviVebDvq1X/iNgyG+kx8Nvt4NEKJi80lsmoB7P7d2eSqGK/tQNTNu5k8dsvo6upZsLzr+PoXr/aXna9euH36SdUxcWROnNmvaOHLtDa15Hf7uuFpVrF5G/2EJPyzx3O2aTTVPxwBoHA9s4WhIY2Xk93IQQ9x7ag1/gWJBzMYd03sei0dfsu70lJZ+zhRErVlszxdeIeE9sal+3cxbm77kbt7ETQr7+gCW+YovxPKBGVRoPHww9Tdfw4pesamh/ZTFhYG8s5378Hbv4RVBaw9F6jqevYYmNUTSPSboA/ju4adv9xpsHb74aS/8OPVJ08ifdLL6F2djb5OFsPL/pOuY2E/buJ3drgqj2Nws4lCWSfLWHQ7a1w9bGj+4AoznQvIizXj+gf/sBgzv9z/hlYONFY8XXa78YowgbwSf/ujNaXs9PaiSVt+jLmiRdwD2hYB0eHgQPxe282lTGHSX3ggQYrkhYe9iyZ2QtXOytu/XYvG09mA5CclEDZjwkIBDZ3hhDasvEUyMV0Hh7EgFvCST6ex8rPjlJVblo48pqEJG6JT8cgBPPDvBnfyjSTW/Hy5aTOnIlVUBDBCxeapcL1f0KJADiNHYN1eDg5H3+CrKlfuN91gUpl9JXM3AWTfgYLjVGZzB0AZ7Y22rJqSxU9x7UgP72MuD2ZjbZObVQnnSVvzhwchg3Dcfiw2g+4hK43jiegTXu2/PQN+WnXV+hy3N5MYrel03Fo4D8agw28aSxxLTOITPJl2x+X5uLWD8uaIqOfTRpg2lJwqHvPnMuQkhEHN9Ix8RhHW7TlpYxSsyg9xxtuwPedt6nYt5/U+2ZiKC9v0Hz+Lrb8fn9vIrwcuG/+QbYn5FD642lUUoX17UGEtoxssMx1oe0Af4be3ZqspGKWfhBDacG1o8gWHD/FjHMFaPR6lrYLYUBw7R0UpZTkff0NGc88i23XrgTN/xkLd3ezyP+fUSJCrcbzicfRpqRQuHhJc4vTcFQqY0Og+3bATd8aM4znjzNeGLJiG2XJll088Q51Yu+yM1RXmCcTuC5Ig4HMl15C2Njg/dKL9ZpDqFTcMOsJLK01rPz4XbRVdQv7bCxyU0uJXhiPX4QzvcZdHko68K6bOe2VTotDLuzdsrlhi1WX0v7Y68bE16lLwP3KZVbqgpSSjd9+QfLhg7wT5MYQXTnrLeyYumk3On3DTa5OY8fiO3s2FQcPknLffejLGqZI3O2t+XVGT0YHGxibbIfKoMLytkBahrdusKz1IbybN6Mf7kh5UTW/zz5IbuqVw/s/2n+Ep3MqcddWs65HKzr41N6FVOp0ZL3yKrmffILj6NEEzv0GtYP5yub8Z5QIgF3//th260bel182+EN43aBSQftJMOuAMaom7QB83ReWzzKWXDEjF9qBVpZp2b/qrFnnNoXCX3+l8tAhvJ59FguP+vfQsHd1Y9RDT5Gfnsqm779sdv9IVbmWdd8cR2NnybDpV25xq1ar6TVzDKmOOXhshNgjh+q3mK4GfrsN+7KzxhLh/nUq2HpVdi/5hditG+g5YQqdho3i58G9uEFfzlZLe6Zs2oPWHIpk9I34ffgBlYePkHrvvQ12tqcnxTEj1QIVgodVeXxzVIe2ng5uc+Af4cJNT3ZGpRL8+UHMP/yPBoOBh6P3GsuY1JSzsV9Hgl2ca53TUFFB2oOzKFq8GLcZM/B9bzaigS24L+U/pUSEEHg+9ST6ggIKfvihucUxL5YaY2z/w0eg5wNw9Ff4vDO+6avN6nz3CHSgTT8/jkenk5/edCG/2vR0cj/8CLu+fXEaZ1pL1msR1L4jvSZM4eT2LcRGN59/RBokG384SVlhNSNmtMXW8epfcBsbWyLvG0CRVRnqJXkknq5jdQODAZbdD0lbiY+YBREjGii9kaMb17D3j19pO3AYvScam4CpVCq+G9SL8bKSnVb2TNi4+x/hv/XFceRI/D76iMrjx0mZPh19UVG95omLPYp+fjo6oSepWwVjBvTkj5g07vxxP0UVzWfudvOzZ8LTXXF0t2HVnGMcj06joqaGCRt3sVhq6FlTysbBPS4vY3IFdHl5nLv9Dsp27MD71VfxfPyxRmkT/Z9SIgA27dvjMGIE+T/91OBEpusSW1cY8bbRZ+LTgfCEuUZ/Scpesy3Rc0woVjZqti863SR38cZ+6a8iAZ/XXjXbF6HnhCkEtu3Alu+/Jvdc0++sAA6sPkvKiXz6TQ7HO7T2dsxubp54Tm+HTqWjcv5ZUs+ZmAQqJWx4AWJ/h8GvkOUzuIGSG4nbtY1N339FaOduDL33wX/8b1QqFV8N6sWU81Fb4zbtocIM/kjH4cPw//QTqk+eInnaNLRZdSsEGXvkEKpfsqlU1+A2ow1Ozu48MiSM929uz4GzhYz7YheJOc1XLcLexZqbnuxMUFs31i09xcA1u9lj5cBEKlk6tA+2Juwkqk6e5OzESVSfOYP/F3NwmXLNZrAN4j+nRAA8H3sUWVND7hdfNLcojYdnJNy+ghOtn4aKAvhhOCx7wPh3A9HYW9JzbAsyEopIPJRjBmGvTfGy5ZTv3Inn449j6edntnlVKjU3PPQk1vb2rPz4XarKmzaZMvl4HgdWJxPZy5s2/UyvzBsQGIrtbaFYGCzI+yGW7GwTyoPs+hT2fgk9ZkLfxxog9d8kxRxg7Rcf4R/ZhhsffQbVVbpIfhLVkzvUNRy2dmD45n3kV5iWNX4tHAYPJuC779BlZZN8y61Unzlj0nFHD+zFenEhpVaVeN/f8R/VeCd2DeDXGT0oq9Yx/ovdbI1r/M/21bCysSDoJh9+Gm5LqoMjExJyebdzZ5Oy0EvWrSd56jQAghcuwGHg1XvUmIP/pBKxCgrCZdIkipb8TnVS89yBNglCkOvZBx7cb7xwHPsN5nQzJis2cAfRuq8vHoEO7Po9kZqqxqtJpcvNJfvdd7Hp0gWXW+tXIO5a2Dm7cOOjz1Cck2Wsr9VESZzFuRVs+vEk7gH2DLglos67qxbhrWCKF/ZaG1K+3kdhwTX8X0d+MWajt7kJhr/ToA6CF0iJPcaKj97GIyiUcU+/jKX1tet6ze7fncdtJInWdgzZdrhO1X+vhl2P7gTN/xmp1XLu1qlUHj16zfH7t0djv7ScQutSAh/sgY/P5VFNXYJcWT6rLwGuttw97wDfbDvTLD6zZXGJjD52llIrK17WC9rHWrLknYNkJBZd9RhpMJD7+RzSH30UTUQEIYt/Q9O68QMF/pNKBMD9gftRWVuT88EHzS1K42NtD0NehRnbwDnQmKz4y2Rjh8Z6olIZnezlxdXGpjuNRNYbbyIrK/F54w1EHTOpTcU/sg2D7rqPs4cPsmvR/EZZ42JqqnSs+cpY7nzkfe2wqGfTr1btOlIx3gG3KifivtxGUdEVEkFPbzAGWYQMgPFf1zkb/UpkJsSz7P03cPbyYcLzr2Fta2vScU/37MS77jbkWlozYt+pOvcjuRKaVq0I/mUhKicnzt15FyUbNlxx3I7Va/BaA9l2hbSc1RcPj6uHNPs52/D7/b24oa0P76yN4/4FMRRXNl004uu7D/FAegk2Bh1LWvkxc1gnJjzdBbWlimUfxnBwzdnLcrX0ZWWkP/IoeV98gdO4cQT+PK9BwSd14T+rRCzc3XG77z7KtmyhfM+e5hanafBuC/dsMt6NJu8wZr3v+6bejnfvUCfa9ffj2NY0ss6av/lXyfoNlG7YgPusWViH1t4EqCF0GHoD7YeMYP/y34nb3bDGSNdCGiSbfjxJYVYFw2e0xdHdpkHzdejWk/xRFniXu3Lq82iKCi9SJGkHYckdxv/75AX1zka/mNyUZJa+8wq2Tk7c/OKb2DjULUHxjvat+C7YjSqVmgmxKaw+3fAbEKvAQIJ/WYh1eBjpDz9C3ldf/bV7MBgMbPl1KSE7HEh2zabDo8Nxdav94mprZcGcWzvxwg2t2Hgqm9Gf7yQ2vZEa3J2noqaGSRt28mW1moiacrb2aU8Pf6OZ093fgcnPd6NlVy/2rTjLik+PUF5srJxcFRfH2QkTKN2yBc+nn8bnnbdRmTkC61r8Z5UIgOudd2Dp60v2u7ORZghB/FegUkOvB4xFHgO6w9qnjd3N8k2zKV9Kz3EtsHOyJnpBHHqd+cIj9UVFZL3xBprWrXG7+y6zzXstBt11H36RrVn/1adkJzVOnbD9q85y9mgefSe2JMBMlXm79e1P/o0WeFW4EDdnGwX5uZB9wpgzZO8JUxuejQ6Qn57K72++iIW1NRNffBN7l/rJP6JlCL+3CcDaoOfe1ELe23u4wbJZuLsT9PPPOI4eTe6nn5Hx5FNoK8rZ8v0Swo96EO+bTq9HxmFnb3p+hBCCe/uHsvi+nmj1Bm76cjfz9yQ3inkrIa+AgZv3s93SntGGCjYM642Xwz/rjVnZWDD07tYMvC2S7KRiFr2+n8NzVnB28hRkRSVB837C7e67GiUC61o0mxIRQrgKITYKIRLO/3a5wpiOQog9QogTQohjQgizhhiorK3xfOpJquPjKfrjD3NOff3jEmTMVB73NeTEGXNL9s2tc/kUKxsLBtwSTn56OYc3mC8DPPvd2eiLivB5601EbT0RzITawpIxjz+PjYMjy957nZI88zpWEw5mc3BNMq37+NAuquHlJi6ma59+FI62wqPCiYQ528mfdxtY2sDty42KpIHkp6Wy5PXnAbj5hTdx8mxYhntXPx+29G5LaE0FH1UK7ty0q8G5JCpra3zfm43H449Tsn4jZx77kcgzvsS1zCDqwYlYXa05Uy10CXJl9cP96N3SjZeWn+CeeQfJKTVfkurC43EMi0kk3VLD8w6Cbwf3xvIqQQpCCFr38WXCY22xqcpld6w9J7o/hufPi6/YT6cpaM6dyLPAZillGLCZK7e9rQBul1K2AUYAnwghnM0phMOIEdh07kzup581OHnpX4cQxnpcD+yBwF6w9imYPxaK6qYMQjp40KKzJwfWnKUwq+FJnGU7dlK8bBlu90xH06pVg+erC7ZOztz07Ctoq6tZ+s6rVJnpM5GbUsqWeafwaelE/3o40k2hS+++FA+rxr3KmbOlz5E27FtwCW7wvPlpKSx+/TmklEx6+R3c/Gsvs2EKvo4ObBrSi8G6Mtap7RiyYTcZJQ0LrRVCoB87isqxz2Pn3I6K+D/p5u+C+ioXZVNxtbPihzu68fKNrdmZmMfwj7ez5njDyv9U63Tct2U3T+RV4aDX8keELw937VDrcRUHD1I04xY6bn2ZDl6Z5GmCWPL5aWK3pzdLXbvmVCJjgXnn/54HjLt0gJTytJQy4fzfGUAOYFZvkRACr+eeRZ+fT/4335hz6n8PTn7GfsujPzVWdf2yN8TMr1MEV7/JYVhaqdk87xSGBmT96svKyXzlZaxCQ3F/4IF6z9MQ3AODGfPECxRlZbD8wzfRaRvmVK0oqWHNV8fQ2FsyYkY71BaN9LUrzabz8ReocJqNvd6RwsUlnI470aApjQrkeYQQTHrFfArkAhpLCxYO7ctDGgMJVnZE7TnRID9J3MljZM85jIN0I7tXMZYWaWQ8+ghZb76FoYElblQqwd19Q1j9sDF664GFMTz862FyS+ve9fNETh4DNu5hubClb00ZO6K60CPg2mHehpoacj74wFjCXQiCF/xM39emMuXF7rj52bPtl3gWv32A9NMN679SV0RzlXwQQhRJKZ3P/y2AwguPrzK+O0Zl00ZKedlVSggxA5gB4OHh0WXx4sV1ksfxp5/QHDxE3quvYDBDYTK94T0A1KqnGzxXQygrK8O+Dr0cNJXZRMZ9hnNxLPmuXYiPeJAaazeTji0+J0nbI/FoK/BsW787bYdfF2GzfTuFTz2JNrT+7UivRF3PRUHCKc5uWo1LywhChtxYr92DQSdJ3iqpKoKQIQIbl8axV1toS+l45AVsKrM52uFVUvXuBMdo0BisiW2Xi5vPP/NrTDkXlfm5nF65BIQgYswkNC6mfQ7qy7GyKr5QO1JirWFEcTbTnDWo63DOc88l0ynOnzKLSs52rMDFzQt0OuyXLsVuy1Z03t6U3H7bZZ+run4uAHQGyaokLSvPaLFSw8RwK6ICLFDVIq9BSpYXV7LUzgMQTC7P4Ubn2qPbLBMScPzlVywyM6no25eymycgNX+HVUspKUmF7CMSbQU4+INnG4Gmjp+3gQMHHpJS1s0uJqVstB9gExB7hZ+xQNElYwuvMY8PEA/0NGXd8PBwWVdqsrLkqY6dZOrDj9T52Ctx8NAt8uChW8wyV0PYunVr3Q/S66Xc85WUb3hK+U6glMd/N/nQ9d/Fyi/v3yKzk4vrvGz5/v3yZESkzHzrrTofawr1ORf7l/8uP5g0Sm789gtpMBjqdKxeb5Brvj4m58zcLM/E5NR5bZOpLJZy7kApX3eX8szWv57OSE+R+1/9UyY9u0XuWLv2H4fUdi7S40/JOXdNll/dd5vMT09tBKGvTHZpmRy+drv02nJY9luzXcbl5NV6THVNldz43W8y9Zntcuebi2VOTuZlY0p37pSnowbKk61ay+z335f6ysq/XqvXd+Q8iTml8pa5e2TQM6vkmDk75ZGUwquPzSuQA9cY31uvNdvl8czaPxPaggKZ/sIL8mREpEwYOEiWRkdfe3y1Tu5flSTnPhIt59y3Wa7+8qjMOVdi0nup1uolcFDW8TrfqOYsKeUQKWXbK/wsB7KFED4A539f0YsphHAEVgMvSCnNV7vjEiy9vHCbPp3S9eupOHiwsZb5d6BSQc+ZMHMnuLWE3+82/piQ7d5/Sjg2jlZs+vEkuhrTHaWGykoyXngRy4AAPB99tAHCm5euo2+i29ibObpxDdE/f1enyJzdfySSdDiXvjeHEdqpkWL2q0qMUViZR2HiPAiN+uslH98Awh7uR5pTLsHRdmz6fjFaE0xzyUcOseTNF9DYO3DL6+/h6mveIIBr4Wlvx5phfXjAWk+SpQ1DjyTx7t6Yq5aUz87OYP/7K4hM8CEuJJ2uT46+Yg6IfZ8+hK5cgfOEm8j/7nuSbhxN6aZNDY60auFhz8J7evDplI6kF1Yy9otdPLgwhuS8v32DWr2e13YfYlBMIvGWtky31LJ9WG/ael/9MyFraij4+WeSRt5A8Z9G/2DoqpXYDxhwTXksrNR0GxXCbW/1puuoYNJPF7H47QP8+WEMCQezrxhBaTBIVh/LZOjH2+p1DprTnPU+kC+lfFcI8SzgKqV8+pIxVsBaYKWU8hNT546IiJDx8fF1lslQWcmZkTdg4epK8JLFiAY44w7F3ApAl86/1HsOcxAdHU1UVFT9J9DrYNfHEP0u2LobW/aGDb3mIaknC1jx2RHaRfnTf4ppXdOy33mXgnnzCJw3D7se3esv7zWo77mQUhI971ti1q6g29ib6XfLHbWato5tTWXHbwm0H+hPv8nmb7EKQFWxUYFkHDZW5G01+orDarTVbP9xGZFJvpxxzaDDvUM4cvT4Fc9F3O7trJ3zEW7+AUx4/nXsnC8LmmwyjmRmc/+R05zVOBBeVcpnHcPp6OP11+sxe3ZhtboYjd6K7IF6+gwbbtK85Xv3kv3WW1QnJGLXuzcpA6Poe9ttDZa3rFrH3O1JfLcjiRqdgcndAujQUsPstGzSNfa0qCrlk/Yt6ebnc9U5pMFA6bp15Hz8CdrUVGx79cTr2WfRRNSvSVZ1hZYTOzKI3Z5OaX4VNg6WtOzsScuunniGOLE6NpMvtiZyOruMCC8HNjw+oM7mrOZUIm7AYiAQOAdMklIWCCG6AjOllPcIIaYBPwIXewfvlFIeudbc9VUiAMUrV5Hx1FN4v/pqg4qW/d8okQtkHoWl90HuKehyl7HsvPXV7cg7Fp/m2JY0RtzXlhadrh1iWhFzmHNTp+I8ZTI+r7zScFmvQkPOhZSSzd9/xdGNa+gxfhJ9Jt92VUWSdCSXtd8cJ6S9OyPua4dK1Qh+kKpimH8TZB4x7kBa3VjrIdtXriZgty3FlmUktSnlpsm3/vWalJJDq5exbcEP+EW0ZtzTL6Gxq5ufoDHQ6fW8ufcw31eCXghGUc2rHcM59cdmIpN8ybTJw21qqzo3kpJaLYW/LiJ3zhwMJSU4DB2K+6xZaCIarvBzSqt4Z/0xtv2vvfuOj6pKHz/+OTOTNplJT0hISAECEggdFJCOCgoCKmBZ26rIsqJYVlx119+qq3wFd1cUsGBBLIB0G0qVJiBFegkESEJ675Mp5/fHBIMYIP2mnPfrlRczw507D4fJPHPvued5LNmkhLTC3VrGfW46XhrU67K1r6TVSt6335K1YAFlp07j1qEDQX/7G57XD6iTK/kcDknCkSyO70jh7OEs7FYHpXqI19mw+Llw05BIxg2MwNVF33SSSH2qTRKRUpJw3/1YTp6k7drvMfjW7JtYs0siANZS2PRv2PG2c53J+Pcg/LpKN7VbHayYvZfctGImvtAH78DKJw8dpaWcGX8b0mIhas0a9FUocV1TtR0L6XCwfsE8Dm5YS7cbb2H4g4/+oRRL8qlcvn7rV/xCTYx7qgcuNSxpckUlufDZbZByECYuhGtuqfJTjx36lZJlCfhbvImLzWDIpHEIYMNH8zm04Qc6XDuAkY89hYtr7Ve316W4zGye3nOE3W5mPC2l3Hk6h/6ueQy/dyzu7jVf9W/Pz2ffv/6F109bcBQW4jlwIL733I1p0KAaldlJLSjkxd0H+V66IYWgS24OKYdLKSiB3hG+TOrThtFdW+NR/r6wpqeTt2IlOUuXYEtOwa1DB/wfeQSvm0fV6kzIpaSUHEnO58vdCXyz9zwhxdDbxZ0wq8Be7DztbHDRMeWd6k+sqyRSCUtcHPHjxuNz222EvPJyjfbRLJPIBed2wMopzvUkAx6HoS9UWlIjP7OEpa/9gtnfnduf7YXB5Y+/FOmzZ5O14EPafLgA04ABdRvnJepiLKSUbP3iE35Zs5xrBgxm5NQn0ZcvhsxIKGDVf/Zh9HZj/NM9r9gbpMaKs8u7Vx5ytke+5uZq76IgP4+f3l1B9+z2nDOlkmI5zLmTe7l2/CQGTLyn3mqU1UZ+fi67F/9AarY3b3byIMXLG29LCQ/4uPFkr664u9R8QermzZsZ2L072V98Qe7iJdjS03Fp0wav0bfgNXIUbh2ir3o0cDIzm5m/HmOddMWqN9C3rJB/d+9IbHAQecVWluxJYPHuROIziwgSVh7Qn+fac/sx7tsJdjvGa6/F78EHMA0eXGdriKSUHE8t4LtDKXxzMIUzmUW4GXSM6daae6+LoFsbH6SU5KQWkxqfR/b5IgZO6lDtJNIwS4GbGLfoaPzuvZfshQvxmXAHHl27ah1S4xLRH/6yHX580VliPG69s7hfyO/HySvAgxEPxPDtvINsXRLHkHt+v8iu5NAhsj76GO87bq/3BFJXhBAMuudB3DxNbPtyIcX5eYyZ/hwlhYKv3/4VV6OBW5/oXj8JJD8FFo2H7HiYtAg6jqrRbsxe3pj6RhGXlkabvV6EiSF4942gz/gJjS6BOBwOdm7cgPmnMjpYgyEqhU2D+7I6IY23zhfyVomOjzbu4RY3eLLbNURUodtfZfQ+PgROnUrAI49QsH49OUuXkvXe+2TNfxfXqCg8+/XD2LcPxt69f+tN7nA4WHv6LB/En2eXwROpM9KjrJAZ0ZEMjuzx277NOjt/8shmvOk4qft+RhzYi95uJ8vdi7XtB5E1eBTRPWPoG+VLF7sDN0PNjkDsDkl8RiEHk/LYfjqT7acyScu3oBPQr50/kwe1ZVSXYHyMFe9NIQR+IZ74hZSfAajBGXx1JHIZ9sJC4kfdjKFVKyKXLK72oWWzPhK52MkfYc1jzm/IQ/8O/Z8A/e+/m+xcdZq9a89x/cRoug1zLlZzlJVx9vbbsecX0Pabr+u05/Pl1PVYHN60jnUfzMXsH4TOdTTofLntmV74tKpaVdtqyToNi8Y5x/muLyFqUI13JaVk+fy3Ob9jMyaTH22jhhCdE0GaezbWwWb6Dh5Spb4V9e3g3t0UrD1HREEwSZ4ZeI2NIqZrxYezw+Fg0eETfHA+k1PuZnQOO92sxYxv5ctdMdGYq1jm5HLvC1tWFgXr1lGwfgPF+/Yhy/ugxHeOZe2g4Wxq14lMTy8MdhsDslN5vKyATg4r9tw87Lm5lCUlUnb2HNakpN/KCbm2b4dp8GA8hg3nkDmMH46ls+1UJvEZzqu59DpBhL+R6CAT4X5GAs1uBJjcMLkZMOgFBp0Oi81BkcVGQamVlLxSknJKSMgu5kRqASVW56kpX6ML/dsHMLB9AMM7tSLQXLWxEEKoI5G6ojeZCJoxg+RnniH3q2X12hmsSetwo7OY47dPwYaX4cT3zrkS/3a/bXLtrW3JTili+1dx+LQyEtHZn8x587DEnSLs3fkNkkDqQ5ehN+Bq9Oebt15HOhYy/KHp9ZNAUg87j0AcNrj/awjtWeNdlZUUs+HD+Zzbuonw2O7cMu0ZjN4+7N2xDcc6B2E/uLDj5+WYbwwntmcfTZLJof17yNpwivaZoQgXI/HXF9DvpjG4uLj8bjudTsf9XTtxf1fYlZTMnGPx7NC58c9cG69sOUgXeyn9vYzcEhlK9+Cgav9bDP7++N55J9bRY9hy+iw/JSSzS7iR7uksZhmanc592zcyft23+JSXx0kDEAKd2YxLaCgeXTrjPfoW3LvEYuzZA72Pz2/7HwAM6OC86CSz0MKes9kcSc4nLq2Qk+kFbD6RgeUqRU0NOkFrHw/CfD2Y1KcNsaHexIZ50z7QVD8XdFRCHYlcgZSShPsfoPTECdpVc5K9xRyJXOzQMvj2abCXwQ0vQ5+Hf2uAVFZqY+Wb+8jPKOGWWz3Je+x+vG+9ldYzX2+Y2Kj7scjPLGHVf/dTkp+JQfc9uamJ9B5zG9ffeS96g8vVd1AV536GLyeBqwnuXQmBNbvUE5yNpH549y3yM9MJ6dWPO5+egU5XcYRttVr5ee2P+O4GX6sX58yp6Pv703vgIAz1XASzzGph/7btWH/OIjI/mAJ9MSldirhu7I0YjVW/Ssxis7Hi+GmWnU/nAC4UujpXdXtYywixW4gyCCI93Ah2d6O10QMvNxdOHD9Ol5gYCsqspJeUkllaxpniUs6W2TgvdWS4GUEIhJREWgoZ7OnGndERdA9phZQSR2Eh0mYDhwOh16Mzm+tkUlxKSaHFRmZhGUUWGzaHxGZ34GrQYXZ3wdNNj5/RFYO+7hJ9TY5EVBK5CktcHPHjb8N79OhqfeC1yCQCkJ/sbIJ0egO0HQpj5zprcwEF2aUse/0XHDlZ9En4hM7LFzXoUUhdjkVeRgmr/rsPa6mdW5/ojm+IGz99+iEH1n1Hq7bR3Dzt6dov0ju4FFb/FXwinAnEp2Z1qyzFxWxfsoj9a7/GJziEkVOfIi4l7bJjUVxcyO4fN+G1XxJk8SXTNZfMtqW0vb4rbdvXPIldyuFwcOrkMRJ2HCEk3oy3zUSmay453R30vWkYnp61e284HA72paTx3blkDhQUc84hSHNxx6q/ekIUUuJTVkqwtBHjbmBgkB83RLXBv4oNuJoqdTqrHrhFR+P/8ENkvfseXmNGN5kJYM14tXYWc9zzkXPifX4/uHk2xE7A7OfOda472UInDnR/gvbSjab4K5mVXMg3bx/AWmZn7PQeBIY7P+xGPDyViNju/PjeHD59dhrXjZ9En7G3V/+oREr46f9g8+sQOdA5ie5R/UvNpZQc27qJLZ9/TFFeLj1GjWHgXffj4uZOXEraZZ9nNJoYMm4MttE2fvlpM5Z9xUQfb4X+eDq7PY6SH2bFLyaUdjExeHtXL660tGTOHj1O/sl0As97ElDmQ3uCiA9Kpai3Bz36jfzDaaua0ul09A4NofdFi/tsdjtphcWcy8snqaCIIpuNM2fPEhYejsnFQKCHO0FGI9H+PhgbsLFTU6aORKrAYbFwZuw4pM1G26/XoPO4+nXpLfZI5GJZp2HVXyBxF8SMpdBnIomP/w3HXdPYlhmDT7CRcU/2wM1YR6d+rqIuxiI5Lpfv5h9Eb9Ax5vHuBIT98VRLUW4Omz55nxM/b8UvtA0D736Adr36Vu3STZsF1kyDg0ug+z0w+n9gqN6HmZSSxCOH2L5kEcknjxHcvgPDH5xCcPuKhXTVHYuMjFQO/7QL/elS2uQG4SKd3z/T3XLIMxdjM4PeyxWdmwGdix6EwF5qxW6xQr4N13yBT6EJP6tzPqFEZyEpIBN9tJmYfr0JCGh1pZevV5r+jjQy6kiknujc3Ah55WXO3XsfGW+/Q6tn/6Z1SE2Dfzt48HvYMQfb96+R/N1u3MJDiHzuIUynCvlu3kHWzDnAmGndcPdsmERSG6f3pbPuo6OY/d0ZM63bZVvbevr4Mnr6DGIGDWPzpwtYPesVWneMof+Euwnv0u3yySTvvLOdbdIvMOxFGPjMb3NKVSGlJOHwAXYuX0zSscOYfP24acoTdB48vNaX7gYGBjP0jrEAFBUVcOLgQXLPpkFqGZ4FrnjneGKyV35cmWcoJNejkIygArJa2whsF0Z0pz5Eu7lXur3StKgkUkXGPn3wmTiR7E8+wevmm/Ho0lnrkJoGnR45YDqpiw5it+wkvNNBdCseIGLUG4yc3IW1Hxxm1X/2Mebx7nh6N65V0hdIKdn/YwI/rzpNcJQXt0zthrvp6kmvbc8+RHTtweFN6/h5+Zcse/VFAsMj6XHzrXS87npcPS760D2zBb56EGylzkWEMWOrHF9JYQHHtm7m4PrvyUpKwOTrx7AHHyV22E0Y6uGUjKenmZ79BkC/3z9eXFxISUkxZWUWpENi9PTE6GkizKVx/r8qdUMlkWoIeuZpCjdtIuUf/yBq6RJEHZ27be7yVq+m4KedBE5/HPfYMmcxx7nXEjX0eUb/ZRLfvX+UlbP3MXpaN3yCGtcsidViZ+Onxzi1N512PYMY/kCnapUy0RsMdLthFJ0HD+fY9s3s+24NP747h40fvktUz95E9+lHWNFuzLtmOismT/ocAq9cv0lKSXZyEklHDxG3+2cSjxzEYbcT3L4DN015gmsGDK6X5HE1RqOpWldSKc2DSiLVoPfyotU/XuT840+Q9eFHBEx5VOuQGj3LmTOkvvwKHr174f/IZNDrofN4+O5v8OMLtAlezNi73uSbryws+789jJwcS1hH7SrHXiwntYgfPjhMdnIR/ca3o8eN4TUuSWFwdSV26I10GXIDySeOcXzHFk7u2ELcrh0AeHsOJMC9J74/bMMr8CRuHkZcPDyQdjtlpaVYigrJTUshNzWFtPhTlBTkA+ATHEKv0ePp2G8graLaXSkERakXKolUk9eNN5I/aiQZc+diGjyowXuANyWOsjLOP/U0OhcXQmfPrrh23icc7loMx76G72cQvPYmJvR6hG9PjOXrt35lwIT2xA4Jq5c+5FUhpeTwT+fZsfwUBlc9o6d1Izymbrr6CSEIvSaGUM4yNGMnGfmSpLBJnC82k518nrMHf8Vus1X6XFcPI74hrWnbs69zH9fE4BsSqtk4KQqoJFIjwf/8J8V79pD87Awily9Dpy4FrFT6rNlYjh0jbN48XIIvaRQkBMTc6myitHU23jvnc4dhBetCZrF1SRyJR7MZem+n+qlBdQUF2aVs/vw4CUeyCe/sx7D7OtXtXE1JLqz7J+xbiC44llZ//pBWgR3pVf7XDoedkvx8ykqKKSspQWcw4OrujqvRE3dPk0oYSqOjfYGcJsjg60vIK69giYsj8+23tQ6nUSrYuJGcRYvwve9ezMOGXn5Ddy/n6va/7sa1Q39utv2Z6wO/IvFoJotf2UXcnrRad5+rCrvVwd61Z/nipZ0kn8xl0J0dGP1Yt7pLIFLCkZUwty/sXwT9H4eHN/xhBbpOp8fTxxffkFBatW1PYHgk3kHBeJjMKoEojZI6Eqkh85Ah+EyYQNaCDzENGYKxV6+rP6mFsKamkvL353GPiSHomWeq9iS/KJi0CHF2O91++Dthjm2sL3qWHxdYObL1PNdPiCYgrO5XtzvsDk7sSmPPd2fIzyylbY9Arp8QjdmvDi8/zToNPzwPJ9dCcFe4ewm07nH15ylKE6BZEhFC+AFLgEjgLM7OhjmX2dYLOAqsklI+1lAxXk3QjBkU/fwzyc/9naiVK+u1oVJT4Sgr4/wT05FWK6H/ebP6p/oiB8Ajm/E/tpoJG2dyJDGSXafuY8mrubTtFkDPkZEERdb+W7mlxMaJnakc3JhIXkYJgeFmxkzrSHjnupn7AJwVd396A35ZAHpXuPHfcO2UP1Q5VpSmTMt383PAhot6rD8HzLjMtq8AWxossirSmzxpPfN1zt13P6kvvUTr2bNa/CmHtNdeo+TAAULfegvXyMia7USng87j0XW6ldjDK4je8BoHkzpz4NBY4g9k4h9qpFP/UCK7BuAdWPWudg6bJP7XDM78msGpfenYyhwERZgZNSWWqG4Bdfd/V5ILv3wA29+GsgLoeR8MeR7M2q3KVpT6omUSGQsMKb+9ENhMJUlECNELaAWsBaq1HL8hGHv3JnDaY2S8NQfPftfhc8cdWoekmdwVK8ldvAT/hx/C66Yba79DnR66TsC983j6Hv+ablvnEhdv4mjGSLZ9Vcy2r+LwDvIgKMKLgDATJl83PMyu6A06HA5JWbGNgpxS8tJLSD+XT/o5yTHHIVw9DHToG0znga0JivCqfZwXFKbDznmwe4EzeXQYCSP+HwSpK/iU5kuz2llCiFwppU/5bQHkXLh/0TY6YCPwJ2AE0Ptyp7OEEJOByQCBgYG9li5dWn/BX8rhwGfOHFxPx5P13AzsoaHYHW8AoNc923BxVKKwsBCTqf4XgBkSEvB7YxZl7dqR+/g053qQeuCVd4w2iasxpCaQYOnOWTmATGsUpZbLz2HoDODuCwazFd8IVzwDQdRVrwXpwCf3MK2T1xKQuQsh7WQEDiAh/HYKzW3r5jXqQUO9L5oCNRYVhg5tZD3WhRDrgeBK/uoFYOHFSUMIkSOl/N0qMyHEY4BRSvmGEOIBrpBELlbXBRirwpaRQfz429B7exP11VL2H38YaBkFGG3Z2Zy9YwJSSqKWL8Pg51evrwc4W8UeXAz7P4OsU1iEL8Wtb6QkZBj20L7oPH1xdTdg8nXD3eSCEKLuxkJKOL8Pjq5y/uQmgLsPdL/b2UPFv/Ev+lNFByuosajQ6AowSilHXO7vhBBpQogQKWWKECIESK9ks37AQCHEVMAEuAohCqWUz9VTyDVmCAwkdNYbJPz5IVJe/Af8SQLNf37EYbGQ9NfHsGVlEfHZooZJIABeIXD9kzBgOiTuxu3oatyOf43vniWwBwjsBJHXOyfqQ7qBT2TNX8tug6xTzmrEZ7bA2a1QmAY6F+c6l6EvOmtduaiCgkrLo+WcyBrgfmBm+Z+rL91ASnnPhdsXHYk0ugRygWe/fgROn07Gf/+LdXgwLiEhV39SEyalJOWFFynZv5/Q//0Xj9jYhg9CCAi/1vlz078h9RCcWgdnt8OvXzgnuAFcPOnpHgpZ3cEc7Ox7YgxwfvAb3J37sZY4f0pyIP+8s8FWZhxkHHcWRgQwtXL2+Gg/HDqOqlGfD0VpTrRMIjOBpUKIh4BzwEQAIURvYIqU8mENY6sx/8mPYDlxnMzEqvUdacoy584j/5tvCJw+Ha+RI7UOx5kIQro6fwY+DXarM6mkHYa0o9hPbHMeTRSkgt1y5X3pXZ2JxjfSeYoqOBZa94SA6GqVZ1eU5k6zJCKlzAKGV/L4HuAPCURK+QnwSb0HVktCCEJefZXkd7fj2HYOS+QZ3NpGaR1WnctbvZrMd97Be9w4/B+drHU4ldO7QGhP5w9wwKP83LeUzqONokxnMrFZwGEHVyO4GMHNCzwDVLJQlCpQq57qgc5opPukFZy5YwKJ26cQ+eWXDTdX0AAKNm4i+fkXMF53HSEv/6vprY0RAox+zh9FUWpF1c6qJy6hoYTNnYstNY3ER6fgKCrSOqQ6UbR7N+effBL3mBjC3nkHoYpPKkqLppJIPTL27EHof96k9MgRkp58Emm1ah1SrZQcOULSX6biEhZGm/ffU2VeFEVRSaS+mYcPJ/illyjaspXk519A2u1ah1QjJUeOkPjnh9B7exP+4QIMvuqqJEVR1JxIg/CdNBF7TjYZ/3sLoROEvPZaRYOmJqDkwAESHn4EvdlM+KcL/9gbRFGUFkslkQYSMGUK0uEgc46z/0hTSSTFe/aQOPlR9AEBRHzyMS6tW2sdkqIojYhKIg0ocOpUADLnvI202giZ+Xqj7oqYv3Ytyc/OwCU0lPBPPsallapCqyjK76kk0sACp05F5+pK+uw3sWVlEfbO2+jNdd9sqTaklGR/9DHps2bh0aMHYfPmqjkQRVEqpSbWNeD/8MO0/r+ZFO/dy7l7/kRZ0nmtQ/qNw2Ih9Z8vkT5rFuaRIwn/5GOVQBRFuSyVRDTiPXYs4e+/hzUlhbO3307h1q1ah0RZYiLn7rqb3K++wn/yZGdnQrc66jGuKEqzpJKIhjz79ydq2VcYgoNJnPwoGXPmaLKWREpJ3po1nLntdsqSkgibN4+gp55E6NTbQ1GUK1OfEhpzjYggcvGXeI8dS+a8+ZyZOInSY8ca7PWtaekkTf0ryc/OwK1dO6JWLMc8bGiDvb6iKE2bSiKNgM7Dg9YzXyfsnbexZWRwZsJE0l6fiT03t95e01FSQua77xI/ahRFO3YQ9NwMIj7/DNewsHp7TUVRmh91dVYjYh4xAo9evUh/802yP/2U3JUrCZj8CD6TJtXZFVyO4mJyV64k64MF2FJTMd8wgqBnnsE1IqJO9q8oSsuikkgjY/D1pfWrr+J3732kvzmb9Nlvkjn/Xbxvvw3vsWNxj4mpUdXc0hMnyFu9hrzly7Hn5eHRvTuhs97A2KdPPfwrFEVpKVQSaaTcO3Yg/P33KTl8hOyFC8n54ktyPl2Ea0QEngMGYOzdC7dOnXANDf1DJV1ps1GWkIjl5EnMq1Zx+o1ZlMXHg8GAachg/B98EI+ePZteCXdFURodzZKIEMIPWAJEAmeBiVLKnEq2CwcWAG0ACdwspTzbYIFqzKNLZ0JnvUGr5/9Owfr1FPzwI7mrVpHzxRfODXQ69L6+zi6Keh2O/ALs+flQXujRw9UVl2uvxfeeu/EaNapZ9TVRFEV7Wh6JPAdskFLOFEI8V35/RiXbfQr8W0q5TghhAhwNGWRjYfD1xXfCBHwnTEBarZQeP47l1GmsiQnYMjJxWErB7kBnNqH39sE1MhK39u3YlZZGzIgRWoevKEozpWUSGQsMKb+9ENjMJUlECBEDGKSU6wCklIUNGF+jJVxc8IiNxSM29uobZ2XVf0CKorRYQkqpzQsLkSul9Cm/LYCcC/cv2mYczn7rZUAUsB54Tkr5h6YcQojJwGSAwMDAXkuXLq3P8JuMwsJCTCaT1mE0CmosKqixqKDGosLQoUP3Sil7V+c59XokIoRYD1TWfOKFi+9IKaUQorJsZgAGAj2ABJxzKA8AH166oZTyfeB9gI4dO8ohQ4bUJvRmY/PmzaixcFJjUUGNRQU1FrVTr0lESnnZk/FCiDQhRIiUMkUIEQKkV7JZEvCrlDK+/DmrgOuoJIkoiqIoDU/LFetrgPvLb98PrK5km18AHyFEYPn9YcDRBohNURRFqQItk8hM4AYhRBwwovw+QojeQogFAOVzH88AG4QQhwABfKBRvIqiKMolNLs6S0qZBQyv5PE9OCfTL9xfB3RtwNAURVGUKlIFGBVFUZQaU0lEURRFqTHN1onUJyFEAXBC6zgaiQAgU+sgGgk1FhXUWFRQY1Gho5SyWiXDm2sBxhPVXTDTXAkh9qixcFJjUUGNRQU1FhWEEHuq+xx1OktRFEWpMZVEFEVRlBprrknkfa0DaETUWFRQY1FBjUUFNRYVqj0WzXJiXVEURWkYzfVIRFEURWkAKokoiqIoNdbskogQYqQQ4oQQ4lR5x8QWSQjRRgixSQhxVAhxRAjxhNYxaU0IoRdC7BdCfKN1LFoSQvgIIZYJIY4LIY4JIfppHZNWhBBPlv9+HBZCfCmEcNc6poYihPhICJEuhDh80WN+Qoh1Qoi48j99r7afZpVEhBB6YC4wCogB7irvjtgS2YCnpZQxOMvn/7UFj8UFTwDHtA6iEXgLWCulvAboRgsdEyFEKPA40FtK2QXQA3dqG1WD+gQYecljF9qWRwMbyu9fUbNKIkBf4JSUMl5KWQYsxtmGt8WRUqZIKfeV3y7A+UERqm1U2hFChAG3AAu0jkVLQghvYBDlPXmklGVSylxNg9KWAfAQQhgAI5CscTwNRkq5Bci+5OGxONuVU/7nuKvtp7klkVAg8aL7SbTgD84LhBCROLtD7tI4FC39D3gWcGgch9aigAzg4/JTewuEEJ5aB6UFKeV5YDbOrqkpQJ6U8kdto9JcKyllSvntVKDV1Z7Q3JKIcgkhhAlYDkyXUuZrHY8WhBCjgXQp5V6tY2kEDEBPYL6UsgdQRBVOWTRH5ef7x+JMrK0BTyHEn7SNqvGQzvUfV10D0tySyHmgzUX3w8ofa5GEEC44E8jnUsoVWsejoQHArUKIszhPcQ4TQnymbUiaSQKSpJQXjkqX4UwqLdEI4IyUMkNKaQVWAP01jklraeXtyrlC2/LfaW5J5BcgWggRJYRwxTlJtkbjmDQhhBA4z3sfk1L+R+t4tCSl/LuUMkxKGYnzPbFRStkiv3FKKVOBRCFEx/KHhtNyW04nANcJIYzlvy/DaaEXGVykKm3Lf6dZVfGVUtqEEI8BP+C80uIjKeURjcPSygDgXuCQEOLX8seel1J+p11ISiMxDfi8/ItWPPCgxvFoQkq5SwixDNiH82rG/bSgEihCiC+BIUCAECIJeAlnm/KlQoiHgHPAxKvuR5U9URRFUWqquZ3OUhRFURqQSiKKoihKjakkoiiKotSYSiKKoihKjakkoiiKotSYSiKK0kCEEJEXV0xVlOZAJRFFURSlxlQSUZSGZRBCfF7ex2OZEMKodUCKUhsqiShKw+oIzJNSdgLygakax6MotaKSiKI0rEQp5fby258B12sZjKLUlkoiitKwLq0zpOoOKU2aSiKK0rDCL+ppfjewTctgFKW2VBJRlIZ1Ame/+2OALzBf43gUpVZUFV9FURSlxtSRiKIoilJjKokoiqIoNaaSiKIoilJjKokoiqIoNaaSiKIoilJjKokoiqIoNaaSiKIoilJj/x9mjE4JKDYkywAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEKCAYAAADAVygjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACxq0lEQVR4nOydd3iUVfbHP3da2iSTnpAECBB6D70KSFOQJmJva++ru7quuru2tetv7V2xIEgRKYKA9N5rEkqAhIT0PjMp0+7vjyGUlGmZAOp8nicPZN773vckmXnPe+8553uElBIfPnz48OGjOVBcagN8+PDhw8cfF5+T8eHDhw8fzYbPyfjw4cOHj2bD52R8+PDhw0ez4XMyPnz48OGj2VBdagOam9DQUJmUlHSpzXCK0WgkKCjoUpvhFJ+d3sVnp3f5Pdj5e7ARYPfu3UVSyqimzvOHdzIxMTHs2rXrUpvhlHXr1jFixIhLbYZTfHZ6F5+d3uX3YOfvwUYAIUSmN+bxbZf58OHDh49mw+dkfPjw4cNHs+FzMj58+PDho9n4w8dkfPjw4cNdzGYz2dnZVFdXe31unU5HWlqa1+f1FH9/fxISElCr1c0yv8/J+PDhw0cdsrOzCQ4OJjExESGEV+fW6/UEBwd7dU5PkVJSXFxMdnY2bdq0aZZrXFbbZUKIr4QQBUKIQ40cF0KI94QQ6UKIA0KI5Ittow8fPv74VFdXExER4XUHc7khhCAiIqJZVmy1XFZOBpgJjHdw/Cqg/Zmve4GPL4JNPnz4+BPyR3cwtTT3z3lZbZdJKTcIIRIdDJkMfCvt/Qm2CSFChRAtpJS5F8dCHz6aTrWlms05mzlZfpJTFacILQilZ1TPP81NzcefC3G59ZM542SWSim7NXBsKfCalHLTme9XA/+QUu6qM+5e7CsdoqKi+sydO7fZ7W4qBoMBrVZ7qc1wis9Oz5FSstmwmaVlSzHajBccS1AncH3E9ST6JV4a45xwOf4+G8Jbdup0OppLKcRqtaJUKptl7ro899xzLF++HI1GQ5s2bfjoo48IDQ2tNy49PZ3y8vILXhs5cuRuKWXfJhshpbysvoBE4FAjx5YCQ8/7fjXQ19F8HTp0kL8H1q5de6lNcAmfnZ5hspjkPzb8Q3ab2U3esfwOueX0Fmk0GeXi3xbLBUcXyCvnXil7ftNTLjy28FKb2iCX2++zMbxlZ2pqqlfmaYiKiopmm7suK1askGazWUop5VNPPSWfeuqpBsc19PMCu6QX7umXW0zGGaeBlud9n3DmNR8+LlusNitPb3yaX078wiO9H+GrcV8xKG4QgepAgpXBTGs/jYWTFzKgxQD+tflf/Jz+86U22cclJiMjg86dO3PPPffQtWtXxo4dS1VVldvzjB07FpXKHhUZOHAg2dnZ3jbVKZdVTMYFFgMPCyHmAAOAcumLx/i4zPnkwCeszFzJ3/v+ndu73t7gmGBNMB+M+oCHVj/EC1teIEGbQN/Ypu9U+Gg6LyxJITWnwmvzWa1WurcM4z/XdHU47tixY8yePZvPP/+cGTNmsGDBAnJzc5k1a1a9scOHD+e9995zON9XX33F9ddf3yTbPeGycjJCiNnACCBSCJEN/AdQA0gpPwGWAVcD6UAlcOelsdSHD9fYmrOVT/d/yuR2kxt1MLWolWreGfEO1y+9nn9u+icLJi0gRBNykSz1cbnRpk0bevXqBUCfPn3IyMjgueee48knn3R7rv/+97+oVCpuvvlmL1vpnMvKyUgpb3RyXAIPXSRzfPhoEpXmSv61+V+00bXhmQHPuHSOVqPltWGvcevyW3l1+6u8OuzVZrbShzOcrTjcxdViTD8/v7P/VyqVVFVV8eabbzpcydx5553s3buXuLg4li1bBsDMmTNZunQpq1evviQZjJeVk/Hh44/EJwc+Ib8yn++u+o5AdaDL53WP6s5d3e/iswOfMb3DdPrE9GlGK338nnjyyScdrmS+/vrrC77/9ddfeeONN1i/fj2Bga6/B73J7y3w78PH74KT5Sf5LuU7prWfRq/oXm6ff3f3u4kNiuW1Ha9htVm9b6CPPwUPP/wwer2eMWPG0KtXL+6///6LboNvJePDRzPw8b6PUSvVPNr7UY/OD1AF8Lc+f+PJDU/yy8lfmNRukpct9HE5k5iYyKFD59S1/v73v3s0T3p6urdM8hjfSsaHDy9zpOQIyzOWc0vnW4gIiPB4nnGJ4+gY1pHPDnyGxWbxooU+fFw8fE7Ghw8v8+mBT9GqtU6zyZwhhOCBng+QWZHJ8pPLvWSdDx8XF5+T8eHDi2Trs1l9ajXXd7wenZ+uyfONbDWSDmEd+OrQV7UqFz58/K7wORkfPrzIrLRZKFBwYyeH2fguoxAKbu1yK+ll6ezI2+GVOX34uJj4nIwPH17CYDKwMH0hYxPHEhMU47V5r2pzFWF+YcxKq18f4cPH5Y7Pyfjw4SV+Tv8Zo9nIbV1u8+q8fko/pneYzrqsdWTrL772lA8fTcHnZHz48AJSShYcW0CPyB50jfRuhTjA9R2vRyEUzD1y+bet8HH5MG/ePLp27YpCoWDXrl3OT2gGfE7Ghw8vcKjoEOll6UxtP7VZ5o8JiuGKhCtYfHyxL53Zh8t069aNn376ieHDh18yG3xOxocPL/BT+k/4K/0Zn+ioe3jTmJw0meLqYrbkbGm2a/i4PPCW1H/nzp3p2LFjM1joOr6Kfx8+mkiVpYrlJ5czNnEsWk3zdY8cljCMcP9wfk7/meEJl+7J9E/H8qch76DXpguwWiC+N1z1msNx3pb6v1T4nIwPH01k9anVGM1GpiRNadbrqBVqrm5zNT8e+ZGy6jJC/UOb9Xo+Li3elPq/lPicjA8fTeTXk78SExhzUdSSJydN5vu071mRsYLrO138BlR/SpysONyl6iJL/V9qfE7Gh48mUF5TzuaczdzU6SYUovlDnB3DOtJW15YVmT4n82fEXan/y4HLKvAvhBgvhDgihEgXQjzdwPFWQoi1Qoi9QogDQoirL4WdPnzUsubUGiw2S7MG/M9HCMHYxLHszt9NUVXRRbmmj98vCxcuJCEhga1btzJhwgTGjRt30W24bFYyQggl8CEwBsgGdgohFkspU88b9hwwV0r5sRCiC/Z2zIkX3VgfPs6wInMF8dp4ukV2u2jXHNt6LJ/s/4TVmat9q5k/KN6S+p86dSpTpzZPWr2rXE4rmf5AupTyhJTSBMwBJtcZI4Hapuc6IOci2ufDxwWUVZexPWc74xLHXdS2tkmhSbTRtWFl5sqLdk0fPjzlslnJAPFA1nnfZwMD6ox5HlgphHgECAJGNzSREOJe4F6AqKgo1q1b521bvY7BYPDZ6UUuhp2b9ZuxSAuRRZEeX8tTOzvSkRV5K1iyegnBSudB5KbyZ/u763Q69Hp90w1qAKvV2mxze0p1dXXz/X2llJfFFzAd+OK8728FPqgz5gngb2f+PwhIBRSO5u3QoYP8PbB27dpLbYJL+Ow8x/2r7pfj54+XNpvN4zk8tfNIyRHZbWY3+ePhHz2+tjv82f7uqampXpmnISoqKpptbk9p6OcFdkkv3Nsvp+2y00DL875POPPa+dwFzAWQUm4F/IHIi2KdDx/nUWmuZEfuDka0HHFRt8pqaR/ansSQRH7L/O2iX9uHD3e4nJzMTqC9EKKNEEID3AAsrjPmFHAlgBCiM3YnU3hRrfThA9iasxWTzcTIliMvyfWFEIxoOYKd+TsxmAyXxAYfPlzhsnEyUkoL8DCwAkjDnkWWIoR4UQgx6cywvwH3CCH2A7OBO84s63z4uKisy15HsDqY3jG9L5kNVyRcgcVmYWvu1ktmgw8fzrhsnAyAlHKZlLKDlLKdlPK/Z177t5Ry8Zn/p0oph0gpe0ope0kpfek1Pi46NmljQ/YGhsYPRa1QXzI7ekX3IkQTwrqsdZfMBh+XH6+++ipJSUl07NiRFStWXGpzLqvsMh8+fhccLDpISXUJV7S84pLaoVKoGBo/lI3ZG7HarCgVyktqj49LT2pqKnPmzCElJYWcnBxGjx7N0aNHUSov3XvjslrJ+PDxe2B91nqUQsnQ+KGX2hRGtBxBaU0pB4u8pxLs49LjqdT/okWLuOGGG/Dz86NNmzYkJSWxY8eOi2Bx4/hWMj58uMnarLUkxySj89NdalMYEj8EpVCyPns9vaJ7XWpz/pC8vuN1Dpcc9tp8VquVrlFd+Uf/fzgc54nU/+nTpxk4cODZ1xMSEjh9um6S7sXF52R8+HCDHEMO6WXp/L2vZzIf3iZEE0JyTDLrs9fzWPJjl9ocH17EJ/Xvw8efkNqulMPih11iS84xNH4o/7f7/yisLCQqMOpSm/OHw9mKw130zSj1Hx8fT1bWOeGU7Oxs4uPjvWO4h/hiMj58uMGWnC3EBMbQRtfmUptylsFxgwF8qcx/Ap588kn27dtX76u2K+akSZOYM2cONTU1nDx5kmPHjtG/f/9LarPPyfjw4SIWm4VtudsYEj/kklT5N0aHsA6E+4efXWX5+PPStWtXZsyYQZcuXRg/fjwffvjhJc0sA992mQ8fLpNSnILepGdQ3KBLbcoFKISCQXGD2JqzFZu0XZTmaT6al6ZI/T/77LM8++yzzWGWR/jejT58uMiWnC0IBANjBzoffJEZHDeYkuoSjpYevdSm+PBxAT4n48OHi2zN2UrXiK6E+odealPqMaiFfXXl2zLzcbnhczI+fLiA3qTnQOGBy26rrJaowCg6hHXwORkflx0+J+PDhwvsyNuBVVrPZnJdjgyOG8ye/D1UWZxXhvvwcbHwORkfPlxga85WAlWB9IzqealNaZRBcYMw28zsytt1qU3x4eMsPifjw4cLbMvdRr/YfqiVl0512RnJ0cloFBq2526/1Kb48HEWn5Px4cMJ+cZ8Misy6Rfb71Kb4hB/lT89onqwI+/SCiL6uHQUFxczcuRItFotDz/88KU2B/A5GR8+nLIzfycA/WMvbeW0K/SP7c/hksOU15RfalN8XAL8/f156aWXeOutty61KWe5rJyMEGK8EOKIECJdCPF0I2NmCCFShRApQogfLraNPv587MrbRbAmmA5hHS61KU7pF9sPiWR3/u5LbYqPJuCp1H9QUBBDhw7F39//IljpGpdNxb8QQgl8CIwBsoGdQojFUsrU88a0B/4JDJFSlgohoi+NtT7+TOzI20HfmL6/i6ZgPaJ64Kf0Y2feTka1GnWpzflDkPfKK9SkeU/q32K1YuzWldhnnnE4zhOp/8uRy8bJAP2BdCnlCQAhxBxgMpB63ph7gA+llKUAUsqCi26ljz8VecY8svRZ3NjpxkttiktolBp6RffyxWX+APik/r1PPJB13vfZwIA6YzoACCE2A0rgeSnlr3UnEkLcC9wLEBUVxbp165rDXq9iMBh8dnoRb9m5w2C/WYtswbqCps9Xl+b4fUZVRbG9bDtLVy9Fq9R6Zc4/299dp9Oh1+sBCHrkEYKaPOM5rFYrSqXy7PwNYTAYUKvVZ8dYLBaMRiMvv/wyc+fOrTd+8ODBvPnmm2e/r66uxmQyObzG+VRXVzfb3/dycjKuoALaAyOABGCDEKK7lLLs/EFSys+AzwA6duwoR4wYcXGt9IB169bhs9N7uGRnVSkUnwBpg4h2EBheb8jqzavRGXTcNOamZhGebI7fp65Ax9LlS/FP8mdE6wvnllJiPn0aS34+iqAg/Nq2RWg0l8TO5sBbdqalpbnU88UTXOkno9VqUSgUZ8f5+flhNpt57rnneO6555xew9/fH41G4/LP4O/vT+/evV0a6y6Xk5M5DbQ87/uEM6+dTzawXUppBk4KIY5idzo7L46JPv4QZGyGjW/BiXV2BwOAgMShMPxJaHvF2aE783bSN6bv70rZuFtENwJUAezI28Ho1qMBkGYzpfPmUfLNN5gzT50dqwgKImTiRCLvvw91ixaXymQfXiQxMZGKigpMJhM///wzK1eupEuXLpfMnsvJyewE2gsh2mB3LjcAN9UZ8zNwI/C1ECIS+/bZiYtppI/fMRYT/Po07PoStDEw9AlI6AsIyNkLe7+DbydBnztg/OucrinmtOE0t3a59VJb7hZqpZre0b3ZmWd/9jJlZXH6r49TnZJCQO/ehN92G5rWiVjLyzBu2kz5Tz9RsXQpsc//B90111xi631A06T+MzIymsEiz7lsnIyU0iKEeBhYgT3e8pWUMkUI8SKwS0q5+MyxsUKIVMAKPCmlLL50Vvv43VBjgLm3wvE1MOhhGPUcqAPOHe84HoY+Dutehc3/g+Lj7BxwC8BlX4TZEP1i+/HunnfJP7iT8geeQJrNxL/7LsFjx1zQcE03YQKRDz1I7tP/JOfJpzDn5hFxz92XVVM2H79vLhsnAyClXAYsq/Pav8/7vwSeOPPlw4drWEww50b7NtnkD6H3LQ2PU/vDmBcgpissvJ+dooQwv1CSQpMurr1eoH9sf6JLJYV3P4CfXxCtf5iFX7t2DY7VJCTQ6qsvyXnmWQrfeQehVBJx118ussU+/qhcVk7Ghw+vIyUsfRxOboApn0AvF1KRe8xAmirZuf91+mriflfxmFo6+rXi6QUSq8VM6x+/QZOY6HC80GiIe+N1pNVCwZtvok5IIGTc2ItjrI8/NL+/T48PH+6w93vY9z0Mf8o1B3OG3E5jyVWp6JtzGFIXNaOBzUPRS68QV2xj1k0tnDqYWoRCQdyrrxLQsye5//wnplOnnJ/kw4cTfE7Gxx+X4uOw/B+QOAxG/NOtU/cU7AGgT0gbWPwoVOQ2h4XNQsXKlVQsWULmtAH8GplDhanC5XMV/v7E/987oFRy+sknkWZzM1rq48+Az8n4+GMipd05KFUw9VNQuPdW35u/F61aS9KUL8FcBSufbSZDvYtVryfvhRfx79KFyPvuRSLZV7DPrTnUcXG0ePEFqvcfoOTb75rHUB9/GnxOxscfkuiC9ZC5CUY/D7p4t8/fU7CHntE9UUZ1hGFPwKEFcGK99w31MkUff4K1pITYl16ke4veqISKPfl73J4n5Kqr0I4cSeGHH2LOyWkGS300B6tWraJPnz50796dPn36sGbNmkttks/J+PgDUl1OUvrXEJcMybe7fXp5TTnpZekkRyfbXxjyGIQl2mtsbDaH515KTJmZlHz3HbqpUwno2pUAVQBdIrqc3fpzl5hnnwWbjfzX3/CypT6ai8jISJYsWcLBgwf55ptvuPXWS1/j5XMyPv54bPofanM5THgbPFBO3l+4H4De0WdkNtQBcOW/oSAVUn7ypqVepeDtdxBqNVF/fezsa8kxyRwqOkSNtcbt+TQJ8UTcfTf6FStQnczwoqU+nOGp1H/v3r2Ji4sDoGvXrlRVVVFT4/7f3pv4Uph9/C4oLqviwKFCSkqqUauVtE8Ko2O7UBR1Yy36fNj+CQXRw4iJT/boWnsL9qISKrpFdjv3YpepEP22vVizyxR7rOcyovrIEfQrVxL54IOoo891wEiOTmZmykwOFh6kb2xft+cNv+MOSn/4geCfFyLvuL1ekWaNycLu/QUUFlRik5IWcVp6d4vCT3N5/X6awsa5RynKMnhtPqvVSkyijmEzHPcnaqrU/4IFC0hOTsbPz89rtnvCH+ed4OMPh81mY/GyE6RsPE1IuQUF525wWWSyRCnRtAtm+o2dSWhxRghw0ztgqSEj8UZiPLzunvw9dInoQoDqPEUAhQJGPgM/3gwH5jRe0HmJKPrkExRBQYTfftsFr9euxvYU7PHIySi1QUQ+8AD5//0vxk2b0Q4bCsCm7afZuOwkAfk1qM/7u+QAm0Uqlhb+XH1dB7p3jvL8h/qT0xSp/5SUFP7xj3+wcuXKZrbSOT4n4+OyJO1YCT99eoBQgw21UmJpH0zbLuFERwVRU2PhRHopZWmlBBzVM+/FHfj1COOe66NQ7/oKet9MVWCcR9c1WU0cKjrUcP+YThMgtgds+h/0vMntjLXmoubECfS/riDinntQ6nQXHAv1tysWeBL8ryXs+hnkfPwxRR99RGlSD77/+AAhBSb8haQmIYAWXcKJj7c7+ewsPRmHivHPqWbduwdYkRjE/Y8kow1yrvR8ueJsxeEurqgwAxesQJRKJVVVVbz55ptOVzLZ2dlMnTqVb7/9lnaNqDxcTHxOxsdlx/xFR8n6NYsAwH9gFHff1KXe9suIIXbB7v2phSz9Lg3N/jK+OXKEG0O0BA1/EvZ5ppuaWpyKyWaid0wDsudCwOBH4ae74dhKu97ZZUDx518g/P0Jv6PhJIfk6GR+OfkLVpvVo+6eQqPBOHYMFct3s/2FbQSixNwxhDv+0p0wXZ02vwOA6ZCdq+eHrw4SlFHJ+//cxLTHetGxXf1WCj7c48knn3S4kikrK2PChAm89tprDBky5CJa1jiXx6OYDx9n+HLmAfKWZ1Hlr2Dik8ncdUcPh/v7PbtE8c//DiVsqA5LdSjfF7/DwdyARsc7ozYT62zQvy5dp0BIPGz9wONreBNLcTEVS5cSOnUKqvCGb+LJMckYzUaOlB7x+DqbQgayr+cjBJj0DL6/K399vF99B3MeCS2CeerZwSROS8TPLFny9l627fn9FLT+Xvnggw9IT0/nxRdfpFevXvTq1YuCgkvbQNjnZHxcNnz7wyGqtxVRHqrikZeG0KFtmEvnKRQKbkrcwNTwf1Epg1j5/gFO5XiWarw3fy+JIYmE+zfy1K1Uw4D7IGMj5Ozz6BrepGzePKTZTNgtjceI+sT0AfB4y+zrbw/id1SNDT1Dtr9Md79Sl8+dMLYtox7ugU3Api9S2XvQ1zHdFRqS+n/++eednvfcc89hNBrZt2/f2a/o8xJBLgU+J+PjsmDRL+mUb8inLETBE88PIVjrxh6+pQa2fUJMp3jGPtYHG5C3SZJ2rMQtG2zSxr7CfY2vYmrpcweog2Dn527N722k2UzpD7MJGjwYv7ZtGx0XGxRLXFCcR/UycxYcxrilgKJAya0vjkDjp3BbBaBX1ygmPNoLCaz65CCnTrsuc+Pj94/Pyfi45OxLKeTk0kz0/oIHnx1IgL+bocJDC8CQB4MfoWvHCEbd1w2lhEXv7iO/0OjyNBnlGZTVlDl3Mv466H4tHPoJqsvds9WL6H/7DUtBAWG3Os90S45JZnf+buzdMlxjxdoMCladpjxIycDxCnSxEeimTKbil1+wlLq+mgHo2jGCK+7uisYK3729m6pqy9ljNpuN3K0ppLy7lIP/Wkjq04tI+8diDj27kIOv/czxnzZjNla7dT0flw8+J+PjkqI3mFj+6UEsAm58oo/Dff5G2fE5RHaEdlcC0KdnDNp+EGCRfPHmTkwmi5MJ7NQ+6SfHuFBf0+dOMFfCgbnu2+slyubNRx0Xh3b4cKdjk2OSKakuIbMi06W5j2WUcXDecYwawb3PDsBfY79VhN10E9JkomzefLft7Z8cS+yYeEIrJR+8sxOzsZrDX60i/elfsS4qITgnGLVJjU1lw6KxorAqCC4JwW+HjawXNnLo7cUYC91zbj4uPW47GSFEkBDC/RQV1+YeL4Q4IoRIF0I87WDctUIIKYRwP/Hfx2XFR//bRbBJ0nlKG9q00jk/oS45eyFnD/T9iz376wwd2yoJHRpDaIWND97d7dJUewv2Eu4fTqvgVs4HxydDi56we6ZdjPMiY87Jwbh1K7qpUxFK5x/HPtFn4jIubJkZKs3Me3cvCgkTH+hOVPi5RAq/pCQCBw6kdM5spMU1530+N1zbieq2gbTOyuDE82vQHvXHojBT2c1M5N970un1iXR7eSrdX5pKl9cmk/DSUKyjAjAGGtAVhJL/5i6OzV6H7TKW9/FxIU6djBBCIYS4SQjxixCiADgM5AohUoUQbwohvNI28Izj+hC4CugC3CiE6NLAuGDgMWC7N67r49KxbNUJtNnVmJKCmTC28ZiCQ3Z9BaoA6HlDvUO339INY4I/fseN/LLSeUrznvw9JEcnu956uM8dkH8ITrvmxLxJ2c8/g5Topk51aXwbXRtC/UJdCv5/9H870VVJEq9u1WAxZdjNN2HJycWwbp2bVoOpwsjoyhwG6xIwW82U9VfQ6ZVr6HDLKAKjQuuNV/lpaD22L92fn4rm+hiqlJUE7FeS8tIiTEbnMis+Lj2urGTWAu2AfwKxUsqWUspoYCiwDXhdCOGN8uf+QLqU8oSU0gTMASY3MO4l4HXAt0n7O6a0vJqDP2dQoYZ7H3QSA2mM6nI4ON8eHwkIbXDIA3/tS4UGUn8+yem8xqVBCisLyTZkO4/HnE+36aDyh/1z3DS8aUibjfKfFhI4cCCaBNcUpoUQ9I7uzd6CvQ7HLf71OEFZ1VS3DWTaNe0bHBM8ciSqFi0onfOjW3YXp2Zw4r9rCK+KJEtbyBpjAEv2y/rSQI0Qk9yRTi9NoDy+grCqSNJfWokhp8gtG3xcfFyJsI6WUtbrXCSlLAEWAAuEEGov2BIPZJ33fTb20q6zCCGSgZZSyl+EEI1WJAkh7gXuBYiKimKdB09cFxuDwfCnsnPdb2YirQrUfWDXjs0ezRGf/QvtzZXsFr3Q17HpfDtbDIDyjfD5m9sYPkHR4E1tr9F+85XZknWF6+odb4wuYX0J2zuHLQHjkAr3Pwae/D7VR44Snp1N0ZjRnHTjXJ1exyn9KRavXkyIMqTe8XKDjSPLJGaVpE+vygvsqmtnUHJvgpYtZ8NPP2FrpD7nfGzHC0k8EooaP9Lb5CI6x1C6zkJknomPv1hN5yQ3duC7B1FoyybxdAyn/m8zeUM1KHQBDdrpKTqdDr1e3+R5GsJqtTbb3Lt27eKxx+wCqVJK/vnPf3LNNdc4Pa+6urr57j9SSodfwN3AUuBOwB94BvgX0N3Zue58AdOBL877/lbgg/O+VwDrgMQz368D+jqbt0OHDvL3wNq1ay+1CS7hDTv3HMiX7933m3z9pc1Nm+jjIVJ+MqzBQ3Xt/PjTPfKD+1bL2fPSGhz/2vbXZL/v+0mT1eSeDYeXS/mfECkPL3PvvEbsdIXTT/1DHu7TV1orK906b1/BPtltZje5MmNlg8df+dcG+e59v8ktO3Oc2lmTlSVTO3aShR9/7PS6Gcu3y5NPrpaHn1wqiw+fOvt6hb5GvvbgavnKI6tldY3ZrZ9FSikzV+2WJ59cLVOfWiwNBSUN2ukpqampXpmnISoqKpptbqPRKM1m++8yJydHRkVFnf3eEQ39vMAu6YV7uyvr1L8DT2NfVewEOgD5wPtCiDua7ubOchpoed73CWdeqyUY6AasE0JkAAOBxb7g/+8Lm83Gsu/TMAu4+e4enk+UdwjyDkKvm10aftdfelIeIMhec5q8gvppzXsK9tA9sjtqd1cjSVdCYAQccG/ryFNsNTXof/uN4HFjUQS4p2zQJbwL/kr/BuMyCxYfJaTAjOiqY1DfFk7n0iQkEDhwIGULfkI6CMJnLN+BWFtJlTAS92g/wjue+4gHazV0vKoVISaY+c2hRudojFajkxFjQghES8b/rcdSfWkl7b2Jp1L/gYGBqFT2Darq6mrX44vNiCvbZSYp5SEhxF+BIuyrhxohxDfARmCml2zZCbQXQrTB7lxuAG6qPSilLAcia78XQqwD/i6l3OWl6/u4CCxZcYLQcivK5HDiY7WeT7R/NijU9riIC6hVCsbc3pmtn6Qw86N9PP38OV0no9nI4ZLD3NP9HvftUKqh27Ww51t7jMjfgww5NzBs2IDNaCTkqqvdPletVNM9qnu9uExZRQ3HV2Rh8RP87b5eLs8Xeu00cp58ispduwjq37/e8ez1+2GtAaMw0PrvwxsM7E+ZmMR/N2Tjv7eYotIqIsPcc5ytx/TlWNE6dPsjSHtrGXJw/Ws0lbUzP6Mg0zMtvIawWqy0aNeekXfc63Ccp1L/27dv5y9/+QuZmZl89913Z53OpcKVlcxCIcQi7FlfD0opax8XzJx3028qUkoL8DCwAkgD5kopU4QQLwohJnnrOj4uHWaLjdTlp9Cr4fbbuns+kdVir0/pMA6CIlw+rV+vWGwdggnOq2H5byfPvn6g8AA2aTvXCdNdelwPlmpIXezZ+W6gX74cZVgYQQMHOB/cAL2je3O45DCV5sqzr3312T6CrIJB1yW51QcmeMwYFMHBlC+o38gtb9cRzL8UUkMVLR8b3KCDqWXUjI742wTffX3QrZ+llvY3jqAspowwQySK3X+cVtENSf0/+eSTF0jG1H6d30tmwIABpKSksHPnTl599VWqqy9tjpTTd5SU8j9CiLHAJKCPEOJl4BjgB5QKIToDR6SUTU5cl1IuA5bVee3fjYwd0dTr+bi4zF1wmBATRI+Ld7+q/3yOrwFjAfRsQI7fCXff35sP/rGR/YtOMmJoSwL8Vewt2ItCKOgR5eH2XXwfe3vm1J8hufna3doqK9GvXYdu8iSEh0+nydHJfCY/40DRAQa2GMju/fmo0g0Y4vwZOdSF+qDzUPj7EzLhasp/XkTMv55DqbWvTMszczHMPYlEEnN/L7Rxjp9FB/VtwbrFxwk4qufkqXKP6qU6P3IVh/+9hNaFLSg8cJyoHt6TuHe24nCX5pb6r6Vz585otVoOHTpE376XLqrg0jtVSrkSWAkg7Jt8HYHeQC/g3TPft24eE31cLEyZmVQsX07Vvv1YSktQBmnx69SJkHFjCejZs2lzmyxkbcrD5gf3N5Ia6zL7f4CAcGg/1u1TtYFqOl/diuxFp/jm24Pcf689rbdjWEe0Gg+374SALpNh64dQVQoBrgl7uoth3TpkVZVHW2W19IzqiUIo2Ju/l/4x/fn12zT8BdzmxjbZ+YROnUrZnB/Rr1xF6LSpmPRGcj7eiT9BBN7YktC2rqVYT72tCyvf2su8b1N46rnBbtuhVKloed8gCj84QNGsVHTmfWiy10DxCZA20MVD4jC7inYz/X0uBs6k/k+ePEnLli1RqVRkZmZy+PBhEhMTL56BDeBKMeYFkaMziQeHpZSzpZT/kFKOBdo0m4U+mh1zTg6n//4kx8eNp/B/72I+fRplkBZrRQWl331HxvU3kHnb7dQcP+7xNebMP0ywGTqNbolS1QQ1o6pSOLwMul8HKs8aYU2+KomyUCWVe0vIyC5jf+F+9+pjGqLLZLBZ4Mjyps3jgIrly1FFRRHYt4/Hc2g1WjqEdWBPwR5+XHCEUKONiMHRtIgJ8mg+/x49ULdsScXSpdhsNo68vRKtDIVhgcT0dr3ZV6ekcKpbBuCfXcXxzDKPbAlpHUtx5D6CRShHv98PaUvtDwAqDZzaBkv/Cv/XDTa8CeY/Zpndpk2b6NmzJ7169WLq1Kl89NFHREZ6LarhEa6sZNYKIRYAi6SUp2pfFEJosBdk3o69YHNms1joo1mpWLWK3GeeRZrNRNx3H2E33oA6NvbscateT/nCnyn6+GNOTruWgOnTYcQIt65RY7KQu6UAq7/ggQlN3MZIWQjWGujl/lbZ+Uy6vQtr3z3Ad19uoyqxqulOJi4ZdC3tcZleNzkf7yZWgwHD+g2EXn+9SzIyjugd3ZvFR5eQtD0Hq5/g/hu7ejyXEIKQiRMo/vQzUv+3iLDqSCpa6+lyjfurrSk3dubXN/bw0+w0nnx6kHsnm6th6V/pXzWbg5aX0GmuJG/k9cQOOPOzSQm5+2DDW7DmZUhZBDO+gYhL3zmyIRqS+neFW2+9lVtvbb4tW09w5ZFyPGAFZgshcs7IyZzAHpe5EfiflHJmM9roo5ko/nompx95FE1iIm2XLiH68b9e4GAAlMHBhN92K20XLyKwXz9CZs2i8MMP3VLznTP3MFoLdBvXyuXq7kY59JNdDLNFryZN071zFJZ2WsJzNUQZWtErumnzIQR0ngTHV0O196XsDWvXIU0mQq5qejfO5Ohk2mX3Q2sR9L6mTdNWloBu4kSMcV0IyQ+nNKCITvd7ZmOHtmFUxfmjyah0rx1AdQXMmg77Z5PR+gba/f1mTLKa0p+OY6kx2ccIAXG94YZZcOOPUJ4Fn4+EbF9yanPj9N0lpayWUn4kpRyCPe5yJZAspWwtpbxHSulYp8LHZUnRZ59T8PrrBI8fT+tZ36NJSHA4XhUVRctPPqZq4ACK3v+Aki+/dOk6VouN3O0FlPvDxHFN3FU1FELmZvu+uhfy/2+/pweVqkqGZEwnOsALjZ26TAarCY6uaPpcddCvWY0yMpKAM9lGTaGlshN9ssdSoCvlqtFN3+k2B4Wi63UnlZYy2v91TJMeJCZe3wkFMP+HNNdOsNTAnJsgcwtM+5yMNjcSGBuBGKglWIRx9Mvf6p/TcTzct94em/l2MmTt9NheH85x690gpTRLKXOllGXNZI+PBrBJG2ZbPWUfjylfsoTCd94hZMIE4t96E4XGtdiGUKmouO02Qq6+moK33qZi2TKn5yxafpxgM7QdGtf0VczhpfYgbpeGJO3cJ1znz4HWa4jVt2bRMs/jTWdJ6AfBLSBtUdPnOg+byYRx/QaCR45ENPV3CPw6Jw+NNYDiZM86ZV5gm83GyQ83oFEGYNz5GYpy9xrF1aVrxwgM0X4oThgaLJq9AClh8SP2LqVTPoYeM84eajdtCKXqIgIy/KjIyq9/blgi3LkcgqLghxlQlN7A9O6ra0spsTU90fai4snP6Q4evWOFEHOEEN+d+XrD20b5gGx9Nh/u+5DrllxH/1n9Sf4umf6z+nPnr3fybcq3GEyNiz06onL3bnKfeZbA/v2Je/UV91NhFQpavPYqAX36kPPcv6g5cdLh8LS12RhUMG2SF8S6UxdBRBJE1xPn9ohsQzYHIldT7lfJ4RVZLvedaRSFAjpfA8dWgcn1ZmnOqNy+HVtlJdorRzV5rsPpJahOGMmKzuAQm5t8gzny5SrCzJEYEioILDhBxS+/NNnGcdd1QC0FC+Yddjxw15d2pYWRz0LP6+sdjrs5GaVQkjlzS8Pnh8TBLQvsq+IfZlywzenv709xcbFLv58aaw15xjzSy9JJK04jrTiNw8WHySjPoKS6BKvN6nSOS4WUkuLiYvz9Pejj5CKeFitslVK+CyCEcL0a7k9CZWEZWct2YTqhR1OlRokaiQ2Tqhpi1USP6NxoHr/BZODdPe8y/+h8bNgLBG/oeAPBmmBKa0rZk7+HN3e9ycf7P+bR5Ee5vuP1KIRrzwqW0lJOP/4E6rg4Et5/D+HiCqYuCo2G+Hfe5uTkKZx+/HES581tcDW0dtMpQislmv4RaNwo8muQyhI4uQGG/tUrW2Vg7x9jU9iIGR5K9SoT389O5S+3N0HqBqDTRNjxGZxYB50meMVO/erViMBAgga5GQxvgIXfphIAJI0NYtnxYrL0WbQKca8+ppa8nYcJTNdQqimi60OTydo+n/IlS4m4//4myZkkd49meYgSTUoZVdWWhmuq8lPg12cgaTQMazgoHtGpNTlR+wgriiR3awotBjWQ4BDRDq7/HmZOhCWPwfSvQAgSEhLIzs6msLCwUTtt0kaFqYJKcyUCgUapQa1UIxBYpRWT1YTFZkEhFARrgglS2zP4qqurm/Wm7i7+/v4kONkubwqefvInCyEMwEYp5VFvGvR7prKwjOPfrCe4IJgghR/CZqLGvwb8LGCVqCqVaE+HUPNDDofmHSD62m5E9zpXM3Kw8CBPbniSXGMu09tP554e9xAbFFvvOilFKby7511e2f4Ka0+t5c0r3kTn57iATUpJ7jPPYi0tpeUnH6PUNU3+RB0TQ4tXXyH7gQcp/vQzoh55uN6Yrcsy8BOSW67r1KRrAXD4F5BWe3DdS+zJ30OIJoTbpwzk9S0bqdxeSNnUGkJD/Jyf3BitB4Ofzp7K7AUnI202DGvWoh06FIVfE+wCNu84TUiBCXPHEEZ2bc17x+2abZ44mepyA+XzjqNASZuHhqNQKAiZOIG851+g5sgR/Ds17W/e48oETi3MZMHPR7nlhjorV5sVFj0E/iEw5RP7CrIRku4aRc6rW6heXELMgM4Nb9m2HgyjnoPVL0DiUOh3F2q1mjZtGo9XpRSl8OjaRymuKubmzjdzZ7c7iQy4MFVYSsm+wn28u+dddufvZlj8MF4d9ip7t+6ld+8mZjP+jvDUydwC9ASmCSHaSSk9EH36HVNVBum/2ZtVlWeDUk3G6XZYspPRKUIp15YQNa4TSf2G1HtT67MLOLVwB4FZWqpnn+bQ+iN0fmg8hyoP8c2Kb4gIiOCb8d84zHbqGtmVT8d8yvxj83ll+yvcsuwWPh/7eYMOqZayufMwrF1LzDP/xL+Ld7abgkeOJGTCBIo++4yQq6/Cr9251VnKkWJCSsxYO4WgC27azRGwb5WFtrZ3o/QSewv20iu6FyqliqHT23Pom6N8+/UBHn2sn+eTKtV20cyjK8Bmc3gDdIXqQ4ewFBQQ3MStMpvNxrq5x/BTSO68sxthOj9CNCHsLdjLlKQpbs937L1V6EQ4YlwI2lj7ZkbwmDHkvfgSFStWNNnJTBjThtd/yaR8Wx62GZ0u/Bzt+MzeEfXaL0Fbv6na+QSEBWPppkKXGs7Jn7fQbtrQhgcO+as9trPyOfvfLyyx0Tk3ZG/gb+v+Rrh/OLMmzKJrRMMp4LU9fL4e9zWzD8/m7V1vc8uyW7hde7uTn75hzAUFGNaspfpwGtbSMoRSiaZNGwL79iGwf/8mp7Y3F64UY74jhLhDCJEshPADkFLmSCmXSylf+1M5mPLTsPRxeKsDLLgLds/Eln+EQ9vboModjsVmRKN+me6D9hHbM77Bp6bghGi6PjKR6CeSKQ8sJTRXx/5/LWBu1ve0DW3LrKtnuZROK4Tgug7X8fmYzymsKuSelfdQVNVwAydzQQEFb71FYP/+hHk5hz7mn0+jCAwk9z//uWD/+tdFx7ABk6/t2PSLVJXat5+6TPbaVllpdSknyk+crY+5YlAC5ZFqbIcryMxuYgpyh/F22Zucpide6levAaUS7RVXNGmeJStOEGqwEdovkojQABRCQe/o3i51yqzLsdnrCDNGUtFCT8tR557IVRERBPbvj/7XFU2O9SgUCmL7RaGrhtUbzmszVX7aXueSNMYuTOoCSTddgUGWY95WhrWxltEKBUx6H4QSFj/aaEvtLTlb+Ovav9I2tC0/TPihUQdzPkIIbup8E5+N/YyS6hLezX+XHIPrGms1x4+T/cijpI8YSd7zz1PxyzJqjh2j6sABij7+mFN3/oX0ESMp+eYbbDWXnxK1K49Z6dhl9d/nXNvlOUKIZ4QQY2odz+WKsVIye14aazaeoqjUw3atUsKOz+HD/rD3e3uQ8a5VWB4/TkrpPwlVjqBUW0i7u0OJ7RkPm9+F9/vA0ZWNTqmNjaDrvyaT0TqbCFsM7x57gg+T/4+IAPdCXH1j+/LRlR+RX5nPQ6sfotpSv5I5/5VXkTU1xL7wvNelv1WRkUQ/8QRVu3ajX7kKgHJ9DeKkEWOUhsSW9Ztjuc2RX8Fmhi5Tmj7XGfYV7AO4QBRz8q1dUEiYM9N92fkLaD8GhAKONr3637BmNYF9+qAMDfV4DpPJclaY9Nabz90Ue0f3JqPCHpx2leLUDFR7rZSLYjo/WL8eJmTcWEwnT2JKr5+t5S7XTetIlUKyc2XmuRfXvAxWM0x4y+UHDqVKhXpAKFqFjuNzNjQ+UJcAY1+Ek+th73f1Dh8pOWJ3MLq2fDbmM7c/q31i+vDVuK+okTUOHwprkRYLhR9+yIlJkzFu2ULE3XfTdukSOuzYTrtlv5D02yo67tpJ/LvvomnblvxXX+Pk5ClU7dvnll3nk5FVweLlx/lhrosp5C7gSp3MR1LK+6WUQ6SU4cAE4Icz5z4ApAkhxnnNIi+jqBaUrM4lbVY6P/xzC/99aj0LFh/FanExzdBUCQvuhmV/h5YD4OGdMOl9rDHJpL2+grCqSMpb6un6zBTUnUfDdTPhnjWgjYYfroO1rzb6VJRens7fQv7H7OhFhCujKHx3N8bCUrd/xuSYZN4Y/gapxam8tO2lC54i9WvXov/1VyIffAA/B3vMTSH02mloktpR+M47SLOZnxYexU8KBo7zkpxd2mIISYB4D1WSG2BvwV7UCjVdI8/ddLt2jKCmdSCB2VXsSynwfPLAcGg5EI7+2iQbTadOUXMsneDRVzZpnlk/phFigqTR8ReoLCfH2H+fzloy12KuqqHg2wNIbMTf0x9lA8kcwaNHgxBU/Nr0WiFtkAZ1+xBCSsykHi229xDaPxsG3OdwO6sh2kwZTAWlcKAac5WDp/3kO6DVYPjtefu2+BnKa8p5bO1jaNVaPh79sdMYaGN0DO/I/VH3U1hVyKNrHsVkNTU4zqrXc+rueyh6/wNCJlxNu99WEf3E4/glJV3woKgIDCRk3FhafzOTll98gc1UQ8bNt1DSgIhmY5SWV/Pxp3t49dE1/PLfXWQtyqR0Ta5HP19DuL1hLKU8KaVcLKV8WUo5DRgCvOI1i7yMMhgGP9SNlpNbY0kKRmW0krcsm9f/vo4tO50sWatK4ZuJcGgBXPlve7pjWCI2i5XUV5cQVhOJvq2Rrg9dfeHWWHwy3P0b9LwJ1r8Gvzxh358/D71JzxPrniBQHcid9z/NicSCs82XHH4IGmFEyxE82PNBFh9fzNwjcwGQJhP5r72Gpl07Iv7yF7fndBWhUhH9t79hysyk5Md55O0qpNwPrhjshYyV6gpIX+3VrTKwB7y7RXbDT3nhQvymO7tjFvDL907SZ53Rcby9qVp5tsdTGDZsBGjSVlm5voairQWUBQqm1REm7RrRFY1Cw95815zMkfd/JZgwGBJEaNu4BseooqII7NMH/UrvFKROurYDEvh1UTr89h97v55hT7g9j0KhIGhkCwIVwaTPWudoIFz1mj2bcf3rgD2A//TGpymoLOD/Rv4fUYGO40DOaOvflleGvsLBooO8sr3+rdNSXEzmzbdQuWsXLf77X+LfeANVmHNRT+3QIbRdvBjt8OHkv/Qy+a+/4XDb0maz8c33h/jyn5ux7S3DphIok8PofHMSQx9tQiuOOjS5sktKmYt9ZXNZolFD7+7RTLqqHU/8vT+P/99wdCNiUZsku79M48MPd2NrqLNfVSl8N9V+o7j+exj2t7M3ubQPl9tXMAkVdL63EQkNdQBM+QiGPAa7voIVz5xd0Ugp+c+W/5Ctz+atK94iJigG0TkGU7ICnS2Cw28ua9gmJ9zX8z6GxA3h7d1vk1mRSemcHzFnniLmqSc9Tld2Fe2IEQT27cvhmb8QYoL4/tFNL74EOLbSrlXmpQJMgGpLNSnFKQ3qlcXHavHrFkpoqYXf1mc2cLaLdLjK/m8TVjPGzZtRt2yJprXnK8Jvvj5IoE0w5Nqken8PjVJDt8huLq1k5KE8QkvCKQ0tpu1kxyrJwePHU3MsvUmCqrW0aaVDH6FGeaIcy7H1dgfjoYpyyzF9KFcUoz4qMRsdCGS26Al9brcnGBQeYd7ReWw6vYm/9/07PaO8k3gyuvVo7u5+NwuOLWDhsYVnX7fq9Zy65x5MmZm0/PQTQq+d5ta8Sq2WhA/eJ+zmmyn5+msKGnE0hSVVvPbMRgybCqgJUNLjjo48+85I7r+3N6OGtaJnl6Y50vPxwl0ApJRve2Oei4FGo+KWG7pwx8uD0Udp4GA5r/1nM1XV5wUEzVUwa4Y9F3/Gd9B54tlD6fM3osvVURpUROcHr3J8MSFg9Asw8EHY/rE9VgP8dOwnVmWu4q/Jf6VPzDlF3fbXX0F5fDlhlZEcndmAHIYTFELBC4NfQKVQ8dKqpyn88EMCBw0kaPhwt+dyFyEEkY88wumQ3lilmWunuK7A65DUn+1V9AlNyPiqw8Gig1hslgt+9+dz2+3dMSolO34+4ZGzByCyPYS3tceTPECaTFRu307Q0CHOBzfCqdMV2NLKKY9QMWJIywbH9I7uTWpxKlWWxuOVFZl5tMoMRy9L6fSIc12y4DFjANCvbDwm6Q69R7ZEJVUctoyBfp7nGSkUCoJHtcRfEcTxHzc6HjzqX6AOIuvXJ3lr11sMajGIGzs1TZS1Lg/3eph+sf14bcdrZOuzkSYT2Q88SM3RYyS89y7aIZ797YVSScxzzxJ2662UzJxJ0fsfXHD8cHoJXzy/FW2ZBXXfcJ5+fTjDBrrWksETvOJkvIUQYrwQ4ogQIl0I8XQDx584k3hwQAixWgjh8SNeVHgAT78wBNEzFF2hmf97fjOGSrN9W+vnByF7B0z73L7tcYb8vUdR7TBTLkro9PerXXtSFwLG/he6ToPf/kPOgdm8uetN+sf257aut9Ub3vmBqyhTFRFwRE3eDveDbzFBMTwz4BmSFu/HWlFOzFNPXbQ+33mx7SmM6kVC4XaC1F6YsMZgr57vfE2TU4HPp/bJvbGn0mCthtghMeiqJPN+9rAMTAj7aubkBo+q/yv37bNX+Xt4owF7AoNCwqRbG8+ASo5JxiItHCpqONnBarGQ9ek2lEJF1G3dUAc5LyJUx0QTkJxMxQrvOJmxnUrRKXPYZJwGmsAmzZUwqjflogTlYcs58cyGCIpEDnuCF42pKKXkxSEvev1zpFQoeXnIyyiEgmc3PUvuq69SuWsXca++2uRsQiEEMc/8E920aRR99BHli+xSRwfTClnyzl78zJJO1ydx7929miyQ6gxXUpj1QoiKM1/6877XCyG8JjcrhFACH2Jv89wFuFEIUbegYy/QV0rZA5gPNEnSRqFQ8OADyQQMikRXZuXdF7dgXvsmpPxkX4F0nXJ2rElvpHTOUSyYafXwYNQBbiTVKRQw5WNssd3597YXkTYbLw55scFKfYVKSeLDwzHJasrnn8Ckd/8GNdavNxN2w+YeGgyJ3lv2OuOXRcdBKEg8sZLyJUuaPmH6KntbYy9ulYE9HpMUmuQweHvjjC5UaCBjTc6Fq1x3aD/GvtWXsdntU42bt4BSSeAAz9os70spICCriprWgXTr1HgWVM+onghEo6nMhz9Zgc4WQWZULpFd27p8/ZDx46g5fBhTRoa7ptdDufn/6KRdi7U6gp378po0l0KhIGhYLAEKLcfnOl7NrG7Rnm0BATxi9iM2MKZJ122MOG0cT/d/muDfdlE+ew7hf/kLumsmOj/RBYQQtHj+PwT270/Oc/8iddlWln9wAAGMeLA7Y0denD6TrmSXBUspQ858BZ/3fbCU0gv5qWfpD6RLKU9IKU3AHOCCu4uUcq2UsrY5+TbAK1oIf7m9B/4DIwkts7JpaTG27jPssZTzOPL+SrRCh/rKcILjPbhxq/35acAtbPdT8WS1kngHqr/a2Aj8x8UQpAjhyMfub5sVf/Y5KpT8OEzwv93/c99WDzBbbFQfqaAsREFo22iKv/q66cJ7qYvtAoatmi6nUovVZmV/wf4LUpcbQq1S0PXq1mgt8N33HqY0txoE6kB74a6bGDdvJqBXL5QutOltiGXfpWEW9kQGR+j8dCSFJTUYl8lev4/gLC2lAUXY+jQc6G+M2i2zJq9mCo9C2hLaDWmDBcnaX040bT6g1fh+6CmFg9VYG9Grq7JU8ebe92jvF8GMzIP25JNmYryqJ/eugrTWSiz33uDVuYVGQ8J772KLSWDL3CxUNhh+d1eSu3tBddxFXK74P9Mh82agjZTyJSFES6CFlHKHl2yJB86ruiIbcPQYdxfQYCGCEOJe4F6AqKgo1q1b5/TineLKMGs3kmKYwPbDNQxcv/7cwQN5JFXEc0qTickvgZMuzFcXo9XImzlf00kRxbXZuznx/WOcan1ONdZgMFxopxL8VaeJL27Jmi/no2jnWnc7RXExkfPnUzVkCN3jA1l0fBFJxiQS/RLdtrkh6tl5hoOHLQRZFVTHWygIH4Bu5ky2fvwxJg/VBRTWGoakLSMvdgTHNjjZP3fDzmxTNgazAf9if6fvC63GRpG/jaDdxSyNW4M20P1the7BXQg4uIQdgQ038WrITmEwEJWSgnHiRDI8eK+lHLOiKxOUJNg4dngXx5wkysWYY9hVtos1a9ecXV3LiioSNoIVK0X9AjFWGl36HJ1PWJs25CyYz6GOnsfn2h/9mBZCRap/d0p0ktCsKn5ZvoaggIb/Fo393esRZyQpJ4FNH8xFJtd3oMvKlpFjzOGxqAcx+5+matGT7O7ztr3+qYlcYKPNRtjb76BUavj4Gpi/8h/cG31vk69xPlarjZ2dHiDE5E+XksVUlitYt66J2ZPuIKV06Qv4GPt2VtqZ78OAna6e78L804Evzvv+VuCDRsbegn0l4+ds3g4dOkin2GxSfjdNWl+Mke88vUy+d99vcvWGTCmllMaCUnnsyV9l6lOLpLmq2vlcjfDClhdkz296yiMlR6Sce4eUL0RImXfo7PG1a9fWO6eqtEIefXKZPPzkEmmqdO3aOf/+j0zt1l2acnKkwWSQw2YPk3etuMtju+vSkJ1SSvnfZ9fLtx74TRorTdJaUyOPDBkqM++91/MLpS6R8j8hUh5v+Hqe2jkrdZbsNrObzNHnuDTPlp058oP7Vst33t7ukR1y26f2n6P4uMt2li1dKlM7dpKV+/a5fTmL2Sr/+9hq+fqDq6XeaHLpnKXHl8puM7vJtOI0KaWUVrNFHnz2J5nx1BqZuyOtUTudUfTV1zK1YydZc+qU2+dKKaWsLJXy5VgpFz4opZRy3ZYs+cF9q+UXX+9v9BRX7bSaLTLtqcUy7akl0mq2XHCssLJQ9v2ur/zbur/ZX9j7g/1vmLLIk5/CoY1FX34lUzt2kmU//yy/OviV7Dazm1yTucYr16nlnbe2yw/uWy3nPjlTpnbsJItnzXLpPGCX9MK93R23PEBK+RBQfcY5lQLezIs9DZyfApNw5rULEEKMBp4FJkkpvaOhsG8WpP+GYuyL3PrUCIxqwe45x8jO1XP807VohD9h17ZH5e+ZuEFKUQrzj87nxk430iGsA1z9FgSEwqKH69XPnI9/aDCakREEKXQNN1+qg/n0acp++onQ6deibtGCIHUQ9/S4h+2529mas9Uj210hO1ePtsgMrYMIDFCj0GgIu+EGjOs3UHPScSuARkldBAHh0LoRrSkP2Vuwl9igWFpoW7g0flDfFlREa1Ac1ZOeUeb+BZPOFFK6sd1i3LwFhU6Hf7dubl9u9rzD6Kqh5YgWaANdy76o3Tqsjcsc/nwloZZIqjqaie3nuQZZyNgmZpntmwXmShhgf7IfNiCOcj/I31fssU21KFRKlMkhaIWOzOUXbsZ8fuBzzDYzj/Z+1P5Cjxn2TMGNbzVaWO0JplOnKPzf/9BeeSUhkyZxS5dbSApN4rUdr1Fj9c6tbenKE2iOGTAk+DP99dsIGjKEgrfexpRd79babLjjZMxngvMSQAgRBXizO89OoL0Qoo0QQgPcACw+f4AQojfwKXYH04SS7POoyLFLhrceAv3uJjIsgFF3dkFjhd/eXE6YIZKK6HJi+3f2aHopJa9sf4WIgAge7PWg/cWgCBj3KuTsgb3fOjy/9VX9KdUUEXQqgPIMx1W4RZ99DkDkveeW2zM6ziA2KJb39rzXbM2Jli5OR4lg5NXnAsNhN1yPUKsp/d71yuOzWGrOqRgrm9gi4DyklOzJ39NgfYwjpt1u3/Kb/02K+xcNb2uvTnfRyUgpMW7aRNCgQW4LHuoNJnI25VIeIJgx1XXNuBbaFsQGxbK3YC/ZGw6gzQik1K+IDneMduv6dVHHx+PftSsVnjgZm9Vep9Jy4FlRVIVCQVSPcHTVkm17ml6R3mbKIKpsBiq3nGtqlmvIZd7ReUxJmnJOnVqhhKGPQ+5+r8Zm8l95FaFSEfvvfyOEQK1Q83T/p8kx5vB96vdNnj8330jazyep0MBDj/e1JwK89CICyPv3v5q9WVkt7jiZ94CFQLQQ4r/AJrxY6S+ltAAPAyuANGCulDJFCPGiEKJW3/1NQAvME0LsE0IsbmQ6Vy9qF7y0muzieGfSZPsnx+LXLYiBiiD0ljI63D/G40usyFzBgaIDPJb8GMGa84K43afbHdtvL9irix2QcKv9DXJq5rZGx5jz8i5YxdTip/TjwZ4Pcqj4EGtOrfH452gMm81G6aFSygLFBcFEVWQkIVdfRfnChdiMbmbIHV8LJr1XtcoAThtOU1BV4DToX5eO7cKxtA1Cm1vN1l1u3tyEsPc8ObkBLA5SZs9gSk/HUlBA0BDHBY8N8c3MgwRZBQOmtnM7LbV3dG9OnEijaulpqqWRpMeu9EoxbfC4cVTvP4A5183f27FVUJpxdhVTy6RJ7bEg2bgio8m2qfw0WJIEOhlBzmZ7csenBz4F4L4e9104uMcNdmmjjW81+bpgl3syrFtH5MMPo44597kZ0GIAVyRcwRcHv6C4yvMVm81m4+v3duNngyvv6II2yL7ppI6LI/qpJzFu2UrZvHlN/jlcweV3kZRyFvAU8CqQA0yWUnrVSinlMillByllOynlf8+89m8p5eIz/x8tpYyRUvY689W05iKHFtgrsq/8l7150XkMsRSiVYWw02gkp8Sz1sdmq5n39rxH+7D2XNP2mgsPCgFXvwnV5XbRPweEtW+JvoWRsOpIstc1XJ1d8t13YLUScdfd9Y5d0+4aWgW34rODn3n96WX9lmxCzJDQp37GXej112OrrKTiVzcLElMX2eVD2ni3iLQ2g8rdlQzAbXf3pFoBa3447LruXS1Jo8FshKzGHxJqMWy2pzu7Wx+TnlGGJaWM8nAVVw53vz9M77Be/C3lOjTCn+BpiQSEeydx9OyW2apV7p246yvQxtbrHxQTFURltAblqUoMRudO2xltZgzBZKumeOUxsvXZ/Jz+MzM6zqi/narSwJBH4dRWyGyk06armM3kv/IqmnbtCL/1lnqHn+j7BFWWKj7e/7HHl5j701F0xRZUPcPon3xhC5DQGTMIHDCAgtffwFzgnQ0hR7jsZIQQ1wGnpZQfAuHAK0II7ykWXmxq9PbeES16woD7LzhUeiyLkFwtBcoCSmQUP3y8z6NLzD06lyx9Fo8nP45S0cDWR0xX6H8P7P6aQOMph3N1uGsk1TYj5StO1atCtxoMlP04l+BxY9Ek1K/cVSlU3NntTlKLU9ma693YzPbVWZiEZHIdXSyAgN690bRrR9m8+a5PaDHBkV+g4wT7B9uL7M7fTbA6mPZh9W11RlR4ANFDYwitlPwwz80i2cRhoFC7lMps3LQZTdu2qOPcSxme+8VBhIRr73I/jgPQfqmSVqq2HEvMpMVA7/QbAtAkJuLXoYN7W2YVOfYaqV432fvz1CF5REv8pGDxL02XrfEPDaYypgpddTg//fYtQgju7Hpnw4OTb7On1G9o2momcO1azFlZxD77DEJd/+drq2vLdR2uY/7R+Rwvc/9nLCypImvNacoDBPfc06vecaFQ0OLFF5AmEwVveWdl5gh31sP/klLqhRBDgVHAl9gzzn6frH8D9Llw9dv2PdfzyP5uF1JK2t0zGE3PMHQlFhYvd++PbTAZ+HT/p/SP7c/QeAfB6yv+ARotbU843oPVBAdh7aJCJ8M5ufhCR1E2fz42g8GhCOakdpOIDojmy4NfuvVzOKKotAr/3GpM8QENdpMUQhA6fTpV+/ZRc+yYa5NmbLCv7rxcgAnnmpS52q66LjfP6EJZgCB/Yx6FJW60jfDTQquBTvfzbTU1VO7cSZCbq5jlv51EV2RG0VVHx3bhbp0LcGz2WmLL49jJdjb3aoJeWyMEjx1L1e49WBy0Mr6AfT+AtEHv+k/5AKOHt8KggpM78hs87i6tZgxAYqPlNg2T2k0iJqiRwkt1gF0i6vhqj3sFWSsqCPp1BUHDhxE0uPEt0Qd6PYC/yp8P9n7Q6JjG+PrjvfjbYOTNnVA3sm2qad2a8LvvomLxEip37XL7Gu7gzqfNeubfCcDnUspf8G522cWj8Ahs+wh63QItL9TEyvx1B2GmSIytqtAltuDOO3tQoYa0XzLtsjMu8nXK15TWlPJEnyccy1EEhsOQR4ks3g6ntjucM+mmERhtFZi3lp4tIpMWC6XffkdA3z4EdG+88E6j1HBb19vYkbeD/YX7Xf45HLFo0THUCIaMabxyWDd5EqjVlM13cTWTugg0wdBupFdsrKW2SVmtvL0nKFUKRt7UEX8bfPOZm7/DpNGQfwgqGo9NVO3ejaypQeuGXllVtYX9i06iV8Gdd7kv3pi7LRXNPihXFPPbiOMuKzK7Q8i4sSAl+tUuBM1tNnvPptZD621h16JUKQjqpCPUYCPlSNMzzUJaxpCpzqC3TObGKCeClP3utr8/t7h/8wco/vwLRFUV0U84VpIO9w/nti638dup30gpdj3hZMPWbAKzqqhpE8Sgvo4zKCPvvRdVXAvyXnwJ2VgzNy/gjpM5LYT4FLgeWHamWdllpX3mElLC8qdAEwSjn7/gkKW6huo1BRhtFXS4y55ZE+CvInlqW7QW+OoL124sJdUlfJf6HeMSx13Qr6RRBj5IjSbMLmXuIGai1KhQDdShFTrSf7QXi+pXrsSck+OSlP91Ha5D56fji4NfuPRzOCN/XzHlfjC4X+NvZlV4OMGjr6T850XYTE720K0WSFtq14tTebcXXlPiMeczuF8clS0D8MswuidxknQmU+t44zdaw6bNoFYT2M91MdCvvz5AsBk6T2jlcspyLaXHsjD+lEWNrKL1I8PoFZfM8fLjlFWXuTWPMzRJSWjatKFihQvy/5mbofQkJDvu4DphUhI2JCu9sGVmNBv5KmYJKoUa6/Isx4P9Q+wKzSkLoczJ2DqY8/Mp+fZbqvv1c6k99a1dbkXnp3N5NWO22Nj041EqlXDX/b2cjlcEBBDz9NPUHD1K6Q+zXbqGJ7jjJGZgz/waJ6Usw16M+WRzGNWsHP7F3sp35HP1+oMf+24tQQodmuERF2iTjRuVSEWUGplazuF0510EZ6bMpNpSzYM9H3TNJk0Qma2vtwcVjzr+INqbL5WgOGjCVFlN8Vdfo0lMRDtihNPLBKoDuanTTazLWkdGeYZrtjXC1l256KolUT3CnWYhhU6fjrW83HnwN3MTVJU021aZWqGmW6RnMYvzue2entQoYNU3aZgakSWpR0xXeyDbQVzGuHkzgcnJKAJdE4E8dLgY8/5SysJUTL4qyTU7aq+VX0LB5/tRoCDslo5oW0ScdcD7Cve5NZczhBAEjx1L5Y6dWEqdNOXb+x34hdQL+NelTSsd+lAVlnS963+DRph/dD67Q45RpMjDP1uDyehkK7Q2hrv9E7euU/TBh0ibDcOka5wPBoI1wdzZ9U42nd7kUjuG2XPT0FVDq5HxhOmcC5mCXf4naPBgCt9/3/nfxkPccTITgFVSymNCiOeAjwDH/UMvN6wWe8e7yA7Q98In/6qSCjTHFJQpimh9df96p95wTw8ksPBbx0vX4qpi5hyew1VtrqJtqOuCgrktxkBYG1j3isPVjEKhIOiKFgQotBz7eBHVhw4RfsftCBfTTWd0nIFaoeaHw01rAbRpZQYWJJMmOQ+iBw0ahKpFC8oXO8k4T10E6qBzT/1epLEmZZ4QGx1EwpXx6KokX3x5wLWThLAXZp5YZ68BqYO5oICaI0dclva3Wmws+vwgVgE3PeDeNpnJWEXG/zbiL4LQTIgiqod9W6pbZDdUChV7ChoWy2wKwWPHgNWKYY2DNPrqcvt7oPt0l9SWOw5uQaBNsGxlhsd2WWwWZqXNom9MXyKubIefIoCT85wImoa2hK5TYfc3dptdwJR9mrKFCwm77jpska5JRAHc2OlGIvwjnNa5letryN+UR1mgYMY012V8atWabUYjRR81T4jd08D/aH6Pgf+930LxMfs2WZ0iv+PfrMdPEUDk5E4NPpm3aaWDjiGEFJjZvKPxatmZKTOpsdZwf8/7Gx3TEFKhsjdGy91vrxFwQMtxfamgBHVuECI8Et1k15/8IwMiuarNVSxKX4TepHfLxloMRhPKrEoqo/2IiQpyOl4oFOgmTsS4aTOW4kb20G1WSFsCHcbaA6xepNJcSWpRapO3ys5nxtQOlIerMO8vZV+KiwHtdqPszfBy9tU7ZNxiT4t1NXX5q28OEGq0ETksxv7edBFzVQ1HX/2VEFsYlgFqEq7odfaYv8qfrhFdmyUu49+lC+qEBMdZZqmL7arbvW52ac6J49tSqZCkbnHS4dYB67PWk2vM5ZbOtxA/spddODO1Gpul/oPABQx+2F7LtcdxMXUtxV98jhCCiHvd64cTqA7knh73sCt/F9tyG0+B/+arA402p3OGX1ISodddR+ns2V5Rza6Lp4H/z353gf8aA6x91a6M2/FCscLyzFy0uUGUBhQRO6Dxyv5b7+xGlUKybu6xBptZFVUVMefwHK5uczVtdG3ct7HnDaBrBRvecLqa0XTzI1Clo+aK61EEuHdTvqnzTVRaKvk5/Wf3bQQWLU3HTwqSR7ougq2bdA1YrVQsa1DTFE5tA2Nhs2yV7Svch0Va6BfrvcZnCoWCWx7qhUXAL18ecm3Lpu0IQMDx+k/zxs1bUIaH4+fCXn3q0WKMO4sp0ym55QbX043NVTUceWUZoZZIKruYaDetftZjcnQyh4oPUW1x0DnSA2q3zIxbtmKtaKRDyMG5doWE+IabydXFT6NC2TaY4BIzmdmedR2ZdXgWLYJacEXLK1AoFKiSdQQp6kvN1COutz05YdsnYHWcEGTOz6d8wU/opk1DHRvrcGxDXNfhOmKDYvlg7wcNrmZOnirHllZBeZS60eZ0zoh6+CGERkPB2+94dL4j/jyB/60fgrEAxrxYr1f8qe+2oRAKEm7q63CKiNAAQvtFEmqwsWR5fcnxmYdmYrKZ6lcLu4pSDUP/Ctk77dsqDgg4spXyqhwCrG0dN19qgK4RXekd3Zsf0n7A2sDWjTMydhagV8HoYa4X/fm1b49f586N95lJXQSqAEjyXF2hMXbl7UIplF5dyQC0ig8hblQcoZWSjz904ek/KNJel1XHyUibDeOWLQQNGeJ027OyyszPHx3AJuD6B3q6/NRqNlZz+JVlhJojMXSspuPtDW9J9o7ujcVmcSujyVVCxo4BsxlDQyrJFTlwciN0n1Hv8+mIMRPaoECwdJGLKfLncbT0KDvzdnJDpxtQKew7G20mn5Ga2epCevTgh6Ei2/7edUDxl18ibTYi7qlfKO0KGqWGe3vcy4GiA2w6vane8R+/PoQApt3uQpJRI6iiooi4+y70q1ZRuce726VNCfyH83sJ/BsKYct79g6LLS+MtxQeSEenD6c8opyw9s6fAm69uSt6NaSuOHXB02tRVRE/HvmRCW0mkKhL9NzW3rdAcBxseLPRIZaSEvSLF2FVnSBQEcyJ+e43xbqp801kG7LZeNo9Gf3T+TZCDTaCO+vcli7RTZxI9YED9ZfkNhukLbbHLPy0bs3pCrvyd9ElogtBaudbe+5y43WdMcT5oTxSwfLfXBADbTfK3nW1+tyTd83hw1iLi12Skvno3d3oqiWtr2pJUmKoSzZWFpZx9OVfCTNHYuhQTac7G3fkvaJ7AbgUaHYX/x49UMXENLxldmgBIKH7dW7N2b1zFGVaBfq0crdbZc8+PBs/pR/Tks6lLav8NJjbgs4WQd52J0W37cdBRHv7vaWRnQdLURFlP85FN2kSmgTP219NaTeFuKA4Ptr30QWrmZQjxQTlVmNuE0SnJPdrpM4n4o47UEVHk//6615VBnFHVqZSSvmTlPLYme9zpZTe6a/a3Kx/HcxVcOV/6h3Km3cQqzTT5jbX1H79NCraXRlPiAl+XHDk7OtfHfoKs83MfT09XMXUovKzN0zL3AwZ9Z9aAEp/mI2sqaH9A9ehl6XI/ZVY3cxzv7LVlcQExvB9mntCfMdSbNiQTHAh4F+XkIkTQAjKlyy98ED2TnthrJe1ysAejzlYdJC+sY5XqU3h/sf7otcIUn46wclTTgLB7UaBzQIZ55x7rZSMo+I8gPmLjhKQUUllYgDXTnItuFt24jSn3tqE1qajOtlGp784XimG+YfRVte20U6ZTUEoFPYts42b6uvZHZxn34KKdC9LDqB132iCLfDbetdTistryll6fCkT204k1D/0gmNtZgzBbDNR+KuTnisKBQx6yB5HbeSzWjJzJtJsdjsWUxe1Us19Pe/jUPEhNmRvOPv6ktlpWIEZtzRdpUERGEjUY49Rvf8A5Y1ta3syr6sDhZ1bhBD/PvN9KyFE/TSsywyFzQy7v4Y+d0DkhTfG7LV7CTNHUtmqBm1s4y1q63LtpPaU+0PO5nxqTBYKKwuZe2QuE9pOoHWIF1qa9rkdgqJh0//qHbJVV1P6ww9oR4wgICkJdb8wghQhZCx2XMhZF7VCzfUdr2d77nZOlrsmx19jshBUJKgIU5PY0n1tK3VMDIEDB1C+ZMmFT0qpi0CpgQ7j3J7TGfsL92OxWegX4714TF10wX6Mu6cbSgmz39lNWYUDmfaWA+wZdOdtmRk3b8GvY0fU0Y13K9y6K5fs5VmUBwgeesw1h3nqt90Uf5KCn/RHjNGRNMO1vvHJMcnsK9iHTXpTZN1OyNgxyJoaDBvO3SgpPGq/UXef0fiJDphyTRI1QrJ7retOZuGxhVRbq7mx0431jgWEh2CIMqCrDKfshBNJ/J43QGAkbK1fy2ItK6P0h9mEXHUVfm08iNHW4Zp215CgTeDDfR8ipeTQ4WKC8mqwtg2iVbx3tOZ0Uybj17Ej6bPc7+baGO7sd3wEDAJq/yp67E3MLmv8aopB6Qcjnr7gdZvNRsWKU1TZjLS/fYRbcyoUCrqOaYXWArN/TOOrQ19hsVk8j8XURR1gV59NXwX5qRccKl+8GGtJCeF32vWV2kwZRKVNT82OIre3C6a2n4pKqJh/1LVq/CXLTxBoE3Qd4p6u1vnorpmE+dQpqvbts78gpd3JtLvSXujmZXbm7WyWeExdkrtH025yIsHVkg9f2Ya5MRFNlQbaDDsnMVNTQ9Xu3Q6lZI5nlrHx61RMSrj5b30IDHBcdGm1WEj54BdYZcCMCe0tbWg12nWlg+ToZPRmPUdLj7p8jqsEJCejjIi4cMvs4Fx7x8lu13o0pzZIg7VlIIEFNZQbnH8GpJTMPzaf5OhkOoY33BKh5bV2R54134nkijrArgJw9Fe7szyP0jlzsFVWEnFe642moFbYVzNpJWmszVrL0jn2Vcx1N3tPa04olYQ/9leCY0d4bc7LqWlZs6CyGGDwI6C98Cnx5MLNhBCOrbsaTbD7e/XXXNWW8gBB/vZ8Fhz+iQltJ5zrP+EN+t5lf+Ld8v7Zl6TNRsnXM/Hv0oXA/vYnc6VKha2TmhDCOb3OPamTyIBIRrYayeLji11qknRkSy5GheTqsYluXed8gseOQWg057LMTu+xB0+bIasM7KKYXSK6oNV4P9ZTl0nj2xE4MIrQMitvv7ylcUfTbpS9qr3kBJqjx5Bmc6PxmIysCua9tQe1DUbe05XWCY4dceGB4xx57hd02SGUB5SQ+MwVZ+tgXKU2C29Hrrc6q59DKJUEjx6NYf0GbNXV9oeMg/OgzRUQ3IhmmAtcMb4NKgQph5w7mV35u8isyOTaDo07tdC28ZQHlqAt0lJV4iRzrd/d9gfZbeeeuW0mEyWzZhE0ZAj+TWg/XZeJbSfaFdXXf+/1VUwtOenVBGnCvDbf5dS0rFmQQmnPAjkPS40Jy/YKDLKMpBtd20Koi0KhoMdVrdFaFLTNTebeHt7ty01guF1a4+A8e+YNYFi/HtPJk4T/5S8X6KG1vX4oNbYqytdkuH2Z6R2mU1ZTxm+ZjpfH6Rll6MotVEVLNBrPG4kptVqChg1Dv2IF0maD1IV2heKO4z2eszGqLFUcKDrQrPGYutx1Rw+sXUIIzjPx1otbqGkotbndmW6Zx9eiSUtF+PkR2Le+jccyypjzxi78LJLet3SgX6/G018rC8s4+OYiKmedws8WQHWyja7/nox/aHCj5zRGbFAsiSGJ7MjzvpMBu5aZrKzEuHmzvXFfaYbbAf+69E+OpTxAIE/jdEW/4NgCgtXBjGntOD4VNb4TaoWGk3OdJNZoo+zbZvvngNFen16x9BeshUVndxy8hUqh4v6e9xN9pANWYWPGLZ5nlDVEVUkFfukKyvBeCwBPmpbFnGlathkvNi1rLmr8wsHvwg/ase/XEaQIwW9oJEqV5zfMAUOCyQ0+SXL21USoPN9CapSBD4C0wjZ7zWvJ1zNRtWhhFxw8D01QANUtzYRaIsnf694Wx8AWA0nQJjDvqOPWQMsWpyMQdOza9Kz1kPHjsRQUULV3L6QssothBnjvyamWixGPaYhHH+0LPXSEFJh465lNZOfWKXqNaGevhzq+Br/UNAL79UPhd6ESwbrN2Sx6Yzcai6TnTe0brX8w5BVz6N2l5L25k9CiMCqCy4h+rDdJM65oUtOx/rH92ZW/C4vN+8KJgf36odTp7FpmqYtBoYJOVzs/0QmxvSIINSvYvKNxEdLymnJWZaxiQtsJBKgc15fFDuhMuaIY9QmclwkMetheSLrzC6SUlMyciV+HDh41n3NGy+p+tC/qS3rcXuJbeDdj8vjMdfai9Gne24LztGlZNc3QtEwIMV4IcUQIkS6EeLqB435CiB/PHN8uhEh0NqdZfeFSsrpMj+aIpFwU03rCgCbZ+13ad+xquYwgcxA//OD9ugLCEu0ZV7tnUrVnO5U7dhB+660N9qBIvGEwFpuZgiXu2aEQCqZ3mM7u/N2cKKtf+wN24b3qI+WUhSiIjWq6k9GOHGnfMpv/LZSfskt0NAM783aiEIpmj8c0xEMP9kE3IhatwcoPL+9g8a/nCTkKAe1GYj64EVVe3gXxmBqThQ8+2M2B745gUQhGPdydUXXqkawmC5nLd3DwxYUUvbOf0FwdlX4G1NfF0P25qQTH128g5y79W/THaDaSWpzqfLCbCLUa7ZVXYli7DnnwZ/tWmRceMiZPbo8ZyZZVGY2OWXpiKSabiekdprs0Z+CgGAIUWk7+7KQPU1QHe0rzjs8xblhLzdGjhN9xh2MFdg/5dW46ViHZEfszqzLdbAbngPKMXILzg+1F6R62m28Ip3cMIcRAIcQ6IcRPQABwP/AQsF4I4bU9jjNbcR8CVwFdgBuFEHXd6V1AqZQyCfg/4HUXZr7gu/SZ6/FTBBI20X35hfMpqS5hzpE59OyVRJlWQfmeYvSGpnfqq8eQR6GmgpJ3X0ah1RI6o+FthaCoMPQRenTGMOcZMXWYkjQFlULV6Gpm+W8nCbIK2g90LB3uKkptEEHDh6FfswEp1PUUGLzFrrxddAm/OPGYhrjlhi70v7sLVoUg6+dM/vv0elauzbR31ky6EuMpe6W4dugQyipq+PaHFP7vbxsQh8oxRGm4498D6NU1GmNhKdnr9pL2+QoO/mshp55bh3J9DVpDMHpdBX43xdHtpanE9m04iO0JZ+MyzbRlFjx2DDa9HuPhXOjStAa3tUSEBlAaKtHkVDeY4SelZP7R+XSL6NZowL8ura/qj9FWjmWvC3U4gx+GyiJKPngTZVSkPWXfy+xPLSQovwZLGy2xUZF8vO9jjwqqG+LU93bZGmdF6e7iyl32A+zbYrOBNcBdUspYYDj2VY236A+kSylPSClNwBygbjR4MvDNmf/PB64Ubjwq6LML0OYEUOpXRNyQpqnxfpvyLdWWau7rcR8DrmlDoE0wqzlWM3G9MYcNpGJHOqHXTkOpbfyG2XJ6X0CQ7Swjpg4RARFc2epKFh9f3KCcyKENp6lSSK652r0AsiNCxo/HUl5NlWYABIR6bd5aTDYTB4oOeFVKxlVsNhsVWfmc3nSAmNMnmdTbQpvQAnrrT8H8Daz+6yx++1RPivY/lIx4nC0f7ODgs/Npu20/QxV59NMVM8lWRNnbazj+1EpK3z4EvxoIPh6IX40fhhA9Nf0VJPxnKN2fneJ2YN8Vwv3D6RDWge257qXGu0rQ4MEo/NVUZAdAp4lemzeug0AjBYsW11cAOFB0gPSydKZ1cNIz5jwUKiV08SeYME6v3ed4cOIwqlVdMB7MIPymm1FovJ8XtezHI1iBG27txgM9H+B4+XFWZja9XLFg3zF0+nD0ERUuFaW7gysBCVVt0aUQ4kUp5XYAKeVhLy8F44HzE92zgbr7WWfHSCktQohyIII6atBCiHuBewGioqJYd0bGwn/VaeJEPIWdFGdf8wSj1cj3p7+nd2BvTu07hQoo8rcRuK+E5SvWEODn/grJYDA0alPkgRCUSErCiklzYneQIpfIomjWLP0VhdY1uW+A9lXtWWFawXu/vkd/7bnyp+JyG9oSSUmUZPu2TQ7tdIfgygyCFJLMwwryvTBfXVLLU7HYLGgKNF6x1xG2ahPiRCl++Wa0lQFoRQgahf13rwE0BNCDeDgTGrRKCzZpQ2ps2LAhpbT/iwRhQ9okFpMFo9KIWVWBOUBiCVMhY7UoIrRAIMWYydrZuGCiN4izxLE5bzOr1q6ixljj9d9jm3gLFaeDOLptPygbaE/uAS0iqzio8qd4Rx7rEi4UiZ9VNAuN0BCcHcy6nHUuzylbSFqmVFKxMofjSseZZtGHQlEoS8jRFnOokd+Xp5+h7Dwb2nxJcZQk/chu/KQfLdQteHvL2/hl+Hnc8RUgZHk+oTKCgs7e/7y44mTOXyPWbbTgPe0BLyKl/Az4DKBjx45yxIgRFKWcpNIiKA8tZdSNU5o0/3t73sOUbeJfo/9FUpi9QtkiMjky+ziZmWHcf6/7MYB169YxooGeMNaKCtKfOIG2g4Z4uY3OV7zpUNspLzANy09FxJ6qocuD9edrjCvkFSz5eQkpyhSeGvHU2dc/+ngPSsqYemMPenaJatROt1mxiuw4E1Unyrhi+HCXWxW4yqKFi1AJFXeOubNZ5GSsFguZv+zAuCef4CodKkUcNmlFryrHGGykJsqGf5yOgEgdATGh+IUFo/LXoFCrUCgUVB04QMaM64kbVIbuwxR7NuHlRhasW7OO0M6hGA8bvfN3r6XwCBUtiqk8Hk6/wECCBg3yyrTr1q0joocO655SgsM606enPS3aYDLw1LynmJg0kfGD3d/lP3R4KdG5cbQMj2t05WguKCD9UDahHRXEWrfCiGcbtdGT3+Wr/95EADXc/eAAElrYn1jMGWb+vv7vVLWuYkJbz7bnstbsRQgl5a30jLrG+1vXrnyyewohKoQQeqDHmf/Xft94v1/3OQ2cv05LOPNag2OEECpAB7jUfzV37j6s0kLibe71T69LeU05Pxz+gTGtx5x1MACjr2hNWbAC/b4Sr8ZmSuf8aC/ouuM2yD/oVDgztn9nyhVFaDIUWKqd177UIoRgWvtp7CnYczYBwGazUZFaRplWQc8uTQ8mn+VMAWZwvyQshUX2LDMvc6T6CD2ienjdwZiMVaR99ivHn1mJZquVwKpA9GEVWEcFEPtcP7q+Opnuz0yh8z3jaDNhILEDOqNLbIG/TovKT3M2DmjYtAmEICi2Gk6u96qN3qJPTB8UQtE8cZnUxWhjaxD+/o7l/z1g8uQOWJCsXX5OyWJ5xnKqLFVc296zgs/EGYOwSgt5SxrvH1Q66wewWgm/5Ua7bFCud9qcA+xLKURbUIOtnfasgwEY03oM7cPa88n+TzzKBLTZbOhXnqLKZqD9Hd5teV6LUycjpVRKKUOklMFSStWZ/9d+716/V8fsBNoLIdoIITTADUDdLleLgdvP/H86sEY6UXITJhOnNx0krCYSY3xVkzNvvk/7HqPZ2KBG2cBr2no1NmMzmSj57luCBg/G/5pH7FIzDchX1CVoaBz+iiBO/LTFretNajcJlVCx4NgCAFatP0WwGRL7NS534hGnd0N5FtpJNyL8/KhY/qtXpy+rLiPblM3AuIFem9NqsXDk29VkvrCe4BNBmJUmagYoSHz5Srr/cwqtx/Z1q6jXuHkL/l06Q2BAg9L/lwPBmmC6RnRtlqJM0hahaNMf7YgR6H/7DWn1TvAaoEVMEMYoDSLTiKHSnlyx4OgC2oe1p3ukZ8/F2hYRVISUE1IRiv50/f5BtspKSufMIXj0lWiuehQ0WtjiWttkV1h+JhZTV6NMIRQ82PNBMioyWH7Sfb2xEz/Zi9JlDz80Qd7t41TLZSPVL6W0AA9jV3pOA+ZKKVOEEC8KIWrTT74EIoQQ6cATQL0057ooSksp++U41bZKku4Y0SQbK0wVzEqdxehWo+kQVr+K98rhrSgLVmDw0mqmYskSe0HXXX+xC2cOuNfevjffcVppq/H9MMhyrPsNbknNnK8AYLKa2LM2ixohmTzRfdFCh6TYCzCVvaaiHX5eYaaX2Ja3DYlkUAvvbMEU7DvGked+IShVg1lRA+O0dH11Cu2mDkHpQWGq1WCgat8+goYOozSsBxxf67B/0KWkf2x/DhQeoMbm+qrYKSUnIO8gdJlMyNgxWJthNdv7igT8pWDJL+kcLjlMSnEK17a/tkkpxbGTuqMUKjLn1U+GKFu4EFt5ub34MiAUet8KKT9BuXuZng3R2CqmllGtRtExrKPbqxlLdQ22Hfai9HY3DL/wYLUTlQM3uGycDICUcpmUsoOUsp2U8r9nXvu3lHLxmf9XSymvk1ImSSn7SykbLuy4YE4lOhmBpZMCf13TUllnHpqJ3qx32PVy0KS2BHhhNSNtNoq/+hq/zp3PqfP2vcvec2WrY8k4hUKBonsgwSKUrJXuZZpNb29XAFiwdwWBBSasrQPRBnkxS+asVtkoCAglePx4LIWFVHmxh8W2nG34C3+6RTYtg9BmsZL68XKqZ5/GzxZAVS8rnV65hoSRTau7qdy2DaxWgoYMpiS8F5RnQZH7/VAuBv1b9MciLZyocfpRc53UMxsUna9Be8UV9i2zZcu8Nz8wdkRrDCo4sS2f+Ufno1FomNi2aVlsUd3bUaYuIiBHg8l4LjwtrVZKvvkW/549COh95r0x8H6QNtj+SZOuCedWMdff2nB1v0IoeLDXg5zSn2LpiaUNjmmIY9+vI1ARgt/wqPpF6Vvea4LFdezz2kyXKUr/MAymEtrdOKxJ8xRVFfF92vdclXiVwxz7UcPOrWbK9Z4//RnWr8d0/DgRf7nz3NNXYLi938zBuaB33FSpzbVDqLYZ0W9070lqYNxA4rXxbF6dhgrB2EleXsVkbbffVM8UYGqvGGEvzPTSvryUkm2522jv3/5sIypPqCwsI+WFxYRkain3LyXm8T60v2FEk2qrajFs3owiMJDAXr0oDTtzU7pMt8x6R/dGo9CQVuWkt4o7pC22y/qHtkIRFETwqJFULP8VaXbcYdIdlCoFId1DCTXa2HhgF2MSx6Dzc71NdWPoRibipwjgxNxz0v76NWswnzpFxJ3nfVbDEqHzJNj9DdR41uYc7KuY4IIabEla4mMbf0ge2XIkncM788n+TzDbnP8eq0r1aI4KyhXFtL6qjph+Ra5Xt/r+8E5GoVBRkTqfypUrmjTPFwe/wGQ18WCvB52OrV3NzP7B82rpki+/skvIjK+TCTPwAXu71x2fOTxfHeBHTWsbodZI8nYdcTj2fBRCwaQ2U2h5uh0lIVbvBvwBDvxoX411tj9VKrVBdi2zlau8smWWpc/itOE0nQKctzFujMIDx8l+cws6Uxj6pEq6/mcy2haut4JwhnHzFgIHDEBoNFQHxEB4u8vWyQSoAkiOSeZwtZPeKq5Snm2PyXU+V4AZMvEarKWlGLe4F0N0xrRpHbEIK0nZfTwO+NclfkRP9JQi0kzYLPY4UsnXM1HHxxM8uk630cGPQk057J7p8fWW/3gEi4DrnWiUCSF4qNdDnDacZsnxRrrPnketfEz4Ne3rPzite9Xe88hL/OGdjEWaiQyqpODdd7HVeLayyDHkMPfIXKYkTXGp6+XZ1cx+z1YzlXv2ULlrFxF33F5fQiaiHXSaADu/AJOx4QnO0GbGYCw2E4XL3HN22pN90ZrCqOrs5S0ci8kej+k04QI9uZBxY7Hk5VF98GCTL7Et11470snfMyeTvX4f+u9PoECJ8poIOt89ziurl1pMp05hPnXqQmn/dqPs2UgWL8Y9vMjQ+KHkmnPJM+Y1fbK0MzfA81S3tUOHoNTp6jezayIxUUGcijpC+6J+tFZ7R0hSoVCgStYRpAjh5NJtVO3fT9WePYTffhui7pZTQh+7ZM7m9+xNE91kX0qBfRXTLtjhKqaW4QnD6RbRjU/3f4rZ2vhqpjwzF21uEKX+RbQYVOf3UpAGe7+D/k1rsnY+f3gnYw0UxDz5JJacXEq/n+XRHJ/s/wSBcBiLqcvgyZ6vZoo++hhleDihMxpp4jT4Uagug30/OJwnMCoUfYQBnTGM8ozGRQPrkrXNgF6tZ0vAPJeW3i6T/htUlUKP6y94WTtiBKjVVKxo+pbZ1pytxAbFEqVyfwV2/OfNWJeVYsZExD1diB/qzQx9O8YzXTC1Q+s4GXOlfSvxMmRInN3Wzafdb/Ndj9RFENPN/rB0BqHREDx+PPrVq+t3zGwCJ8pOsCfmF9Q2DQt/8l5vnDaT7T2cTNuKKfrqaxQhIeimNbJSGv4kGAtgz3duX+fcKsY1sUohBA/2epAcYw4/H/+50XGnvtuGQiiIv7EB+ZhV/wZNsN1uL/GHdzKolQQNHEjQ8GEUffop1rIyt04/WX6SRccXcX2n64kNalxqvS4jh7aiLMT91UzVgQMYN20i/M47UAQ0klLYagAk9LMnADjRLUqY1gcQnJrvWhrq3oMFhOptWJKguKaIDVkbnJ/kKgd+tHcRbHdhPr4yJISgwYPsWWZNyLIy28xsz93O4LjBbmcRHf9pM+qtFoyigvgnBnpdWqMWw+bNqOPjUbc+r4Nqm2F2JeLaRmaXGe1C2xGqDGVzThOdjD4fTm27YKusFt01E5FVVejXeG/bcMGxBZQF51EaaKP0QIldM84LqPw0yG5+BBNG7rESwq6fgVLbSPp64lBoNQg2/8+tleregwUEF5hcXsXUMjR+KD0ie/DZgc8wWetnuBbsPYpOH05FRDnhHeu8x4+vhWMrYfjfvVoc/Md3MmeI/tvfsOn1FH32uVvn/W/3//BX+nNXt7vcvuaQye0IsAm3FJqLPv4EpU5H2I03OR446GF746vDvzgcFtY+gfKAErQFQVSVOg9ArlpyHAuS2667gujAaOYfc61rplOqy+HIcnv3Q2X98qqQseMwnz5NdYrncax9BfvQm/UMi3cvyeP4z5tRbzejV5TR5h+j3GrF7Q7SbKZy6zaChgy50An6BdvbMl+mcRkhBJ0DOrM1Z2vTVraHlwCyQUHMgORkVHEtKF/iPJ7gCiariSXHlzCy1UjaDYon2AzLPei31Bjtrh9GpaWcoPZXo7vJwWdVCPuqoOI07J/t8vzLfzyCWcCNjWSUNX45+2omz5jHwmML6x0vWJCCRZpoc2edlGWbDVb9C0JbQX/v9sb60zgZ/44d0U2eTOn332POyXHpnB25O1iTtYa7u99NRID7N54RQ1pSFqLEuL/UpdVMdWoqhrVrCbv9tsafjGrpfA2EtnapODNyfEfUCj9OnpcR0xDFZVWosyqpivWjVVwoU5Omsvn0ZnIMrv2+HJK2BKw19bbKagm+chSoVOhXeJ6gsTF7IyqFikFxrtfHZC7fgXqrGYMop+2TIwkIc7/Jl6tUHTiAzWgkaGgDqhPtRkLeATDUL/S7HOji3wWD2cDBwibEzVIXQ2QHiKofLxMKBboJEzFu3oKl2CURD4esObWG0ppSrm1/LZMnJlGlkBxYk+X8RBcR1VWUnVqNLiCe3L2nHA9uNwrikmHjO/akHSfs3JeHrsiMokMILWLcV6wYHDeYXlG9+OzAZ1SaK8++nrlqF6GWSKrbWAiKqtNa4cCP9tqlK/8Datc1D13hT+NkAKIefQSAwned54BbbVbe2PkGcUFx3NrlVo+vOeRMbOaHWc5XM0Uff4JCqyX8llucT6xQwqCH7Pv4WY63wloM7GJvvnTccfOleT8eRiMFw65uA8C09na12oXp9Z+I3ObAjxDeFuIb7jWvDA0laMAAKlZ6vmW2IXsDfWL6uCwlk7cjDblWj5EKEp+8goBw77axrYtx82ZQKAga2IASQW23zBNrm9UGT+kQ0AGlULLptOMHlUYxFkPGJvtWWSNbmSHXTASrlYpfHK/OXWH+sfnEBcUxKG4QgQFq1B1D0JVZ2ZfiHSdeOncuQYdWUWnVU7khz3HRsxBwxVNQlmnvdOuEVXOPUiOk26uYc5cTPN7ncQqqCvjy0JeAvear8rccKm162t9WRz7GVAlrXrI7wq6uK1S7yp/Kyajj4gi/7VbKFy+mKsXxTX/R8UUcKT3C430ex1/luWc/u5o54Hg1o8rMRL9qFeG33YoyxMWbXa+bwV8HW953OtRZ86Uak4WKAyWUaRUM6R8PQJw2jsFxg1l4bGHTelaUnYKTG+2rGAexkuBxYzFnnqLmiOsp17WcNpzmePlxhscPdz4YKD2WhWH+KcyYiH+wP4ERoW5f010MmzYT0KNHw3/fFj0hIPyy3TILVATSI6oHW3I8TDM+8ou9y6uD3jH+HTrg360bZQt+alJsLqsii+2525nWftpZZeJrZ3TCgmSFFxIApMlE6XffEzywP7YuakIIJ2uFk6LnDuMhtjusfx3hYMtxy84cdCUWVJ11REcGemxjckwyV7W5ipmHZpKtz+b4vA0EizBEciDqoDr3s60f2rfzxr4MXhaqhT+ZkwGIuPdelGFh5L/0cqN1GXqTnvf2vEevqF6MSxzX5Guejc04WM1of16EMjTUvZ7gflq7CsDhpXapDge0vqo/Bls5lj0NN1+av/AoQVZBtysTLnj92g7Xkl+Z37Sg794zWX29HMeZgkePBoUCvQeFmRuzNwIwLMF5PMZYWErB5/tRoCD0lg6EtHY9ocNTLKWlVB88SNCwoQ0PUCih7Qi7k7lMJWaGxA0hpTiFoqoi54PrkrrYvr0b28PhsNDp11Jz5AjVhzxXzFhwbAEKoWBK0pSzryW0CKamZQD+p6s5dbppkikVy5djKSgg/M47SbpxOFU2A8b1uc5XM1f+B0oziMtp/P29dsExqoXkJg9XMefzRJ8nUCqUvL/h/xB7a9BTSrvpdT4fZadg49v2FWZi08SDG+NP52SUISFE/+1vVO3bR/nPixoc8/7e9ymtKeXp/k97pX3qiCEJlOkaX80Yt27FLy2NiPvvQxnsZkyg/70glLDtY4fDFColoqs/wSKMrNUXSrjYbDYyt+RRoYGJY9peaHvLEUT4RzD/qIcJADYr7P3evi8d2srhUFV4OIH9+nmUyrwhewMtg1uSGJLocJzVZOHk/9bhL4LQXB3ZLA2/GsK4eQtIiXaYAyeYdCUY8iG/GZrfeYERLUcAsC5rnXsnVpXZ1cO7THa4kgUImTAB4e9P2QLP3m9WaeXn9J8ZnjCcmKCYC45dfW1HlMCCHz0vLJVSUvz1TPzaJxE0dCgqfz9kDz9CCOfET04exJJGQ+IwWmf+CDWGeoc3bM0mtMyKf7dQIsOaLlYZGxTL3d3vpsfGUPwVQYRMbGNvwnY+K56x/zvulSZfrzH+dE4GQDd1CgE9e1Lw9ttYKy58qjlYeJA5h+dwY6cb6RrpnQIugKFT7KuZWd9feAORUlLw9jtYw8MJu/FG9ycOaQHdr7PfyCtLHA5tO30o1bZK9OsvDID+ujoDXQ3ED4xGqbrwLaFWqJmcNJkN2RsorPRgP/v4GqjIhuTbXBoePG4spuPHqUlPd/kSVZYqduTtYHjCcKcPBWnvLSPUGkl1NxsJI5qmQeYOxk2bUOp0+Hd18J5qe2av/DLdMusQ1oG4oDjWZrkZNzr6K9jMFxRgNoYyOJiQcWOpWPoLtir3CxgPVR2iuLqY6e2n1zvWrVMEFRFq5DE9peX1O8C6gnHLFmoOHyb8jjvOvtfa3TAcgyzDuqPCYcwTIWD082jM5Q3qD278KZ0qheTmW5umuXc+kxQjGCqHkSoPEjGw/YUH01fbE3KG/w1CmydlH/6kTkYoFMT8619YS0oofP9cdpbFZuGFrS8QFRDFw70e9uo1rxhkX81UHiy94A2u//VXqg8dwnDNRBR+fp5NPvhhezHf7q8dDlMH+VPTykKoJZKCvef2pveuPEWlQjJ9asOabNe2v/bsE6Lb7J5pr43p6FozpODRo0EIKtzIMtuZt5Maa43TeMyxH9cTWhRGqa6Yjrde6fL8TUXabBg2bbKnLjvqAKmLt2deXaZORgjByFYj2Zaz7YKsJaekLoaQeHtg2QV0116LzWBw6z1Qyxb9FqIDoxkS3/DWz9CJbfGTgh9/9EyLrfiTT1HFxBByzTVnX1OqVPgNiyJIEcKx79c5niChL4WRg+wClOdlEi5deYJQvY3g3hGEhnh4H2iAoh9TsEkLb7X+gY/2f3TugMUEy/9hT8YZ/KjXrtcQf0onAxDQrSuh18+gdNass0kAXx78kiOlR/jngH+i1TRNsbkhhk9NIsAm+PZrexqoraqK/DffxK9jR6oH1O007QYxXe3bUds/dVrwlXjdICw2M/lL7T/zmo2n7G/uXuEEBjTcHqhVSCv6x/ZnwbEF2KQbBW36fPtTbK8bQeWakrM6OpqAPsno3dgyW3NqDYGqQPrGNlDBfIa8nYfR7LFRLorp/IT3u/85oubIEaxFRQQ52iqrpd2VkLnFnvFzGTKy5UhMNhNbcxpOIKlHjQGOr7an3LsYVA7s1w9161aUz1/glm05hhzSqtOY1n5ao+KowwclUKZVoN9fcrbXjKtU7tlD5c6dRNz1FxSaC9/Pra/uT7miGM0RnNajnWh7C1iqYfXzAJgtNg78koFBBbd5cRVzcslWQs2RVLU1M7jXaL5N+ZaU4jM7KVveheJjcNUb9jYizcif1skARD/+OMqIcHKfeZaU3H18sv8TrmpzFaNbj3Z+sgcMGxhPRZQaebiC9Iwyij77DEtOLrH/eq7pWR2DHrbv5x/40eGwoJhw9OEV6AxhVGTmsXXxCfsS/SbHW4PXtr+W04bTHK12Iztn/w92ob3erm2V1RIydhw1R49Sc/Kk07FWm5W1WWu5IuEKNMqGHVlVqZ6KeccxyWpaPzIUlZ8XWxe4gGGjPe03aMhg54PbjbLXE53yrlikt0iOSSZYE8yaLBdXW8dW2m+oLmyV1SKEIHT6dCp37aLmmOv6ebWp9lOTpjoc1/fqRAKt7hVJAxR98gnKsDBCp9ffilMoFIRf0x4/RQDHv3S8nVgVmAADH7RvcWfvYvbcNHQ1kDgqjgB/z5XDz6e6TI9lYxkGWU6HO0bxRN8nCPcP57lNz1Gdux/WvwFdpkD7MV65niP+1E5GqdPR4vnnqTlyhN/++xARARE8O6DhvtzeYtodXRHAok92UvLFl4RMuobAvo0/gbtMu1HQopc9U8RJwVf8lGRAcPDrjYTqbWh7hhOsdXzjvbL1lej8dGwxuHjzs1pg51fQeihE1W/w5ojgsfY3vn7lKqdj9xTsoaS6pNEHA5vNRvp7v+EvtARcHYs2LtItW7yBceNG/Dp3Rh3tQofR1oNB6WeX+LgMUSvUDE8YzobsDa41yEpdZO/o2tK9lXro9OkIjYaSWa7pDVpsFhYeW0gn/07EaeMcjh03KpEyrYLyPcUuNxesSknBuGEj4bffjiKw4dTiFoO6UqotIqQwhIJ9TpzjFU9BcAtqFv+D/M15lAcIrpvi3ufEEcc+XY2/CCL4mlao/P0I0YTw8pCXSS9L583ld9s7d179lteu54jLwskIIcKFEKuEEMfO/BvWwJheQoitQogUIcQBIUTDpeNuoh01ioz+LRm1poRX4+73Ss8JR3RsF46tvRb/MiVloW2I/vvfvTOxEDDin1Ca4XQ1E96pFeX+JbQwhmIWNdx4k3MBPj+lH5PaTeJA5QFKqh0nGABwZBmUn7I3b3ITdWwsAb16uVT9vypzFX5KP4bGN5wanD5nPWFVkejj9Rc10F+L1WCkcu9etEMbSV2uiyYQWg+6bHXMwJ5lVlZTxt4CJ90szVVwbJW9rYPCQSyqAVRhYYRMnEj5osX1knMaYn3WevIr8xkS7Foa7sBJ9lbp38865NL44k8/Q6HVEnaz4zT8NncPxyLNFP6Y4jil2S8Yxr7MwROtCbQK+k9p6zW179ObDhJaEk5ZWAnxQ8+ljA+OH8ydod2Zq6xm1aA7QevlNh6NcFk4GextlFdLKdsDq2m4rXIlcJuUsiswHvifECK0qReec2QOLw3KwaYNIOLNWR63A3CH6TGnUJv07Oh6B8pILz5ZdxhnX81seNPpauZ0QigapT8dwirQBbu2Jzu9/XSsWFmcvtj54O2f2FOWXQz41yV47FiqU1MxZTUuBWKTNlZnrmZI3BAC1fWfLotSTqLZZ4/DdHpwfAMzND+V27eBxdJ4fUxDtBsFhWlQ4QU5n2ZgePxw/JX+rMhw8hCQvhrMxgYFMV0h/JabkVVVlC34yenY2Ydn0yKoBd0CXItpXDncLmBr3F/qNNOs5tgx9KtWEXbzzU5LDLSxEZi7CHQyguM/OhaXPaa9kp2GGbT228no7k0odj4Ps7Ea/ZIMqqWR9vfXSW7JO8QjB36jmwjg39nLOV523CvXdMbl4mQmA9+c+f83wJS6A6SUR6WUx878PwcoAJrkirfnbueNHW+Q3GEEbV57i5rDhyl4/fWmTOkUc24ulf97g7iqvSjR8eMC96vbG8XF1YzZYmPPIUlhTQFJlmCsJtcaFLUNbUtbv7YsOLbAcUV27gHI3Gyv4XHzCbaW4LFjARwWZh4oPEBBVUGDW2XSbKHw24PYsJFw34D67WUvEoaNG892wXSZdqPs/16mW2aB6kCuaHkFqzJXOd4yS11kVzFI9KwrrX+XLgQkJ1P6ww9Ia+M34eNlx9met50ZHWegFK6/34adScT5bqZjPbbC995HERhI+B23uzRv+1tGUkEJir0mDDmNF67O++IgJlQMi5gNPz/oVFHdFY58uAKtCEU9Ihz/0PMcYo0B5t2BOiCUd8Z/iZ/Sj4dWP+TarkQTuTSfvPrESClrG57kATGOBgsh+gMaoEFXLIS4F7gXICoqinXr1tUbk1mTyfv57xOlimKCmMAehQLt6NHww2xOBmmp6eNauqVbWK2E/e9dVGYz2ildKdlso2pNDosCclFS2aCdbiP96KNth2rFS+wojUU2kGWzfbcFXY2Cw5HVDLNEs/HDudDb8T52LcmqZOZXzOezXz+jY0DDKc8dD79LtMKfrcY2WJrwM4W3bs3pefM52K7hgsmFpQtRokSZqaxXIKhel0OwaEN6/GlOZRyBDC86c1eRkshVv2Fu3571jXR9NBgM9f/uUjJYHUrp1tmklcc3v50uUNfOhMoEVlSv4IsVXzTYhVRhNTE4dQkF0UM5utFDvTPALzmZ0C++YNt771HTu+HtzrnFc1GhIqYgBkNVA79PBxQEWwlLq2DugjVER9R/5lZlZBCxahWGiRPYtH+/y/Pautpod0jNkfd+o2JsDEJxrn7LYDDw3ie/oStWUBIvyWk/Cd3hdzn+/eNktfJcO0ym5dO+JI4s1Slq/r+98w6Pquga+G82m2x6DyQkEHpAegdFehN5pQgI6AeIgoroCxYUu2Lh9RV9xQICKgqKYqGIgFRp0jEIhF4TCIT0XjY73x93wZBskk2yuwlxfs9zn707d3bm7Ozde+49c+Yc91DOFxiHJsf+R82E0xxq9QbJUQmM9x3PnKtzGLt8LI/XfBw3XcUXfxYvmJQO2YCNwBEL22AguVDdpBLaCQFOAJ2t6bdx48ayMEeuHZFdl3aV/X/sL69mXL1RbsrNlWdHjpTH27aTWSdOFPlcRbn63mwZFdFEJq9YIaWUcs+BWDnnkY1y1hs75JYtW2zX0fG1Ur7qLeW+L4ocSk7Nlu9O3ijfnLpZ5uXkyuPPrpZRz62U+fn5VjW9fvN62e27bnLKximWKyRHS/l6gJS/PlORbyCllPLa/PkyKqKJzI2JKXLMmG+UvZb1kpM3Ti5y7OzqXTL6uW3yr3eWV1iGipB95qyMimgiE5cuLbZOsb/7T5OknFVXSit/F3tTWM6svCzZ6ZtO8uUdL1v+wPE12jl4akOF+jUZjfJUv37y7NBh0mQyFTmempMqOyzpIF/Y/oJFOUvj5Lkk+b9HNsq3X9pm8fiFCQ/JE506S2NaWpllPzp3jYx+bps8sWTzTeVrf9sk33l8k3xnyiaZkZkrpckk5Xf3S/man5TndpS5HymlTLt0TZ56dp08Nn2VzEnPvPngnvnab7H57ZuKN13YJFt/1VqO+XWMTMsp+v2A/dIG136HmcuklH2klM0tbCuBq0KIEADza5ylNoQQ3sCvwItSyt3lkWN7zHYe/O1BPJw9WNB3ATXc//b4Ec7OhH34ITp3d6IffRTjNduFXU/dsIGEBQvwHTECn8GaO2fHtsHkNfDE81IOx8/YxiYLaHMztTvDlrch52af/c/nReKeL7j93gboXZzhNi35UszmSKuadhbOjIwYydaYrVxIvVC0ws45gLTJAi9vs8ksdUNRL7MDVw8QlxnHv+r/66by1AtXMG1NJSU/kSZPVM48zHUydmjx1DysnfQvSINekJUIV6y/e3YkrnpXetXuxcaLGy2n+o1aCa6+WvrhCiCcnAicOJHsqCgydhQN27LqzCqyjFmMaVJK/qViaFTXF9HUG+9reWzefnPI/oy9e8nYuVOLd+hZ9nVzEQ/3JUUk4HzIRELU+Rvle3aY8DJCq8H1tLVpQsDgT8C/HvwwvsxzccbsHC58tANn4YLffY1x8SjwVHJqA6ydDo3v0jzaCtCrTi/e6/4eUfFRjF83nkvpl8r8Ha2hqszJrAKuGzzHAUWCigkhXIDlwNdSyjIHNsoz5fHxnx8zZfMUwr3DWXzXYmp7Fw2l4BwcTNjcueQnJRP9yKPkp6SUtasiZB48yOVnnsW1ZUtqvnSzi/RDj7YmXQ9JByXJqTZyOhAC+r+lpX3d+Xdag90HY3E+k056qIGeXbU4YvVG3KGFmtl8sWRvmALcF3Efep2eJVFLbj6QdhUOfgWtRtkkTIVLeDiGpk0tujKvPrsaD2cPutf++yKWbzQS/dkunNBztY0sGm3WwaRt2YJLgwa4hIWVXrkw17OHVmEvswH1BpCWm1Y0MrMxB46vgSZ3W0xQV1Z87rkHfXAw8Z/Nu6ncJE18d/w7Wga1rFAIqAcfakWGk2TPD6fJzNIUppSSa7PfR1+jBn5jyhHuCS0SQOjDHTCRz7WvjpCdks7vO6MJiBOkhxq4q0+9vyu7+sB9SyA3A5YM19KUW8mx99fiIwPIbaujZtsCJuzofZrSqtkM7l1ocX60d3hvPu79MZfTLzN69Wi2Rm8t13ctiaqiZGYBfYUQp4A+5vcIIdoLIRaa64wEugHjhRCR5q21NY1vurCJ4auG89lfnzGo/iAWDVhEkHvxPgNuzZsR9r8PyDl1iosTHqqQosk+dozoxybjHBxM7Xlzi4SO8fEy0HZ4A7zyBZ/9r5Rw4WUhrL2WG+KPjyD1Mrm5RjYvPk6ODsY/2vpGNRcPN/Iag48poEjgzOIIdAvkrnp3sfLMSlJyCozNro8gPxe6PmWzr+Hdvx9ZBw+Sd/XqjbJsYzYbLmygT50+uOn/vms7Pu83fEyB5DSX6Gr52kyG8pCflkbmvv149exRvgY8a2ih4avo5D9Al5Au+Bn8WHWmkLfh2a2Qk6It9rMBwsWFgAkTyNp/gMx9+26Ub4vZxvnU89zf5P4Kte/l6UKTf9XFOxcWzIsEIPWXX8g6dIigqVPRuZb/ZsW3QSj6Pv6448XJ99az+9uTpDtJJj3ZrmjlGk1h1BJtJf43Iy0G0SzMsc/X45caQHJgEo3uK/DUGL0PFg/VzqMxy7SI7cVwR+gdLB20lED3QKZsnsK0LdM4kWi7OcwqoWSklAlSyt5SykZms1qiuXy/lPJh8/4SKaWzlLJ1gS2ytLYv511m6u9TMUkTc3rO4a2ub1mV1Mqze3dC53xIzsmTnL//fnIvlpL9zgKZ+/Zx4f/GonN3p/bnC9H7W86b3bdHOAk1JZ6Xc/hhuQ0nqPu8quXw2Pwm8+ZF4pMlCesVSs2gm79/w9HdyTKlk775ktVPM2NvG0uWMYufT5ndS1NiYM98LVhngO0iG9/wMtuw8UbZ1pitpOelM6jBoBtll3YcxivakyTXeBo90LNIO44mY+dOMBrx7FkBWRr00pLS5ZQcpqSycHZy5u76d7M5ejNJ2QXuvKNWgsEH6lfMVFYQ3xHD0QcFETf7/RuejV8e+ZJaHrXoV7dfhdu/Z0AD0oIN6E6k8seOs8S9NxvXFi3wGWJ9pILiCO/XnvR6mfjnBdFJxOLTCvx8ilFcDXrBvZ/Dpf3w1SBItzhzAMCppb/jdcqNJOd4mk4tsFTg+Br4erC2DmbcavAu3akn3Duc7+/+nifaPMEfl/9g+C9FoxqUlyqhZOyJi3Dhgx4f8PPgn+lZp2x/eK+ePam9YD751+I5N2KkxbkBS0iTiYRFi7jw4AT0QUHU/WZJqSaT2+/UkeImiF4fw+FjNpoL8qsLnR4hdu9+dFEppNZ0YdTwop5Azh6u5DfV4yP9ubhuX9F2LBDhH0HH4I58e/xbLe/7lrcBCb1eso3sZgz162No1PCmhZk/n/qZmu416VCzAwCZCclkrIomW2bQ8MneNlvUVhHSt2zBydcXt7K4LhemQW8tevFZ25swbMXQRkMxmoz8etaczTI/T8tvFHGXTWNi6dzcCHxiClmRkaRt2EBkXCQH4w4yttnYYuOUlZUJU9qQ5QQHvzpKdkIqwS++gLDRubTbrRYn0s/TyDOclpdLyaR52z0w6luIOw7ze8D5onNRp77fiiFSkKJLoMnzd2ku+sYc2PgafDdGi7Ixfo0WdNVKnJ2cmdRyEuuHr+fpdk+X/UsWQ+X/G+1MoD6QPuF9cNaVzzbs0bkzdX/8Aedatbj0xJNEPza52KyaUkoydu/h/KjRxM36D549ulP3++9wrlX6nYSzXse9U1phEvDrp4e5llj2MOeWuNh4CmuTn8XdKYFJT7Qotl7D0d3INKWRue1qmZ5mrmRcYe2fCyDyW21dTCk5Y8qDV7/+ZO7fjzE+nui0aP64/Af3NroXJ50TJpOJMx9twVV44HFPbbunULYGmZ9P+tZteHbvVnLU5dIIv117Ijix1nbC2ZjGfo1pFtCMn0+bs1me2wrZyWWKVWYtvsOG4dKgAdfe/4BFhxbiY/ApNU5ZWagR6E7Hnp4InSt7O07F0LLkBGvW8vvOGNJ2xbPbrTaJXvGEZ4dz9J2VJa9Pi7gLJqzVFPWiu2HF45B0AZPJRNS8tbj9qSPNKYkG03vj7KqHo8thXlfY8QG0eQAeXKulASkHPgYfxjcfX74va4Fqr2RsgUvt2tRb9j1BTz9F5v79nL93OGfvGcyVt98m8auvSPhyEbGvv87ZuwZycfx48mIvEzLrHcI++sj6VMpoIWfajGqEe55k/jt7yhwltjDpGbks+fAYGSZf/uX7DgFHPyu2rt7VAC1d8caPcyuti7DbLawbEX4RLDi8gHxXH7jTdnc/BfHq3w+kJG3jRn48+SM6oWNoI+3icmrxZvyyA0mrnU5o1+KVqCPJiowkPzm5YqYy0CbNG/eDk2ttslDPXgxtOJRTSae0CL9RK8HF6+8FpTZE6PXUeOZpcs+fx/3nLYxuMtpipIfyIvPzCf/hfepFryPbUJuP5hyocJuRR+M4sOQEWXrBhGc60HzGYC64XsAvLZDjr/1CyoXY4j9cqw08sh26PA6Hl5E1+w6OTl+A93lPksR5Gvc5j+uW6fB+E22CX+jg/h9h8MfgbMd1L2VEKRkrEc7OBE6cSMPNm6j5wgycfHxIXvYDV9+ZRdx//kPqql9wrlWLkLffpuH69fgOGVKurJq9u9XBv0cIvmkmPnzjjxveLmUlK9vInLd2451lotbAcIJat9bCzZSQdbHByG6kyxSMu5IxZpfu6SaEYJJnY84LI+s7jgF3y3NOFcXQqBEu9eqRsm4dK06voHtYd4I9gomLPIXhqI5kXTxNH61cd+WCpG/ZAnp9+VyXCxMxEDITtLmZKsrA+gNx17vzbdQSOLYaIgaAs308+zx79CC6dQgjt5sY6WW7OR+AxK8Xk33oL7o82oP0Wgb0x9NY8EX5XciPnUpk/aeHMQkY/O/WhNT0QKfTkdcjjMzmeXgYfUj45AjH5q8jL6uY/5vBE2OPVzkZ+gWXchbi49SElNxVNHN+Audtr8LpjdoT78jF8NgfDomqXFaqyor/WwYnLy/8x47Ff+xYpJTkJycj9Hp0Hh42s98+MOo2vszNhz+u8cGrO3lkRqcypWNNS8/lo7d24ZOUj6FTIPfe0xjS34XzO+DHCTBxixaIsfB3c9Fj6BaI8/Y8Ti3eQtOJpVy40+Pos3cJDYIDmJ92jP7ShE7Y/r5FCIFX/37Ez19AXifBiDtGkJuWQeLS4zjjQvjkO4qmla1E0rb8jnuH9uVaW1GEhn1A5wzHf9UuJlUQLxcvBjcczA8nlvFUbjKBdjCVXedc6jlmdY3nw+N6smbNQc7/zCYp0rOjorj2/vt49uyJ778GMW1APu+99gc+exOYZ/yTRyeVLbjqvsgr/D7/KE4S7ph4G00b3XwD1viBXsQfPcuVbw/hezaQi69uJdM/E7eGAbjX8kPodGTGJpF5Mh63BAPuOl9SnRLxGFKHZu3fgtwZmkuyq30D+toC9SRTAYQQ6P38cPLyspmCuc6DY1vg1a0GXqn5LHh1F7sPlvBYXYDjpxP56KUdeCcZce0cyMMPttIOeAbB0Hlw7TissxR/VCP8ro4kO8VjOOVExrUSfPVNJlj+KLq8bCa2nsLp5DNsuGCdY0R58OrXD2EyMSA6gDtC7+DEnPV4Cl/0vfzwCrMihL6DyL14kdwzZ/CqqKnsOq7empfWiTVQUry4Sub+pvdjlPl87xugKUY7MTdyLul+rvhNfYKM7dtJ+vbbCreZn5ZGzNRpOAUEEPL2WwghcHHR8+RLXUgJ0JN/MIl33/zDqrQAJpOJJUuj2DnvKAjoNbkFndtanhsJbFaf22YOJr+3G5luGXgn+eC6H0yrkshfkYBhjwnvRG+yDVnk3elMkzcHEdL5Ni0BoLv/LaFgQCmZKs3YMc2JuK8BeqNk7/wo3v/vHmJiLbuzJiRn8cknB1j33p+45kjqDK7LQ+MLTVw27A13TNUWTO5dYLEdnU5H0L234SwMnP2yhCiyf3yoZTwc8A4DWo6noW9D5hycY3n1tw2I9Enmii/cdd6Hsz/uwC8tkOSgJMIHdLRLf+UlbbOWzKvC8zEFiRgIiWfhWiXEX7OScPdgumXnsczHmxw7efedSDzBuvPreKDpA4SOm4hn9+7EzfoP2VFR5W5T5udz+bnnybt0idD3Z6P3+zvLiKe7M8++3pWchh54xGTzyYwd/LjyRLGOMbsPxvLOjO2kbL1ChqcTI2d0oE2Lkm+AdDod4X3b0+L1oYS+fjtOQwLI6+pMbhcnnAb7U+uVLjSfOZR6d3euUk/rZUGZy6o4/XvWpVWzIBZ9GonHmXR+en0v6b56vEM98PQ1kJ2ZR1JMBm7xubhIQaa/MyMmtaRRXV/LDfZ+RbtYrZ0OPmGaF0sharaN4PCaKHwS/Ij78yQ12hRKpnRsNWx8XVts134CTkIwrd00Ht/0OMtOLuP+phVbHGeJL48uollzD7pFZeG0L5cUpwyaTCkqe2WTtn4DhiZNcKld8YgHN4gYCL8+pbkG1yjqgl4lOLWBcUmJPOTqzI8nf7TLOfDRnx/h5ezFuGbjEEIQMusdzg0dRvRjkzUvzuDgMrUnpeTqW2+TvnkzNV96Cfe2RYPiOut1PPVMJ9ZtOsefK85xde0l/rv+ErpQN3xruqHTCVISssm+lIlPlsRNSJzbB/Ds2Oa4uJTt8qp3NWhPKtUM9SRzCxBcw4PnX7uDO59oibGeB07p+eiOppK58xqmP5PRJ+aSE+xKqwcjeOHtbsUrGNDsuMM/h+CWsGwcnLScE6Tew93Ik7lcW3YMk/FvzybfpL/gp4cgtB0MmauFsAHuDL2TTsGdmHdoHmm5tl08eCT+CLtid1Gz72AMHSYikYQ+3N7haZRLI+/qVbIOHsS7f8UXB96Ed4g23ifW2LZdW3L4BzrovGhfox0LDy8k21hyjpaysvPSTrbGbOXhlg/fSCyo9/Oj9mfzMKWnEz1xEsb44sPqF0ZKSdysWSR9+y3+Eybg/0DJSnFA73o8Pbsb/r1DMHo54RydSe6+RLL3JKA/nY4U4NTWjwdmdmHSw63LrGCqM2okbiFaNwuidTMtHE5aei5xCZl4exkI8DWUbQGiiwf833JYMkxbuHXXu9B+wg2FAVrypcst9fgc8efUN1uIGNcHji6n5V+vQ2AjGP3dTc4DQgimtZ/GqNWjmP/XfJ5ubxt3Zikl/zvwP/xd/Gl6/Da8XINITF1P/QZVz4vmelQCr/79bd94xEDYPBNSY8u9/sFuZKfCyXWItmOZ3GYkE36bwLITyxjbbKxNms/Lz2PW3lmEe4fzQNMHbjrmGhFB2CcfE/3YZM7ffz9OEx4qtT1TRgaxr75G6urV+I39P2o8a112WhcXPaNHNIURTTGZTMTEpiOEIMDPVQt0qbCIepK5RfHydKFBuC9B/m7lW+Hu7g9jV0H9npop5vsHIPHcTVUajulBii4B56OS1CXT4IfxpHk1gAfXWEzd2iygGcMaDWNx1GKOJRwr71e7iV2Xd7Hnyh5eiH2AgKwaxBuP4LJjFcYk6wMIOoq0337D0Kghhvr1bd94U3O06WNWZCV1NMd/BWM2tBhBh+AOdArpxOdHPrfZE+03x77hfOp5pneYjotT0adXj86dqfPF55iSU/B/+22Sli5F5lmeG0zfsZNzw0eQumYNQVOnUnPGjHJ5p+l0OuqEelO7lpdSMKWglMw/GVdvLXhen9fhzGb4uD18e5/mFHDsF3SRS6hZbztOOHHxwG2YuvybyNZvlbge5ql2T+Fr8OW1Xa+VnDXRCvLy83h337vck9iFplcbk+QcT8SE7pCXR+qaqmU6MsbHk3ngAF59bWwqu05QBNRsDkd+sk/7FeHwD1qkhzAtzM+0dtNIyk7i08hPK9z0uZRzfBz5MT1q96BbWLdi67m3aUO9lSvIq1uXK6+/wen+/Yl77z1SVv9K6rp1xM+dy7nhI4h++GGk0UidLz4n8NFHbOL+rCgZZS77p6PTQdep0PI+2P2pdhE7ue7G4UCDD9c8A/HN7MrJS+HI+iXftfkYfHi+0/M8u/VZvjjyBZNaTiq3aIuOLsLlfBYPxY4gkzQaTuuNm783hiZNSFmxEv/7bT+5XF7SNm4Ck8k+prLrNBuqmcxSYjSnjapAehyc/V07h8wX7GYBzRjeeDhLjy9lSMMhRPhbzqBaGkaTkZd2vISr3pVXu7xaan3n4GCSp/6b9jqdFonjq6+hwBON4bam1Hz5JXxHjEDnUrXm86ozSskoNLxDoN9M6PsGpMVCRrwWHtw3nAgEUa+sxOuELyZD6Waq/uH92Vx3M59EfkKbGm3oENyhzOKcTjrNil1Lee/SNKQwUXNiqxtxyXyGDCZu1n/IOXMGQzGpmR1N2vrfcKlbF0PjRvbrpPkwTckcXQ63P2G/fsrCkZ+0SN8tRtxU/GSbJ9l0cRMv7niRb+/+1qKZqzQ+++sz/or/i3e7vUugW6B1HxICz+7d8ezeHVNWFnmXLiFNJpyDg8sU4klhO5S5THEzQmihwUNagn990Dlp9udHbscoc6kVqSczIbmUJgSv3v4qdbzqMH3bdOIyiw9XbonMvExe/O05Zp56BDfhgfvQMPwa/e0S7DNoEDg5kbJiRTm+oO0xJiSQsWevtmDUnuYX//oQ0rrqmMykhIOLNc+3Gk1vOuTr6ssbt7/BiaQTfHDggzI3veniJuYdmsfgBoMZULd8IYN0bm4YGjbEtXFjpWAqEaVkFFbhXbsmhoE1cNd5cfaDLeQbS55v8XD2YHaP2WTmZfLIhkduTm5WAkaTkdc3vcy0/UMIdArG1NWNkC43Zz3UBwbieeedpKxchcyv/MCRqb+ugfx8fP41qPTKFaX5MLj8p7Y4s7KJjYS4o1rUXwt0r92dMU3GsOTYEn44+YPVzR64eoAZ22fQPKA5L3d5Wc2b3OJUCSUjhPAXQmwQQpwyv/qVUNdbCBEjhPjYkTIqIKxHG877x+BrDCRq9q+lpgRo7NeYD3t9yIXUC0xcP5GrGVdLrG80GZm5+VUGb2xJLac65LSD+vd0sVjXZ8hgjHFxZOzaXe7vYytSfvkFQ9OmGBrZ0VR2nWbm0PZHfrZ/X6Xx5xLQu0Lze4ut8kyHZ+ga2pU3d7/J6rOrS21yT+weJm+cTLBHMB/1/giDk+1y0igqhyqhZIDngU1SykbAJvP74pgJlBDvRGFPTJ3CSPJLxC/Jn6g5pXt4dQ7pzIc9NUUz5tcxbIux/NNdybjCM8ufZNC6ZtR2qkd2KxONRhYfZdezZ0903t6VbjLLOXuO7MOH8bnnHsd06FsHwjrC4R8rN5ZZXpbmVdb0nhJjaDnrnJndfTZta7RlxvYZzDk4h9z8ojHA8kx5LDy8kEkbJhHiEcLCfgutn4dRVGmqysT/YKCHef8r4HfgucKVhBDtgJrAOqC9g2RTFKLZ04M4OmsVflcCOfLBL9z277tLXKtzZ9idfH3X1zy77Vke3/Q4nYI7MaDeAMK9w0nNTWXX5V38deAPXjk3ES8nX3I76Wg8rHh3VQCdwYDPoLtJ/uln8pOTcfL1tfG3tI7U1b+ATof3wIGlV7YVrUZpa5su/wmhRUOhOITjv0J2SrGmsoK4O7szv+983tzzJgsOL2DNuTUMazSM5oHNQcLRhKMsP72c6LRo+ob3ZeYdM61Kka64NRCyCkR2FUIkSyl9zfsCSLr+vkAdHbAZeADoA7SXUk4ppr1JwCSAoKCgdsuWLbOf8DYiPT0dT1uEhrcz1+WU+SbcN8cSml+HyyKGjB6BCEPJ7s1GaWRr6la2pW0jMT/xRvmQi514MO0+AC40SkY0KrrQ0xL6mBgC3nyLtOH3ktnn5si/DhlPKQl4+WXyg2qQ/O8ny9VEeeTU56XTZdeDXAnuzanGj5ar37JSWM5WkS/jmn2FPZ0+05JlWcmxrGP8lvIbZ3LO3FRe31Cfvt59aebWrEJzMLfC/+hWkBGgZ8+eB6SUFb+Zl1I6ZAM2AkcsbIOB5EJ1kyx8fgow3bw/HvjYmn4bN24sbwW2bNlS2SJYRUE58/Pz5ZGPVsvo57bJY9N/kbF7oqxqI9+ULy+kXJA7IjfK/a98J6Of2yaPPrdCJp68WGZ5zo0aLU/36y9NJlOxctqLjL17ZVREE5m0fHm52yi3nD8+JOU7taXMzSp332XhJjmvnZTyVW8pf3+33O3FZ8bLvbF75d7YvTIhK6HiApq5Ff5Ht4KMUkoJ7Jc2uPY7zFwmpSw2yYQQ4qoQIkRKGSuECAEs+bx2Ae4UQkwGPAEXIUS6lLKk+RuFHdHpdDSbcjcX1u1Fv1lP7k9xHF5/nNAR7fGPKD4KccblBFKXHaJWrBtOoibJwck0eWyAlgK6jPiNuo/Lzz1P5u7deHSx7CRgL5KW/YDO0xPvfnZa5V8SbR7Q5kSOr4YWwx3b976FWiK1duPK3USAWwABbgE2FEpRVakqczKrgHHALPPrysIVpJQ3lncLIcajmcuUgqkChA/oSEa7JM5+vhWfJD8yvzxPrDgAwXoMIV7oPV0xZuaSE5uKvJKLt9EPH3xIdk0geERL6rQo/4JKrwEDcHpnFklLv3OokjEmJZH222/4Dh+Ozt12eeatpm438KkDkd84VsnkpEHkt5qXm2fVSRanqLpUFe+yWUBfIcQptPmWWQBCiPZCiIWVKpnCKjyC/Gjx/BB8HosgJTQVnUmH92VvXA/q0G/LxXU/+FzyRm90JrVGKm5ja9PijaEEVUDBgNkBYNgw0jZtIi/WuuyhtiBl5Upkbi6+9410WJ83odNB6zFwZkuRwKZ25a/vIScVOpY/XJDin0WVeJKRUiYAvS2U7wcetlC+CFhkd8EUZcanbgg+T9wNQHZyGmkXr5Kbmone3YBPg1DCfGw/4ek3ZgyJX31F4teLqfncdJu3XxgpJcnLfsCtVStcI8oXl8smtBsH29/TzFf937J/f1JqwVNrtYEw5dypsI6q8iSjqIa4+noR1LIhoV1bUrNtBK52UDAALmGhePfvT/KyZeSn2TZhmiUydv5B7tmz+N53n937KhHvWto6lYOLISfd/v2d3gTXjmtPMWoVvsJKlJJRVAv8H5qAKSOD5O+/t3tfiYsW4RQUiPegu+3eV6l0egRyUjQzlr3Z8T54h0JzBzsaKG5plJJRVAvcmjXDvXNnEr9ejMwtuqLcVmSfPEnGjh34339/1QgXX7sThLSCPfOglDA/FcE75Rhc2KlFf9ZXge+tuGVQSkZRbQh46CGMcXEkL19htz4SF32FcHWtfFPZdYSA25+E+JN2zZpZ5+JP4OYPbW2TUlnxz0EpGUW1waPrHbi1akX83Lk3JauyFbkxMaT88gu+w4ah9ys2hqvjaTYUAhrCtvfsE88sZj+BCfug82PgosK9KMqGUjKKaoMQgqBpUzFeuYL7NtvHUI3/dC5CCAIeqWLuuzonuPNpuHoYTv5m27alhI2vkevsoykZhaKMKCWjqFZ4dO6Me5fOeKxbR3667Tyucs6dI2XFCvxGj8a5Zk2btWszWowA33DY8iaYbJhj58wmOL+dC+EjweBlu3YV/xiUklFUO2o89RQiPYP4jz+xWZvX5sxBGAwETJposzZtipMz9H4FrhzWVuTbgnwjrH8FfMO5XKu/bdpU/ONQSkZR7XBr0YKsO+4gcfFisk+erHB7Gbv3kLZ2HQETJqAPqMLxtprfq+Wa2fSGFv6louyZp2W+7P8WUldyhG2FojiUklFUS9KHDMbJ05Mrb7yBrIBrr8zN5crMmTiHhREwsUjwiaqFEDBgFmTEwe+zKtZWcjT8/g406g9NHJBWWlFtUUpGUS2Rnp7UmD6drP0HSPzyy3K3c+2TT8k9c4aaL76AztXVhhLaibB20O5B2PUJXCxnampTPix/RNsf+K5a3a+oEErJKKotPsOG4tW3L3H/+5Csw0fK/PnMfftImD8fn+H34tWzpx0ktBP9ZoJvbU1RZCWX/fPb39cWXg78L/jVtbV0in8YSskoqi1CCEJmvoE+KJCYyZPLFKU5NyaGmKnTcK5Tm+AZM+wopR0weMGwBZByCX6coE3gW0vUStjylhY6ptVo+8mo+MeglIyiWuPk60vtefMwZWURPWkSeXGW8uHdjDEhgehHHkXm5VF77lx0HrfgAsQ6neHu2ZoL8i9PWufWfGYz/DwJwjrA4I+VmUxhE5SSUVR7XBs3JuyTT8i7dJkLo8eQfaJ4j7Oc06e5MOZ+8i5dIuzjjzDUr+9ASW1Mu3HQY4aW2OzHB4v3OJNSc3v+ZqQWOWD0UnB2c6ysimqLUjKKfwQenTpS56tFmHJyOD98OHGzZ99kPsu7Gse1OXM4d+9w8tPSqPPFF3h07FiJEtuIHs9Dv7fg2C8w9w449B3kZmrHpISY/bB0NKx4TAu2Of5X8AisXJkV1YoqkbRMCOEPfA/UBc4DI6WUSRbq1QEWArUBCQyUUp53mKCKWxq3Fi2ov2olV9+ZRcLCz0lYsBB9jRqg02G8cgXQ0jkHv/gC+qCgSpbWhtw+BULbwZpnNGeAVU+AVwhkJ0N2Chh8oM/rWoRlnVNlS6uoZlQJJQM8D2ySUs4SQjxvfv+chXpfA29JKTcIITwB+8U2V1RL9P7+hP73XYKmPE7axk3knDkDUuJSrx5efXrf2uaxkgjvAo9sh/PbtLmX1Mtg8NYyXEYMBDffypZQUU2pKkpmMNDDvP8V8DuFlIwQ4jZAL6XcACCldEAqQEV1xSU8nICHJlS2GI5Fp4P6PbRNoXAQQtojNHhZhRAiWUrpa94XQNL19wXqDAEeBnKBesBG4HkpZRG3GSHEJGASQFBQULtly5bZU3ybkJ6ejqenfdIT2xIlp21RctqWW0HOW0FGgJ49ex6QUravcENSSodsaErhiIVtMJBcqG6Shc8PB1KA+mhPYD8BD5XWb+PGjeWtwJYtWypbBKtQctoWJadtuRXkvBVklFJKYL+0wbXfYeYyKWWf4o4JIa4KIUKklLFCiBDA0mKGGCBSSnnW/JkVQGfgc3vIq1AoFIqKU1VcmFcB48z744CVFursA3yFENfdfnoBUQ6QTaFQKBTlpKoomVlAXyHEKaCP+T1CiPZCiIUAUpt7eQbYJIQ4DAhgQSXJq1AoFAorqBLeZVLKBKC3hfL9aJP9199vAFo6UDSFQqFQVICq8iSjUCgUimqIUjIKhUKhsBtVYp2MPRFCpAEnKlsOKwgE4itbCCtQctoWJadtuRXkvBVkBIiQUnpVtJEqMSdjZ05IWywosjNCiP1KTtuh5LQtSk7bcSvICJqctmhHmcsUCoVCYTeUklEoFAqF3fgnKJn5lS2AlSg5bYuS07YoOW3HrSAj2EjOaj/xr1AoFIrK45/wJKNQKBSKSkIpGYVCoVDYjWqhZIQQI4QQR4UQJiFE+0LHZgghTgshTggh+hfz+XpCiD3met8LIVwcIPP3QohI83ZeCBFZTL3zQojD5no2cSksC0KI14QQlwrIOrCYegPMY3zanN3U0XL+VwhxXAjxlxBiuRDCt5h6lTKepY2PEMJgPidOm8/Fuo6Szdx/bSHEFiFElPm/9G8LdXoIIVIKnAuvOFLGAnKU+BsKjTnmsfxLCNG2EmSMKDBOkUKIVCHE1EJ1KmU8hRBfCCHihBBHCpT5CyE2CCFOmV/9ivnsOHOdU0KIcZbqFMEW+QIqewOaAhFoGTXbFyi/DTgEGNASnZ0BnCx8fhkwyrw/D3jMwfLPBl4p5th5ILASx/Y14JlS6jiZx7Y+4GIe89scLGc/tMypAP8B/lNVxtOa8QEmA/PM+6OA7x0sYwjQ1rzvBZy0IGMPYLUj5SrPbwgMBNaiBdHtDOypZHmdgCtAeFUYT6Ab0BY4UqDsXbQkkADPW/r/AP7AWfOrn3nfr7T+qsWTjJTymJTS0qr+wcB3UsocKeU54DTQsWAFcybOXsCP5qKvgCF2FPcmzP2PBJY6qk870BE4LaU8K6XMBb5DG3uHIaVcL6U0mt/uBsIc2X8pWDM+g9HOPdDOxd7mc8MhSCljpZQHzftpwDEg1FH925jBwNdSYzdaipCQSpSnN3BGSnmhEmW4gZRyG5BYqLjg+VfcNbA/sEFKmSilTAI2AANK669aKJkSCAWiC7yPoegfJwAtM6exhDr25E7gqpTyVDHHJbBeCHHAnFa6MphiNjt8UcxjtDXj7EgmoN3JWqIyxtOa8blRx3wupqCdmw7HbKprA+yxcLiLEOKQEGKtEKKZYyW7QWm/YVU7H0dR/E1kVRhPgJpSyljz/hWgpoU65RrXWyasjBBiIxBs4dCLUkpLSc4qHStlHk3JTzFdpZSXhBA1gA1CiOPmOxGHyAnMBWai/bFnopn2Jtiyf2uxZjyFEC8CRuCbYpqx+3jeygghPNFSm0+VUqYWOnwQzeSTbp6bWwE0crCIcAv9hub53XuAGRYOV5XxvAkppRRC2Gxtyy2jZGQJ6ZtL4BJQu8D7MHNZQRLQHqf15jtIS3XKRWkyCyH0wDCgXQltXDK/xgkhlqOZXmz6h7J2bIUQC4DVFg5ZM84VxorxHA8MAnpLsxHZQht2H08LWDM+1+vEmM8LH7Rz02EIIZzRFMw3UsqfCx8vqHSklGuEEJ8KIQKllA4N9mjFb+iQ89FK7gIOSimvFj5QVcbTzFUhRIiUMtZsWoyzUOcS2jzSdcLQ5sFLpLqby1YBo8yeO/XQ7hL2FqxgvhhtAYabi4pL/2wP+gDHpZQxlg4KITyEEF7X99Emt49YqmsvCtmyhxbT/z6gkdC89FzQzAOrHCHfdYQQA4DpwD1Sysxi6lTWeFozPgVTkA8HNhenKO2Bef7nc+CYlPL9YuoEX58nEkJ0RLt+OFoRWvMbrgLGmr3MOgMpBUxBjqZYS0VVGM8CFDz/irsG/gb0E0L4mc3m/cxlJeNozwZ7bGgXvxggB7gK/Fbg2Itonj0ngLsKlK8Bapn366Mpn9PAD4DBQXIvAh4tVFYLWFNArkPm7SiaWcjRY7sYOAz8ZT4RQwrLaX4/EM0j6UwlyXkazV4cad7mFZazMsfT0vgAb6ApRQBX87l32nwu1nfw+HVFM4n+VWAMBwKPXj9HgSnmcTuE5lxxeyX8zhZ/w0JyCuAT81gfpoDHqYNl9UBTGj4Fyip9PNGUXiyQZ75uPoQ2/7cJOAVsBPzNddsDCwt8doL5HD0NPGhNfyqsjEKhUCjsRnU3lykUCoWiElFKRqFQKBR2QykZhUKhUNgNpWQUCoVCYTeUklEoFAqF3VBKRqFQKBR2QykZhUKhUNgNpWQUikpECPGG0HKjnKzEAKgKhd1QSkahqCSElkSvDdAauBcHpphQKByFUjIKReVxD1poIWe0ECM/Vao0CoUdUEpGoag82qFloUxAix12KyeuUygsopSMQlEJCCF0QJiUchEQCBwAnqpUoRQKO6CUjEJROUSgRbxFSpkF7ETLBa9QVCuUklEoKoc2gEEI4SSEMABj0DIjKhTVilsmM6ZCUc1oDbih5TyJBz6VUh6qVIkUCjuglIxCUTm0Af5PSunQTKcKhaNRScsUikpACBEN1JNSGitbFoXCniglo1AoFAq7oSb+FQqFQmE3lJJRKBQKhd1QSkahUCgUdkMpGYVCoVDYDaVkFAqFQmE3lJJRKBQKhd1QSkahUCgUduP/AVldgYy4+uUsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -119,18 +122,19 @@ ], "source": [ "\n", - "for n in range (-4,4):\n", - " x = np.linspace(0,11,1000)\n", + "for n in range (-2,4):\n", + " x = np.linspace(-11,11,1000)\n", " y = sc.jv(n,x)\n", - " plt.plot(x, y, '-')\n", - "plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)\n", - "plt.xlim(0,10)\n", + " plt.plot(x, y, '-',label='n='+str(n))\n", + "#plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)\n", + "plt.xlim(-10,10)\n", "plt.grid(True)\n", - "plt.ylabel('Bessel J_n(b)')\n", - "plt.xlabel('b')\n", + "plt.ylabel('Bessel $J_n(\\\\beta)$')\n", + "plt.xlabel(' $ \\\\beta $ ')\n", "plt.plot(x, y)\n", + "plt.legend()\n", "plt.show()\n", - "\n", + "#plt.savefig('bessel.pgf', format='pgf')\n", "print(sc.jv(0,1))" ] }, -- cgit v1.2.1 From 795f274fd1343ad7ba7f24f2988cb9d22b60f85c Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:57:14 +0200 Subject: =?UTF-8?q?quelle=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/references.bib | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/references.bib b/buch/papers/kreismembran/references.bib index f642aa8..acf8f90 100644 --- a/buch/papers/kreismembran/references.bib +++ b/buch/papers/kreismembran/references.bib @@ -4,9 +4,9 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{kreismembran:Duden:Membrane, - title = {Duden:Membrane}, - url = {https://www.duden.de/rechtschreibung/Membrane}, +@online{kreismembran:Duden:Membran, + title = {Duden:Membran}, + url = {https://www.duden.de/rechtschreibung/Membran}, date = {2022-07-20}, year = {2022}, month = {7}, @@ -73,4 +73,12 @@ type = {phdthesis}, author = {{Prof. Dr. Horst Knörrer}}, date = {2013}, +} + +@thesis{kreismembran:membrane_vs_thin_plate, + title = {Modeling and Control of SPIDER Satellite Components}, + institution = {{faculty of the Virginia Polytechnic Institute and State University}}, + type = {Dissertation}, + author = {{Eric John Ruggiero Doctor of Philosophy In Mechanical Engineering}}, + date = {2005}, } \ No newline at end of file -- cgit v1.2.1 From 74763d677a4612d8844332f21026e5d1306333ac Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:57:37 +0200 Subject: einleitung und herleitung DGL erste version fertig --- buch/papers/kreismembran/teil0.tex | 89 ++++++++++++++++++++++++++++++-------- 1 file changed, 72 insertions(+), 17 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 6f5e907..bb8188d 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -4,24 +4,79 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{kreismembran:section:teil0}} -\rhead{Membrane} -Eine naheliegendes Beispiel einer kreisförmigen Membrane ist eine Runde Trommel. -Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. -Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., ...". -Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird vorerst das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. +\rhead{Membran} +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...". +Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften auf, wie ein gespanntes Stück Papier. +Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. +Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. +Eine Membran auf der anderen Seite besteht aus einem Material welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. +Bevor Papier als schwingende Membran betrachtet werden kann wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. -\paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: +Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. +Sie besteht herkömmlicher weise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. +Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. +Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. +Wie genau diese Schwingungen untersucht werden können wird in der Folgenden Arbeit Diskutiert. + + +\paragraph{Annahmen} +Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. +Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: \begin{enumerate}[i] - \item Die Membrane ist homogen. - Dies bedeutet, dass die Membrane über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - Durch die konstante Elastizität ist die ganze Membrane unter gleichmässiger Spannung $ T $. - \item Die Membrane ist perfekt flexibel. - Daraus folgt, dass die Membrane ohne Kraftaufwand verbogen werden kann. - Die Membrane ist dadurch nicht alleine schwing-fähig, hierzu muss sie gespannt werden mit der Kraft $ T $. - \item Die Membrane kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. - Auslenkungen in der ebene der Membrane sind nicht möglich. - \item Die Membrane erfährt keine Art von Dämpfung. - Neben der perfekten Flexibilität wird die Membrane auch nicht durch ihr umliegendes Medium aus gebremst. - Dadurch entsteht kein dämpfender Term abhängig von der Geschwindigkeit der Membrane in der Differenzialgleichung. + \item Die Membran ist homogen. + Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + \item Die Membran ist perfekt flexibel. + Daraus folgt, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwing-fähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. + Auslenkungen in der ebene der Membran sind nicht möglich. + \item Die Membran erfährt keine Art von Dämpfung. + Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. + Die resultierende Schwingung wird daher nicht gedämpft sein. + \end{enumerate} +\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. +Es lohnt sich das Verhalten einer Saite zu beschreiben da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. +%Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. + +Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Wie für die Membran ist die Annahme iii gültig, keine Bewegung in die Richtung $ \hat{x} $. +Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte +\begin{equation}\label{kreismembran:eq:no_translation} + T_1 \cos \alpha = T_2 \cos \beta = T +\end{equation} +gleichgesetzt werden. +Das dynamische verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz +\begin{equation*} + \sum F = m \cdot a +\end{equation*} +befolgen. Die senkrecht wirkenden Kräfte werden mit $ T_1 $ und $ T_2 $ ausgedrückt, die Masse als Funktion der Dichte $ \rho $ und die Beschleunigung in Form der zweiten Ableitung als +\begin{equation*} + T_2 \sin \beta - T_1 \sin \alpha = \rho dx \frac{\partial^2 u}{\partial t^2} . +\end{equation*} +Die Gleichung wird durch $ T $ dividiert, wobei $ T $ nach \ref{kreismembran:eq:no_translation} geschickt gewählt wird. Somit kann +\begin{equation*} + \frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{T_1 \sin \alpha}{T_1 \cos \alpha} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +vereinfacht als +\begin{equation*} + \tan \beta - \tan \alpha = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +geschrieben werden. +Der $ \tan \alpha $ entspricht der örtlichen Ableitung von $ u(x,t) $ an der Stelle $ x_0 $ und analog der $ \tan \beta $ für die Stelle $ x_0 + dx $. +Die Gleichung wird dadurch zu +\begin{equation*} + \frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Durch die Division mit $ dx $ entsteht +\begin{equation*} + \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Auf der Linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervall-Länge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird mit $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die, in der Literatur gebräuchliche Form +\begin{equation} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. +\end{equation} +In dieser Form ist die Gleichung auch gültig für eine Membran. Für den Fall einer Membran muss lediglich die Ableitung in zwei Dimensionen gerechnet werden. \ No newline at end of file -- cgit v1.2.1 From 7aef721d37d440a7ac22b93aa3b998b8f15dbade Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:58:37 +0200 Subject: kapitel -> abschnitt --- buch/papers/kreismembran/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 38bcfe4..39ca598 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -10,7 +10,7 @@ An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. \subsection{Aufgabestellung\label{sub:aufgabestellung}} -Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: +Wie im vorherigen Abschnitt gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: \begin{equation*} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation*} -- cgit v1.2.1 From 79731c7db599b675b38cdb637c1b00d323c1ccde Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 18:06:43 +0200 Subject: =?UTF-8?q?Struktur=20Anpassung=20f=C3=BCr=20Simulations-Teil?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/main.tex | 1 + buch/papers/kreismembran/teil3.tex | 2 +- buch/papers/kreismembran/teil4.tex | 8 ++++++++ 3 files changed, 10 insertions(+), 1 deletion(-) create mode 100644 buch/papers/kreismembran/teil4.tex (limited to 'buch') diff --git a/buch/papers/kreismembran/main.tex b/buch/papers/kreismembran/main.tex index e19c64a..f6000a1 100644 --- a/buch/papers/kreismembran/main.tex +++ b/buch/papers/kreismembran/main.tex @@ -12,6 +12,7 @@ \input{papers/kreismembran/teil1.tex} \input{papers/kreismembran/teil2.tex} \input{papers/kreismembran/teil3.tex} +\input{papers/kreismembran/teil4.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 10338e7..7d5648a 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -76,7 +76,7 @@ Nimmt man jedoch die allgemeine Lösung mit Summationen, \end{align} kann man die Lösungsmethoden 1 und 2 vergleichen. -\subsection{Vergleich der Lösungen +\subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex new file mode 100644 index 0000000..830bce7 --- /dev/null +++ b/buch/papers/kreismembran/teil4.tex @@ -0,0 +1,8 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Lösungsmethode 3: Simulation + \label{kreismembran:section:teil4}} +Needs to be written \ No newline at end of file -- cgit v1.2.1 From e2b1ed24b607291b6af86ba43c8f6f656a92b476 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Thu, 28 Jul 2022 18:09:00 +0200 Subject: minor cosmetic changes --- buch/papers/fm/03_bessel.tex | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) (limited to 'buch') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index bf485b1..760cdc4 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -74,16 +74,16 @@ Zu beginn wird der Cos-Teil \[ \cos(\omega_c)\cos(\beta\sin(\omega_mt)) \] -mit hilfe der Bessel indentität \eqref{fm:eq:besselid1} zum +mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum \begin{align*} - \cos(\omega_c t) \cdot [\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\omega_m t)\, ] + \cos(\omega_c t) \cdot \bigg[\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] &=\\ J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) - \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{Additionstheorem} + \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} \end{align*} wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum \[ - J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} + J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k \omega_m) t)+\cos((\omega_c + 2k \omega_m) t) \} \] wird. Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term @@ -98,20 +98,20 @@ Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ \sin(\omega_c)\sin(\beta\sin(\omega_m t)). \] -Dieser wird mit der \eqref{fm:eq:besselid2} Bessel indentität zu +Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu \begin{align*} - \sin(\omega_c t) \cdot [J_0(\beta) \sin(\omega_c t) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\omega_m t)] + \sin(\omega_c t) \cdot \bigg[ J_0(\beta) + 2 \sum_{k=1}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] &=\\ - J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{Additionstheorem}. + J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. \end{align*} Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), somit wird daraus \[ - J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{neg.Teil} - \cos((\omega_c+(2k+1)\omega_m) t) \} + J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{\text{neg.Teil}} - \cos((\omega_c+(2k+1)\omega_m) t) \} \]dieser Term. Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. -Zusätzlich dabei noch die letzte Bessel indentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). -Somit wird negTeil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\)und die Summe vereinfacht sich zu +Zusätzlich dabei noch die letzte Besselindentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). +Somit wird neg.Teil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\) und die Summe vereinfacht sich zu \[ \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} -- cgit v1.2.1 From c01fed1273bc5994b49a5e554e8bc60294fb9519 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 18:53:33 +0200 Subject: Anfang von numerik --- buch/papers/kreismembran/teil4.tex | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index 830bce7..58fffc9 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -5,4 +5,10 @@ % \section{Lösungsmethode 3: Simulation \label{kreismembran:section:teil4}} -Needs to be written \ No newline at end of file +\paragraph{TODO Einleitung} + +Um numerisch das Verhalten einer Membran zu ermitteln, muss eine numerische Darstellung definiert werden. +Die Membran wird hier in Form der Matrix $ A $ digitalisiert. +Jedes Element $ A_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ {x,y}={i,j} $. +Die Auslenkung ist jedoch auch von der Zeit abhängig für dies wird ein Array $ X[] $ aus $ v \times A $ Matrizen erstellt. +s -- cgit v1.2.1 From 26301cab48f22b33ca56918c2787e5c67eb315a1 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 20:53:12 +0200 Subject: numerik continues --- buch/papers/kreismembran/teil4.tex | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index 58fffc9..c124354 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -9,6 +9,8 @@ Um numerisch das Verhalten einer Membran zu ermitteln, muss eine numerische Darstellung definiert werden. Die Membran wird hier in Form der Matrix $ A $ digitalisiert. -Jedes Element $ A_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ {x,y}={i,j} $. -Die Auslenkung ist jedoch auch von der Zeit abhängig für dies wird ein Array $ X[] $ aus $ v \times A $ Matrizen erstellt. -s +Jedes Element $ A_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ \{x,y\}=\{i,j\} $. +Die zeitliche Dimension wird in Form des Array $ X[] $ aus $ v \times A $ Matrizen dargestellt. +Das Element auf Zeile $ i $, Spalte $ j $ der $ w $-ten Matrix von $ X[] $ also $ X[w]_{ij} $ entspricht der Auslenkung $ u(i,j,w) $. + +\paragraph{title} \ No newline at end of file -- cgit v1.2.1 From 54b20e3e34ccb7c11d2f78cbbdd0bbf951bb9cba Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 28 Jul 2022 21:01:15 +0200 Subject: typo korrigiert --- buch/papers/fm/Makefile.inc | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/fm/Makefile.inc b/buch/papers/fm/Makefile.inc index b686b98..40f23b1 100644 --- a/buch/papers/fm/Makefile.inc +++ b/buch/papers/fm/Makefile.inc @@ -6,7 +6,7 @@ dependencies-fm = \ papers/fm/packages.tex \ papers/fm/main.tex \ - papers/fm/01_modulation.tex \ + papers/fm/00_modulation.tex \ papers/fm/01_AM.tex \ papers/fm/02_FM.tex \ papers/fm/03_bessel.tex \ -- cgit v1.2.1 From 50f65a2a67b3574d5fbf162ee5951fc189f52319 Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 13:43:08 +0200 Subject: Let the pain begin --- buch/SeminarSpezielleFunktionen.pdf | Bin 0 -> 22090645 bytes buch/papers/parzyl/teil2.tex | 108 ++++++++++++++++++++++++++---------- buch/papers/parzyl/teil3.tex | 101 ++++++++++++++++++++++----------- 3 files changed, 149 insertions(+), 60 deletions(-) create mode 100644 buch/SeminarSpezielleFunktionen.pdf (limited to 'buch') diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf new file mode 100644 index 0000000..d581f96 Binary files /dev/null and b/buch/SeminarSpezielleFunktionen.pdf differ diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index c1bd723..1ffdeec 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -6,35 +6,85 @@ \section{Physik sache \label{parzyl:section:teil2}} \rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum + + +\subsection{Elektrisches Feld einer semi-infiniten Platte \label{parzyl:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. Das dies so ist kann mit Hilfe von komplexen Funktionen gezeigt werden. Jede komplexe Funktion $F(z)$, wie in gezeigt, kann geschrieben werden als +\begin{equation} + F(z) = U(x,y) + iV(x,y) \qquad z = x + iy. +\end{equation} +Dabei muss gelten, falls die Funktion differenzierbar ist, dass +\begin{equation} + \frac{\partial U(x,y)}{\partial x} + = + \frac{\partial V(x,y)}{\partial y} + \qquad + \frac{\partial V(x,y)}{\partial x} + = + -\frac{\partial U(x,y)}{\partial y}. +\end{equation} +Aus dieser Bedingung folgt +\begin{equation} + \label{parzyl_e_feld_zweite_ab} + \underbrace{ + \frac{\partial^2 U(x,y)}{\partial x^2} + + + \frac{\partial^2 U(x,y)}{\partial y^2} + = + 0 + }_{\nabla^2U(x,y)=0} + \qquad + \underbrace{ + \frac{\partial^2 V(x,y)}{\partial x^2} + + + \frac{\partial^2 V(x,y)}{\partial y^2} + = + 0 + }_{\nabla^2V(x,y) = 0}. +\end{equation} +Zusätzlich zeigen diese Bedingungen auch, dass die zwei Funktionen $U(x,y)$ und $V(x,y)$ orthogonal zueinander sind. +Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt als +\begin{equation} + \nabla^2\phi(x,y) = 0. +\end{equation} +Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für dies $U(x,y)$ verwendet. +Da die Funktion, welche nicht das Potential beschreibt $V(x,y)$ orthogonal zum Potential ist, zeigt diese das Verhalten des elektrischen Feldes. +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(z)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Man könnte natürlich auch nach anderen Funktionen suchen, welche andere Bedingungen erfüllen und würde dann auf andere Koordinatensysteme stossen. Die gesuchte Funktion in diesem Fall ist +\begin{equation} + F(z) + = + \sqrt{z} + = + \sqrt{x + iy}. +\end{equation} +Dies kann umgeformt werden zu +\begin{equation} + F(z) + = + \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)} + + + i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} + . +\end{equation} +Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt, +\begin{equation} + \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}, +\end{equation} +und die Flächen mit der gleichen elektrischen Feldstärke können als +\begin{equation} + \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} +\end{equation} +beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann +\begin{equation} + x = \sigma \tau, +\end{equation} +\begin{equation} + y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ) +\end{equation} + + + + diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 72c23ca..a143aa1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -6,35 +6,74 @@ \section{Teil 3 \label{parzyl:section:teil3}} \rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum +\subsection{Helmholtz Gleichung im parabolischen Zylinderkoordinatensystem \label{parzyl:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +\begin{equation} + \Delta f(x,y,z) = \lambda f(x,y,z) +\end{equation} +im parabolischen Zylinderkoordinatensystem +\begin{equation} + \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) +\end{equation} +gelöst wird. +Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +\begin{equation} + \nabla + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2}{\partial \sigma^2} + + + \frac{\partial^2}{\partial \tau^2} + \right ) + + + \frac{\partial^2}{\partial z^2}. +\end{equation} +Die Helmholtz Gleichung würde also wie folgt lauten +\begin{equation} + \nabla f(\sigma, \tau, z) + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} + \right ) + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} + = + \lambda f(\sigma,\tau,z) +\end{equation} +Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird +\begin{equation} + f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) +\end{equation} +gesetzt. +Was dann schlussendlich zu den Differentialgleichungen +\begin{equation} + h''(\tau) + - + \left ( + \lambda\tau^2 + - + \mu + \right ) + h(\tau) + = + 0 +\end{equation} +und +\begin{equation} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0 +\end{equation} +führt. -- cgit v1.2.1 From 3b98c68ff4e00bd55fd95b4affcaed3b521c32e4 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 13:49:54 +0200 Subject: ein bild --- buch/papers/parzyl/img/koordinaten.png | Bin 0 -> 159434 bytes buch/papers/parzyl/teil0.tex | 12 ++++++++++++ 2 files changed, 12 insertions(+) create mode 100644 buch/papers/parzyl/img/koordinaten.png (limited to 'buch') diff --git a/buch/papers/parzyl/img/koordinaten.png b/buch/papers/parzyl/img/koordinaten.png new file mode 100644 index 0000000..3ee582d Binary files /dev/null and b/buch/papers/parzyl/img/koordinaten.png differ diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 2fc8737..ab3056b 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -55,6 +55,18 @@ und y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). \end{equation} +\begin{figure} + \centering + \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} + \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein + konstantes $\sigma$ und die grünen ein konstantes $\tau$.} + \label{fig:cordinates} +\end{figure} + +Abbildung \ref{fig:cordinates} zeigt das Parabolische Koordinatensystem. +Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der +Ebene gezogen werden. + \subsection{Differnetialgleichung} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -- cgit v1.2.1 From 200d9ac2dd1173bb8e6d4e8389de7c6863b9d76d Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 14:41:08 +0200 Subject: Made stuff --- buch/SeminarSpezielleFunktionen.pdf | Bin 22090645 -> 22091943 bytes buch/papers/parzyl/teil2.tex | 13 ++++++------ buch/papers/parzyl/teil3.tex | 41 ++++++++++++++++++++++++++++++------ 3 files changed, 41 insertions(+), 13 deletions(-) (limited to 'buch') diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf index d581f96..169dfd2 100644 Binary files a/buch/SeminarSpezielleFunktionen.pdf and b/buch/SeminarSpezielleFunktionen.pdf differ diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 1ffdeec..59f8b94 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -10,9 +10,11 @@ \subsection{Elektrisches Feld einer semi-infiniten Platte \label{parzyl:subsection:bonorum}} -Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. Das dies so ist kann mit Hilfe von komplexen Funktionen gezeigt werden. Jede komplexe Funktion $F(z)$, wie in gezeigt, kann geschrieben werden als +Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. +Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Wobei die Platte dann nur eine Linie ist. +Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(z) = U(x,y) + iV(x,y) \qquad z = x + iy. + F(z) = U(x,y) + iV(x,y) \qquad z \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} Dabei muss gelten, falls die Funktion differenzierbar ist, dass \begin{equation} @@ -44,12 +46,12 @@ Aus dieser Bedingung folgt }_{\nabla^2V(x,y) = 0}. \end{equation} Zusätzlich zeigen diese Bedingungen auch, dass die zwei Funktionen $U(x,y)$ und $V(x,y)$ orthogonal zueinander sind. -Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt als +Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für dies $U(x,y)$ verwendet. -Da die Funktion, welche nicht das Potential beschreibt $V(x,y)$ orthogonal zum Potential ist, zeigt diese das Verhalten des elektrischen Feldes. +Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für das Potential $U(x,y)$ verwendet. +Da die Funktion, welche nicht das Potential beschreibt, in weiteren angenommen als $V(x,y)$, orthogonal zum Potential ist, zeigt dies das Verhalten des elektrischen Feldes. Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(z)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Man könnte natürlich auch nach anderen Funktionen suchen, welche andere Bedingungen erfüllen und würde dann auf andere Koordinatensysteme stossen. Die gesuchte Funktion in diesem Fall ist \begin{equation} F(z) @@ -87,4 +89,3 @@ beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen K - diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index a143aa1..0364056 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -51,7 +51,19 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \end{equation} gesetzt. Was dann schlussendlich zu den Differentialgleichungen -\begin{equation} +\begin{equation}\label{parzyl_sep_dgl_1} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0, +\end{equation} +\begin{equation}\label{parzyl_sep_dgl_2} h''(\tau) - \left ( @@ -63,17 +75,32 @@ Was dann schlussendlich zu den Differentialgleichungen = 0 \end{equation} -und -\begin{equation} - g''(\sigma) - - +und +\begin{equation}\label{parzyl_sep_dgl_3} + i''(z) + + \left ( - \lambda\sigma^2 + \lambda + \mu \right ) - g(\sigma) + i(\tau) = 0 \end{equation} führt. +Wobei die Lösung von \ref{parzyl_sep_dgl_3} +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )} +\end{equation} +ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1 From 0c3ae18ee42f7b3154642175faea29e957d8bba0 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 15:53:20 +0200 Subject: skalierungsfaktoren --- buch/papers/parzyl/teil0.tex | 77 +++++++++++++++++++++++++++++++++----------- buch/papers/parzyl/teil1.tex | 32 ------------------ 2 files changed, 59 insertions(+), 50 deletions(-) (limited to 'buch') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ab3056b..f6e63d4 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -43,8 +43,10 @@ Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koor Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ + \label{parzyl:coordRelationsa} y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ z & = z. + \label{parzyl:coordRelationse} \end{align} Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln \begin{equation} @@ -60,26 +62,65 @@ und \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein konstantes $\sigma$ und die grünen ein konstantes $\tau$.} - \label{fig:cordinates} + \label{parzyl:fig:cordinates} \end{figure} -Abbildung \ref{fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. -\subsection{Differnetialgleichung} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{parzyl:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - +Um in diesem Koordinatensystem integrieren und differenzieren zu +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +Der Skalierungsfaktor braucht es, damit die Distanzen zwischen zwei +Punkten unabhängig vom Koordinatensystem sind. +Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet +kann dies im kartesischen Koordinatensystem mit +\begin{equation} + \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + + \left(dz\right)^2 + \label{parzyl:eq:ds} +\end{equation} +ausgedrückt werden. +Das Skalierungsfaktoren werden so bestimmt, dass +\begin{equation} + \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 +\label{parzyl:eq:dspara} +\end{equation} +gilt. +Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen +von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als +\begin{align} + dx &= \frac{\delta x }{\delta \sigma} d\sigma + + \frac{\delta x }{\delta \tau} d\tau + + \frac{\delta x }{\delta \tilde{z}} d \tilde{z} + = \tau d\sigma + \sigma d \tau \\ + dy &= \frac{\delta y }{\delta \sigma} d\sigma + + \frac{\delta y }{\delta \tau} d\tau + + \frac{\delta y }{\delta \tilde{z}} d \tilde{z} + = \tau d\tau - \sigma d \sigma \\ + dz &= \frac{\delta \tilde{z} }{\delta \sigma} d\sigma + + \frac{\delta \tilde{z} }{\delta \tau} d\tau + + \frac{\delta \tilde{z} }{\delta \tilde{z}} d \tilde{z} + = d \tilde{z} \\ +\end{align} +substituiert. +Wird diese gleichung in der Form von \eqref{parzyl:eq:dspara} +geschrieben, resultiert +\begin{equation} + \left(d s\right)^2 = + \left(\sigma^2 + \tau^2\right)\left(d\sigma\right)^2 + + \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + + \left(d \tilde{z}\right)^2. +\end{equation} +Daraus resultieren die Skalierungsfaktoren +\begin{align} + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{z} &= 1. +\end{align} +\subsection{Differentialgleichung} +Möchte man eine Differentialgleichung im parabolischen +Zylinderkoordinatensystem lösen müssen die Skalierungsfaktoren +mitgerechnet werden. +\dots diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 7d5c1a4..b7e906c 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,36 +6,4 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{parzyl:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - - -Et harum quidem rerum facilis est et expedita distinctio -\ref{parzyl:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{parzyl:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - -- cgit v1.2.1 From 3db5682b70a73baec580d839e5f9e1cc909bd5fb Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Fri, 29 Jul 2022 16:39:19 +0200 Subject: Stuff added --- buch/papers/parzyl/main.tex | 1 - buch/papers/parzyl/teil0.tex | 108 ++++++++++++++++++++++++++++++++++++++----- buch/papers/parzyl/teil3.tex | 98 --------------------------------------- 3 files changed, 96 insertions(+), 111 deletions(-) (limited to 'buch') diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index 01a8d59..0996007 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -16,7 +16,6 @@ parabolischen Zyplinderkoordinatensystem genauer untersucht. \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} \input{papers/parzyl/teil2.tex} -\input{papers/parzyl/teil3.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index ab3056b..f4e8726 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -68,18 +68,102 @@ Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. \subsection{Differnetialgleichung} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{parzyl:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +\begin{equation} + \Delta f(x,y,z) = \lambda f(x,y,z) +\end{equation} +im parabolischen Zylinderkoordinatensystem +\begin{equation} + \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) +\end{equation} +gelöst wird. +Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +\begin{equation} + \nabla + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2}{\partial \sigma^2} + + + \frac{\partial^2}{\partial \tau^2} + \right ) + + + \frac{\partial^2}{\partial z^2}. +\end{equation} +Die Helmholtz Gleichung würde also wie folgt lauten +\begin{equation} + \nabla f(\sigma, \tau, z) + = + \frac{1}{\sigma^2 + \tau^2} + \left ( + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} + \right ) + + + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} + = + \lambda f(\sigma,\tau,z) +\end{equation} +Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird +\begin{equation} + f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) +\end{equation} +gesetzt. +Was dann schlussendlich zu den Differentialgleichungen +\begin{equation}\label{parzyl_sep_dgl_1} + g''(\sigma) + - + \left ( + \lambda\sigma^2 + + + \mu + \right ) + g(\sigma) + = + 0, +\end{equation} +\begin{equation}\label{parzyl_sep_dgl_2} + h''(\tau) + - + \left ( + \lambda\tau^2 + - + \mu + \right ) + h(\tau) + = + 0 +\end{equation} +und +\begin{equation}\label{parzyl_sep_dgl_3} + i''(z) + + + \left ( + \lambda + + + \mu + \right ) + i(\tau) + = + 0 +\end{equation} +führt. +Wobei die Lösung von \ref{parzyl_sep_dgl_3} +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )} +\end{equation} +ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 0364056..4e44bd6 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -6,101 +6,3 @@ \section{Teil 3 \label{parzyl:section:teil3}} \rhead{Teil 3} -\subsection{Helmholtz Gleichung im parabolischen Zylinderkoordinatensystem -\label{parzyl:subsection:malorum}} -Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung -\begin{equation} - \Delta f(x,y,z) = \lambda f(x,y,z) -\end{equation} -im parabolischen Zylinderkoordinatensystem -\begin{equation} - \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) -\end{equation} -gelöst wird. -Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als -\begin{equation} - \nabla - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2}{\partial \sigma^2} - + - \frac{\partial^2}{\partial \tau^2} - \right ) - + - \frac{\partial^2}{\partial z^2}. -\end{equation} -Die Helmholtz Gleichung würde also wie folgt lauten -\begin{equation} - \nabla f(\sigma, \tau, z) - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \sigma^2} - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial \tau^2} - \right ) - + - \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} - = - \lambda f(\sigma,\tau,z) -\end{equation} -Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird -\begin{equation} - f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) -\end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen -\begin{equation}\label{parzyl_sep_dgl_1} - g''(\sigma) - - - \left ( - \lambda\sigma^2 - + - \mu - \right ) - g(\sigma) - = - 0, -\end{equation} -\begin{equation}\label{parzyl_sep_dgl_2} - h''(\tau) - - - \left ( - \lambda\tau^2 - - - \mu - \right ) - h(\tau) - = - 0 -\end{equation} -und -\begin{equation}\label{parzyl_sep_dgl_3} - i''(z) - + - \left ( - \lambda - + - \mu - \right ) - i(\tau) - = - 0 -\end{equation} -führt. -Wobei die Lösung von \ref{parzyl_sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. -- cgit v1.2.1 From 81b33c456132ec906ca12f48c78cca83fe1c6437 Mon Sep 17 00:00:00 2001 From: Alain Date: Fri, 29 Jul 2022 16:44:28 +0200 Subject: mehr sachen --- buch/papers/parzyl/teil0.tex | 2 +- buch/papers/parzyl/teil1.tex | 17 +++++++++++++++++ 2 files changed, 18 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index f6e63d4..650428f 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -113,7 +113,7 @@ geschrieben, resultiert \left(\sigma^2 + \tau^2\right)\left(d\tau\right)^2 + \left(d \tilde{z}\right)^2. \end{equation} -Daraus resultieren die Skalierungsfaktoren +Daraus ergeben sich die Skalierungsfaktoren \begin{align} h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index b7e906c..1ae7bfd 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,4 +6,21 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} +Die Differentialgleichung aus \dots kann mit einer Substitution +in die Whittaker Gleichung gelöst werden. +\begin{definition} + Die Funktion + \begin{equation*} + W_{k,m}(z) = + e^{-z/2} z^{m+1/2} \, + {}_{1} F_{1}(\frac{1}{2} + m - k, 1 + 2m; z) + \end{equation*} + heisst Whittaker Funktion und ist eine Lösung + von + \begin{equation} + \frac{d^2W}{d z^2} + + \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. + \end{equation} +\end{definition} + -- cgit v1.2.1 From 05ec2574b277820e0e07dc56392add19ecbc6565 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 29 Jul 2022 17:41:50 +0200 Subject: polished teil0 und teil1, created a new figure Strategie.pdf --- buch/papers/lambertw/Bilder/Strategie.pdf | Bin 0 -> 120904 bytes buch/papers/lambertw/Bilder/Strategie.py | 52 ++ buch/papers/lambertw/Bilder/Strategie.svg | 790 ++++++++++++++++++++++++++++++ buch/papers/lambertw/main.tex | 6 +- buch/papers/lambertw/teil0.tex | 15 +- buch/papers/lambertw/teil1.tex | 94 ++-- 6 files changed, 914 insertions(+), 43 deletions(-) create mode 100644 buch/papers/lambertw/Bilder/Strategie.pdf create mode 100644 buch/papers/lambertw/Bilder/Strategie.py create mode 100644 buch/papers/lambertw/Bilder/Strategie.svg (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/Strategie.pdf b/buch/papers/lambertw/Bilder/Strategie.pdf new file mode 100644 index 0000000..0de3001 Binary files /dev/null and b/buch/papers/lambertw/Bilder/Strategie.pdf differ diff --git a/buch/papers/lambertw/Bilder/Strategie.py b/buch/papers/lambertw/Bilder/Strategie.py new file mode 100644 index 0000000..b9b41bf --- /dev/null +++ b/buch/papers/lambertw/Bilder/Strategie.py @@ -0,0 +1,52 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Jul 29 09:40:11 2022 + +@author: yanik +""" +import pylatex + +import numpy as np +import matplotlib.pyplot as plt + +N = np.array([0, 0]) +V = np.array([1, 4]) +Z = np.array([5, 5]) +VZ = Z-V +vzScale = 0.4 + + +a = [N, N, V] +b = [V, Z, vzScale*VZ] + +X = np.array([i[0] for i in a]) +Y = np.array([i[1] for i in a]) +U = np.array([i[0] for i in b]) +W = np.array([i[1] for i in b]) + +xlim = 6 +ylim = 6 +fig, ax = plt.subplots(1,1) +ax.set_xlim([0, xlim]) #<-- set the x axis limits +ax.set_ylim([0, ylim]) #<-- set the y axis limits +#plt.figure(figsize=(xlim, ylim)) +ax.quiver(X, Y, U, W, angles='xy', scale_units='xy', scale=1, headwidth=5, headlength=7, headaxislength=5.5) + +ax.plot([V[0], (VZ+V)[0]], [V[1], (VZ+V)[1]], 'k--') +ax.plot(np.vstack([V, Z])[:, 0], np.vstack([V, Z])[:,1], 'bo', markersize=10) + + +ax.text(2.5, 4.5, "Visierlinie", size=20, rotation=10) + +plt.rcParams.update({ + "text.usetex": True, + "font.family": "serif", + "font.serif": ["New Century Schoolbook"], +}) + +ax.text(1.6, 4.3, r"$\vec{v}$", size=30) +ax.text(0.6, 3.9, r"$V$", size=30, c='b') +ax.text(5.1, 4.77, r"$Z$", size=30, c='b') + + + diff --git a/buch/papers/lambertw/Bilder/Strategie.svg b/buch/papers/lambertw/Bilder/Strategie.svg new file mode 100644 index 0000000..30f9f22 --- /dev/null +++ b/buch/papers/lambertw/Bilder/Strategie.svg @@ -0,0 +1,790 @@ + + + + + + + + + 2022-07-29T16:52:06.315252 + image/svg+xml + + + Matplotlib v3.3.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/buch/papers/lambertw/main.tex b/buch/papers/lambertw/main.tex index 9e6d04f..394963f 100644 --- a/buch/papers/lambertw/main.tex +++ b/buch/papers/lambertw/main.tex @@ -7,7 +7,7 @@ \lhead{Verfolgungskurven} \begin{refsection} \chapterauthor{David Hugentobler und Yanik Kuster} - +% %Ein paar Hinweise für die korrekte Formatierung des Textes %\begin{itemize} %\item @@ -26,12 +26,12 @@ %Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren %Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. %\end{itemize} - +% \input{papers/lambertw/teil0.tex} %\input{papers/lambertw/teil2.tex} %\input{papers/lambertw/teil3.tex} \input{papers/lambertw/teil4.tex} \input{papers/lambertw/teil1.tex} - +% \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 5007867..8fa8f9b 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -6,15 +6,14 @@ \section{Was sind Verfolgungskurven? \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} - +% Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. Um diese Kurve zu bestimmen, kann das Verfolgungsproblem als Differentialgleichung formuliert werden. Diese Differentialgleichung entspringt der Verfolgungsstrategie des Verfolgers. - - +% \subsection{Verfolger und Verfolgungsstrategie \label{lambertw:subsection:Verfolger}} Wie bereits erwähnt, wird der Verfolger durch seine Verfolgungsstrategie definiert. @@ -48,7 +47,7 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{figure} \centering - \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.png} + \includegraphics[scale=0.6]{./papers/lambertw/Bilder/Strategie.pdf} \caption{Vektordarstellung Jagdstrategie} \label{lambertw:grafic:pursuerDGL2} \end{figure} @@ -61,23 +60,27 @@ In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. Die konstante Geschwindigkeit kann man mit der Gleichung +% \begin{equation} |\dot{v}| = \operatorname{const} = A \text{,}\quad A\in\mathbb{R}^+ \end{equation} +% darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung +% \begin{equation} \frac{z-v}{|z-v|}\cdot|\dot{v}| = \dot{v} \end{equation} +% beschrieben werden, wenn die Jagdstrategie verwendet wird. Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. - +% Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} @@ -97,7 +100,7 @@ Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung - +% \begin{equation} z(t) = diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index a330838..2733759 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -6,7 +6,7 @@ \section{Wird das Ziel erreicht? \label{lambertw:section:Wird_das_Ziel_erreicht}} \rhead{Wird das Ziel erreicht?} - +% Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird. Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird. Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird. @@ -16,7 +16,7 @@ Das Beispiel wird bei dieser Betrachtung noch etwas erweitert indem alle Punkte Nun gilt es zu definieren, wann das Ziel erreicht wird. Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es - +% \begin{equation*} z(t_1)=v(t_1) \end{equation*} @@ -30,15 +30,14 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \end{equation} % Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. - +% \subsection{Anfangsbedingung im \RN{1}-Quadranten} % -$ x_0$ $\boldsymbol{x}$ dd Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche \begin{align*} x\left(t\right) &= - x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp(\chi-\frac{4t}{r_0-y_0})\right)} \\ + x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ y(t) &= \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ @@ -63,13 +62,13 @@ Der Folger ist durch % parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen - +% \begin{align*} 0 &= x(t) = - x_0\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} + x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \\ t &= @@ -80,39 +79,66 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding % welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. -Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt +Da $x_0 \neq 0$ und $\chi \neq 0$ mit \begin{equation} - 0 - = - W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right) - \text{.} + 0 + = + x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \end{equation} -% -Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. -Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei - -\begin{equation*} - W(0)=0 -\end{equation*} -% -besitzt, kann die Bedingung weiter vereinfacht werden zu - +ist diese Bedingung genau dann erfüllt, wenn \begin{equation} 0 = - \chi\cdot e^{\chi-\frac{4t}{r_0-y_0}} + W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) \text{.} \end{equation} % +Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +\begin{equation} + W(0)=0 +\end{equation} +% Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. -Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden. - +Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. +% +% +% +%Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt +%\begin{equation} +% 0 +% = +% W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) +% \text{.} +%5\end{equation} +% +%Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. +%Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei +% +%\begin{equation*} +% W(0)=0 +%\end{equation*} +% +%besitzt, kann die Bedingung weiter vereinfacht werden zu +% +%\begin{equation} +% 0 +% = +% \chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) +% \text{.} +%\end{equation} +% +%Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. +%Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. +%Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. +%Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. +% \subsection{Anfangsbedingung $y_0<0$} Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. Dies kann veranschaulicht werden anhand - +% \begin{equation} v(t)\cdot \left( \begin{array}{c} 0 \\ 1 \end{array}\right) \leq @@ -122,13 +148,13 @@ Dies kann veranschaulicht werden anhand \end{equation} % Da der $y$-Anteil der Geschwindigkeit des Ziels grösser-gleich der des Verfolgers ist, können die $y$-Koordinaten nie übereinstimmen. - +% \subsection{Anfangsbedingung auf positiven $y$-Achse} Wenn der Verfolger auf der positiven $y$-Achse startet, befindet er sich direkt auf der Fluchtgeraden des Ziels. Dies führt dazu, dass der Verfolger und das Ziel sich direkt aufeinander zu bewegen, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt. Die Folge ist, dass das Ziel zwingend erreicht wird. Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit - +% \begin{equation} v(t) = @@ -138,17 +164,17 @@ Um $t_1$ zu bestimmen, kann die Verfolgungskurve in diesem Fall mit parametrisiert werden. Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden. Woraus folgt - +% \begin{equation} 0 = |v(t_1)-z(t_1)| = - y_0-2t_1 + y_0-2t_1\text{,} \end{equation} % -, was aufgelöst zu - +was aufgelöst zu +% \begin{equation} t_1 = @@ -165,14 +191,14 @@ Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumli Somit wird in einer nächsten Betrachtung untersucht, ob der Verfolger dem Ziel näher kommt als ein definierter Trefferradius. Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit - +% \begin{equation} |v-z| Date: Fri, 29 Jul 2022 18:20:55 +0200 Subject: verbesserungen --- buch/papers/parzyl/main.tex | 5 +- buch/papers/parzyl/teil0.tex | 110 +++++++++++++++++++++++++------------------ buch/papers/parzyl/teil1.tex | 4 +- buch/papers/parzyl/teil2.tex | 2 +- 4 files changed, 68 insertions(+), 53 deletions(-) (limited to 'buch') diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index 0996007..528a2e2 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -8,10 +8,7 @@ \begin{refsection} \chapterauthor{Thierry Schwaller, Alain Keller} -Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. -Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. -In diesem Kapitel wird die Lösung der Laplace-Gliechung im -parabolischen Zyplinderkoordinatensystem genauer untersucht. + \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index a77398d..4b251db 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -3,21 +3,24 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Problem\label{parzyl:section:teil0}} +\section{Einleitung\label{parzyl:section:teil0}} \rhead{Teil 0} - +Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +In diesem Kapitel wird die Lösung der Laplace-Gleichung im +parabolischen Zylinderkoordinatensystem genauer untersucht. \subsection{Laplace Gleichung} Die partielle Differentialgleichung \begin{equation} \Delta f = 0 \end{equation} -ist als Laplace Gleichung bekannt. -Sie ist eine spezielle Form der poisson Gleichung +ist als Laplace-Gleichung bekannt. +Sie ist eine spezielle Form der Poisson-Gleichung \begin{equation} \Delta f = g \end{equation} mit g als beliebige Funktion. -In der Physik hat die Laplace Gleichung in verschieden Gebieten +In der Physik hat die Laplace-Gleichung in verschieden Gebieten verwendet, zum Beispiel im Elektromagnetismus. Das Gaussche Gesetz in den Maxwellgleichungen \begin{equation} @@ -35,11 +38,11 @@ Eingesetzt in \eqref{parzyl:eq:max1} resultiert \begin{equation} \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, \end{equation} -was eine Possion gleichung ist. +was eine Possion-Gleichung ist. An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabloischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ @@ -48,7 +51,7 @@ Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt z & = z. \label{parzyl:coordRelationse} \end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt reultieren die Parabeln +Wird $\tau$ oder $\sigma$ konstant gesetzt resultieren die Parabeln \begin{equation} y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) \end{equation} @@ -68,10 +71,12 @@ und Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. + Um in diesem Koordinatensystem integrieren und differenzieren zu können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. -Der Skalierungsfaktor braucht es, damit die Distanzen zwischen zwei -Punkten unabhängig vom Koordinatensystem sind. + +\dots + Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet kann dies im kartesischen Koordinatensystem mit \begin{equation} @@ -90,21 +95,21 @@ gilt. Dafür werden $dx$, $dy$, und $dz$ in \eqref{parzyl:eq:ds} mit den Beziehungen von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als \begin{align} - dx &= \frac{\delta x }{\delta \sigma} d\sigma + - \frac{\delta x }{\delta \tau} d\tau + - \frac{\delta x }{\delta \tilde{z}} d \tilde{z} + dx &= \frac{\partial x }{\partial \sigma} d\sigma + + \frac{\partial x }{\partial \tau} d\tau + + \frac{\partial x }{\partial \tilde{z}} d \tilde{z} = \tau d\sigma + \sigma d \tau \\ - dy &= \frac{\delta y }{\delta \sigma} d\sigma + - \frac{\delta y }{\delta \tau} d\tau + - \frac{\delta y }{\delta \tilde{z}} d \tilde{z} + dy &= \frac{\partial y }{\partial \sigma} d\sigma + + \frac{\partial y }{\partial \tau} d\tau + + \frac{\partial y }{\partial \tilde{z}} d \tilde{z} = \tau d\tau - \sigma d \sigma \\ - dz &= \frac{\delta \tilde{z} }{\delta \sigma} d\sigma + - \frac{\delta \tilde{z} }{\delta \tau} d\tau + - \frac{\delta \tilde{z} }{\delta \tilde{z}} d \tilde{z} + dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + + \frac{\partial \tilde{z} }{\partial \tau} d\tau + + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} = d \tilde{z} \\ \end{align} substituiert. -Wird diese gleichung in der Form von \eqref{parzyl:eq:dspara} +Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara} geschrieben, resultiert \begin{equation} \left(d s\right)^2 = @@ -120,11 +125,22 @@ Daraus ergeben sich die Skalierungsfaktoren \end{align} \subsection{Differentialgleichung} Möchte man eine Differentialgleichung im parabolischen -Zylinderkoordinatensystem lösen müssen die Skalierungsfaktoren -mitgerechnet werden. -\dots -\subsection{Lösung der Helmholtz Gleichung im parabolischen Zylinderfunktion} -Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen tauchen, wie bereits erwähnt, dann auf, wenn die Helmholtz Gleichung +Zylinderkoordinatensystem aufstellen müssen die Skalierungsfaktoren +mitgerechnet werden. +Der Laplace Operator ist dadurch gegeben als +\begin{equation} + \Delta f = \frac{1}{\sigma^2 + \tau^2} + \left( + \frac{\partial^2 f}{\partial \sigma ^2} + + \frac{\partial^2 f}{\partial \tau ^2} + \right) + + \frac{\partial^2 f}{\partial z}. + \label{parzyl:eq:laplaceInParZylCor} +\end{equation} +\subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} +Die Differentialgleichungen, welche zu den parabolischen Zylinderfunktionen führen, tauchen +%, wie bereits erwähnt, +dann auf, wenn die Helmholtz-Gleichung \begin{equation} \Delta f(x,y,z) = \lambda f(x,y,z) \end{equation} @@ -133,22 +149,22 @@ im parabolischen Zylinderkoordinatensystem \Delta f(\sigma,\tau,z) = \lambda f(\sigma,\tau,z) \end{equation} gelöst wird. -Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als -\begin{equation} - \nabla - = - \frac{1}{\sigma^2 + \tau^2} - \left ( - \frac{\partial^2}{\partial \sigma^2} - + - \frac{\partial^2}{\partial \tau^2} - \right ) - + - \frac{\partial^2}{\partial z^2}. -\end{equation} -Die Helmholtz Gleichung würde also wie folgt lauten -\begin{equation} - \nabla f(\sigma, \tau, z) +%Wobei der Laplace Operator $\Delta$ im parabolischen Zylinderkoordinatensystem gegeben ist als +%\begin{equation} +% \Delta +% = +% \frac{1}{\sigma^2 + \tau^2} +% \left ( +% \frac{\partial^2}{\partial \sigma^2} +% + +% \frac{\partial^2}{\partial \tau^2} +% \right ) +% + +% \frac{\partial^2}{\partial z^2}. +%\end{equation} +Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz Gleichung +\begin{equation} + \Delta f(\sigma, \tau, z) = \frac{1}{\sigma^2 + \tau^2} \left ( @@ -159,7 +175,7 @@ Die Helmholtz Gleichung würde also wie folgt lauten + \frac{\partial^2 f(\sigma,\tau,z)}{\partial z^2} = - \lambda f(\sigma,\tau,z) + \lambda f(\sigma,\tau,z). \end{equation} Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werden, dazu wird \begin{equation} @@ -167,7 +183,7 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \end{equation} gesetzt. Was dann schlussendlich zu den Differentialgleichungen -\begin{equation}\label{parzyl_sep_dgl_1} +\begin{equation}\label{parzyl:sep_dgl_1} g''(\sigma) - \left ( @@ -179,7 +195,7 @@ Was dann schlussendlich zu den Differentialgleichungen = 0, \end{equation} -\begin{equation}\label{parzyl_sep_dgl_2} +\begin{equation}\label{parzyl:sep_dgl_2} h''(\tau) - \left ( @@ -192,7 +208,7 @@ Was dann schlussendlich zu den Differentialgleichungen 0 \end{equation} und -\begin{equation}\label{parzyl_sep_dgl_3} +\begin{equation}\label{parzyl:sep_dgl_3} i''(z) + \left ( @@ -205,7 +221,7 @@ und 0 \end{equation} führt. -Wobei die Lösung von \ref{parzyl_sep_dgl_3} +Wobei die Lösung von \eqref{parzyl:sep_dgl_3} \begin{equation} i(z) = @@ -219,7 +235,7 @@ Wobei die Lösung von \ref{parzyl_sep_dgl_3} \sqrt{\lambda + \mu}z \right )} \end{equation} -ist und \ref{parzyl_sep_dgl_1} und \ref{parzyl_sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. +ist und \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 1ae7bfd..f297189 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,7 +6,7 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} -Die Differentialgleichung aus \dots kann mit einer Substitution +Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit einer Substitution in die Whittaker Gleichung gelöst werden. \begin{definition} Die Funktion @@ -23,4 +23,6 @@ in die Whittaker Gleichung gelöst werden. \end{equation} \end{definition} +Lösung Folgt\dots + diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 59f8b94..3f890d0 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Physik sache +\section{Anwendung in der Physik \label{parzyl:section:teil2}} \rhead{Teil 2} -- cgit v1.2.1 From 7415664f6b5ee3ccd54da3e71fca4d9478186125 Mon Sep 17 00:00:00 2001 From: LordMcFungus Date: Fri, 29 Jul 2022 18:23:03 +0200 Subject: Delete SeminarSpezielleFunktionen.pdf --- buch/SeminarSpezielleFunktionen.pdf | Bin 22225335 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 buch/SeminarSpezielleFunktionen.pdf (limited to 'buch') diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf deleted file mode 100644 index 0502c88..0000000 Binary files a/buch/SeminarSpezielleFunktionen.pdf and /dev/null differ -- cgit v1.2.1 From 5c71b098ca50b4bb11f273f8c78279c8ce23ef02 Mon Sep 17 00:00:00 2001 From: daHugen Date: Sun, 31 Jul 2022 18:09:55 +0200 Subject: Update to next version includes changes in syntax and structure --- .../papers/lambertw/Bilder/VerfolgungskurveBsp.png | Bin 297455 -> 356399 bytes buch/papers/lambertw/teil4.tex | 168 +++++++++++---------- 2 files changed, 91 insertions(+), 77 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/VerfolgungskurveBsp.png b/buch/papers/lambertw/Bilder/VerfolgungskurveBsp.png index 90758cd..e6e7c1e 100644 Binary files a/buch/papers/lambertw/Bilder/VerfolgungskurveBsp.png and b/buch/papers/lambertw/Bilder/VerfolgungskurveBsp.png differ diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index c79aa0c..0050b61 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -6,15 +6,15 @@ \section{Beispiel einer Verfolgungskurve \label{lambertw:section:teil4}} \rhead{Beispiel einer Verfolgungskurve} -In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve mit der Verfolgungsstrategie 1 beschreiben. Dafür werden zuerst Bewegungsraum, Anfangspositionen und Bewegungsverhalten definiert, in einem nächsten Schritt soll eine Differentialgleichung dafür aufgestellt und anschliessend gelöst werden. +In diesem Abschnitt wird rechnerisch das Beispiel einer Verfolgungskurve mit der Verfolgungsstrategie ``Jagd'' beschreiben. Dafür werden zuerst Bewegungsraum, Anfangspositionen und Bewegungsverhalten definiert, in einem nächsten Schritt soll eine Differentialgleichung dafür aufgestellt und anschliessend gelöst werden. \subsection{Anfangsbedingungen definieren und einsetzen \label{lambertw:subsection:Anfangsbedingungen}} -Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(v = 1\), beginnend beim Ursprung des Kartesischen Koordinatensystems. Der Verfolger \(V\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{V}| = 1\) in Richtung Ziel. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: +Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter Geschwindigkeit \(|\dot{z}| = 1\), beginnend beim Ursprung des Kartesischen Koordinatensystems. Der Verfolger \(V\) startet auf einem beliebigen Punkt im ersten Quadranten und bewegt sich auch mit konstanter Geschwindigkeit \(|\dot{v}| = 1\) in Richtung Ziel. Diese Anfangspunkte oder Anfangsbedingungen können wie folgt formuliert werden: \begin{equation} Z = - \left( \begin{array}{c} 0 \\ v \cdot t \end{array} \right) + \left( \begin{array}{c} 0 \\ |\dot{z}| \cdot t \end{array} \right) = \left( \begin{array}{c} 0 \\ t \end{array} \right) ,\: @@ -22,13 +22,13 @@ Das zu verfolgende Ziel \(Z\) bewegt sich entlang der \(y\)-Achse mit konstanter = \left( \begin{array}{c} x \\ y \end{array} \right) \:\text{und}\:\: - \bigl| \dot{V} \bigl| + |\dot{v}| = 1. \label{lambertw:Anfangsbed} \end{equation} Wir haben nun die Anfangsbedingungen definiert, jetzt fehlt nur noch eine DGL, welche die fortlaufende Änderung der Position und Bewegungsrichtung des Verfolgers beschreibt. -Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} definiert, und zwar Gleichung \eqref{lambertw:pursuerDGL}. Wenn man die Startpunkte einfügt, ergibt sich folgender Ausdruck: +Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} definiert, und zwar Gleichung \eqref{lambertw:pursuerDGL}. Wenn man die Startpunkte einfügt, ergibt sich der Ausdruck \begin{equation} \frac{\left( \begin{array}{c} 0-x \\ t-y \end{array} \right)}{\sqrt{x^2 + (t-y)^2}} \cdot @@ -42,37 +42,38 @@ Diese DGL haben wir bereits in Kapitel \ref{lambertw:subsection:Verfolger} defin \label{lambertw:subsection:DGLvereinfach}} Nun haben wir eine Gleichung, es stellt sich aber die Frage, ob es überhaupt eine geschlossene Lösung dafür gibt. Eine Funktion welche die Beziehung \(y(x)\) beschreibt oder sogar \(x(t)\) und \(y(t)\) liefert. Zum jetzigen Zeitpunkt mag es nicht trivial scheinen, aber mit den gewählten Anfangsbedingungen \eqref{lambertw:Anfangsbed} ist es möglich eine geschlossene Lösung für die Gleichung \eqref{lambertw:eqMitAnfangsbed} zu finden. -Auf dem Weg dahin muss die definierte DGL zuerst wesentlich vereinfacht werden, sei es mittels algebraischer Umformungen oder mit den Tools aus der Analysis. Da die nächsten Schritte sehr algebralastig sind und sie das Lesen dieses Papers einfach nur mühsam machen würden, werden wir uns hier nur die wesentlichsten Schritte konzentrieren, welche notwendig sind, um den Lösungsweg nachvollziehen zu können. +Auf dem Weg dahin muss die definierte DGL zuerst wesentlich vereinfacht werden, sei es mittels algebraischer Umformungen oder mit den Tools aus der Analysis. Da die nächsten Schritte sehr algebralastig sind und sie das Lesen dieses Papers träge machen würden, werden wir uns hier nur auf die wesentlichsten Schritte konzentrieren, welche notwendig sind, um den Lösungsweg nachvollziehen zu können. \subsubsection{Skalarprodukt auflösen \label{lambertw:subsubsection:SkalProdAufl}} -Zuerst müssen wir den Bruch und das Skalarprodukt in \eqref{lambertw:eqMitAnfangsbed} wegbringen, damit wir eine. Dies führt zu: +Zuerst müssen wir den Bruch und das Skalarprodukt in \eqref{lambertw:eqMitAnfangsbed} wegbringen, damit wir eine viel handlichere Differentialgleichung erhalten. Dies führt zu \begin{equation} -x \cdot \dot{x} + (t-y) \cdot \dot{y} = \sqrt{x^2 + (t-y)^2}. \label{lambertw:eqOhneSkalarprod} \end{equation} -Im letzten Schritt, fällt die Nützlichkeit des Skalarproduktes in der Verfolgungsgleichung \eqref{lambertw:pursuerDGL} markant auf. Anstatt zwei gekoppelte Differentialgleichungen zu erhalten, eine für die \(x\) und die andere für die \(y\)-Komponente, erhält man einen einzigen Ausdruck, was in der Regel mit weniger Lösungsaufwand verbunden ist. +Im letzten Schritt, fällt die Nützlichkeit des Skalarproduktes in der Verfolgungsgleichung \eqref{lambertw:pursuerDGL} markant auf. Anstatt zwei gekoppelte Differentialgleichungen zu erhalten, eine für die \(x\)- und die andere für die \(y\)-Komponente, erhält man einen einzigen Ausdruck, was in der Regel mit weniger Lösungsaufwand verbunden ist. \subsubsection{Quadrieren und Gruppieren \label{lambertw:subsubsection:QuadUndGrup}} -Mit der Quadratwurzel in \ref{lambertw:eqOhneSkalarprod} kann man nichts anfangen, sie steht nur im Weg, also muss man sie loswerden. Wenn man dies macht, kann \eqref{lambertw:eqOhneSkalarprod} auf folgende Form gebracht werden: +Mit der Quadratwurzel in \eqref{lambertw:eqOhneSkalarprod} kann man nichts anfangen, sie steht nur im Weg, also muss man sie loswerden. Wenn man dies macht, kann \eqref{lambertw:eqOhneSkalarprod} auf die Form \begin{equation} \left(\dot{x}^2-1\right) \cdot x^2 -2x \left(t-y\right) \dot{x}\dot{y} + \left(\dot{y}^2-1\right) \cdot \left(t-y\right)^2 - =0. + =0 \label{lambertw:eqOhneWurzel} \end{equation} +gebracht werden. Diese Form mag auf den ersten Blick nicht gerade nützlich sein, aber man kann sie mit einer Substitution weiter vereinfachen. \subsubsection{Wichtige Substitution \label{lambertw:subsubsection:WichtSubst}} -Wenn man beachtet, dass die Geschwindigkeit des Verfolgers konstant und gleich 1 ist, dann kann man folgende Gleichung aufstellen: +Wenn man beachtet, dass die Geschwindigkeit des Verfolgers konstant und gleich 1 ist, dann ergibt sich die Beziehung \begin{equation} \dot{x}^2 + \dot{y}^2 = 1. \label{lambertw:eqGeschwSubst} \end{equation} -Umformungen der Gleichung \eqref{lambertw:eqGeschwSubst} können in \eqref{lambertw:eqOhneWurzel} erkannt werden. Ersetzt führen sie zu folgendem Ausdruck: +Umformungen der Gleichung \eqref{lambertw:eqGeschwSubst} können in \eqref{lambertw:eqOhneWurzel} erkannt werden. Wenn man sie ersetzt, erhält man \begin{equation} \dot{y}^2 \cdot x^2 +2x \left(t-y\right) \dot{x}\dot{y} + \dot{x}^2 \cdot \left(t-y\right)^2 =0. @@ -82,27 +83,31 @@ Diese unscheinbare Substitution führt dazu, dass weitere Vereinfachungen durchg \subsubsection{Binom erkennen und vereinfachen \label{lambertw:subsubsection:BinomVereinfach}} -Versteckt im Ausdruck \eqref{lambertw:eqGeschwSubstituiert} befindet sich die erste binomische Formel, welche zu folgender Gleichung führt: +Versteckt im Ausdruck \eqref{lambertw:eqGeschwSubstituiert} befindet sich die erste binomische Formel, wobei \begin{equation} (x \dot{y} + (t-y) \dot{x})^2 - = 0. + = 0 \label{lambertw:eqAlgVerinfacht} \end{equation} -Da der linke Term gleich Null ist, muss auch der Inhalt des Quadrates gleich Null sein, somit folgt eine weitere Vereinfachung, welche zu einer im Vergleich zu \eqref{lambertw:eqOhneSkalarprod} wesentlich einfacheren DGL führt: +die faktorisierte Darstellung davon ist. +Da der linke Term gleich Null ist, muss auch der Inhalt des Quadrates gleich Null sein. Es ergibt sich eine weitere Vereinfachung, welche zu der im Vergleich zu \eqref{lambertw:eqOhneSkalarprod} wesentlich einfacheren DGL \begin{equation} x \dot{y} + (t-y) \dot{x} - = 0. + = 0 \label{lambertw:eqGanzVerinfacht} \end{equation} -Kompakt, ohne Wurzelterme und Quadrate, nur elementare Operationen und Ableitungen. Nun stellt sich die Frage wie es weiter gehen soll, bei der Gleichung \eqref{lambertw:eqGanzVerinfacht} scheinen keine weiteren Vereinfachungen möglich zu sein. Wir brauchen einen neuen Ansatz, um unser Ziel einer möglichen Lösung zu verfolgen. +führt. +Kompakt, ohne Wurzelterme und Quadrate, nur elementare Operationen und Ableitungen. + +Nun stellt sich die Frage wie es weiter gehen soll, bei der Gleichung \eqref{lambertw:eqGanzVerinfacht} scheinen keine weiteren Vereinfachungen möglich zu sein. Wir brauchen einen neuen Ansatz, um unser Ziel einer möglichen Lösung zu verfolgen. \subsection{Zeitabhängigkeit loswerden \label{lambertw:subsection:ZeitabhLoswerden}} -Der nächste logischer Schritt scheint irgendwie die Zeitabhängigkeit in der Gleichung \eqref{lambertw:eqGanzVerinfacht} loszuwerden, aber wieso? Nun, wie am Anfang von Abschnitt \ref{lambertw:subsection:DGLvereinfach} beschrieben, suchen wir eine Lösung der Art \(y(x)\), dies ist natürlich erst möglich wenn wir die Abhängigkeit nach \(t\) eliminieren können. +Der nächste logische Schritt scheint irgendwie die Zeitabhängigkeit in der Gleichung \eqref{lambertw:eqGanzVerinfacht} loszuwerden, aber wieso? Nun, wie am Anfang von Abschnitt \ref{lambertw:subsection:DGLvereinfach} beschrieben, suchen wir eine Lösung der Art \(y(x)\), dies ist natürlich erst möglich wenn wir die Abhängigkeit nach \(t\) eliminieren können. \subsubsection{Zeitliche Ableitungen loswerden \label{lambertw:subsubsection:ZeitAbleit}} -Der erste Schritt auf dem Weg zur Funktion \(y(x)\), ist es die zeitlichen Ableitungen los zu werden, dafür wird \eqref{lambertw:eqGanzVerinfacht} beidseitig mit \(\dot{x}\) dividiert, was erlaubt ist, weil diese Änderung ungleich Null ist: +Der erste Schritt auf dem Weg zur Funktion \(y(x)\) ist, die zeitlichen Ableitungen los zu werden, dafür wird \eqref{lambertw:eqGanzVerinfacht} beidseitig durch \(\dot{x}\) dividiert, was erlaubt ist, weil diese Änderung ungleich Null ist: \begin{equation} x \frac{\dot{y}}{\dot{x}} + (t-y) \frac{\dot{x}}{\dot{x}} = 0. @@ -126,30 +131,31 @@ Nach dem die Eigenschaft \eqref{lambertw:eqQuotZeitAbleit} in \eqref{lambertw:eq \subsubsection{Variable \(t\) eliminieren \label{lambertw:subsubsection:ZeitAbleit}} -Hier wäre es natürlich passend, wenn man die Abhängigkeit nach \(t\) komplett wegbringen könnte. Um dies zu erreichen, muss man auf die Definition der Bogenlänge zurückgreifen. -Die Strecke \(s\) entspricht +Hier wäre es natürlich passend, wenn man die Abhängigkeit nach \(t\) komplett wegbringen könnte, aber wie? +Wir wissen, dass sich der Verfolger mit Geschwindigkeit 1 bewegt, also legt er in der Zeit \(t\) die Strecke \(1\cdot t = t\) zurück. Längen und Strecken können auch mit der Bogenlänge repräsentiert werden, somit kann Zeit und zurückgelegte Strecke in der Gleichung \begin{equation} s = - v \cdot t + |\dot{v}| \cdot t = 1 \cdot t = t = - \int_{\displaystyle x_0}^{\displaystyle x_{\text{end}}}\sqrt{1+y^{\prime\, 2}} \: dx. + \int_{\displaystyle x_0}^{\displaystyle x_{\text{end}}}\sqrt{1+y^{\prime\, 2}} \: dx \label{lambertw:eqZuBogenlaenge} \end{equation} - +verbunden werden. + Nicht gerade auffällig ist die Richtung, in welche hier integriert wird. Wenn der Verfolger sich wie vorgesehen am Anfang im ersten Quadranten befindet, dann muss sich dieser nach links bewegen, was nicht der üblichen Integrationsrichtung entspricht. Um eine Integration wie üblich von links nach rechts ausführen zu können, müssen die Integrationsgenerzen vertauscht werden, was in einem Vorzeichenwechsel resultiert. -Wenn man nun \eqref{lambertw:eqZuBogenlaenge} in die DGL \eqref{lambertw:DGLmitT} einfügt, dann ergibt sich folgender Ausdruck: +Wenn man nun \eqref{lambertw:eqZuBogenlaenge} in die DGL \eqref{lambertw:DGLmitT} einfügt, dann ergibt sich der neue Ausdruck \begin{equation} x y^{\prime} - \int\sqrt{1+y^{\prime\, 2}} \: dx - y = 0. \label{lambertw:DGLohneT} \end{equation} -Um das Integral los zu werden, leitet man den vorherigen Ausdruck \eqref{lambertw:DGLohneT} nach \(x\) ab und erhaltet folgende DGL zweiter Ordnung \eqref{lambertw:DGLohneInt}: +Um das Integral los zu werden, leitet man \eqref{lambertw:DGLohneT} nach \(x\) ab und erhält die DGL zweiter Ordnung \begin{align} y^{\prime}+ xy^{\prime\prime} - \sqrt{1+y^{\prime\, 2}} - y^{\prime} &= 0, \\ @@ -157,16 +163,17 @@ Um das Integral los zu werden, leitet man den vorherigen Ausdruck \eqref{lambert &= 0. \label{lambertw:DGLohneInt} \end{align} -Nun sind wir unserem Ziel einen weiteren Schritt näher. Die Gleichung \eqref{lambertw:DGLohneInt} mag auf den ersten Blick nicht gerade einfach sein, aber im Nächsten Abschnitt werden wir sehen, dass sie relativ einfach zu lösen ist. +Nun sind wir unserem Ziel einen weiteren Schritt näher. Die Gleichung \eqref{lambertw:DGLohneInt} mag auf den ersten Blick nicht gerade einfach sein, aber im nächsten Abschnitt werden wir sehen, dass sie relativ einfach zu lösen ist. \subsection{Differentialgleichung lösen \label{lambertw:subsection:DGLloes}} -Die Gleichung \eqref{lambertw:DGLohneInt} ist eine DGL zweiter Ordnung, in der \(y\) nicht vorkommt. Sie kann mittels der Substitution \(y^{\prime} = u\) in eine DGL erster Ordnung umgewandelt werden: +Die Gleichung \eqref{lambertw:DGLohneInt} ist eine DGL zweiter Ordnung, in der \(y\) nicht vorkommt. Sie kann mittels der Substitution \(y^{\prime} = u\) in die DGL \begin{equation} xu^{\prime} - \sqrt{1+u^2} - = 0. + = 0 \label{lambertw:DGLmitU} \end{equation} +erster Ordnung umgewandelt werden. Diese Gleichung ist separierbar, was sie viel handlicher macht. In der separierten Form \begin{equation} \int{\frac{1}{\sqrt{1+u^2}}\:du} @@ -174,7 +181,7 @@ Diese Gleichung ist separierbar, was sie viel handlicher macht. In der separiert \int{\frac{1}{x}\:dx}, \end{equation} lässt sich die Gleichung mittels einer Integrationstabelle sehr rasch lösen. -Mit dem Ergebnis: +Das Ergebnis ist \begin{align} \operatorname{arsinh}(u) &= @@ -184,20 +191,23 @@ Mit dem Ergebnis: \operatorname{sinh}(\operatorname{ln}(x) + C). \label{lambertw:loesDGLmitU} \end{align} -Wenn man in \eqref{lambertw:loesDGLmitU} die Substitution rückgängig macht, erhält man folgende DGL erster Ordnung, die bereits separiert ist: +Wenn man in \eqref{lambertw:loesDGLmitU} die Substitution rückgängig macht, erhält man die DGL \begin{equation} y^{\prime} = - \operatorname{sinh}(\operatorname{ln}(x) + C). + \operatorname{sinh}(\operatorname{ln}(x) + C) \label{lambertw:loesDGLmitY} \end{equation} -Ersetzt man den \(\operatorname{sinh}\) mit seiner exponentiellen Definition \(\operatorname{sinh}(x)=\frac{1}{2}(e^x-e^{-x})\), so resultiert auf sehr einfache Art folgende Lösung für \eqref{lambertw:loesDGLmitY}: +erster Ordnung, die bereits separiert ist. +Ersetzt man den \(\operatorname{sinh}\) durch seine exponentiellen Definition \(\operatorname{sinh}(x)=\frac{1}{2}(e^x-e^{-x})\), so resultiert auf sehr einfache Art die Lösung \begin{equation} y = - C_1 + C_2 x^2 - \frac{\operatorname{ln}(x)}{8 \cdot C_2}. + C_1 + C_2 x^2 - \frac{\operatorname{ln}(x)}{8 \cdot C_2} \end{equation} -Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die Frage, ob sie überhaupt plausibel ist. Dieser Frage werden wir im nächsten Abschnitt nachgehen. +für \eqref{lambertw:loesDGLmitY}. + +Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die Frage, ob sie überhaupt plausibel ist. \subsection{Lösung analysieren \label{lambertw:subsection:LoesAnalys}} @@ -210,37 +220,34 @@ Nun haben wir eine Lösung, aber wie es immer mit Lösungen ist, stellt sich die } \end{figure} -Das Resultat, wie ersichtlich, ist folgende Funktion \eqref{lambertw:funkLoes} welche mittels Anfangsbedingungen parametrisiert werden kann: +Das Resultat, wie ersichtlich, ist die Funktion \begin{equation} {\color{red}{y(x)}} = - C_1 + C_2 {\color{darkgreen}{x^2}} {\color{blue}{-}} \frac{\color{blue}{\operatorname{ln}(x)}}{8 \cdot C_2}. + C_1 + C_2 {\color{darkgreen}{x^2}} {\color{blue}{-}} \frac{\color{blue}{\operatorname{ln}(x)}}{8 \cdot C_2}, \label{lambertw:funkLoes} \end{equation} -Für die Koeffizienten \(C_1\) und \(C_2\) ergibt sich ein Anfangswertproblem, welches für deren Bestimmung gelöst werden muss. Zuerst soll aber eine qualitative Intuition oder Idee für das Aussehen der Funktion \(y(x)\) geschaffen werden: +für welche die Koeffizienten \(C_1\) und \(C_2\) aus den Anfangsbedingungen bestimmt werden können. Zuerst soll aber eine qualitative Intuition oder Idee für das Aussehen der Funktion \(y(x)\) geschaffen werden: \begin{itemize} \item Für grosse \(x\)-Werte, welche in der Regel in der Nähe von \(x_0\) sein sollten, ist der quadratisch Term in der Funktion \eqref{lambertw:funkLoes} dominant. \item - Für immer kleiner werdende \(x\) geht der Verfolger in Richtung \(y\)-Achse, wobei seine Steigung stetig sinkt, was Sinn macht wenn der Verfolgte entlang der \(y\)-Achse steigt. Irgendwann werden Verfolger und Ziel auf gleicher Höhe sein, also gleiche \(y\) aber verschiedene \(x\)-Koordinate besitzen. + Für immer kleiner werdende \(x\) geht der Verfolger in Richtung \(y\)-Achse, wobei seine Steigung stetig sinkt, was Sinn macht wenn der Verfolgte entlang der \(y\)-Achse steigt. Irgendwann werden Verfolger und Ziel auf gleicher Höhe sein, also gleiche \(y\)- aber verschiedene \(x\)-Koordinate besitzen. + In diesem Punkt findet ein Monotoniewechsel in der Kurve \eqref{lambertw:funkLoes} statt, was zu einem Minimum führt. \item Für \(x\)-Werte in der Nähe von \(0\) ist das asymptotische Verhalten des Logarithmus dominant, dies macht auch Sinn, da sich der Verfolgte auf der \(y\)-Achse bewegt und der Verfolger ihm nachgeht. - \item - Aufgrund des Monotoniewechsels in der Kurve \eqref{lambertw:funkLoes} muss diese auch ein Minimum aufweisen. Es stellt sich nun die Frage: Wo befindet sich dieser Punkt? - Eine Abschätzung darüber kann getroffen werden und zwar, dass dieser dann entsteht, wenn \(A\) und \(P\) die gleiche \(y\)-Koordinaten besitzen. In diesem Moment ändert die Richtung der \(y\)-Komponente der Geschwindigkeit des Verfolgers, somit auch sein Vorzeichen und dadurch entsteht auch das Minimum. \end{itemize} Alle diese Eigenschaften stimmen mit dem überein, was man von einer Kurve dieser Art erwarten würde, welche durch die Grafik \ref{lambertw:BildFunkLoes} repräsentiert wurde. \subsection{Anfangswertproblem \label{lambertw:subsection:AllgLoes}} -In diesem Abschnitt soll eine Parameterfunktion hergeleitet werden, bei der jeder beliebige Anfangspunkt im ersten Quadranten eingesetzt werden kann, ausser der Ursprung im Koordinatensystem. Diese Aufgabe erfordert ein Anfangswertproblem. +In diesem Abschnitt soll eine Parameterfunktion hergeleitet werden, bei der jeder beliebige Anfangspunkt im ersten Quadranten eingesetzt werden kann, ausser der Ursprung im Koordinatensystem. Diese Aufgabe ist ein Anfangswertproblem für \(y(x)\). -Das Lösen des Anfangswertproblems ist ein Problem aus der Algebra, auf welches hier nicht explizit eingegangen wird. Zur Vollständigkeit und Nachvollziehbarkeit, wird aber das Gleichungssystem präsentiert, welches notwendig ist, um das Anfangswertproblem zu lösen. +Das Lösen des Anfangswertproblems ist ein Problem aus der Analysis, auf welches hier nicht explizit eingegangen wird. Zur Vollständigkeit und Nachvollziehbarkeit, wird aber das Gleichungssystem präsentiert, welches notwendig ist, um das Anfangswertproblem zu lösen. \subsubsection{Anfangswerte bestimmen \label{lambertw:subsubsection:Anfangswerte}} -Der erste Schritt auf dem Weg zur gesuchten Parameterfunktion ist, die Anfangswerte \eqref{lambertw:eq1Anfangswert} zu definieren. -Die Anfangswerte sind: +Der erste Schritt auf dem Weg zur gesuchten Parameterfunktion ist, die Anfangswerte \begin{equation} y(x)\big \vert_{t=0} = @@ -255,15 +262,17 @@ und = y^{\prime}(x_0) = - \frac{y_0}{x_0}. + \frac{y_0}{x_0} \label{lambertw:eq2Anfangswert} \end{equation} +zu definieren. Der zweite Anfangswert \eqref{lambertw:eq2Anfangswert} mag nicht grade offensichtlich sein. Die Erklärung dafür ist aber simpel: Der Verfolger wird sich zum Zeitpunkt \(t=0\) in Richtung Koordinatenursprung bewegen wollen, wo sich das Ziel befindet. Somit entsteht das Steigungsdreieck mit \(\Delta x = x_0\) und \(\Delta y = y_0\). \subsubsection{Gleichungssystem aufstellen und lösen \label{lambertw:subsubsection:GlSys}} -Wenn man die Anfangswerte \eqref{lambertw:eq1Anfangswert} und \eqref{lambertw:eq2Anfangswert} in die Gleichung \eqref{lambertw:funkLoes} und deren Ableitung \(y^{\prime}(x)\) einsetzt, dann ergibt sich folgendes Gleichungssystem: +Wenn man die Anfangswerte \eqref{lambertw:eq1Anfangswert} und \eqref{lambertw:eq2Anfangswert} in die Gleichung \eqref{lambertw:funkLoes} und deren Ableitung \(y^{\prime}(x)\) einsetzt, dann ergibt sich das Gleichungssystem \begin{subequations} + \label{lambertw:eqGleichungssystem} \begin{align} y_0 &= @@ -272,9 +281,8 @@ Wenn man die Anfangswerte \eqref{lambertw:eq1Anfangswert} und \eqref{lambertw:eq &= 2 \cdot C_2 x_0 - \frac{1}{8 \cdot C_2 \cdot x_0}. \end{align} - \label{lambertw:eqGleichungssystem} \end{subequations} -Damit die gesuchte Funktion im ersten Quadranten bleibt, werden nur die positiven Lösungen des Gleichungssystems gewählt, welche wie folgt aussehen: +Damit die gesuchte Funktion im ersten Quadranten bleibt, werden nur die positiven Lösungen \begin{subequations} \begin{align} \label{lambertw:eqKoeff1} @@ -284,16 +292,17 @@ Damit die gesuchte Funktion im ersten Quadranten bleibt, werden nur die positive \label{lambertw:eqKoeff2} C_2 &= - \frac{\sqrt{x_0^2 + y_0^2} + y_0}{4x_0^2}. + \frac{\sqrt{x_0^2 + y_0^2} + y_0}{4x_0^2} \end{align} \end{subequations} +des Gleichungssystems gewählt. \subsubsection{Gesuchte Parameterfunktion aufstellen \label{lambertw:subsubsection:ParamFunk}} -Wenn man die Koeffizienten \eqref{lambertw:eqKoeff1} und \eqref{lambertw:eqKoeff2} in die Funktion \eqref{lambertw:funkLoes} einsetzt, dann ergibt sich nach dem Vereinfachen die gesuchte Parameterfunktion: +Wenn man die Koeffizienten \eqref{lambertw:eqKoeff1} und \eqref{lambertw:eqKoeff2} in die Funktion \eqref{lambertw:funkLoes} einsetzt, dann ergibt sich beim Vereinfachen die gesuchte Parameterfunktion \begin{equation} y(x) = - \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right). + \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(y_0-r_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right). \label{lambertw:eqAllgLoes} \end{equation} Damit die Funktion \eqref{lambertw:eqAllgLoes} trotzdem übersichtlich bleibt, wurden Anfangssteigung \(\eta\) und Anfangsentfernung \(r_0\) wie folgt definiert: @@ -316,27 +325,28 @@ In diesem Abschnitt werden algebraischen Umformungen ein wenig detaillierter als \subsubsection{Zeitabhängigkeit wiederherstellen \label{lambertw:subsubsection:ZeitabhWiederherst}} -Der erste Schritt ist es herauszufinden, wie die Zeitabhängigkeit wieder hineingebracht werden kann. Dafür greifen wir auf die letzte Gleichung zu, in welcher \(t\) noch enthalten war, und zwar DGL \eqref{lambertw:DGLmitT}, welche zur Übersichtlichkeit hier nochmals aufgeführt wird: +Der erste Schritt ist es herauszufinden, wie die Zeitabhängigkeit wieder hineingebracht werden kann. Dafür greifen wir auf die letzte Gleichung zu, in welcher \(t\) noch enthalten war, und zwar DGL \begin{equation} x y^{\prime} + t - y - = 0. + = 0 \label{lambertw:eqDGLmitTnochmals} \end{equation} +aus dem Abschnitt \eqref{lambertw:subsection:ZeitabhLoswerden}, welche zur Übersichtlichkeit hier nochmals aufgeführt wurde. Wie in \eqref{lambertw:eqDGLmitTnochmals} zu sehen ist, werden \(y\) und deren Ableitung \(y^{\prime}\) benötigt, diese sind: \begin{subequations} + \label{lambertw:eqFunkUndAbleit} \begin{align} + \label{lambertw:eqFunkUndAbleit1} y &= - \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right), \\ - \label{lambertw:eqFunkUndAbleit1} + \frac{1}{4}\left(\left(y_0+r_0\right)\eta+\left(y_0-r_0\right)\operatorname{ln}\left(\eta\right)-r_0+3y_0\right), \\ y^\prime &= - \frac{1}{2}\left(\left(y_0+r_0\right)\frac{x}{x_0^2}+\left(r_0-y_0\right)\frac{1}{x}\right). + \frac{1}{2}\left(\left(y_0+r_0\right)\frac{x}{x_0^2}+\left(y_0-r_0\right)\frac{1}{x}\right). \end{align} - \label{lambertw:eqFunkUndAbleit} \end{subequations} -Wenn man diese Gleichungen \ref{lambertw:eqFunkUndAbleit} in die DGL \label{lambertw:eqDGLmitTnochmals} einfügt, vereinfacht und nach \(t\) auflöst, dann ergibt sich folgenden Ausdruck: +Wenn man diese Gleichungen \eqref{lambertw:eqFunkUndAbleit} in die DGL \eqref{lambertw:eqDGLmitTnochmals} einfügt, vereinfacht und nach \(t\) auflöst, dann ergibt sich der Ausdruck \begin{equation} -4t = @@ -348,17 +358,20 @@ Wenn man diese Gleichungen \ref{lambertw:eqFunkUndAbleit} in die DGL \label{lamb \label{lambertw:subsubsection:UmformBisZumZiel}} Mit dem Ausdruck \eqref{lambertw:eqFunkUndAbleitEingefuegt}, welcher Terme mit \(x\) und \(t\) verbindet, kann nun nach der gesuchten Variable \(x\) aufgelöst werden. - -In einem nächsten Schritt wird alles mit \(x\) auf die eine Seite gebracht, der Rest auf die andere Seite und anschliessend beidseitig exponentiert, was wie folgt aussieht: -\begin{align} +In einem nächsten Schritt wird alles mit \(x\) auf die eine Seite gebracht, der Rest auf die andere Seite und anschliessend beidseitig exponenziert, sodass man +\begin{equation} -4t+\left(y_0+r_0\right) - &= - \left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right), \\ + = + \left(y_0+r_0\right)\eta+\left(r_0-y_0\right)\operatorname{ln}\left(\eta\right) +\end{equation} +und anschliessend +\begin{equation} e^{\displaystyle -4t+\left(y_0+r_0\right)} - &= - e^{\displaystyle \left(y_0+r_0\right)\eta}\cdot\eta^{\displaystyle \left(r_0-y_0\right)}. + = + e^{\displaystyle \left(y_0+r_0\right)\eta}\cdot\eta^{\displaystyle \left(r_0-y_0\right)} \label{lambertw:eqMitExp} -\end{align} +\end{equation} +erhält. Auf dem rechten Term von \eqref{lambertw:eqMitExp} beginnen wir langsam eine ähnliche Struktur wie \(\eta e^\eta\) zu erkennen, dies schreit nach der Struktur die benötigt wird um \(\eta\) mittels der Lambert-\(W\)-Funktion \(W(x)\) zu erhalten. Dies macht durchaus Sinn, wenn wir die Funktion \(x(t)\) finden wollen und \(W(x)\) die Umkehrfunktion von \(x e^x\) ist. Die erste Sache die uns in \eqref{lambertw:eqMitExp} stört ist, dass \(\eta\) als Potenz da steht. Dieses Problem können wir loswerden, indem wir beidseitig mit \(\:\displaystyle \frac{1}{r_0-y_0}\:\) potenzieren: @@ -368,30 +381,32 @@ Die erste Sache die uns in \eqref{lambertw:eqMitExp} stört ist, dass \(\eta\) a \eta\cdot \operatorname{exp}\left(\displaystyle \frac{y_0+r_0}{r_0-y_0}\eta\right). \label{lambertw:eqOhnePotenz} \end{equation} -Das nächste Problem auf welches wir in \eqref{lambertw:eqOhnePotenz} treffen ist, dass \(\eta\) nicht alleine im Exponent steht. Dies kann elegant mit folgender Substitution gelöst werden: +Das nächste Problem auf welches wir in \eqref{lambertw:eqOhnePotenz} treffen ist, dass \(\eta\) nicht alleine im Exponent steht. Dies kann elegant mit der Substitution \begin{equation} \chi = - \frac{y_0+r_0}{r_0-y_0}. + \frac{y_0+r_0}{r_0-y_0} \label{lambertw:eqChiSubst} \end{equation} +gelöst werden. Es gäbe natürlich andere Substitutionen wie z.B. \[\displaystyle \chi=\frac{y_0+r_0}{r_0-y_0}\cdot\eta,\] -die auf dasselbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir folgende Gleichung: +die auf dasselbe Ergebnis führen würden, aber \eqref{lambertw:eqChiSubst} liefert in einem Schritt die kompakteste Lösung. Also fahren wir mit der Substitution \eqref{lambertw:eqChiSubst} weiter, setzen diese in die Gleichung \eqref{lambertw:eqOhnePotenz} ein und multiplizieren beidseitig mit \(\chi\). Daraus erhalten wir die Gleichung \begin{equation} \chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right) = \chi\eta\cdot e^{\displaystyle \chi\eta}. \label{lambertw:eqNachSubst} \end{equation} -Nun sind wir endlich soweit, dass wir die angedeutete Lambert-\(W\)-Funktion \(W(x)\)einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir folgenden Ausdruck: +Nun sind wir endlich soweit, dass wir die angedeutete Lambert-\(W\)-Funktion \(W(x)\) einsetzen können. Wenn wir beidseitig \(W(x)\) anwenden, dann erhalten wir den Ausdruck \begin{equation} W\left(\chi\cdot \operatorname{exp}\left(\displaystyle \chi-\frac{4t}{r_0-y_0}\right)\right) = \chi\eta. \end{equation} -Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir die gesuchte \(x(t)\)-Funktion \eqref{lambertw:eqFunkXNachT}. Dieses \(x(t)\) in Kombination mit \eqref{lambertw:eqFunkUndAbleit1} liefert die Position des Verfolgers zu jedem Zeitpunkt. Das Gleichungspaar \eqref{lambertw:eqFunktionenNachT}, besteht aus folgenden Gleichungen: +Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir die gesuchte \(x(t)\)-Funktion \eqref{lambertw:eqFunkXNachT}. Dieses \(x(t)\) in Kombination mit \eqref{lambertw:eqFunkUndAbleit1} liefert die Position des Verfolgers zu jedem Zeitpunkt. Das Gleichungspaar besteht also aus den Gleichungen \begin{subequations} + \label{lambertw:eqFunktionenNachT} \begin{align} \label{lambertw:eqFunkXNachT} x(t) @@ -402,15 +417,14 @@ Nach dem Auflösen nach \(x\) welches in \(\eta\) enthalten ist, erhalten wir di = y(t) &= - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right). + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right). \end{align} - \label{lambertw:eqFunktionenNachT} \end{subequations} Nun haben wir unser letztes Ziel erreicht und sind in der Lage eine Verfolgung rechnerisch sowie graphisch zu repräsentieren. \subsubsection{Hinweise zur Lambert-\(W\)-Funktion \label{lambertw:subsubsection:HinwLambertW}} -Wir sind aber noch nicht ganz fertig, eine Frage muss noch beantwortet werden. Und zwar wieso, dass man schon bei der Gleichung \eqref{lambertw:eqFunkUndAbleitEingefuegt} weiss, dass die Lambert-\(W\)-Funktion zum Einsatz kommen wird. +Wir sind aber noch nicht ganz fertig, eine Frage muss noch beantwortet werden. Und zwar wieso, man schon bei der Gleichung \eqref{lambertw:eqFunkUndAbleitEingefuegt} weiss, dass die Lambert-\(W\)-Funktion zum Einsatz kommen wird. Nun, der Grund dafür ist die Struktur \begin{equation} y @@ -420,4 +434,4 @@ Nun, der Grund dafür ist die Struktur \end{equation} bei welcher \(p(x)\) eine beliebige Potenz von \(x\) darstellt. -Jedes Mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oftmals vorkommt, was die Lambert-\(W\)-Funktion so wichtig macht. \ No newline at end of file +Jedes Mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oft vorkommt, was die Lambert-\(W\)-Funktion so wichtig macht. \ No newline at end of file -- cgit v1.2.1 From 435a9b21bad8244ea81f63cf4254d85212942436 Mon Sep 17 00:00:00 2001 From: daHugen Date: Sun, 31 Jul 2022 18:14:56 +0200 Subject: Update also includes some changes in the pursuitcurve-picture --- buch/papers/lambertw/teil4.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/lambertw/teil4.tex b/buch/papers/lambertw/teil4.tex index 0050b61..1053dd1 100644 --- a/buch/papers/lambertw/teil4.tex +++ b/buch/papers/lambertw/teil4.tex @@ -434,4 +434,4 @@ Nun, der Grund dafür ist die Struktur \end{equation} bei welcher \(p(x)\) eine beliebige Potenz von \(x\) darstellt. -Jedes Mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oft vorkommt, was die Lambert-\(W\)-Funktion so wichtig macht. \ No newline at end of file +Jedes Mal wenn \(x\) gesucht ist und in einer Struktur der Art \eqref{lambertw:eqEinsatzLambW} vorkommt, dann kann mit ein paar Umformungen die Struktur \(f(x)e^{f(x)}\) erzielt werden. Wie bereits in diesem Abschnitt \ref{lambertw:subsection:FunkNachT} gezeigt wurde, kann \(x\) nun mittels der \(W(x)\)-Funktion aufgelöst werden. Erstaunlicherweise ist \eqref{lambertw:eqEinsatzLambW} eine Struktur die oft vorkommt, was die Lambert-\(W\)-Funktion so wichtig macht. \ No newline at end of file -- cgit v1.2.1 From ca43e5660ccbd3f4beaaa2073ce7dda05a80eff6 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Mon, 1 Aug 2022 19:58:09 +0200 Subject: Kugel: Introduction and preliminaries (not spherical harmonics, yet) --- buch/common/macros.tex | 4 + buch/papers/kugel/applications.tex | 9 + buch/papers/kugel/introduction.tex | 35 +++ buch/papers/kugel/main.tex | 37 +--- buch/papers/kugel/preliminaries.tex | 346 ++++++++++++++++++++++++++++++ buch/papers/kugel/references.bib | 226 ++++++++++++++++--- buch/papers/kugel/spherical-harmonics.tex | 13 ++ 7 files changed, 609 insertions(+), 61 deletions(-) create mode 100644 buch/papers/kugel/applications.tex create mode 100644 buch/papers/kugel/introduction.tex create mode 100644 buch/papers/kugel/preliminaries.tex create mode 100644 buch/papers/kugel/spherical-harmonics.tex (limited to 'buch') diff --git a/buch/common/macros.tex b/buch/common/macros.tex index bb6e9b0..e37698e 100644 --- a/buch/common/macros.tex +++ b/buch/common/macros.tex @@ -111,6 +111,10 @@ \newtheorem{forderung}{Forderung}[chapter] \newtheorem{konsequenz}[satz]{Konsequenz} \newtheorem{algorithmus}[satz]{Algorithmus} + +% English variants +\newtheorem{theorem}[satz]{Theorem} + \renewcommand{\floatpagefraction}{0.7} \definecolor{darkgreen}{rgb}{0,0.6,0} diff --git a/buch/papers/kugel/applications.tex b/buch/papers/kugel/applications.tex new file mode 100644 index 0000000..b2f227e --- /dev/null +++ b/buch/papers/kugel/applications.tex @@ -0,0 +1,9 @@ +% vim:ts=2 sw=2 et spell: + +\section{Applications} + +\subsection{Electroencephalography (EEG)} + +\subsection{Measuring Gravitational Fields} + +\subsection{Quantisation of Angular Momentum} diff --git a/buch/papers/kugel/introduction.tex b/buch/papers/kugel/introduction.tex new file mode 100644 index 0000000..5b09e9c --- /dev/null +++ b/buch/papers/kugel/introduction.tex @@ -0,0 +1,35 @@ +% vim:ts=2 sw=2 et spell tw=78: + +\section{Introduction} + +This chapter of the book is devoted to the sef of functions called +\emph{spherical harmonics}. However, before we dive into the topic, we want to +make a few preliminary remarks to avoid ``upsetting'' a certain type of +reader. Specifically, we would like to specify that the authors of this +chapter not mathematicians but engineers, and therefore the text will not be +always complete with sound proofs after every claim. Instead we will go +through the topic in a more intuitive way including rigorous proofs only if +they are enlightening or when they are very short. Where no proofs are given +we will try to give an intuition for why it is true. + +That being said, when talking about spherical harmonics one could start by +describing their name. The latter may be a cause of some confusion because of +the misleading translations in other languages. In German the name for this +set of functions is ``Kugelfunktionen'', which puts the emphasis only on the +spherical context, whereas the English name ``spherical harmonics'' also +contains the \emph{harmonic} part hinting at Fourier theories and harmonic +analysis in general. + +The structure of this chapter is organized in the following way. First, we +will quickly go through some fundamental linear algebra and Fourier theory to +refresh a few important concepts. In principle, we could have written the +whole thing starting from a much more abstract level without much preparation, +but then we would have lost some of the beauty that comes from the +appreciation of the power of some surprisingly simple ideas. Then once the +basics are done, we can explore the main topic of spherical harmonics which as +we will see arises from the eigenfunctions of the Laplacian operator in +spherical coordinates. Finally, after studying what we think are the most +beautiful and interesting properties of the spherical harmonics, to conclude +this journey we will present a few real-world applications, which are of +course most of interest for engineers. + diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index 06368af..98d9cb2 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -1,39 +1,20 @@ -% +% vim:ts=2 sw=2 et: % main.tex -- Paper zum Thema % % (c) 2020 Hochschule Rapperswil % -\chapter{Recurrence Relations for Spherical Harmonics in Quantum Mechanics\label{chapter:kugel}} -\lhead{Recurrence Relations in Quantum Mechanics} +\begin{otherlanguage}{english} +\chapter{Spherical Harmonics\label{chapter:kugel}} +\lhead{Spherical Harmonics} \begin{refsection} \chapterauthor{Manuel Cattaneo, Naoki Pross} -\begin{verbatim} - -Ideas and current research goals --------------------------------- - -- Recurrence relations for spherical harmonics -- Associated Legendre polynomials -- Rodrigues' type formula aka Rodrigues' formula -- Applications: - * Quantization of angular momentum - * Gravitational field measurements (NASA ebb and flow, ESA goce) - * Literally anything that needs basis functions on the surface of a sphere - -Literature ----------- - -- Nichtkommutative Bildverarbeitung, T. Mendez, p57+ -- Linear Algebra Done Right, S. Axler, p212,221,231,237 -- Introduction to Quantum Mechanics, D. J. Griffith, p201+ -- Seminar Quantenmechanik, A. Müller, p101,106,114,121 -- Introduction to Partial Differential Equations, J. Oliver, p510+ -- Partial Differential Equations in Engineering Problems, K. Miller, p175,190 - -\end{verbatim} - +\input{papers/kugel/introduction} +\input{papers/kugel/preliminaries} +\input{papers/kugel/spherical-harmonics} +\input{papers/kugel/applications} \printbibliography[heading=subbibliography] \end{refsection} +\end{otherlanguage} diff --git a/buch/papers/kugel/preliminaries.tex b/buch/papers/kugel/preliminaries.tex new file mode 100644 index 0000000..03cd421 --- /dev/null +++ b/buch/papers/kugel/preliminaries.tex @@ -0,0 +1,346 @@ +% vim:ts=2 sw=2 et spell tw=78: + +\section{Preliminaries} + +The purpose of this section is to dust off some concepts that will become +important later on. This will enable us to be able to get a richer and more +general view of the topic than just liming ourselves to a specific example. + +\subsection{Vectors and inner product spaces} + +We shall start with a few fundamentals of linear algebra. We will mostly work +with complex numbers, but for the sake of generality we will do what most +textbook do, and write \(\mathbb{K}\) instead of \(\mathbb{C}\) since the +theory works the same when we replace \(\mathbb{K}\) with the real +numbers \(\mathbb{R}\). + +\begin{definition}[Vector space] + \label{kugel:def:vector-space} \nocite{axler_linear_2014} + A \emph{vector space} over a field \(\mathbb{K}\) is a set \(V\) with an + addition on \(V\) and a multiplication on \(V\) such that the following + properties hold: + \begin{enumerate}[(a)] + \item (Commutativity) \(u + v = v + u\) for all \(u, v \in V\); + \item (Associativity) \((u + v) + w = u + (v + w)\) and \((ab)v = a(bv)\) + for all \(u, v, w \in V\) and \(a, b \in \mathbb{K}\); + \item (Additive identity) There exists an element \(0 \in V\) such that + \(v + 0 = v\) for all \(v \in V\); + \item (Additive inverse) For every \(v \in V\), there exists a \(w \in V\) + such that \(v + w = 0\); + \item (Multiplicative identity) \(1 v = v\) for all \(v \in V\); + \item (Distributive properties) \(a(u + v) = au + av\) and \((a + b)v = av + + bv\) for all \(a, b \in \mathbb{K}\) and all \(u,v \in V\). + \end{enumerate} +\end{definition} + +\begin{definition}[Dot product] + \label{kugel:def:dot-product} + In the vector field \(\mathbb{K}^n\) the scalar or dot product between two + vectors \(u, v \in \mathbb{K}^n\) is + \( + u \cdot v + = u_1 \overline{v}_1 + u_2 \overline{v}_2 + \cdots + u_n \overline{v}_n + = \sum_{i=1}^n u_i \overline{v}_i. + \) +\end{definition} + +\texttt{TODO: Text here.} + +\begin{definition}[Span] +\end{definition} + +\texttt{TODO: Text here.} + +\begin{definition}[Linear independence] +\end{definition} + + +\texttt{TODO: Text here.} + +\begin{definition}[Basis] +\end{definition} + +\texttt{TODO: Text here.} + +\begin{definition}[Inner product] + \label{kugel:def:inner-product} \nocite{axler_linear_2014} + The \emph{inner product} on \(V\) is a function that takes each ordered pair + \((u, v)\) of elements of \(V\) to a number \(\langle u, v \rangle \in + \mathbb{K}\) and has the following properties: + \begin{enumerate}[(a)] + \item (Positivity) \(\langle v, v \rangle \geq 0\) for all \(v \in V\); + \item (Definiteness) \(\langle v, v \rangle = 0\) iff \(v = 0\); + \item (Additivity) \( + \langle u + v, w \rangle = + \langle u, w \rangle + \langle v, w \rangle + \) for all \(u, v, w \in V\); + \item (Homogeneity) \( + \langle \lambda u, v \rangle = + \lambda \langle u, v \rangle + \) for all \(\lambda \in \mathbb{K}\) and all \(u, v \in V\); + \item (Conjugate symmetry) + \(\langle u, v \rangle = \overline{\langle v, u \rangle}\) for all + \(u, v \in V\). + \end{enumerate} +\end{definition} + +This newly introduced inner product is thus a generalization of the scalar +product that does not explicitly depend on rows or columns of vectors. This +has the interesting consequence that anything that behaves according to the +rules given in definition \ref{kugel:def:inner-product} \emph{is} an inner +product. For example if we say that the vector space \(V = \mathbb{R}^n\), +then the dot product defined in definition \ref{kugel:def:dot-product} +\( + u \cdot v = u_1 \overline{v}_1 + u_2 \overline{v}_2 + \cdots + u_n \overline{v}_n +\) +is an inner product in \(V\), and the two are said to form an \emph{inner +product space}. + +\begin{definition}[Inner product space] + \nocite{axler_linear_2014} + An inner product space is a vector space \(V\) equipped with an inner + product on \(V\). +\end{definition} + +How about a more interesting example: the set of continuous complex valued +functions on the interval \([0; 1]\) can behave like vectors. Functions can +be added, subtracted, multiplied with scalars, are associative and there is +even the identity element (zero function \(f(x) = 0\)), so we can create an +inner product +\[ + \langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} \, dx, +\] +which will indeed satisfy all of the rules for an inner product (in fact this +is called the Hermitian inner product\nocite{allard_mathematics_2009}). If +this last step sounds too good to be true, you are right, because it is not +quite so simple. The problem that we have swept under the rug here is +convergence, which any student who took an analysis class will know is a +rather hairy question. We will not need to go too much into the details since +formally discussing convergence is definitely beyond the scope of this text, +however, for our purposes we will still need to dig a little deeper for a few +more paragraph. + +\subsection{Convergence} + +In the last section we hinted that we can create ``infinite-dimensional'' +vector spaces using functions as vectors, and inner product spaces by +integrating the product of two functions of said vector space. However, there +is a problem with convergence which twofold: the obvious problem is that the +integral of the inner product may not always converge, while the second is a +bit more subtle and will be discussed later. The inner product that does +not converge is a problem because we want a \emph{norm}. + +\begin{definition}[\(L^2\) Norm] + \nocite{axler_linear_2014} + The norm of a vector \(v\) of an inner product space is a number + denoted as \(\| v \|\) that is computed by \(\| v \| = \sqrt{\langle v, v + \rangle}\). +\end{definition} + +In \(\mathbb{R}^n\) with the dot product (Euclidian space) the norm is the +geometric length of a vector, while in a more general inner product space the +norm can be thought of as a more abstract measure of ``length''. In any case +it is rather important that the expression \(\sqrt{\langle v, v \rangle}\), +which when using functions \(f: \mathbb{R} \to \mathbb{C}\) becomes +\[ + \sqrt{\langle f, f \rangle} = + \sqrt{\int_\mathbb{R} f(x) \overline{f(x)} \, dx} = + \sqrt{\int_\mathbb{R} |f(x)|^2 \, dx}, +\] +always exists. So, to fix this problems we do what mathematicians do best: +make up the solution. Since the integrand under the square root is always the +square of the magnitude, we can just specify that the functions must be +\emph{absolutely square integrable}. To be more compact it is common to just +write \(f \in L^2\), where \(L^2\) denotes the set of absolutely square +integrable functions. + +Now we can tackle the second (much more difficult) problem of convergence +mentioned at the beginning. Using the technical jargon, we need that our inner +product space is what is called a \emph{complete metric space}, which just +means that we can measure distances. For the more motivated readers although +not really necessary we can also give a more formal definition, the others can +skip to the next section. + +\begin{definition}[Metric space] + \nocite{tao_analysis_2016} + A metric space \((X, d)\) is a space \(X\) of objects (called points), + together with a distance function or metric \(d: X \times X \to [0, + +\infty)\), which associates to each pair \(x, y\) of points in \(X\) a + non-negative real number \(d(x, y) \geq 0\). Furthermore, the metric must + satisfy the following four axioms: + \begin{enumerate}[(a)] + \item For any \(x\in X\), we have \(d(x, x) = 0\). + \item (Positivity) For any \emph{distinct} \(x, y \in X\), we have + \(d(x,y) > 0\). + \item (Symmetry) For any \(x,y \in X\), we have \(d(x, y) = d(y, x)\). + \item (Triangle inequality) For any \(x, y, z \in X\) we have + \(d(x, z) \leq d(x, y) + d(y, z)\). + \end{enumerate} +\end{definition} + +As is seen in the definition metric spaces are a very abstract concept and +rely on rather weak statements, which makes them very general. Now, the more +intimidating part is the \emph{completeness} which is defined as follows. + +\begin{definition}[Complete metric space] + \label{kugel:def:complete-metric-space} + A metric space \((X, d)\) is said to be \emph{complete} iff every Cauchy + sequence in \((X, d)\) is convergent in \((X, d)\). +\end{definition} + +To fully explain definition \ref{kugel:def:complete-metric-space} it would +take a few more pages, which would get a bit too heavy. So instead we will +give an informal explanation through an counterexample to get a feeling of +what is actually happening. Cauchy sequences is a rather fancy name for a +sequence for example of numbers that keep changing, but in a such a way that +at some point the change keeps getting smaller (the infamous +\(\varepsilon-\delta\) definition). For example consider the sequence of +numbers +\[ + 1, + 1.4, + 1.41, + 1.414, + 1.4142, + 1.41421, + \ldots +\] +in the metric space \((\mathbb{Q}, d)\) with \(d(x, y) = |x - y|\). Each +element of this sequence can be written with some fraction in \(\mathbb{Q}\), +but in \(\mathbb{R}\) the sequence is converging towards the number +\(\sqrt{2}\). However, \(\sqrt{2} \notin \mathbb{Q}\). Since we can find a +sequence of fractions whose distance's limit is not in \(\mathbb{Q}\), the +metric space \((\mathbb{Q}, d)\) is \emph{not} complete. Conversely, +\((\mathbb{R}, d)\) is a complete metric space since \(\sqrt{2} \in +\mathbb{R}\). + +Of course the analogy above also applies to vectors, i.e. if in an inner +product space \(V\) over a field \(\mathbb{K}\) all sequences of vectors have +a distance that is always in \(\mathbb{K}\), then \(V\) is also a complete +metric space. In the jargon, this particular case is what is known as a +Hilbert space, after the incredibly influential German mathematician David +Hilbert. + +\begin{definition}[Hilbert space] + A Hilbert space is a vector space \(H\) with an inner product \(\langle f, g + \rangle\) and a norm \(\sqrt{\langle f, f \rangle}\) defined such that \(H\) + turns into a complete metric space. +\end{definition} + +\subsection{Orthogonal basis and Fourier series} + +Now we finally have almost everything we need to get into the domain of +Fourier theory from the perspective of linear algebra. However, we still need +to briefly discuss the matter of orthogonality\footnote{See chapter +\ref{buch:chapter:orthogonalitaet} for more on orthogonality.} and +periodicity. Both should be very straightforward and already well known. + +\begin{definition}[Orthogonality and orthonormality] + \label{kugel:def:orthogonality} + In an inner product space \(V\) two vectors \(u, v \in V\) are said to be + \emph{orthogonal} if \(\langle u, v \rangle = 0\). Further, if both \(u\) + and \(v\) are of unit length, i.e. \(\| u \| = 1\) and \(\| v \| = 1\), then + they are said to be ortho\emph{normal}. +\end{definition} + +\begin{definition}[1-periodic function and \(C(\mathbb{R}/\mathbb{Z}; \mathbb{C})\)] + A function is said to be 1-periodic if \(f(x + 1) = f(x)\). The set of + 1-periodic function from the real to the complex + numbers is denoted by \(C(\mathbb{R}/\mathbb{Z}; \mathbb{C})\). +\end{definition} + +In the definition above the notation \(\mathbb{R}/\mathbb{Z}\) was borrowed +from group theory, and is what is known as a quotient group; Not really +relevant for our discussion but still a ``good to know''. More importantly, it +is worth noting that we could have also defined more generally \(L\)-periodic +functions with \(L\in\mathbb{R}\), however, this would introduce a few ugly +\(L\)'s everywhere which are not really necessary (it will always be possible +to extend the theorems to \(\mathbb{R} / L\mathbb{Z}\)). Thus, we will +continue without the \(L\)'s, and to simplify the language unless specified +otherwise ``periodic'' will mean 1-periodic. Having said that, we can +officially begin with the Fourier theory. + +\begin{lemma} + The subset of absolutely square integrable functions in + \(C(\mathbb{R}/\mathbb{Z}; \mathbb{C})\) together with the Hermitian inner + product + \[ + \langle f, g \rangle = \int_{[0; 1)} f(x) \overline{g(x)} \, dx + \] + form a Hilbert space. +\end{lemma} +\begin{proof} + It is not too difficult to show that the functions in \(C(\mathbb{R} / + \mathbb{Z}; \mathbb{C})\) are well behaved and form a vector space. Thus, + what remains is that the norm needs to form a complete metric space. + However, this follows from the fact that we defined the functions to be + absolutely square integrable\footnote{For the curious on why, it is because + \(L^2\) is what is known as a \emph{compact metric space}, and compact + metric spaces are always complete (see \cite{eck_metric_2022, + tao_analysis_2016}). To explain compactness and the relationship between + compactness and completeness is definitely beyond the goals of this text.}. +\end{proof} + +This was probably not a very satisfactory proof since we brushed off a lot of +details by referencing other theorems. However, the main takeaway should be +that we have ``constructed'' this new Hilbert space of functions in a such a +way that from now on we will not have to worry about the details of +convergence. + +\begin{lemma} + \label{kugel:lemma:exp-1d} + The set of functions \(E_n(x) = e^{i2\pi nx}\) on the interval + \([0; 1)\) with \(n \in \mathbb{Z} \) are orthonormal. +\end{lemma} +\begin{proof} + We need to show that \(\langle E_m, E_n \rangle\) equals 1 when \(m = n\) + and zero otherwise. This is a straightforward computation: We start by + unpacking the notation to get + \[ + \langle E_m, E_n \rangle + = \int_0^1 e^{i2\pi mx} e^{- i2\pi nx} \, dx + = \int_0^1 e^{i2\pi (m - n)x} \, dx, + \] + then inside the integrand we can see that when \(m = n\) we have \(e^0 = 1\) and + thus \( \int_0^1 dx = 1, \) while when \(m \neq n\) we can just say that we + have a new non-zero integer + \(k := m - n\) and + \[ + \int_0^1 e^{i2\pi kx} \, dx + = \frac{e^{i2\pi k} - e^{0}}{i2\pi k} + = \frac{1 - 1}{i2\pi k} + = 0 + \] + as desired. \qedhere +\end{proof} + +\begin{definition}[Spectrum] +\end{definition} + +\begin{theorem}[Fourier Theorem] + \[ + \lim_{N \to \infty} \left \| + f(x) - \sum_{n = -N}^N \hat{f}(n) E_n(x) + \right \|_2 = 0 + \] +\end{theorem} + +\begin{lemma} + The set of functions \(E_{m, n}(\xi, \eta) = e^{i2\pi m\xi}e^{i2\pi n\eta}\) + on the square \([0; 1)^2\) with \(m, n \in \mathbb{Z} \) are orthonormal. +\end{lemma} +\begin{proof} + The proof is almost identical to lemma \ref{kugel:lemma:exp-1d}, with the + only difference that the inner product is given by + \[ + \langle E_{m,n}, E_{m', n'} \rangle + = \iint_{[0;1)^2} + E_{m, n}(\xi, \eta) \overline{E_{m', n'} (\xi, \eta)} + \, d\xi d\eta + .\qedhere + \] +\end{proof} + +\subsection{Laplacian operator} + +\subsection{Eigenvalue Problem} diff --git a/buch/papers/kugel/references.bib b/buch/papers/kugel/references.bib index 013da60..b74c5cd 100644 --- a/buch/papers/kugel/references.bib +++ b/buch/papers/kugel/references.bib @@ -1,35 +1,195 @@ -% -% references.bib -- Bibliography file for the paper kugel -% -% (c) 2020 Autor, Hochschule Rapperswil -% - -@online{kugel:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} -} - -@book{kugel:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{kugel:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} + +@article{carvalhaes_surface_2015, + title = {The surface Laplacian technique in {EEG}: Theory and methods}, + volume = {97}, + issn = {01678760}, + url = {https://linkinghub.elsevier.com/retrieve/pii/S0167876015001749}, + doi = {10.1016/j.ijpsycho.2015.04.023}, + shorttitle = {The surface Laplacian technique in {EEG}}, + pages = {174--188}, + number = {3}, + journaltitle = {International Journal of Psychophysiology}, + shortjournal = {International Journal of Psychophysiology}, + author = {Carvalhaes, Claudio and de Barros, J. Acacio}, + urldate = {2022-05-16}, + date = {2015-09}, + langid = {english}, + file = {Submitted Version:/Users/npross/Zotero/storage/SN4YUNQC/Carvalhaes and de Barros - 2015 - The surface Laplacian technique in EEG Theory and.pdf:application/pdf}, +} + +@video{minutephysics_better_2021, + title = {A Better Way To Picture Atoms}, + url = {https://www.youtube.com/watch?v=W2Xb2GFK2yc}, + abstract = {Thanks to Google for sponsoring a portion of this video! +Support {MinutePhysics} on Patreon: http://www.patreon.com/minutephysics + +This video is about using Bohmian trajectories to visualize the wavefunctions of hydrogen orbitals, rendered in 3D using custom python code in Blender. + +{REFERENCES} +A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I +David Bohm, Physical Review, Vol 85 No. 2, January 15, 1952 + +Speakable and Unspeakable in Quantum Mechanics +J. S. Bell + +Trajectory construction of Dirac evolution +Peter Holland + +The de Broglie-Bohm Causal Interpretation of Quantum Mechanics and its Application to some Simple Systems by Caroline Colijn + +Bohmian Trajectories as the Foundation of Quantum Mechanics +http://arxiv.org/abs/0912.2666v1 + +The Pilot-Wave Perspective on Quantum Scattering and Tunneling +http://arxiv.org/abs/1210.7265v2 + +A Quantum Potential Description of One-Dimensional Time-Dependent Scattering From Square Barriers and Square Wells +Dewdney, Foundations of Physics, {VoL} 12, No. 1, 1982 + +Link to Patreon Supporters: http://www.minutephysics.com/supporters/ + +{MinutePhysics} is on twitter - @minutephysics +And facebook - http://facebook.com/minutephysics + +Minute Physics provides an energetic and entertaining view of old and new problems in physics -- all in a minute! + +Created by Henry Reich}, + author = {{minutephysics}}, + urldate = {2022-05-19}, + date = {2021-05-19}, +} + +@article{ries_role_2013, + title = {Role of the lateral prefrontal cortex in speech monitoring}, + volume = {7}, + issn = {1662-5161}, + url = {http://journal.frontiersin.org/article/10.3389/fnhum.2013.00703/abstract}, + doi = {10.3389/fnhum.2013.00703}, + journaltitle = {Frontiers in Human Neuroscience}, + shortjournal = {Front. Hum. Neurosci.}, + author = {Riès, Stephanie K. and Xie, Kira and Haaland, Kathleen Y. and Dronkers, Nina F. and Knight, Robert T.}, + urldate = {2022-05-16}, + date = {2013}, + file = {Full Text:/Users/npross/Zotero/storage/W7KTJB8E/Riès et al. - 2013 - Role of the lateral prefrontal cortex in speech mo.pdf:application/pdf}, +} + +@online{saylor_academy_atomic_2012, + title = {Atomic Orbitals and Their Energies}, + url = {http://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s10-05-atomic-orbitals-and-their-ener.html}, + author = {{Saylor Academy}}, + urldate = {2022-05-30}, + date = {2012}, + file = {Atomic Orbitals and Their Energies:/Users/npross/Zotero/storage/LJ8DM3YI/s10-05-atomic-orbitals-and-their-ener.html:text/html}, +} + +@inproceedings{schmitz_using_2012, + location = {Santa Clara, {CA}, {USA}}, + title = {Using spherical harmonics for modeling antenna patterns}, + isbn = {978-1-4577-1155-8 978-1-4577-1153-4 978-1-4577-1154-1}, + url = {http://ieeexplore.ieee.org/document/6175298/}, + doi = {10.1109/RWS.2012.6175298}, + eventtitle = {2012 {IEEE} Radio and Wireless Symposium ({RWS})}, + pages = {155--158}, + booktitle = {2012 {IEEE} Radio and Wireless Symposium}, + publisher = {{IEEE}}, + author = {Schmitz, Arne and Karolski, Thomas and Kobbelt, Leif}, + urldate = {2022-05-16}, + date = {2012-01}, +} + +@online{allard_mathematics_2009, + title = {Mathematics 203-204 - Basic Analysis I-{II}}, + url = {https://services.math.duke.edu/~wka/math204/}, + author = {Allard, William K.}, + urldate = {2022-07-25}, + date = {2009}, + file = {Mathematics 203-204 - Basic Analysis I-II:/Users/npross/Zotero/storage/LJISXBCM/math204.html:text/html}, +} + +@book{olver_introduction_2013, + location = {New York, {NY}}, + title = {Introduction to partial differential equations}, + isbn = {978-3-319-02098-3}, + publisher = {Springer Science+Business Media, {LLC}}, + author = {Olver, Peter J.}, + date = {2013}, +} + +@book{miller_partial_2020, + location = {Mineola, New York}, + title = {Partial differential equations in engineering problems}, + isbn = {978-0-486-84329-2}, + abstract = {"Requiring only an elementary knowledge of ordinary differential equations, this concise text begins by deriving common partial differential equations associated with vibration, heat flow, electricity, and elasticity. The treatment discusses and applies the techniques of Fourier analysis to these equations and extends the discussion to the Fourier integral. Final chapters discuss Legendre, Bessel, and Mathieu functions and the general structure of differential operators"--}, + publisher = {Dover Publications, Inc}, + author = {Miller, Kenneth S.}, + date = {2020}, + keywords = {Differential equations, Partial}, +} + +@book{asmar_complex_2018, + location = {Cham}, + title = {Complex analysis with applications}, + isbn = {978-3-319-94062-5}, + series = {Undergraduate texts in mathematics}, + pagetotal = {494}, + publisher = {Springer}, + author = {Asmar, Nakhlé H. and Grafakos, Loukas}, + date = {2018}, + doi = {10.1007/978-3-319-94063-2}, + file = {Table of Contents PDF:/Users/npross/Zotero/storage/G2Q2RDFU/Asmar and Grafakos - 2018 - Complex analysis with applications.pdf:application/pdf}, +} + +@book{adkins_ordinary_2012, + location = {New York}, + title = {Ordinary differential equations}, + isbn = {978-1-4614-3617-1}, + series = {Undergraduate texts in mathematics}, + pagetotal = {799}, + publisher = {Springer}, + author = {Adkins, William A. and Davidson, Mark G.}, + date = {2012}, + keywords = {Differential equations}, +} + +@book{griffiths_introduction_2015, + title = {Introduction to electrodynamics}, + isbn = {978-93-325-5044-5}, + author = {Griffiths, David J}, + date = {2015}, + note = {{OCLC}: 965197645}, +} + +@book{tao_analysis_2016, + title = {Analysis 2}, + isbn = {978-981-10-1804-6}, + url = {https://doi.org/10.1007/978-981-10-1804-6}, + author = {Tao, Terence}, + urldate = {2022-07-25}, + date = {2016}, + note = {{OCLC}: 965325026}, +} + +@book{axler_linear_2015, + location = {Cham}, + title = {Linear Algebra Done Right}, + isbn = {978-3-319-11079-0 978-3-319-11080-6}, + url = {https://link.springer.com/10.1007/978-3-319-11080-6}, + series = {Undergraduate Texts in Mathematics}, + publisher = {Springer International Publishing}, + author = {Axler, Sheldon}, + urldate = {2022-07-25}, + date = {2015}, + langid = {english}, + doi = {10.1007/978-3-319-11080-6}, + file = {Submitted Version:/Users/npross/Zotero/storage/3Y8MX74N/Axler - 2015 - Linear Algebra Done Right.pdf:application/pdf}, } +@online{eck_metric_2022, + title = {Metric Spaces: Completeness}, + url = {https://math.hws.edu/eck/metric-spaces/completeness.html}, + titleaddon = {Math 331: Foundations of Analysis}, + author = {Eck, David J.}, + urldate = {2022-08-01}, + date = {2022}, + file = {Metric Spaces\: Completeness:/Users/npross/Zotero/storage/5JYEE8NF/completeness.html:text/html}, +} \ No newline at end of file diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex new file mode 100644 index 0000000..6b23ce5 --- /dev/null +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -0,0 +1,13 @@ +% vim:ts=2 sw=2 et spell: + +\section{Spherical Harmonics} + +\subsection{Eigenvalue Problem in Spherical Coordinates} + +\subsection{Properties} + +\subsection{Recurrence Relations} + +\section{Series Expansions in \(C(S^2)\)} + +\nocite{olver_introduction_2013} -- cgit v1.2.1 From 3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Tue, 2 Aug 2022 14:51:41 +0200 Subject: =?UTF-8?q?=C3=A4nderungen=2002.08.2022=20andrea?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil1.tex | 54 +++++++++++++++++++------------------- buch/papers/kreismembran/teil2.tex | 45 +++++++++++++------------------ buch/papers/kreismembran/teil3.tex | 8 +++--- 3 files changed, 49 insertions(+), 58 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 39ca598..377ba48 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -30,37 +30,33 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d ergibt. Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. -Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. +Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ (r,\varphi,t) &\longmapsto u(r,\varphi,t) \end{align*} -Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013} -\begin{equation*} - u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0 -\end{equation*} -gilt. +Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben. -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} \subsection{Lösung\label{sub:lösung1}} +Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst. \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} -Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} -Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: +Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: \begin{equation*} - \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. + \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: \begin{align*} T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. @@ -72,14 +68,14 @@ In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rec \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} -Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also: +Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: \begin{equation*} G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} \subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} -Die Gleichung für $F$ hat die Gestalt +Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator}) \begin{align} r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} @@ -90,19 +86,9 @@ Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, \end{equation*} Lösungen der Besselschen Differenzialgleichung \begin{equation*} - x^2 y'' + xy' + (x^2 - \nu^2)y = 0 -\end{equation*} -Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die -Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion -$J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich -viele Nullstellen -\begin{equation*} - \alpha_{1n} < \alpha_{2n} < ... -\end{equation*} -haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass -\begin{equation*} - F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} + x^2 y'' + xy' + (\kappa^2 - \nu^2)y = 0 \end{equation*} +Die Funktionen $F(r) = J_n(\kappa r)$ lösen die Differentialgleichung \eqref{eq:2nd_degree_PDE}. \subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}} Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. @@ -115,7 +101,21 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung \end{align} Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. + +\begin{figure} + \centering + \includegraphics[width=\textwidth]{chapters/090-pde/bessel/pauke.pdf} + %\includegraphics{chapters/090-pde/bessel/pauke.pdf} + \caption{Vorzeichen der Lösungsfunktionen und Knotenlinien + für verschiedene Werte von $\mu$ und $k$. + Die Bereiche, in denen die Lösungsfunktion positiv sind, ist + rot dargestellt, die negativen Bereiche blau. + In jeder Darstellung gibt es genau $k+\mu$ Knotenlinien. + Die Radien der kreisförmigen Knotenlinien müssen aus den Nullstellen + der Besselfunktionen berechnet werden. + \label{buch:pde:kreis:fig:pauke}} +\end{figure} An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 6efda49..4fb139c 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -11,30 +11,30 @@ Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind. In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. -\subsubsection{Hankel-Transformation \label{subsub:hankel_tansformation}} +\subsubsection{Definition der Hankel-Transformation \label{subsub:hankel_tansformation}} Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Transformation und ihrer Umkehrung ein, die durch: \begin{align} - \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx dy,\label{equation:fourier_transform}\\ - \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) \; dx dy \label{equation:inv_fourier_transform} + \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\ + \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform} \end{align} -wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problemen am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi. \label{equation:F_ohne_variable_wechsel} \end{align} -Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: +Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha, \label{equation:F_ohne_bessel} \end{align} wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. -Unter Verwendung der Integraldarstellung der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} +Unter Verwendung der Integraldarstellung \begin{equation*} J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha \label{equation:bessel_n_ordnung} \end{equation*} -\eqref{equation:F_ohne_bessel} wird sie zu: + der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: \begin{align} F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), @@ -47,37 +47,28 @@ wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel-Transformation} von $f(r)$ und i \end{align} \subsubsection{Inverse Hankel-Transformation \label{subsub:inverse_hankel_tansformation}} -Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}: +Wie bei der Entwicklung der Hankel-Transformation können auch für die Umkehrformel Analogien zur Fourier-Transformation hergestellt werden. Vergleicht man die beiden Transformationen, so stellt man fest, dass sie sehr ähnlich sind, wenn man den Term $J_n(\kappa r)$ der Hankel-Transformation durch $e^{-i( \bm{\kappa}\cdot \mathbf{r})}$ der Fourier-Transformation ersetzt. Diese beide Funktionen sind orthogonal, und bei orthogonalen Matrizen genügt bekanntlich die Transponierung, um sie zu invertieren. Da das Skalarprodukt der Bessel-Funktionen jedoch nicht dasselbe ist wie das der Exponentialfunktionen, muss man durch $\kappa\; d\kappa$ statt nur durch $d\kappa$ integrieren, um die Umkehrfunktion zu erhalten. -\begin{align*} - e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa \; d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) \; d\phi \\ - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} \; d\phi, -\end{align*} -was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, - -\begin{align*} - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} \; d\alpha \\ - &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa, -\end{align*} - -von \eqref{equation:bessel_n_ordnung} also ist, die inverse \textit{Hankel-Transformation} so definiert: +Von \eqref{equation:hankel} also ist, die inverse \textit{Hankel-Transformation} so definiert: \begin{align} \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa. \label{equation:inv_hankel} \end{align} -Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. -\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. -Alternativ kann auch die berühmte Hankel-Transformationsformel verwendet werden, +Anstelle von $\tilde{f}_n(\kappa)$, wird häufig einfach $\tilde{f}(\kappa)$ für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. +Die Integrale \eqref{equation:hankel} und \eqref{equation:inv_hankel} existieren für bestimmte grosse Klassen von Funktionen, die normalerweise in physikalischen Anwendungen vorkommen. + +Alternativ dazu kann die berühmte Hankel-Integralformel \begin{align*} f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) \; d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) \; dp, \label{equation:hankel_integral_formula} \end{align*} -um die Hankel-Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. +verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Umkehrung \eqref{equation:inv_hankel} zu definieren. + Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. -\subsection{Operative Eigenschaften der Hankel-Transformation\label{sub:op_properties_hankel}} +\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}} In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. \begin{satz}{Skalierung:} @@ -88,7 +79,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation \end{equation*} \end{satz} -\begin{satz}{Persevalsche Relation (Skalarprodukt bleibt erhalten):} +\begin{satz}{Parsevalsche Relation:} Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: \begin{equation*} @@ -103,7 +94,7 @@ Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} -bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$. +vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$. \end{satz} \begin{satz} diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 7d5648a..014b6e6 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -40,7 +40,7 @@ bekommt man: \tilde{u}(\kappa,0)=\tilde{f}(\kappa), \quad \tilde{u}_t(\kappa,0)=\tilde{g}(\kappa). \end{equation*} -Die allgemeine Lösung für diese Transformation lautet, wie in Gleighung \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt +Die allgemeine Lösung für diese Gleichung lautet, wie in Abschnitt \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt \begin{equation*} \tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t). @@ -60,7 +60,7 @@ Es wird in Folgenden davon ausgegangen, dass sich die Membran verformt und zum Z \end{equation*} so dass $\tilde{g}(\kappa)\equiv 0$ und \begin{equation*} - \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa} + \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}. \end{equation*} Die formale Lösung \eqref{eq:formale_lösung} lautet also \begin{align*} @@ -68,7 +68,7 @@ Die formale Lösung \eqref{eq:formale_lösung} lautet also &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}} \end{align*} -Nimmt man jedoch die allgemeine Lösung mit Summationen, +Nimmt man jedoch die allgemeine Lösung durch Überlagerung, \begin{align} u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)] @@ -78,7 +78,7 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} -Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. +Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine, dato che abbiamo assunto che la soluzione è rotationssymmetrisch. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. -- cgit v1.2.1 From 8dc531ac53ae1b085482c9f1bda6001ca803c164 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Tue, 2 Aug 2022 21:14:53 +0200 Subject: Created python files for graphics. Created addtional subsection verlockende Intuition --- buch/papers/lambertw/Bilder/Abstand.py | 18 +++++ buch/papers/lambertw/Bilder/Intuition.pdf | Bin 0 -> 186972 bytes buch/papers/lambertw/Bilder/Strategie.pdf | Bin 120904 -> 151640 bytes buch/papers/lambertw/Bilder/Strategie.py | 2 +- buch/papers/lambertw/Bilder/konvergenz.py | 20 ++++++ .../Bilder/lambertAbstandBauchgef\303\274hl.py" | 58 ++++++++++++++++ buch/papers/lambertw/teil1.tex | 76 ++++++++++++++++++++- 7 files changed, 170 insertions(+), 4 deletions(-) create mode 100644 buch/papers/lambertw/Bilder/Abstand.py create mode 100644 buch/papers/lambertw/Bilder/Intuition.pdf create mode 100644 buch/papers/lambertw/Bilder/konvergenz.py create mode 100644 "buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/Abstand.py b/buch/papers/lambertw/Bilder/Abstand.py new file mode 100644 index 0000000..d787c34 --- /dev/null +++ b/buch/papers/lambertw/Bilder/Abstand.py @@ -0,0 +1,18 @@ +# -*- coding: utf-8 -*- +""" +Created on Sat Jul 30 23:09:33 2022 + +@author: yanik +""" + +import numpy as np +import matplotlib.pyplot as plt + +phi = np.pi/2 +t = np.linspace(0, 10, 10**5) +x0 = 1 + +def D(t): + return np.sqrt(x0**2+2*x0*t*np.cos(phi)+2*t**2-2*t**2*np.sin(phi)) + +plt.plot(t, D(t)) diff --git a/buch/papers/lambertw/Bilder/Intuition.pdf b/buch/papers/lambertw/Bilder/Intuition.pdf new file mode 100644 index 0000000..236212a Binary files /dev/null and b/buch/papers/lambertw/Bilder/Intuition.pdf differ diff --git a/buch/papers/lambertw/Bilder/Strategie.pdf b/buch/papers/lambertw/Bilder/Strategie.pdf index 0de3001..91442cc 100644 Binary files a/buch/papers/lambertw/Bilder/Strategie.pdf and b/buch/papers/lambertw/Bilder/Strategie.pdf differ diff --git a/buch/papers/lambertw/Bilder/Strategie.py b/buch/papers/lambertw/Bilder/Strategie.py index b9b41bf..28f7bcd 100644 --- a/buch/papers/lambertw/Bilder/Strategie.py +++ b/buch/papers/lambertw/Bilder/Strategie.py @@ -44,7 +44,7 @@ plt.rcParams.update({ "font.serif": ["New Century Schoolbook"], }) -ax.text(1.6, 4.3, r"$\vec{v}$", size=30) +ax.text(1.6, 4.3, r"$\dot{v}$", size=30) ax.text(0.6, 3.9, r"$V$", size=30, c='b') ax.text(5.1, 4.77, r"$Z$", size=30, c='b') diff --git a/buch/papers/lambertw/Bilder/konvergenz.py b/buch/papers/lambertw/Bilder/konvergenz.py new file mode 100644 index 0000000..dac99a7 --- /dev/null +++ b/buch/papers/lambertw/Bilder/konvergenz.py @@ -0,0 +1,20 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 14:34:13 2022 + +@author: yanik +""" + +import numpy as np +import matplotlib.pyplot as plt + +t = 0 +phi = np.linspace(np.pi/2, 3*np.pi/2, 10**5) +x0 = 1 +y0 = -2 + +def D(t): + return (x0+t*np.cos(phi))*np.cos(phi)+(y0+t*(np.sin(phi)-1))*(np.sin(phi)-1)/(np.sqrt((x0+t*np.cos(phi))**2+(y0+t*(np.sin(phi)-1))**2)) + + +plt.plot(phi, D(t)) \ No newline at end of file diff --git "a/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" "b/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" new file mode 100644 index 0000000..9031bfc --- /dev/null +++ "b/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" @@ -0,0 +1,58 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 31 13:32:53 2022 + +@author: yanik +""" + +import numpy as np +import matplotlib.pyplot as plt +import scipy.special as sci + +W = sci.lambertw + + +t = np.linspace(0, 1.2, 1000) +x0 = 1 +y0 = 1 + +r0 = np.sqrt(x0**2+y0**2) +chi = (r0+y0)/(r0-y0) + +x = x0*np.sqrt(1/chi*W(chi*np.exp(chi-4*t/(r0-y0)))) +eta = (x/x0)**2 +y = 1/4*((y0+r0)*eta+(y0-r0)*np.log(eta)-r0+3*y0) + +ymin= (min(y)).real +xmin = (x[np.where(y == ymin)][0]).real + + +#Verfolger +plt.plot(x, y, 'r--') +plt.plot(xmin, ymin, 'bo', markersize=10) + +#Ziel +plt.plot(np.zeros_like(t), t, 'g--') +plt.plot(0, ymin, 'bo', markersize=10) + + +plt.plot([0, xmin], [ymin, ymin], 'k--') +#plt.xlim(-0.1, 1) +#plt.ylim(1, 2) +#plt.ylabel("y") +#plt.xlabel("x") +plt.grid(True) +plt.quiver(xmin, ymin, -0.2, 0, scale=1) + +plt.text(xmin+0.1, ymin-0.1, "Verfolgungskurve", size=20, rotation=20, color='r') +plt.text(0.01, 0.02, "Fluchtkurve", size=20, rotation=90, color='g') + +plt.rcParams.update({ + "text.usetex": True, + "font.family": "serif", + "font.serif": ["New Century Schoolbook"], +}) + +plt.text(xmin-0.11, ymin-0.12, r"$\dot{v}$", size=30) +plt.text(xmin-0.02, ymin+0.05, r"$V$", size=30, c='b') +plt.text(0.02, ymin+0.05, r"$Z$", size=30, c='b') \ No newline at end of file diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2733759..2da07db 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -205,8 +205,78 @@ Durch quadrieren verschwindet die Wurzel des Betrages, womit % die neue Bedingung ist. Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage unverändert. - - - +% +\subsection{verleitende/trügerisch/verführerisch Intuition} +In der Grafik \ref{lambertw:grafic:intuition} ist eine Mögliche Verfolgungskurve dargestellt, wobei für die Startbedingung der erste-Quadrant verwendet wurde. +Als erste Intuition bietet sich der tiefste Punkt der Verfolgungskurve an, bei dem der y-Anteil des Richtungsvektors null entspricht. +Wenn sich der Verfolger an diesem Punkt befindet, muss zwingend das Ziel auf gleicher Höhe sein. +Es lässt sich vermuten, dass bei diesem Punkt der Abstand zum Ziel minimal sein könnte. +\begin{figure} + \centering + \includegraphics[scale=0.4]{./papers/lambertw/Bilder/Intuition.pdf} + \caption{Intuition} + \label{lambertw:grafic:intuition} +\end{figure} +% +Dies kann leicht überprüft werden, indem wir lokal alle relevanten benachbarten Punkte betrachten und das Vorzeichen der Änderung des Abstandes prüfen. +Dafür wird ein Ausdruck benötigt, der den Abstand und die benachbarten Punkte beschreibt. +Der Richtungsvektor wird allgemein mit dem Winkel $\alpha \in[ 0, 2\pi)$ +Die Ortsvektoren der Punkte können wiederum mit +\begin{align} + v + &= + t\cdot\left(\begin{array}{c} \cos (\alpha) \\ \sin (\alpha) \end{array}\right) +\left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) + \\ + z + &= + \left(\begin{array}{c} 0 \\ t \end{array}\right) +\end{align} +beschrieben werden. Der Verfolger wurde allgemein für jede Richtung $\alpha$ definiert, um alle unmittelbar benachbarten Punkte beschreiben zu können. +Da der Abstand +\begin{equation} + a + = + |v-z| + \geq + 0 +\end{equation} +ist, kann durch quadrieren ohne Informationsverlust die Rechnung vereinfacht werden zu +\begin{equation} + a^2 + = + |v-z|^2 + = + (t\cdot\cos(\alpha)+x_0)^2+t^2(\sin(\alpha)-1)^2 + \text{.} +\end{equation} +Der Abstand im Quadrat abgeleitet nach der Zeit ist +\begin{equation} + \frac{d a^2}{d t} + = + 2(t\cdot\cos (\alpha)+x_0)\cdot\cos(\alpha)(\alpha)+2t(\sin(\alpha)-1)^2 + \text{.} +\end{equation} +Da nur die unmittelbar benachbarten Punkten von Interesse sind, wird die Ableitung für $t=0$ untersucht. Dabei kann die Ableitung in +\begin{align} + \frac{d a^2}{d t} + &= + 2x_0\cos(\alpha) + \\ + \frac{d a^2}{d t} + &< + 0\Leftrightarrow\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right) + \\ + \frac{d a^2}{d t} + &> + 0\Leftrightarrow\alpha\in\left[0, \frac{\pi}{2}\right)\cup\left(\frac{3\pi}{2}, 2\pi\right) + \\ + \frac{d a^2}{d t} + &= + 0\Leftrightarrow\alpha\in\left\{ \frac{\pi}{2}, \frac{3\pi}{2}\right\} +\end{align} +unterteilt werden. +Von Interesse ist lediglich das Intervall $\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right)$, da der Verfolger sich stets in die negative $y$-Richtung bewegt. +In diesem Intervall ist die Ableitung negativ, woraus folgt, dass jeglicher unmittelbar benachbarte Punkt, den der Verfolger als nächstes begehen könnte, stets näher am Ziel ist als zuvor. +Dies bedeutet, dass der Scheitelpunkt der Verfolgungskurve nie ein lokales Minimum bezüglich des Abstandes sein kann. -- cgit v1.2.1 From f8ac7479589ae069c7a509cf9908f8e3dddd8451 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Wed, 3 Aug 2022 19:45:04 +0200 Subject: bessel labeled --- buch/chapters/075-fourier/bessel.tex | 3 +- buch/papers/fm/03_bessel.tex | 65 +- buch/papers/fm/Python animation/Bessel-FM.ipynb | 50 +- buch/papers/fm/Python animation/bessel.pgf | 2057 +++++++++++++++++++++++ buch/papers/fm/packages.tex | 1 + 5 files changed, 2116 insertions(+), 60 deletions(-) create mode 100644 buch/papers/fm/Python animation/bessel.pgf (limited to 'buch') diff --git a/buch/chapters/075-fourier/bessel.tex b/buch/chapters/075-fourier/bessel.tex index 7e978f7..db7880b 100644 --- a/buch/chapters/075-fourier/bessel.tex +++ b/buch/chapters/075-fourier/bessel.tex @@ -454,7 +454,8 @@ Terme mit $\pm n$ können wegen \[ \left. \begin{aligned} -J_{-n}(\xi) &= (-1)^n J_n(\xi) +J_{-n}(\xi) &= (-1)^n J_n(\xi) +\label{buch:fourier:eqn:symetrie} \\ i^{-n}&=(-1)^n i^n \end{aligned} diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index 760cdc4..eec64f2 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -24,6 +24,7 @@ Das Ziel ist es unser moduliertes Signal mit der Besselfunktion so auszudrücken \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) \label{fm:eq:proof} \end{align} + \subsubsection{Hilfsmittel} Doch dazu brauchen wir die Hilfe der Additionsthoerme \begin{align} @@ -46,18 +47,18 @@ und die drei Besselfunktions indentitäten, \begin{align} \cos(\beta\sin\phi) &= - J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi) + J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos(2k\phi) \label{fm:eq:besselid1} \\ \sin(\beta\sin\phi) &= - J_0(\beta) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi) + 2\sum_{k=0}^\infty (-1)^k J_{2k+1}(\beta) \cos((2k+1)\phi) \label{fm:eq:besselid2} \\ J_{-n}(\beta) &= (-1)^n J_n(\beta) \label{fm:eq:besselid3} \end{align} -welche man im Kapitel (ref), ref, ref findet. +welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie}. \subsubsection{Anwenden des Additionstheorem} Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal @@ -66,26 +67,31 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal = \cos(\omega_c t + \beta\sin(\omega_mt)) = - \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)). + \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)). \label{fm:eq:start} \] + \subsubsection{Cos-Teil} Zu beginn wird der Cos-Teil \[ - \cos(\omega_c)\cos(\beta\sin(\omega_mt)) + \cos(\omega_c t)\cdot\cos(\beta\sin(\omega_mt)) \] mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum \begin{align*} - \cos(\omega_c t) \cdot \bigg[\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] - &=\\ - J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) - \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} + \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] + &= + (-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} \end{align*} wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum -\[ - J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k \omega_m) t)+\cos((\omega_c + 2k \omega_m) t) \} -\] -wird. +\begin{align*} + J_0(\beta) \cdot \cos(\omega_c t) +(-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \} + \\ + = + (-1)^k \cdot \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)} + \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m) + \,+\, (-1)^k \cdot\sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t) +\end{align*} + Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term \[ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t), @@ -96,22 +102,32 @@ dabei gehen nun die Terme von \(-\infty \to \infty\), dabei bleibt n Ganzzahlig. \subsubsection{Sin-Teil} Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ - \sin(\omega_c)\sin(\beta\sin(\omega_m t)). + -\sin(\omega_c t)\cdot\sin(\beta\sin(\omega_m t)). \] Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu \begin{align*} - \sin(\omega_c t) \cdot \bigg[ J_0(\beta) + 2 \sum_{k=1}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] - &=\\ - J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. + -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty(-1)^k \cdot J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] + \\ + = + (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. \end{align*} Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), somit wird daraus -\[ - J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{\text{neg.Teil}} - \cos((\omega_c+(2k+1)\omega_m) t) \} -\]dieser Term. -Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. +\begin{align*} + (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c - (2k+1)\omega_m) t)} \,-\, \cos((\omega_c+(2k+1)\omega_m) t) \} + \\ + = + (-1)^k \cdot -\sum_{k=- \infty}^{-1} J_{2k+1}(\beta) \overbrace{\cos((\omega_c + (2k+1)\omega_m) t)} + \,-\, (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((\omega_c + (2k+1)\omega_m) t) +\end{align*} +dieser Term. Zusätzlich dabei noch die letzte Besselindentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). -Somit wird neg.Teil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\) und die Summe vereinfacht sich zu +Somit wird neg.Teil zum Term +\[ + (-1)^k \cdot \sum_{k= \infty}^{1} -1 \cdot J_{2k+1}(\beta) \cos((\omega_c+(2k+1)\omega_m) t). +\] +TODO (jetzt habe ich zwei Summen die immer positiv sind? ) +Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert vereinfacht sich die Summe zu \[ \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} @@ -122,7 +138,8 @@ Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. Beide Teile \eqref{fm:eq:gerade} Gerade \[ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) -\]und \eqref{fm:eq:ungerade} Ungerade +\] +und \eqref{fm:eq:ungerade} Ungerade \[ \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) \] @@ -140,7 +157,7 @@ Somit ist \eqref{fm:eq:proof} bewiesen. Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering -% \input{./PyPython animation/bessel.pgf} + \input{papers/fm/Python animation/bessel.pgf} \caption{Bessle Funktion \(J_{k}(\beta)\)} \label{fig:bessel} \end{figure} diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb index 6f099a7..74f1011 100644 --- a/buch/papers/fm/Python animation/Bessel-FM.ipynb +++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ "import scipy.fftpack\n", "import matplotlib as mpl\n", "# Use the pgf backend (must be set before pyplot imported)\n", - "#mpl.use('pgf')\n", + "mpl.use('pgf')\n", "import matplotlib.pyplot as plt\n", "from matplotlib.widgets import Slider\n", "def fm(beta):\n", @@ -70,39 +70,26 @@ "xf = fftfreq(N, 1 / 1000)\n", "plt.plot(xf, np.abs(yf_old))\n", "#plt.xlim(-150, 150)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAArlElEQVR4nO3de3hcd33n8fd3LhpdLcmSbCeyHduxA3EgQFCTQIGyBdqk3SYhhTZ5nrbwbLcuC25Z2rINS0lz6e62tKWFNg2kTbZQSFNKC2uIwdwSaAsmdi7EcRI7iuNYdnyRbV0sS5rb+e4fc0Y+UiTN7xxrJI3O9/U8tmfOnDPnMtZnfvqe3/kdUVWMMcbEQ2KhN8AYY8z8sdA3xpgYsdA3xpgYsdA3xpgYsdA3xpgYSS3Uijs7O3XdunULtXpjjKlJjz766ElV7Yq6/IKF/rp169i9e/dCrd4YY2qSiLx4PstbeccYY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt8YY2LEQt9Ulary7A+PUsgXF3pTlqTceIH9jxxb6M0wNcRC31TVi0+d4juffYadXz6w0JuyJD38+Wf51n1P03/ozEJviqkRFvqmqnLjBQBGh7MLvCVL08hg6bjms/ablHHjFPoico2I7BORXhG5ZZrX/0JEnvD/7BeRwTnfUmOMMeet4tg7IpIE7gLeARwGdonINlV9ujyPqn4oMP9vAa+rwraaWmR345wndqCNG5eW/pVAr6oeUNUc8ABw/Szz3wz841xsnDHGmLnlEvrdQF/g+WF/2suIyEXAeuC7M7y+RUR2i8ju/v7+sNtqapEs9AbEhR1o42auT+TeBHxJVac9q6Sq96hqj6r2dHVFHg7aGGNMRC6hfwRYE3i+2p82nZuw0o4xxixaLqG/C9gkIutFpI5SsG+bOpOIvBJoB344t5tojDFmrlQMfVUtAFuBHcAzwBdVda+I3CEi1wVmvQl4QFWtG4ExxixSTrdLVNXtwPYp026d8vy2udssY4wx1WBX5BpjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6Jvqsr5c88QOtHFjoW/mh9gwAcYsBhb6xhgTIxb6xhgTIxb6xhgTIxb6Zn7Y6BzGLAoW+qa67PztPLEDbdxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6BtjTIxY6Jvqsu7588QOtHFjoW/mhw24VlV27Ztx5RT6InKNiOwTkV4RuWWGeX5JRJ4Wkb0icv/cbqYxZlYW+sZRxRuji0gSuAt4B3AY2CUi21T16cA8m4CPAD+pqgMisqJaG2yMeTnLfOPKpaV/JdCrqgdUNQc8AFw/ZZ7fAO5S1QEAVT0xt5tpjJmV1XeMI5fQ7wb6As8P+9OCLgEuEZH/EJGdInLNdG8kIltEZLeI7O7v74+2xcaYl7HIN67m6kRuCtgEvBW4GfhbEWmbOpOq3qOqPara09XVNUerNsZY6htXLqF/BFgTeL7anxZ0GNimqnlVfQHYT+lLwBgzHyz0jSOX0N8FbBKR9SJSB9wEbJsyz1cotfIRkU5K5Z4Dc7eZxpjZqKW+cVQx9FW1AGwFdgDPAF9U1b0icoeIXOfPtgM4JSJPAw8BH1bVU9XaaFOD7ERjddnhNY4qdtkEUNXtwPYp024NPFbgd/w/xpxj12TNC8t848quyDVmKbDUN44s9E11WRjNC7XymXFkoW/mh429U12W+caRhb6pKmuAzg87zMaVhb4xS4F9uxpHFvqmuiyM5oUdZuPKQt9UlWWRMYuLhb6pLkv9+WHH2Tiy0DdVZWWH+WHDMBhXFvqmyiyM5oUdZuPIQt9UlbX054cdZ+PKQt8YY2LEQt9Ul7VA54UNw2BcWeibqrIwMmZxsdA3VWWZPz/sy9W4stA3poZJeSA7y3zjyELfVJe1QOeFHWbjykLfVJWFkTGLi1Poi8g1IrJPRHpF5JZpXn+viPSLyBP+n/8695tqjJmRfbsaRxXvkSsiSeAu4B3AYWCXiGxT1aenzPpPqrq1Cttoaphl0fyww2xcubT0rwR6VfWAquaAB4Drq7tZZumwOKqmiV47dpiNI5fQ7wb6As8P+9Om+kUReVJEviQia6Z7IxHZIiK7RWR3f39/hM01tcZa+vPDjrNxNVcncr8KrFPVy4FvAZ+dbiZVvUdVe1S1p6ura45WbRY1C6N5YgfauHEJ/SNAsOW+2p82QVVPqWrWf/p3wOvnZvOMMS6spW9cuYT+LmCTiKwXkTrgJmBbcAYRuSDw9DrgmbnbRFPL7EpRYxaXir13VLUgIluBHUASuE9V94rIHcBuVd0G/LaIXAcUgNPAe6u4zcaYqey71TiqGPoAqrod2D5l2q2Bxx8BPjK3m2aWAmvozw/7jcq4sityTVVZGFVXeewdO8zGlYW+qS4LI2MWFQt9Y5YCa+obRxb6pqqsvDM/7DAbVxb6xhgTIxb6pqqsBTo/7DgbVxb6prosjOaJHWjjxkLfVJmF0Xywlr5xZaFvqsrCaJ7YcTaOLPSNMSZGLPRNVVlLf35Y11jjykLfVJeFUVVZ2JuwLPRNVU1kkoVTVam30FtgaoWFvpkXFvnVMTHgmh1h48hC31SV3bh7ntjxNY4s9E11lTPfQsmYRcFC31SVTvPIzD07oWtcWeib6tIp/xpjFpSFvqkyDfxtqsUa+saVU+iLyDUisk9EekXkllnm+0URURHpmbtNNLVMraU/P+z4GkcVQ19EksBdwLXAZuBmEdk8zXwtwAeBH831RpoaNnEi11Kpuuz4GjcuLf0rgV5VPaCqOeAB4Ppp5rsT+BNgfA63zywiTz38bb78J7eHWsauzZofYY/vF2//CPt3/nt1NsYsai6h3w30BZ4f9qdNEJErgDWq+uBsbyQiW0Rkt4js7u/vD72xZmHtuPsvOfDYrnALWdovSn1P7+Grf/HHC70ZZgGc94lcEUkAnwB+t9K8qnqPqvaoak9XV9f5rtrUgInIt/CvqjCH10pt8eYS+keANYHnq/1pZS3Aq4CHReQgcDWwzU7mGuBcTX9ht2LpCxHkagP1xJpL6O8CNonIehGpA24CtpVfVNUhVe1U1XWqug7YCVynqrurssWmptgwDNVVPr6hWvqefRhxVjH0VbUAbAV2AM8AX1TVvSJyh4hcV+0NNDXOhmFYdNSzln6cpVxmUtXtwPYp026dYd63nv9mmaXChmGosghdYq28E292Ra6pLrs4q6qiXPxmJ3LjzULfhBYqNMo15yptiwl/fK2mH28W+ia8MKWECMsYd9Fa+lbeiTMLfROaF+ZEoJ3IrapzxzXEF7GdyI01C30TWqiThlXcDsO58pnV9I0jC30TWqjyQIRQMhGE6qdvLf04s9A34YU4EWhdNqsryrVv1tKPNwt9E1q4lv6Uf011WD9948hC34QWqcumhX5VaIQusdZlM94s9E1oYXrvWNjPkzC/fFlNP9Ys9E1oYULj3E1ULP2r4VxNP0x5xz6LOLPQN+FFKO+ErennDh0if+RI5RmXkNyhQ+QOh9xnuzjLhOQ04JoxQeFq+uVlwq3j+Z/5WQAuffaZcAvWsKN/+IckMvWs+fTdIZaymr4Jx0LfhBalvGPddyrzzo5CvhBqGRuGwYRl5R0Tmg3DUCXFIloIF/oTwnTZtBO5sWYtfRNeqGEYLO1dqedBPh9uGbs4y4RkoW9Ci3JxluWMg2IxfCs8QupbSz/eLPRNaGFOBJ6rOVvqV6JeMfKpD2vpG1dONX0RuUZE9olIr4jcMs3r7xORPSLyhIj8u4hsnvtNNYuFnQisEk/RiOWdSN1oTSxVDH0RSQJ3AdcCm4Gbpwn1+1X11ar6WuDjwCfmekPN4mHDMFRJsYgWwoV+Wbgum/alHWcuLf0rgV5VPaCqOeAB4PrgDKo6HHjahPXPW9Kiddk0lZRO5IbssumFr+mH6n1llhyXmn430Bd4fhi4aupMIvIB4HeAOuCnp3sjEdkCbAFYu3Zt2G01i0SoluLEiVyL/4qKxfDlnYkHNgyDcTNn/fRV9S5VvRj4feAPZpjnHlXtUdWerq6uuVq1mWeh7pxlAeNMPS98P/1Id86yln6cuYT+EWBN4Plqf9pMHgBuOI9tMotctYdhiO0XxXlcnBXqiNkwDLHmEvq7gE0isl5E6oCbgG3BGURkU+DpzwPPzd0mmsUmUk0/TM5EvSq1xqnnzUvvHWvpx1vFmr6qFkRkK7ADSAL3qepeEbkD2K2q24CtIvJ2IA8MAO+p5kabhRWlph8m9SMPRVDrisWJC7Qk4Vh5jTD2jp3IjTeni7NUdTuwfcq0WwOPPzjH22UWsSg1/VDlnZiG/sSxKhSQujq3ZaKMshnX8pkBbMA1E0GU8oCFvoNisfRvmBJPlHsQW0s/1iz0TWjVHoYhbF17qSiXzaJ86dmds4wrC30TWtVPBMa8pR/mSy/aePoW+nFmoW9Cq/YwDHEt70Rq6Vs/fROShb4JrdrDMMQ19Cda+iH2P8rxtd478Wahb0ILdY/VCMMwaMjxZ5YCVZ04waq5KCdyw/TZtPJOnFnom9DClAci1ZwjjjRZ0wKhHWb/o3TesfJOvFnom9Ai1fTDrCCO5Z1yd00It//l4xvmejk7kRtrFvomtFAt/XMLuS8Tw9APnieJ1mXVboxu3Fjom9DCDcMQvlUZx5p+sKUf6kRulPKZhX6sWeib0KJcnBW1y2ZcShGTW/phyjuT/nFbJCbH1EzPQt+EFulEYNQTuXFplQZb+qEuzgqf+hPLiLgvZJYMC30TWrgB1/x/w6RSsLwRPMG5hE1q6UfovRTqM4nLF6mZloW+CS1UP/0I9YdJ5Z24BFTEE7lRKjVW3ok3C30TWqjyTpRQysewpX++XTZtGAbjyELfhBZqGIbzPZEbx5Z+lYdhiM0xNdOy0DehRSkPhKo5B2vaMWnpRz2RG2UYhnJ5TrATuXFkoW9CC9fSj9Cn0Lpsui835V+nZay8E2sW+ia0SC39MPPGsKYf9eIszqPLZqgeVWbJcAp9EblGRPaJSK+I3DLN678jIk+LyJMi8h0RuWjuN9UsFpFO5EYchkGL8WiVRh6GIco5ExtlM9Yqhr6IJIG7gGuBzcDNIrJ5ymyPAz2qejnwJeDjc72hZvGIVN4J8/7Blq4Xk5Z+xH76kcY2issxNdNyaelfCfSq6gFVzQEPANcHZ1DVh1R11H+6E1g9t5tpFlowvKs/DMO50ItNSz+4n6HKO5P+cVskJudJzPRcQr8b6As8P+xPm8mvA1+f7gUR2SIiu0Vkd39/v/tWmoUXDP1IVwSFmDeWLf2IwzBEqO+UPz/rvRNPc3oiV0R+BegB/nS611X1HlXtUdWerq6uuVy1qbJJLf0IN1EJc9Jw0oncmPQpD7b0Iw24ZqNsGkcph3mOAGsCz1f70yYRkbcDHwV+SlWzc7N5ZrEIBn242yXaMAxOvKi9d8Kvyso78ebS0t8FbBKR9SJSB9wEbAvOICKvAz4DXKeqJ+Z+M81CmxT0Ve7nPam8EZMumxp1lM3yvzYMg3FUMfRVtQBsBXYAzwBfVNW9InKHiFznz/anQDPwzyLyhIhsm+HtTI0KBoVX7WEYAqEXn5Z+xFE2I9xFJTbH1EzLpbyDqm4Htk+Zdmvg8dvneLvMIqPnfSLXhmGYjUa9c9bLHjgsYxdnxZpdkWucBMs7Ufrph7siN35dNgmWz+br4ixVq+/HkIW+cTLpRG6Vu2xOqmnHssumW0s/amBPqulb6MeOhb5xMilgIt05K8S6YljTn9xl07GlP+kjCd9PP+xyZmmw0DdOguHrhWl9Rxl7Jx/De+RG6LIZNa4njfNjPXlix0LfuIk8DEP4OzuRDw64Fo/yzkRLP5FwP5E76TMJsS4v4jUXZkmw0DdOzr/3TohZY9zSl0zGubyjszybdbmIV1ebpcFC3ziZVFuv+jAMeaS+vvQ4Zi39RCbj3k8/2mmW8z8pb2qahb5xErmlH2UYhnyeRCZTehKXlr4fxJLJTCpvzb5M1FVFK9WZpcFC3ziZPPZOhCAOGfoSs9Av/0YTrrwT/CIOsS4r78Sahb5xEmwRRhqGIcy6CoWJ0I/PxVnl8k5diBO5wcfRbqJi5Z34sdA3TuZ1GIZ8nkR9uaUfl5q+39Kvy1S/y+akXj8x+VI1Eyz0jZPJV3FWfxgGyZRP5MYklPz9lPr6iBdnua9q8oip1tKPGwt94yTyyb/wg0D6vXdi1tL39zNMeWcuhmGw8k78WOgbJ1GDIkqklHrvxLSlXxeiy2ZApB5VWHknjiz0jRuNdiI3yr11gydy49LSn9RlMxe+vBOG51lLP84s9I2TqBdnTX4Tx9nyeSRT9/L1LmHl32gkTHkn+DjiPXKty2b8WOgbJ5N7fITpHhh47LqeQHmHuJR3Jmr6YU7kRh351C7OijMLfeMk6gU9GraLiR945RO5GpPyzrmWfogum5GHYbChlePMKfRF5BoR2ScivSJyyzSvv0VEHhORgoi8a+430yw0jVoH1mkfzjy7H/pxbelLpg48r7pjDll5J9Yqhr6IJIG7gGuBzcDNIrJ5ymyHgPcC98/1BprFYU6G43VYrNzKnRhwLWYt/YleSw6t/ckt9hDrst47sebS0r8S6FXVA6qaAx4Arg/OoKoHVfVJwP4HLVGTg8I9iCeFkUvol8s7/onc+LX0/bKWy6BrEc/kejaefqy5hH430Bd4ftifFpqIbBGR3SKyu7+/P8pbmAUS+YKekPXjc+Udv8tmTMoP5Rb3xJedQ1/9qOX4yZ9lPI6vOWdeT+Sq6j2q2qOqPV1dXfO5anOeJl2RG/HirDA1/dgOw1Dnd1V17cHjC/UFYCdyY80l9I8AawLPV/vTTIxEHlo5YnkndgOueUUQIVEO/ZA1/XDrOs9hsk1Ncwn9XcAmEVkvInXATcC26m6WWWyidvObXHZ2KO/4YZdobgbAGxt3Wk+2mGXrd7by/ODzzttWTXtP7eVDD32IgufY/XI8W6rnp1Kl567DK5eXj9pP31r6sVMx9FW1AGwFdgDPAF9U1b0icoeIXAcgIj8hIoeBdwOfEZG91dxoM/8mD7gWbRgGp9lz5fJOhkRzM8XhIaflnux/ku8d/h537rwz1Pqq5fce/j2+fejbHBlx+6W4ODREsq0NSacBx/JO2NqZb9IwGhb6sZNymUlVtwPbp0y7NfB4F6Wyj6kRXq6IpBJIQpzmD5Z3CrlstJWG6b2TriPZ2oo35Bb66UQpLHPFXLRtm2Pl7XBtSReHhki2tiKpcui7lHcCj0NsWyF37hiF+QLXogeeIulkiLWZxcauyI2pl279AacfeNZ5/nJ4JdNpsqOjzssV8oH6sct6JkI/TbK1lcLgoNt6/DJKthjxC2mOZb3SdowVxpzmLw4OlkI/XS7vuJzIPXdEi3n38M6NniVZ/o0iREv/5P/dy5GP/cB5frM4WejHULlUM/bkSfeF/BZhfXML2dGzbosUPfLjReoa/F8oXWr646WQTNRnSLa14Q26tfTL4brYWvrjRbdzEsWhwVJ5p9xPf6zyl0X5cNY1pMiOuvf2yY6OUt/c4r+H+5dFtnfQeV6zeFnox5DmwveIKbcI65uanUM/N1b0l/Fbrw6NysLJUwAkOzpJtrVSdCzvlMN10bT0/e0Yyzu29P3yTqqzE4DCqdPO66pvSlHIeRQLbgGeHT1LfVPpRLnrxVk2SNvSYaEfQ5o9F/reeLi7NGWamp3LO+N+6zPTmHbetoJ/0V6qs4NEq3vol1v6iyX0Pb8F7VLeUVW8wSGSbYHQd7h4ceIz8Y9vdtThPIDnkRsfI1MOfceWfnE4cB4gH49utEuVhX4MeYHQzx93C/ByONQ3NZEfH8Nz6D9fDqGGllLfc5eWaOHkSRItLSTq60m2tVEcGnI62VhuUeeL4e86VU2jhcrHV0dH0XyeZFsbyfZ2SCYpnKwc+l6hFPoNLeXQr7zv2bFRUKW+qam0bseafuHYud/ugo0GU3ss9GMo+ENbHHJrGZe7+ZXLArnRyi3YnB/6bSsbABgfqRxKhZMnSflXaydbW8Hz8EZGKi63mFr6wSB1qemXf5tJtrYiiQSpjg4KJyufbxnzj2fbykbAraWf839Lm6jpO/beCbb0PQv9mmahH0PBH1pvzK28M37mDADLVqwCIDtaOYjL5Z12P5RGhyufZC2c7J8ocSRb2wCcSjxjRf9ErpebKK0slGBJx6WmX96/RGsrAKnOTor9DqHvH8/2EKFfPh+zrGtl6T38z7WS4P8Ta+nXNgv9GAqeyHUN/bMDpROLy7tLl2O41PWzEy39UiiNnXEI/f5A6Le3laa5tHoDQXsm5xZk1TKYHZx47FLTL5+8TrW3A5Ds6nSq6Y/6x3OipT/mUN7xQ7/D/xzPDrqdMA7+P7GWfm2z0I8hjdDSHxk4TX1zC43LSq1Rlx48ubFy6Jfqxy4t/WL/SVJdpdDPbNhQep/nKw+tEGxRB0N3IQxkByYeu5R3ss/3AlDn72+qs9Pti25q6J91aemXvqxbV64ikUwxMhA+9K2lX9ss9GMo2FJTh5IAlFqEze3LJ2r6bi39PImU0NRWRyIpjJ2ZvSVaOHkSb3SU1AUXAJBevRppbGR83/6K6wq2qE+Nnao4fzUF1+/S0s/u20+ys5PU8uUApC+8kEJ/P8WR2b9YR4dzZJpSNDSXTpSHKe/UNzXT1N4+8RtcJV7gJHGULr9m8bDQj6FySy3ZlsFzKAlAqaXf1L6cusZyq9Klpl8g05hGRGhoqZsoR8xk7Mk9ADS8+tUASCJBZuNGsvtDhv54jYX+/v3UX7Jp4nnDq18Nqow/PfsQVmNncjS21JFMJ0ilE269d/zQzzQ20dy2PFRLP9lWunDMyju1zUI/hrxsqUWYbM2EKu80ty+f6PUx6jAQ2thwjvqmUnfChpZ0xZr+2J4nIZmk/tJLJ6bVv+ISss8+W7GXyXhxnBWNK4BF0NL3v3RWNKyoGPqay5Ht7SWz6ZKJafX+l974nj2zLjs6nJvoDlvfnHYqn40ND4EIdY1NNLUvd2/pB0Lfyju1zUI/hjRbROqSJBpTeI4X9IwODtDU1k5DcwvNyzvoP3ig4nL9h87QubpUDmpcVsfoUIXQf/wJMhs3kvB/mwBovOpqikNDjD3++OzLFsa4sOlCBFkULf3GVCPt9e0VQ//sD3+IZrM0vuHqiWmp9nbSa9Yw+tjs+zw6lKNxWSn0O1c303+o8gnsEwcPsPyCblLpdPjQb7WW/lJgoR9DXraIZJIkGlJOLf2BYy/hFYu0rix111y5YRPHDvTOuszZwSwjA1lWrlsGQEd3M6eOjJCfoR6cP36C0Uceofk/vXXS9Oa3/hSSTjP8jR2zrm8sP0ZTXRPt9e2LoqXf0dBBQ6qhYugP7/gmieZmmt74xknTm9/6Vs5+//szdlcdH8kz1D9GR3fpS3XFumUMHB8lW+HzPP78c6y8uFRKalu5ivGzI5w5XfmksTdaINGYQuoS1tKvcRb6MaS5IokQof/ik6UW59pXvRaAlRsuZuClw7P24Dn+wnBp3vWl0L9wUxteUTl+YPoQG/zSP4Pn0XbDDZOmJ5ubaXnH2xn6l3+hcHrmVulYYYyGZAPL65cveOifHjtNR30H9an6WUM/f/Qow1/9KsuuvXbijlllrTdcj+bzDH75y9Mu+5I/+NmFl7QBlL5cFU68ODzj+kYGTjMycJpVGzYCsPZVrwHg0J4fz7o/6ik6XiDRmEYySQv9GmehH0PFoRyJxhSJxjSaLaIVhuU9+OPHaF25ija/pb/m0lLNuXfXzhmX2ffIMTJNKTrXlFqiF25sQwT6nnl5cOePHOHUvffR/Pa3Ubdu3cte7/zAB/DGxzn+v/73jMMGnMmdoTHdSEdDx8KXd/yWflO6ieHs9CGsnsexO0o3fOl832++7PX6zZtpfMPVnLz709P22e97+jTJdIKVF5W+VFdtaCWVSbJ/57EZt2v/zv8AoPvSVwHQtXYdDctaeeGJR2fdH280DwqJhtL/mYLjVdxmcbLQXwLGxsYYGBioPCOlAdZyfWfIbGgl7dfbxw8Mzjj/yb4XOfD4bl5x9ZsmpnVfehkdq9fy6INfwSu+vNV38vAILzzRz2Vv6ibl33CjriHFuss72ftvL0303wconDpF3/s/gCQSrPz93592GzIXX0zXb/8Www8+yPE7/wgvN/ncQN9wHyfGTnBZx2WsalzFi8Mvkvccx+DZ/j/gax+afZ5/3QLfvs3p7cYL4xwZOcLKxpVc1nEZB4cPcnJscvnEGxvj6B98jJGHHmLFhz9Murv7Ze8jIqz66EfRbJa+D2ylGLivwNhIjmd3HmXjFStIpks/wnUNKV559Sr27z7O4DTjKRXyeR7/xjYu2PgKVq6/uLSORIJXvOFNPPej/2Dw+MxfFtnnS7+d1a1uJrO+ldwLQ6jjiJ6nTp0im7UvicXEQn8JuPfee/nkJz/pNHhWtncQPCWzqZ36i9uQTJKxPdPXdLOjo3z9rz9BpqGRnl+4cWK6iPCGd91M/4sv8PA//N2k9Q6fHOPrn9lDQ0sdr337mknv1/Nz68iOFXj4/n14+QJDX/0aL7zzRnIvvkj3J/+SujWT5w/q+M3fZPl73sPA/ffzwjtvZHjHNyfuI/uDl0o39njjhW/kp9f+NIPZQX5wxPFmH498BnbfN/PrqvDkP8G//4XT23330HcZK4zxtrVv443dpTr9zqOl34g0l2Poaw9y4PobGPrXf6Xz/f+N9l/9lRnfK7NxI91//mdkn3mGAze8k+Fv7KCYL/Ddzz1LsaBccc1Fk+Z//TUXkc4k+fpn9jAycO6iMM8r8p17/4bBY0d5w7tunrTMlTe8m0Qyxdfv+gT58ekvJBvbe5JEc5q6tcuov6QdzXtkX6jce6tYLPJXf/VXfP7zn684r5k/TrdLNIuX53mc9K/eHBgYYLl/gc+0844XGPrmQZKtGTIXLUNSCRov7+Lso8dp6llJZl3pattiocCBxx7h3+7/ewaPH+OGD3+MhpZlk97rFW94M0f2Pc3jX/8qxw88zxXX/hKnj7Wy53svkUgI/3nraya6E5Z1dia54nVpHtt1nNPf28nFe++nY3U7q+/+Gxouu2zW/RQRVn7kFpp+8o0cu+NOjnzwgyTb26m/+iqea3iMN61cyepEB92ru+mo7+BTj3+KK1ZeQUtdy8xvGhwXJzsCmeaXzzNyInAAPUjM3E4aGB/g7h/fTXdzNz2reigOD3NVfxtP3/uXvGbkW4zt/BHFoSHq1q9n7d//PU1XXzXrPgO0vO1tXPSFz3P0Y7fy7B/8Gb3/eJSBhrVcdVUdbcsn//g2t9dzzW+8igfv3sMXbvsRr33bapZ1nOSxBx/g2PPPcdU7f5n1r+uZ/P7LO7nm/f+dr33y43z+f36IN938a2x8/VWIv5/j+wcY23OS5p/sRhJCZmMbiaY0Q984SN1Fy0jUzXzrxBMnSseur68PVUXE7dacprrEpXUoItcAnwSSwN+p6h9PeT0DfA54PXAK+GVVPTjbe/b09Oju3bsjbrYp6+vr49577wXgxhtv5PLLL3/ZPMXhLOPPDXLmoT4Kp8fofO+rqL+kNM5L/sw4J/76cbwzBcZXZOnLPcdzvTsZGTpF28oL+Jn3/TZrNpdq+IVckbNDOc4OZTk7mGWof5TeRx7m6L5v4BXPgjTT0r6WjRtX0dWUoaFQJDN4Bj18mPyhQ+QOHgTP40j3Wziw8QbykmHluhbWXtbBinXL6FzdTFNrpuJ9e7VYZPihhzjwlS+Q/9FuWs6cKxeluroYb2/kSa+P8WX1dK9+Jd0rNtLZsYaGZe0kmpqQ+noklUbO9CFf/S1IKHLjp5ELLkOzWbxcjmRra+k3ib7d6Nd+F1TQG++Fxi688XG80VG80VHGzwxy8lQfL504QN/hvTQO53hNYi3pgRGKgaEUzrSmqbv6Sjbc+Ku0vPnNE6E64z56ypnT45x+6SzHDw7z4lMn6T80QkpzbNr/RS44+kNIJqlbs4b0xRvQCy8k29TIeCZN/0iW5w8c48zAIdCzJFItdG/+eTb+xJtpWV5PS0c9Ta0ZMo0p0pkkIsLBHz/Gd+67m8FjR2lp7eTSV76JVbKO+hMZksvr6Hzf5dS1lEZLHXvqJKe+8AypzgZa3rKa+s0dJJtefs+EXbt28eCDDwLw/ve/nxUrVsy6z8aNiDyqqj2V55xh+UqhLyJJYD/wDuAwsAu4WVWfDszzfuByVX2fiNwEvFNVf3m2933Npa/SHZ/7Z7QYuCMPpTrhpEESJy7K0Yk7L5WH+Z1001VVVLU0qTyjAnjnnvp3/Jl04wgt/ZmYpqDBN1bPfxudWJ9y7rE3aV3lTQncF9bzSuUP9VBP8TxFPQ+v4JVe87RUFy9qab88LW2nV3quXukYlObzKKqHh1JQj3GvwPMyyKjkKYqyvFjPhlwbzZqh3svQKA00SROZROmHdaQwxFPDj3Bi/BDFYpaCl8PzstQlGri8/S1c1HwZqUQaTz2yXp5xL8GYQs4T8gh5hYJCEcVT8AApZKkbO46M95LzjnM2WSSbSvjHUP1j5ZEkQTqdItXUSLqlBdJpxkeU8REo5AQlgUoSIYWkEyTqFElJ6XfRlOIlPArJHOOaY1xHGSwMkSVLOp3iJ1o2c6HXiDc0gA6cRs+OkD8zQPHMGdL5AqIeUCThKfj/x2RSSbr04QlKPpnESybJ5PL+FED8V8V/iOBJAiSBJhJ4kgRJkk8nSbYsI9XcijQ2Ia1tJFrbOSLDPD6yj0KxSD0NtCbbaZRG6rSOtKYQT5AiaB40qxTzxdL/gdKHDyjpjNLQDHWNimbHyQ0PUxgfxysUKaqCJBESiCRIiJApKE35BKnkSqjfwHjDKjSZJgEkBVIipUMrkBalTjzqE0K9eNQn0ogkyHtZDp55ij0D3yevOZKJDKlkPclEHSsbLuLSltfTkmoD4Kx3ljE9yyjj5BIFzibGeS59msFEloQKLdSxgXYaJEVShGQiQTKRKH3BJ4SECCQTJCQBidL5BkkIiaSApJCkkEgIkhS/UXDudREgkQQREH8+EUgkONd8SIBAIpGY+DxLs5eWkfK0hJQ+cAGRRHnWifcq/7Yi4r+Pv6yU11R+r0T5f0pp2sT/HPG3rbxh/jacm4+J95l4/+A0oPPVG6oe+m8AblPVn/WffwRAVf9PYJ4d/jw/FJEUcAzo0lne/MILL9QtW7ZE3W5jjIml22+//bxC36Wm3w30BZ4fBqYWIyfmUdWCiAwBHcCkM4QisgXYAnCBP6iWia7eS9NWbCClgqKMS56hZJZCYmHHkzcm7SVoLdZTr2kQoSAeA4lRsgm3YT9M9czriVxVvQe4B0o1/dtuu20+V2+MMTXv9ttvP6/lXbpsHgGCfelW+9Omnccv77RSOqFrjDFmEXEJ/V3AJhFZLyJ1wE3AtinzbAPe4z9+F/Dd2er5xhhjFkbF8o5fo98K7KDUZfM+Vd0rIncAu1V1G3Av8A8i0gucpvTFYIwxZpFxqumr6nZg+5RptwYejwPvnttNM8YYM9dsGAZjjIkRC31jjIkRC31jjIkRC31jjIkRpwHXqrJikTPAvgVZ+fzoZMoVyUvMUt6/pbxvYPtX616hqrMMHzu7hRxaed/5jB+x2InIbtu/2rSU9w1s/2qdiJzX8MRW3jHGmBix0DfGmBhZyNC/ZwHXPR9s/2rXUt43sP2rdee1fwt2ItcYY8z8s/KOMcbEiIW+McbESNVDX0TeLSJ7RcQTkZ7A9HUiMiYiT/h/Ph147fUiskdEekXkUyLBm0cuLjPtn//aR/x92CciPxuYfo0/rVdEbpn/rY5GRG4TkSOBz+znAq9Nu6+1plY/m9mIyEH/5+mJcnc/EVkuIt8Skef8f9sXejtdich9InJCRJ4KTJt2f6TkU/7n+aSIXLFwW17ZDPs2tz93Wr6heJX+AJcCrwAeBnoC09cBT82wzCPA1ZRuDfx14Npqb2cV9m8z8GMgA6wHnqc0NHXSf7wBqPPn2bzQ++G4r7cBvzfN9Gn3daG3N8L+1exnU2G/DgKdU6Z9HLjFf3wL8CcLvZ0h9uctwBXB/Jhpf4Cf8zNE/Ez50UJvf4R9m9Ofu6q39FX1GVV1vvJWRC4AlqnqTi3t2eeAG6q1fedrlv27HnhAVbOq+gLQC1zp/+lV1QOqmgMe8OetZTPta61Zip/NTK4HPus//iyL+GdsKlX9PqX7dgTNtD/XA5/Tkp1Am58xi9IM+zaTSD93C13TXy8ij4vI90Tkzf60bko3Xy877E+rNdPdUL57lum1Yqv/a/J9gZJAre9T2VLZj6kU+KaIPCoiW/xpK1X1qP/4GLByYTZtzsy0P0vlM52zn7s5GYZBRL4NrJrmpY+q6v+bYbGjwFpVPSUirwe+IiKXzcX2zLWI+1eTZttX4G7gTkohcifw58B/mb+tMxG9SVWPiMgK4Fsi8mzwRVVVEVkyfbeX2v4wxz93cxL6qvr2CMtkgaz/+FEReR64hNJN1lcHZp3uRuzzKsr+MfsN5SvdaH7BuO6riPwt8DX/6Wz7WkuWyn5MoqpH/H9PiMiXKZUAjovIBap61C93nFjQjTx/M+1PzX+mqnq8/Hgufu4WrLwjIl0ikvQfbwA2AQf8X9GGReRqv9fOrwG12JreBtwkIhkRWU9p/x7B7Ubzi9KUWug7gXIPg5n2tdbU7GczExFpEpGW8mPgZyh9btuA9/izvYfa/BkLmml/tgG/5vfiuRoYCpSBasKc/9zNw9nod1KqNWWB48AOf/ovAnuBJ4DHgF8ILNPj79jzwF/jXzm8GP/MtH/+ax/192EfgR5IlHoU7Pdf++hC70OIff0HYA/wpP8f7oJK+1prf2r1s5llfzZQ6uHxY//n7aP+9A7gO8BzwLeB5Qu9rSH26R8plYfz/s/er8+0P5R67dzlf557CPSwW4x/Zti3Of25s2EYjDEmRha6944xxph5ZKFvjDExYqFvjDExYqFvjDExYqFvjDExYqFvjDExYqFvjDEx8v8BZQ3srbL1gbMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ + "plt.show()\n", + "\n", "fm(1)" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 5, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.7651976865579666\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEKCAYAAADAVygjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACxq0lEQVR4nOydd3iUVfbHP3da2iSTnpAECBB6D70KSFOQJmJva++ru7quuru2tetv7V2xIEgRKYKA9N5rEkqAhIT0PjMp0+7vjyGUlGmZAOp8nicPZN773vckmXnPe+8553uElBIfPnz48OGjOVBcagN8+PDhw8cfF5+T8eHDhw8fzYbPyfjw4cOHj2bD52R8+PDhw0ez4XMyPnz48OGj2VBdagOam9DQUJmUlHSpzXCK0WgkKCjoUpvhFJ+d3sVnp3f5Pdj5e7ARYPfu3UVSyqimzvOHdzIxMTHs2rXrUpvhlHXr1jFixIhLbYZTfHZ6F5+d3uX3YOfvwUYAIUSmN+bxbZf58OHDh49mw+dkfPjw4cNHs+FzMj58+PDho9n4w8dkfPjw4cNdzGYz2dnZVFdXe31unU5HWlqa1+f1FH9/fxISElCr1c0yv8/J+PDhw0cdsrOzCQ4OJjExESGEV+fW6/UEBwd7dU5PkVJSXFxMdnY2bdq0aZZrXFbbZUKIr4QQBUKIQ40cF0KI94QQ6UKIA0KI5Ittow8fPv74VFdXExER4XUHc7khhCAiIqJZVmy1XFZOBpgJjHdw/Cqg/Zmve4GPL4JNPnz4+BPyR3cwtTT3z3lZbZdJKTcIIRIdDJkMfCvt/Qm2CSFChRAtpJS5F8dCHz6aTrWlms05mzlZfpJTFacILQilZ1TPP81NzcefC3G59ZM542SWSim7NXBsKfCalHLTme9XA/+QUu6qM+5e7CsdoqKi+sydO7fZ7W4qBoMBrVZ7qc1wis9Oz5FSstmwmaVlSzHajBccS1AncH3E9ST6JV4a45xwOf4+G8Jbdup0OppLKcRqtaJUKptl7ro899xzLF++HI1GQ5s2bfjoo48IDQ2tNy49PZ3y8vILXhs5cuRuKWXfJhshpbysvoBE4FAjx5YCQ8/7fjXQ19F8HTp0kL8H1q5de6lNcAmfnZ5hspjkPzb8Q3ab2U3esfwOueX0Fmk0GeXi3xbLBUcXyCvnXil7ftNTLjy28FKb2iCX2++zMbxlZ2pqqlfmaYiKiopmm7suK1askGazWUop5VNPPSWfeuqpBsc19PMCu6QX7umXW0zGGaeBlud9n3DmNR8+LlusNitPb3yaX078wiO9H+GrcV8xKG4QgepAgpXBTGs/jYWTFzKgxQD+tflf/Jz+86U22cclJiMjg86dO3PPPffQtWtXxo4dS1VVldvzjB07FpXKHhUZOHAg2dnZ3jbVKZdVTMYFFgMPCyHmAAOAcumLx/i4zPnkwCeszFzJ3/v+ndu73t7gmGBNMB+M+oCHVj/EC1teIEGbQN/Ypu9U+Gg6LyxJITWnwmvzWa1WurcM4z/XdHU47tixY8yePZvPP/+cGTNmsGDBAnJzc5k1a1a9scOHD+e9995zON9XX33F9ddf3yTbPeGycjJCiNnACCBSCJEN/AdQA0gpPwGWAVcD6UAlcOelsdSHD9fYmrOVT/d/yuR2kxt1MLWolWreGfEO1y+9nn9u+icLJi0gRBNykSz1cbnRpk0bevXqBUCfPn3IyMjgueee48knn3R7rv/+97+oVCpuvvlmL1vpnMvKyUgpb3RyXAIPXSRzfPhoEpXmSv61+V+00bXhmQHPuHSOVqPltWGvcevyW3l1+6u8OuzVZrbShzOcrTjcxdViTD8/v7P/VyqVVFVV8eabbzpcydx5553s3buXuLg4li1bBsDMmTNZunQpq1evviQZjJeVk/Hh44/EJwc+Ib8yn++u+o5AdaDL53WP6s5d3e/iswOfMb3DdPrE9GlGK338nnjyyScdrmS+/vrrC77/9ddfeeONN1i/fj2Bga6/B73J7y3w78PH74KT5Sf5LuU7prWfRq/oXm6ff3f3u4kNiuW1Ha9htVm9b6CPPwUPP/wwer2eMWPG0KtXL+6///6LboNvJePDRzPw8b6PUSvVPNr7UY/OD1AF8Lc+f+PJDU/yy8lfmNRukpct9HE5k5iYyKFD59S1/v73v3s0T3p6urdM8hjfSsaHDy9zpOQIyzOWc0vnW4gIiPB4nnGJ4+gY1pHPDnyGxWbxooU+fFw8fE7Ghw8v8+mBT9GqtU6zyZwhhOCBng+QWZHJ8pPLvWSdDx8XF5+T8eHDi2Trs1l9ajXXd7wenZ+uyfONbDWSDmEd+OrQV7UqFz58/K7wORkfPrzIrLRZKFBwYyeH2fguoxAKbu1yK+ll6ezI2+GVOX34uJj4nIwPH17CYDKwMH0hYxPHEhMU47V5r2pzFWF+YcxKq18f4cPH5Y7Pyfjw4SV+Tv8Zo9nIbV1u8+q8fko/pneYzrqsdWTrL772lA8fTcHnZHz48AJSShYcW0CPyB50jfRuhTjA9R2vRyEUzD1y+bet8HH5MG/ePLp27YpCoWDXrl3OT2gGfE7Ghw8vcKjoEOll6UxtP7VZ5o8JiuGKhCtYfHyxL53Zh8t069aNn376ieHDh18yG3xOxocPL/BT+k/4K/0Zn+ioe3jTmJw0meLqYrbkbGm2a/i4PPCW1H/nzp3p2LFjM1joOr6Kfx8+mkiVpYrlJ5czNnEsWk3zdY8cljCMcP9wfk7/meEJl+7J9E/H8qch76DXpguwWiC+N1z1msNx3pb6v1T4nIwPH01k9anVGM1GpiRNadbrqBVqrm5zNT8e+ZGy6jJC/UOb9Xo+Li3elPq/lPicjA8fTeTXk78SExhzUdSSJydN5vu071mRsYLrO138BlR/SpysONyl6iJL/V9qfE7Gh48mUF5TzuaczdzU6SYUovlDnB3DOtJW15YVmT4n82fEXan/y4HLKvAvhBgvhDgihEgXQjzdwPFWQoi1Qoi9QogDQoirL4WdPnzUsubUGiw2S7MG/M9HCMHYxLHszt9NUVXRRbmmj98vCxcuJCEhga1btzJhwgTGjRt30W24bFYyQggl8CEwBsgGdgohFkspU88b9hwwV0r5sRCiC/Z2zIkX3VgfPs6wInMF8dp4ukV2u2jXHNt6LJ/s/4TVmat9q5k/KN6S+p86dSpTpzZPWr2rXE4rmf5AupTyhJTSBMwBJtcZI4Hapuc6IOci2ufDxwWUVZexPWc74xLHXdS2tkmhSbTRtWFl5sqLdk0fPjzlslnJAPFA1nnfZwMD6ox5HlgphHgECAJGNzSREOJe4F6AqKgo1q1b521bvY7BYPDZ6UUuhp2b9ZuxSAuRRZEeX8tTOzvSkRV5K1iyegnBSudB5KbyZ/u763Q69Hp90w1qAKvV2mxze0p1dXXz/X2llJfFFzAd+OK8728FPqgz5gngb2f+PwhIBRSO5u3QoYP8PbB27dpLbYJL+Ow8x/2r7pfj54+XNpvN4zk8tfNIyRHZbWY3+ePhHz2+tjv82f7uqampXpmnISoqKpptbk9p6OcFdkkv3Nsvp+2y00DL875POPPa+dwFzAWQUm4F/IHIi2KdDx/nUWmuZEfuDka0HHFRt8pqaR/ansSQRH7L/O2iX9uHD3e4nJzMTqC9EKKNEEID3AAsrjPmFHAlgBCiM3YnU3hRrfThA9iasxWTzcTIliMvyfWFEIxoOYKd+TsxmAyXxAYfPlzhsnEyUkoL8DCwAkjDnkWWIoR4UQgx6cywvwH3CCH2A7OBO84s63z4uKisy15HsDqY3jG9L5kNVyRcgcVmYWvu1ktmgw8fzrhsnAyAlHKZlLKDlLKdlPK/Z177t5Ry8Zn/p0oph0gpe0ope0kpfek1Pi46NmljQ/YGhsYPRa1QXzI7ekX3IkQTwrqsdZfMBh+XH6+++ipJSUl07NiRFStWXGpzLqvsMh8+fhccLDpISXUJV7S84pLaoVKoGBo/lI3ZG7HarCgVyktqj49LT2pqKnPmzCElJYWcnBxGjx7N0aNHUSov3XvjslrJ+PDxe2B91nqUQsnQ+KGX2hRGtBxBaU0pB4u8pxLs49LjqdT/okWLuOGGG/Dz86NNmzYkJSWxY8eOi2Bx4/hWMj58uMnarLUkxySj89NdalMYEj8EpVCyPns9vaJ7XWpz/pC8vuN1Dpcc9tp8VquVrlFd+Uf/fzgc54nU/+nTpxk4cODZ1xMSEjh9um6S7sXF52R8+HCDHEMO6WXp/L2vZzIf3iZEE0JyTDLrs9fzWPJjl9ocH17EJ/Xvw8efkNqulMPih11iS84xNH4o/7f7/yisLCQqMOpSm/OHw9mKw130zSj1Hx8fT1bWOeGU7Oxs4uPjvWO4h/hiMj58uMGWnC3EBMbQRtfmUptylsFxgwF8qcx/Ap588kn27dtX76u2K+akSZOYM2cONTU1nDx5kmPHjtG/f/9LarPPyfjw4SIWm4VtudsYEj/kklT5N0aHsA6E+4efXWX5+PPStWtXZsyYQZcuXRg/fjwffvjhJc0sA992mQ8fLpNSnILepGdQ3KBLbcoFKISCQXGD2JqzFZu0XZTmaT6al6ZI/T/77LM8++yzzWGWR/jejT58uMiWnC0IBANjBzoffJEZHDeYkuoSjpYevdSm+PBxAT4n48OHi2zN2UrXiK6E+odealPqMaiFfXXl2zLzcbnhczI+fLiA3qTnQOGBy26rrJaowCg6hHXwORkflx0+J+PDhwvsyNuBVVrPZnJdjgyOG8ye/D1UWZxXhvvwcbHwORkfPlxga85WAlWB9IzqealNaZRBcYMw28zsytt1qU3x4eMsPifjw4cLbMvdRr/YfqiVl0512RnJ0cloFBq2526/1Kb48HEWn5Px4cMJ+cZ8Misy6Rfb71Kb4hB/lT89onqwI+/SCiL6uHQUFxczcuRItFotDz/88KU2B/A5GR8+nLIzfycA/WMvbeW0K/SP7c/hksOU15RfalN8XAL8/f156aWXeOutty61KWe5rJyMEGK8EOKIECJdCPF0I2NmCCFShRApQogfLraNPv587MrbRbAmmA5hHS61KU7pF9sPiWR3/u5LbYqPJuCp1H9QUBBDhw7F39//IljpGpdNxb8QQgl8CIwBsoGdQojFUsrU88a0B/4JDJFSlgohoi+NtT7+TOzI20HfmL6/i6ZgPaJ64Kf0Y2feTka1GnWpzflDkPfKK9SkeU/q32K1YuzWldhnnnE4zhOp/8uRy8bJAP2BdCnlCQAhxBxgMpB63ph7gA+llKUAUsqCi26ljz8VecY8svRZ3NjpxkttiktolBp6RffyxWX+APik/r1PPJB13vfZwIA6YzoACCE2A0rgeSnlr3UnEkLcC9wLEBUVxbp165rDXq9iMBh8dnoRb9m5w2C/WYtswbqCps9Xl+b4fUZVRbG9bDtLVy9Fq9R6Zc4/299dp9Oh1+sBCHrkEYKaPOM5rFYrSqXy7PwNYTAYUKvVZ8dYLBaMRiMvv/wyc+fOrTd+8ODBvPnmm2e/r66uxmQyObzG+VRXVzfb3/dycjKuoALaAyOABGCDEKK7lLLs/EFSys+AzwA6duwoR4wYcXGt9IB169bhs9N7uGRnVSkUnwBpg4h2EBheb8jqzavRGXTcNOamZhGebI7fp65Ax9LlS/FP8mdE6wvnllJiPn0aS34+iqAg/Nq2RWg0l8TO5sBbdqalpbnU88UTXOkno9VqUSgUZ8f5+flhNpt57rnneO6555xew9/fH41G4/LP4O/vT+/evV0a6y6Xk5M5DbQ87/uEM6+dTzawXUppBk4KIY5idzo7L46JPv4QZGyGjW/BiXV2BwOAgMShMPxJaHvF2aE783bSN6bv70rZuFtENwJUAezI28Ho1qMBkGYzpfPmUfLNN5gzT50dqwgKImTiRCLvvw91ixaXymQfXiQxMZGKigpMJhM///wzK1eupEuXLpfMnsvJyewE2gsh2mB3LjcAN9UZ8zNwI/C1ECIS+/bZiYtppI/fMRYT/Po07PoStDEw9AlI6AsIyNkLe7+DbydBnztg/OucrinmtOE0t3a59VJb7hZqpZre0b3ZmWd/9jJlZXH6r49TnZJCQO/ehN92G5rWiVjLyzBu2kz5Tz9RsXQpsc//B90111xi631A06T+MzIymsEiz7lsnIyU0iKEeBhYgT3e8pWUMkUI8SKwS0q5+MyxsUKIVMAKPCmlLL50Vvv43VBjgLm3wvE1MOhhGPUcqAPOHe84HoY+Dutehc3/g+Lj7BxwC8BlX4TZEP1i+/HunnfJP7iT8geeQJrNxL/7LsFjx1zQcE03YQKRDz1I7tP/JOfJpzDn5hFxz92XVVM2H79vLhsnAyClXAYsq/Pav8/7vwSeOPPlw4drWEww50b7NtnkD6H3LQ2PU/vDmBcgpissvJ+dooQwv1CSQpMurr1eoH9sf6JLJYV3P4CfXxCtf5iFX7t2DY7VJCTQ6qsvyXnmWQrfeQehVBJx118ussU+/qhcVk7Ghw+vIyUsfRxOboApn0AvF1KRe8xAmirZuf91+mriflfxmFo6+rXi6QUSq8VM6x+/QZOY6HC80GiIe+N1pNVCwZtvok5IIGTc2ItjrI8/NL+/T48PH+6w93vY9z0Mf8o1B3OG3E5jyVWp6JtzGFIXNaOBzUPRS68QV2xj1k0tnDqYWoRCQdyrrxLQsye5//wnplOnnJ/kw4cTfE7Gxx+X4uOw/B+QOAxG/NOtU/cU7AGgT0gbWPwoVOQ2h4XNQsXKlVQsWULmtAH8GplDhanC5XMV/v7E/987oFRy+sknkWZzM1rq48+Az8n4+GMipd05KFUw9VNQuPdW35u/F61aS9KUL8FcBSufbSZDvYtVryfvhRfx79KFyPvuRSLZV7DPrTnUcXG0ePEFqvcfoOTb75rHUB9/GnxOxscfkuiC9ZC5CUY/D7p4t8/fU7CHntE9UUZ1hGFPwKEFcGK99w31MkUff4K1pITYl16ke4veqISKPfl73J4n5Kqr0I4cSeGHH2LOyWkGS300B6tWraJPnz50796dPn36sGbNmkttks/J+PgDUl1OUvrXEJcMybe7fXp5TTnpZekkRyfbXxjyGIQl2mtsbDaH515KTJmZlHz3HbqpUwno2pUAVQBdIrqc3fpzl5hnnwWbjfzX3/CypT6ai8jISJYsWcLBgwf55ptvuPXWS1/j5XMyPv54bPofanM5THgbPFBO3l+4H4De0WdkNtQBcOW/oSAVUn7ypqVepeDtdxBqNVF/fezsa8kxyRwqOkSNtcbt+TQJ8UTcfTf6FStQnczwoqU+nOGp1H/v3r2Ji4sDoGvXrlRVVVFT4/7f3pv4Uph9/C4oLqviwKFCSkqqUauVtE8Ko2O7UBR1Yy36fNj+CQXRw4iJT/boWnsL9qISKrpFdjv3YpepEP22vVizyxR7rOcyovrIEfQrVxL54IOoo891wEiOTmZmykwOFh6kb2xft+cNv+MOSn/4geCfFyLvuL1ekWaNycLu/QUUFlRik5IWcVp6d4vCT3N5/X6awsa5RynKMnhtPqvVSkyijmEzHPcnaqrU/4IFC0hOTsbPz89rtnvCH+ed4OMPh81mY/GyE6RsPE1IuQUF525wWWSyRCnRtAtm+o2dSWhxRghw0ztgqSEj8UZiPLzunvw9dInoQoDqPEUAhQJGPgM/3gwH5jRe0HmJKPrkExRBQYTfftsFr9euxvYU7PHIySi1QUQ+8AD5//0vxk2b0Q4bCsCm7afZuOwkAfk1qM/7u+QAm0Uqlhb+XH1dB7p3jvL8h/qT0xSp/5SUFP7xj3+wcuXKZrbSOT4n4+OyJO1YCT99eoBQgw21UmJpH0zbLuFERwVRU2PhRHopZWmlBBzVM+/FHfj1COOe66NQ7/oKet9MVWCcR9c1WU0cKjrUcP+YThMgtgds+h/0vMntjLXmoubECfS/riDinntQ6nQXHAv1tysWeBL8ryXs+hnkfPwxRR99RGlSD77/+AAhBSb8haQmIYAWXcKJj7c7+ewsPRmHivHPqWbduwdYkRjE/Y8kow1yrvR8ueJsxeEurqgwAxesQJRKJVVVVbz55ptOVzLZ2dlMnTqVb7/9lnaNqDxcTHxOxsdlx/xFR8n6NYsAwH9gFHff1KXe9suIIXbB7v2phSz9Lg3N/jK+OXKEG0O0BA1/EvZ5ppuaWpyKyWaid0wDsudCwOBH4ae74dhKu97ZZUDx518g/P0Jv6PhJIfk6GR+OfkLVpvVo+6eQqPBOHYMFct3s/2FbQSixNwxhDv+0p0wXZ02vwOA6ZCdq+eHrw4SlFHJ+//cxLTHetGxXf1WCj7c48knn3S4kikrK2PChAm89tprDBky5CJa1jiXx6OYDx9n+HLmAfKWZ1Hlr2Dik8ncdUcPh/v7PbtE8c//DiVsqA5LdSjfF7/DwdyARsc7ozYT62zQvy5dp0BIPGz9wONreBNLcTEVS5cSOnUKqvCGb+LJMckYzUaOlB7x+DqbQgayr+cjBJj0DL6/K399vF99B3MeCS2CeerZwSROS8TPLFny9l627fn9FLT+Xvnggw9IT0/nxRdfpFevXvTq1YuCgkvbQNjnZHxcNnz7wyGqtxVRHqrikZeG0KFtmEvnKRQKbkrcwNTwf1Epg1j5/gFO5XiWarw3fy+JIYmE+zfy1K1Uw4D7IGMj5Ozz6BrepGzePKTZTNgtjceI+sT0AfB4y+zrbw/id1SNDT1Dtr9Md79Sl8+dMLYtox7ugU3Api9S2XvQ1zHdFRqS+n/++eednvfcc89hNBrZt2/f2a/o8xJBLgU+J+PjsmDRL+mUb8inLETBE88PIVjrxh6+pQa2fUJMp3jGPtYHG5C3SZJ2rMQtG2zSxr7CfY2vYmrpcweog2Dn527N722k2UzpD7MJGjwYv7ZtGx0XGxRLXFCcR/UycxYcxrilgKJAya0vjkDjp3BbBaBX1ygmPNoLCaz65CCnTrsuc+Pj94/Pyfi45OxLKeTk0kz0/oIHnx1IgL+bocJDC8CQB4MfoWvHCEbd1w2lhEXv7iO/0OjyNBnlGZTVlDl3Mv466H4tHPoJqsvds9WL6H/7DUtBAWG3Os90S45JZnf+buzdMlxjxdoMCladpjxIycDxCnSxEeimTKbil1+wlLq+mgHo2jGCK+7uisYK3729m6pqy9ljNpuN3K0ppLy7lIP/Wkjq04tI+8diDj27kIOv/czxnzZjNla7dT0flw8+J+PjkqI3mFj+6UEsAm58oo/Dff5G2fE5RHaEdlcC0KdnDNp+EGCRfPHmTkwmi5MJ7NQ+6SfHuFBf0+dOMFfCgbnu2+slyubNRx0Xh3b4cKdjk2OSKakuIbMi06W5j2WUcXDecYwawb3PDsBfY79VhN10E9JkomzefLft7Z8cS+yYeEIrJR+8sxOzsZrDX60i/elfsS4qITgnGLVJjU1lw6KxorAqCC4JwW+HjawXNnLo7cUYC91zbj4uPW47GSFEkBDC/RQV1+YeL4Q4IoRIF0I87WDctUIIKYRwP/Hfx2XFR//bRbBJ0nlKG9q00jk/oS45eyFnD/T9iz376wwd2yoJHRpDaIWND97d7dJUewv2Eu4fTqvgVs4HxydDi56we6ZdjPMiY87Jwbh1K7qpUxFK5x/HPtFn4jIubJkZKs3Me3cvCgkTH+hOVPi5RAq/pCQCBw6kdM5spMU1530+N1zbieq2gbTOyuDE82vQHvXHojBT2c1M5N970un1iXR7eSrdX5pKl9cmk/DSUKyjAjAGGtAVhJL/5i6OzV6H7TKW9/FxIU6djBBCIYS4SQjxixCiADgM5AohUoUQbwohvNI28Izj+hC4CugC3CiE6NLAuGDgMWC7N67r49KxbNUJtNnVmJKCmTC28ZiCQ3Z9BaoA6HlDvUO339INY4I/fseN/LLSeUrznvw9JEcnu956uM8dkH8ITrvmxLxJ2c8/g5Topk51aXwbXRtC/UJdCv5/9H870VVJEq9u1WAxZdjNN2HJycWwbp2bVoOpwsjoyhwG6xIwW82U9VfQ6ZVr6HDLKAKjQuuNV/lpaD22L92fn4rm+hiqlJUE7FeS8tIiTEbnMis+Lj2urGTWAu2AfwKxUsqWUspoYCiwDXhdCOGN8uf+QLqU8oSU0gTMASY3MO4l4HXAt0n7O6a0vJqDP2dQoYZ7H3QSA2mM6nI4ON8eHwkIbXDIA3/tS4UGUn8+yem8xqVBCisLyTZkO4/HnE+36aDyh/1z3DS8aUibjfKfFhI4cCCaBNcUpoUQ9I7uzd6CvQ7HLf71OEFZ1VS3DWTaNe0bHBM8ciSqFi0onfOjW3YXp2Zw4r9rCK+KJEtbyBpjAEv2y/rSQI0Qk9yRTi9NoDy+grCqSNJfWokhp8gtG3xcfFyJsI6WUtbrXCSlLAEWAAuEEGov2BIPZJ33fTb20q6zCCGSgZZSyl+EEI1WJAkh7gXuBYiKimKdB09cFxuDwfCnsnPdb2YirQrUfWDXjs0ezRGf/QvtzZXsFr3Q17HpfDtbDIDyjfD5m9sYPkHR4E1tr9F+85XZknWF6+odb4wuYX0J2zuHLQHjkAr3Pwae/D7VR44Snp1N0ZjRnHTjXJ1exyn9KRavXkyIMqTe8XKDjSPLJGaVpE+vygvsqmtnUHJvgpYtZ8NPP2FrpD7nfGzHC0k8EooaP9Lb5CI6x1C6zkJknomPv1hN5yQ3duC7B1FoyybxdAyn/m8zeUM1KHQBDdrpKTqdDr1e3+R5GsJqtTbb3Lt27eKxx+wCqVJK/vnPf3LNNdc4Pa+6urr57j9SSodfwN3AUuBOwB94BvgX0N3Zue58AdOBL877/lbgg/O+VwDrgMQz368D+jqbt0OHDvL3wNq1ay+1CS7hDTv3HMiX7933m3z9pc1Nm+jjIVJ+MqzBQ3Xt/PjTPfKD+1bL2fPSGhz/2vbXZL/v+0mT1eSeDYeXS/mfECkPL3PvvEbsdIXTT/1DHu7TV1orK906b1/BPtltZje5MmNlg8df+dcG+e59v8ktO3Oc2lmTlSVTO3aShR9/7PS6Gcu3y5NPrpaHn1wqiw+fOvt6hb5GvvbgavnKI6tldY3ZrZ9FSikzV+2WJ59cLVOfWiwNBSUN2ukpqampXpmnISoqKpptbqPRKM1m++8yJydHRkVFnf3eEQ39vMAu6YV7uyvr1L8DT2NfVewEOgD5wPtCiDua7ubOchpoed73CWdeqyUY6AasE0JkAAOBxb7g/+8Lm83Gsu/TMAu4+e4enk+UdwjyDkKvm10aftdfelIeIMhec5q8gvppzXsK9tA9sjtqd1cjSVdCYAQccG/ryFNsNTXof/uN4HFjUQS4p2zQJbwL/kr/BuMyCxYfJaTAjOiqY1DfFk7n0iQkEDhwIGULfkI6CMJnLN+BWFtJlTAS92g/wjue+4gHazV0vKoVISaY+c2hRudojFajkxFjQghES8b/rcdSfWkl7b2Jp1L/gYGBqFT2Darq6mrX44vNiCvbZSYp5SEhxF+BIuyrhxohxDfARmCml2zZCbQXQrTB7lxuAG6qPSilLAcia78XQqwD/i6l3OWl6/u4CCxZcYLQcivK5HDiY7WeT7R/NijU9riIC6hVCsbc3pmtn6Qw86N9PP38OV0no9nI4ZLD3NP9HvftUKqh27Ww51t7jMjfgww5NzBs2IDNaCTkqqvdPletVNM9qnu9uExZRQ3HV2Rh8RP87b5eLs8Xeu00cp58ispduwjq37/e8ez1+2GtAaMw0PrvwxsM7E+ZmMR/N2Tjv7eYotIqIsPcc5ytx/TlWNE6dPsjSHtrGXJw/Ws0lbUzP6Mg0zMtvIawWqy0aNeekXfc63Ccp1L/27dv5y9/+QuZmZl89913Z53OpcKVlcxCIcQi7FlfD0opax8XzJx3028qUkoL8DCwAkgD5kopU4QQLwohJnnrOj4uHWaLjdTlp9Cr4fbbuns+kdVir0/pMA6CIlw+rV+vWGwdggnOq2H5byfPvn6g8AA2aTvXCdNdelwPlmpIXezZ+W6gX74cZVgYQQMHOB/cAL2je3O45DCV5sqzr3312T6CrIJB1yW51QcmeMwYFMHBlC+o38gtb9cRzL8UUkMVLR8b3KCDqWXUjI742wTffX3QrZ+llvY3jqAspowwQySK3X+cVtENSf0/+eSTF0jG1H6d30tmwIABpKSksHPnTl599VWqqy9tjpTTd5SU8j9CiLHAJKCPEOJl4BjgB5QKIToDR6SUTU5cl1IuA5bVee3fjYwd0dTr+bi4zF1wmBATRI+Ld7+q/3yOrwFjAfRsQI7fCXff35sP/rGR/YtOMmJoSwL8Vewt2ItCKOgR5eH2XXwfe3vm1J8hufna3doqK9GvXYdu8iSEh0+nydHJfCY/40DRAQa2GMju/fmo0g0Y4vwZOdSF+qDzUPj7EzLhasp/XkTMv55DqbWvTMszczHMPYlEEnN/L7Rxjp9FB/VtwbrFxwk4qufkqXKP6qU6P3IVh/+9hNaFLSg8cJyoHt6TuHe24nCX5pb6r6Vz585otVoOHTpE376XLqrg0jtVSrkSWAkg7Jt8HYHeQC/g3TPft24eE31cLEyZmVQsX07Vvv1YSktQBmnx69SJkHFjCejZs2lzmyxkbcrD5gf3N5Ia6zL7f4CAcGg/1u1TtYFqOl/diuxFp/jm24Pcf689rbdjWEe0Gg+374SALpNh64dQVQoBrgl7uoth3TpkVZVHW2W19IzqiUIo2Ju/l/4x/fn12zT8BdzmxjbZ+YROnUrZnB/Rr1xF6LSpmPRGcj7eiT9BBN7YktC2rqVYT72tCyvf2su8b1N46rnBbtuhVKloed8gCj84QNGsVHTmfWiy10DxCZA20MVD4jC7inYz/X0uBs6k/k+ePEnLli1RqVRkZmZy+PBhEhMTL56BDeBKMeYFkaMziQeHpZSzpZT/kFKOBdo0m4U+mh1zTg6n//4kx8eNp/B/72I+fRplkBZrRQWl331HxvU3kHnb7dQcP+7xNebMP0ywGTqNbolS1QQ1o6pSOLwMul8HKs8aYU2+KomyUCWVe0vIyC5jf+F+9+pjGqLLZLBZ4Mjyps3jgIrly1FFRRHYt4/Hc2g1WjqEdWBPwR5+XHCEUKONiMHRtIgJ8mg+/x49ULdsScXSpdhsNo68vRKtDIVhgcT0dr3ZV6ekcKpbBuCfXcXxzDKPbAlpHUtx5D6CRShHv98PaUvtDwAqDZzaBkv/Cv/XDTa8CeY/Zpndpk2b6NmzJ7169WLq1Kl89NFHREZ6LarhEa6sZNYKIRYAi6SUp2pfFEJosBdk3o69YHNms1joo1mpWLWK3GeeRZrNRNx3H2E33oA6NvbscateT/nCnyn6+GNOTruWgOnTYcQIt65RY7KQu6UAq7/ggQlN3MZIWQjWGujl/lbZ+Uy6vQtr3z3Ad19uoyqxqulOJi4ZdC3tcZleNzkf7yZWgwHD+g2EXn+9SzIyjugd3ZvFR5eQtD0Hq5/g/hu7ejyXEIKQiRMo/vQzUv+3iLDqSCpa6+lyjfurrSk3dubXN/bw0+w0nnx6kHsnm6th6V/pXzWbg5aX0GmuJG/k9cQOOPOzSQm5+2DDW7DmZUhZBDO+gYhL3zmyIRqS+neFW2+9lVtvbb4tW09w5ZFyPGAFZgshcs7IyZzAHpe5EfiflHJmM9roo5ko/nompx95FE1iIm2XLiH68b9e4GAAlMHBhN92K20XLyKwXz9CZs2i8MMP3VLznTP3MFoLdBvXyuXq7kY59JNdDLNFryZN071zFJZ2WsJzNUQZWtErumnzIQR0ngTHV0O196XsDWvXIU0mQq5qejfO5Ohk2mX3Q2sR9L6mTdNWloBu4kSMcV0IyQ+nNKCITvd7ZmOHtmFUxfmjyah0rx1AdQXMmg77Z5PR+gba/f1mTLKa0p+OY6kx2ccIAXG94YZZcOOPUJ4Fn4+EbF9yanPj9N0lpayWUn4kpRyCPe5yJZAspWwtpbxHSulYp8LHZUnRZ59T8PrrBI8fT+tZ36NJSHA4XhUVRctPPqZq4ACK3v+Aki+/dOk6VouN3O0FlPvDxHFN3FU1FELmZvu+uhfy/2+/pweVqkqGZEwnOsALjZ26TAarCY6uaPpcddCvWY0yMpKAM9lGTaGlshN9ssdSoCvlqtFN3+k2B4Wi63UnlZYy2v91TJMeJCZe3wkFMP+HNNdOsNTAnJsgcwtM+5yMNjcSGBuBGKglWIRx9Mvf6p/TcTzct94em/l2MmTt9NheH85x690gpTRLKXOllGXNZI+PBrBJG2ZbPWUfjylfsoTCd94hZMIE4t96E4XGtdiGUKmouO02Qq6+moK33qZi2TKn5yxafpxgM7QdGtf0VczhpfYgbpeGJO3cJ1znz4HWa4jVt2bRMs/jTWdJ6AfBLSBtUdPnOg+byYRx/QaCR45ENPV3CPw6Jw+NNYDiZM86ZV5gm83GyQ83oFEGYNz5GYpy9xrF1aVrxwgM0X4oThgaLJq9AClh8SP2LqVTPoYeM84eajdtCKXqIgIy/KjIyq9/blgi3LkcgqLghxlQlN7A9O6ra0spsTU90fai4snP6Q4evWOFEHOEEN+d+XrD20b5gGx9Nh/u+5DrllxH/1n9Sf4umf6z+nPnr3fybcq3GEyNiz06onL3bnKfeZbA/v2Je/UV91NhFQpavPYqAX36kPPcv6g5cdLh8LS12RhUMG2SF8S6UxdBRBJE1xPn9ohsQzYHIldT7lfJ4RVZLvedaRSFAjpfA8dWgcn1ZmnOqNy+HVtlJdorRzV5rsPpJahOGMmKzuAQm5t8gzny5SrCzJEYEioILDhBxS+/NNnGcdd1QC0FC+Yddjxw15d2pYWRz0LP6+sdjrs5GaVQkjlzS8Pnh8TBLQvsq+IfZlywzenv709xcbFLv58aaw15xjzSy9JJK04jrTiNw8WHySjPoKS6BKvN6nSOS4WUkuLiYvz9Pejj5CKeFitslVK+CyCEcL0a7k9CZWEZWct2YTqhR1OlRokaiQ2Tqhpi1USP6NxoHr/BZODdPe8y/+h8bNgLBG/oeAPBmmBKa0rZk7+HN3e9ycf7P+bR5Ee5vuP1KIRrzwqW0lJOP/4E6rg4Et5/D+HiCqYuCo2G+Hfe5uTkKZx+/HES581tcDW0dtMpQislmv4RaNwo8muQyhI4uQGG/tUrW2Vg7x9jU9iIGR5K9SoT389O5S+3N0HqBqDTRNjxGZxYB50meMVO/erViMBAgga5GQxvgIXfphIAJI0NYtnxYrL0WbQKca8+ppa8nYcJTNdQqimi60OTydo+n/IlS4m4//4myZkkd49meYgSTUoZVdWWhmuq8lPg12cgaTQMazgoHtGpNTlR+wgriiR3awotBjWQ4BDRDq7/HmZOhCWPwfSvQAgSEhLIzs6msLCwUTtt0kaFqYJKcyUCgUapQa1UIxBYpRWT1YTFZkEhFARrgglS2zP4qqurm/Wm7i7+/v4kONkubwqefvInCyEMwEYp5VFvGvR7prKwjOPfrCe4IJgghR/CZqLGvwb8LGCVqCqVaE+HUPNDDofmHSD62m5E9zpXM3Kw8CBPbniSXGMu09tP554e9xAbFFvvOilFKby7511e2f4Ka0+t5c0r3kTn57iATUpJ7jPPYi0tpeUnH6PUNU3+RB0TQ4tXXyH7gQcp/vQzoh55uN6Yrcsy8BOSW67r1KRrAXD4F5BWe3DdS+zJ30OIJoTbpwzk9S0bqdxeSNnUGkJD/Jyf3BitB4Ofzp7K7AUnI202DGvWoh06FIVfE+wCNu84TUiBCXPHEEZ2bc17x+2abZ44mepyA+XzjqNASZuHhqNQKAiZOIG851+g5sgR/Ds17W/e48oETi3MZMHPR7nlhjorV5sVFj0E/iEw5RP7CrIRku4aRc6rW6heXELMgM4Nb9m2HgyjnoPVL0DiUOh3F2q1mjZtGo9XpRSl8OjaRymuKubmzjdzZ7c7iQy4MFVYSsm+wn28u+dddufvZlj8MF4d9ip7t+6ld+8mZjP+jvDUydwC9ASmCSHaSSk9EH36HVNVBum/2ZtVlWeDUk3G6XZYspPRKUIp15YQNa4TSf2G1HtT67MLOLVwB4FZWqpnn+bQ+iN0fmg8hyoP8c2Kb4gIiOCb8d84zHbqGtmVT8d8yvxj83ll+yvcsuwWPh/7eYMOqZayufMwrF1LzDP/xL+Ld7abgkeOJGTCBIo++4yQq6/Cr9251VnKkWJCSsxYO4WgC27azRGwb5WFtrZ3o/QSewv20iu6FyqliqHT23Pom6N8+/UBHn2sn+eTKtV20cyjK8Bmc3gDdIXqQ4ewFBQQ3MStMpvNxrq5x/BTSO68sxthOj9CNCHsLdjLlKQpbs937L1V6EQ4YlwI2lj7ZkbwmDHkvfgSFStWNNnJTBjThtd/yaR8Wx62GZ0u/Bzt+MzeEfXaL0Fbv6na+QSEBWPppkKXGs7Jn7fQbtrQhgcO+as9trPyOfvfLyyx0Tk3ZG/gb+v+Rrh/OLMmzKJrRMMp4LU9fL4e9zWzD8/m7V1vc8uyW7hde7uTn75hzAUFGNaspfpwGtbSMoRSiaZNGwL79iGwf/8mp7Y3F64UY74jhLhDCJEshPADkFLmSCmXSylf+1M5mPLTsPRxeKsDLLgLds/Eln+EQ9vboModjsVmRKN+me6D9hHbM77Bp6bghGi6PjKR6CeSKQ8sJTRXx/5/LWBu1ve0DW3LrKtnuZROK4Tgug7X8fmYzymsKuSelfdQVNVwAydzQQEFb71FYP/+hHk5hz7mn0+jCAwk9z//uWD/+tdFx7ABk6/t2PSLVJXat5+6TPbaVllpdSknyk+crY+5YlAC5ZFqbIcryMxuYgpyh/F22Zucpide6levAaUS7RVXNGmeJStOEGqwEdovkojQABRCQe/o3i51yqzLsdnrCDNGUtFCT8tR557IVRERBPbvj/7XFU2O9SgUCmL7RaGrhtUbzmszVX7aXueSNMYuTOoCSTddgUGWY95WhrWxltEKBUx6H4QSFj/aaEvtLTlb+Ovav9I2tC0/TPihUQdzPkIIbup8E5+N/YyS6hLezX+XHIPrGms1x4+T/cijpI8YSd7zz1PxyzJqjh2j6sABij7+mFN3/oX0ESMp+eYbbDWXnxK1K49Z6dhl9d/nXNvlOUKIZ4QQY2odz+WKsVIye14aazaeoqjUw3atUsKOz+HD/rD3e3uQ8a5VWB4/TkrpPwlVjqBUW0i7u0OJ7RkPm9+F9/vA0ZWNTqmNjaDrvyaT0TqbCFsM7x57gg+T/4+IAPdCXH1j+/LRlR+RX5nPQ6sfotpSv5I5/5VXkTU1xL7wvNelv1WRkUQ/8QRVu3ajX7kKgHJ9DeKkEWOUhsSW9Ztjuc2RX8Fmhi5Tmj7XGfYV7AO4QBRz8q1dUEiYM9N92fkLaD8GhAKONr3637BmNYF9+qAMDfV4DpPJclaY9Nabz90Ue0f3JqPCHpx2leLUDFR7rZSLYjo/WL8eJmTcWEwnT2JKr5+t5S7XTetIlUKyc2XmuRfXvAxWM0x4y+UHDqVKhXpAKFqFjuNzNjQ+UJcAY1+Ek+th73f1Dh8pOWJ3MLq2fDbmM7c/q31i+vDVuK+okTUOHwprkRYLhR9+yIlJkzFu2ULE3XfTdukSOuzYTrtlv5D02yo67tpJ/LvvomnblvxXX+Pk5ClU7dvnll3nk5FVweLlx/lhrosp5C7gSp3MR1LK+6WUQ6SU4cAE4Icz5z4ApAkhxnnNIi+jqBaUrM4lbVY6P/xzC/99aj0LFh/FanExzdBUCQvuhmV/h5YD4OGdMOl9rDHJpL2+grCqSMpb6un6zBTUnUfDdTPhnjWgjYYfroO1rzb6VJRens7fQv7H7OhFhCujKHx3N8bCUrd/xuSYZN4Y/gapxam8tO2lC54i9WvXov/1VyIffAA/B3vMTSH02mloktpR+M47SLOZnxYexU8KBo7zkpxd2mIISYB4D1WSG2BvwV7UCjVdI8/ddLt2jKCmdSCB2VXsSynwfPLAcGg5EI7+2iQbTadOUXMsneDRVzZpnlk/phFigqTR8ReoLCfH2H+fzloy12KuqqHg2wNIbMTf0x9lA8kcwaNHgxBU/Nr0WiFtkAZ1+xBCSsykHi229xDaPxsG3OdwO6sh2kwZTAWlcKAac5WDp/3kO6DVYPjtefu2+BnKa8p5bO1jaNVaPh79sdMYaGN0DO/I/VH3U1hVyKNrHsVkNTU4zqrXc+rueyh6/wNCJlxNu99WEf3E4/glJV3woKgIDCRk3FhafzOTll98gc1UQ8bNt1DSgIhmY5SWV/Pxp3t49dE1/PLfXWQtyqR0Ta5HP19DuL1hLKU8KaVcLKV8WUo5DRgCvOI1i7yMMhgGP9SNlpNbY0kKRmW0krcsm9f/vo4tO50sWatK4ZuJcGgBXPlve7pjWCI2i5XUV5cQVhOJvq2Rrg9dfeHWWHwy3P0b9LwJ1r8Gvzxh358/D71JzxPrniBQHcid9z/NicSCs82XHH4IGmFEyxE82PNBFh9fzNwjcwGQJhP5r72Gpl07Iv7yF7fndBWhUhH9t79hysyk5Md55O0qpNwPrhjshYyV6gpIX+3VrTKwB7y7RXbDT3nhQvymO7tjFvDL907SZ53Rcby9qVp5tsdTGDZsBGjSVlm5voairQWUBQqm1REm7RrRFY1Cw95815zMkfd/JZgwGBJEaNu4BseooqII7NMH/UrvFKROurYDEvh1UTr89h97v55hT7g9j0KhIGhkCwIVwaTPWudoIFz1mj2bcf3rgD2A//TGpymoLOD/Rv4fUYGO40DOaOvflleGvsLBooO8sr3+rdNSXEzmzbdQuWsXLf77X+LfeANVmHNRT+3QIbRdvBjt8OHkv/Qy+a+/4XDb0maz8c33h/jyn5ux7S3DphIok8PofHMSQx9tQiuOOjS5sktKmYt9ZXNZolFD7+7RTLqqHU/8vT+P/99wdCNiUZsku79M48MPd2NrqLNfVSl8N9V+o7j+exj2t7M3ubQPl9tXMAkVdL63EQkNdQBM+QiGPAa7voIVz5xd0Ugp+c+W/5Ctz+atK94iJigG0TkGU7ICnS2Cw28ua9gmJ9zX8z6GxA3h7d1vk1mRSemcHzFnniLmqSc9Tld2Fe2IEQT27cvhmb8QYoL4/tFNL74EOLbSrlXmpQJMgGpLNSnFKQ3qlcXHavHrFkpoqYXf1mc2cLaLdLjK/m8TVjPGzZtRt2yJprXnK8Jvvj5IoE0w5Nqken8PjVJDt8huLq1k5KE8QkvCKQ0tpu1kxyrJwePHU3MsvUmCqrW0aaVDH6FGeaIcy7H1dgfjoYpyyzF9KFcUoz4qMRsdCGS26Al9brcnGBQeYd7ReWw6vYm/9/07PaO8k3gyuvVo7u5+NwuOLWDhsYVnX7fq9Zy65x5MmZm0/PQTQq+d5ta8Sq2WhA/eJ+zmmyn5+msKGnE0hSVVvPbMRgybCqgJUNLjjo48+85I7r+3N6OGtaJnl6Y50vPxwl0ApJRve2Oei4FGo+KWG7pwx8uD0Udp4GA5r/1nM1XV5wUEzVUwa4Y9F3/Gd9B54tlD6fM3osvVURpUROcHr3J8MSFg9Asw8EHY/rE9VgP8dOwnVmWu4q/Jf6VPzDlF3fbXX0F5fDlhlZEcndmAHIYTFELBC4NfQKVQ8dKqpyn88EMCBw0kaPhwt+dyFyEEkY88wumQ3lilmWunuK7A65DUn+1V9AlNyPiqw8Gig1hslgt+9+dz2+3dMSolO34+4ZGzByCyPYS3tceTPECaTFRu307Q0CHOBzfCqdMV2NLKKY9QMWJIywbH9I7uTWpxKlWWxuOVFZl5tMoMRy9L6fSIc12y4DFjANCvbDwm6Q69R7ZEJVUctoyBfp7nGSkUCoJHtcRfEcTxHzc6HjzqX6AOIuvXJ3lr11sMajGIGzs1TZS1Lg/3eph+sf14bcdrZOuzkSYT2Q88SM3RYyS89y7aIZ797YVSScxzzxJ2662UzJxJ0fsfXHD8cHoJXzy/FW2ZBXXfcJ5+fTjDBrrWksETvOJkvIUQYrwQ4ogQIl0I8XQDx584k3hwQAixWgjh8SNeVHgAT78wBNEzFF2hmf97fjOGSrN9W+vnByF7B0z73L7tcYb8vUdR7TBTLkro9PerXXtSFwLG/he6ToPf/kPOgdm8uetN+sf257aut9Ub3vmBqyhTFRFwRE3eDveDbzFBMTwz4BmSFu/HWlFOzFNPXbQ+33mx7SmM6kVC4XaC1F6YsMZgr57vfE2TU4HPp/bJvbGn0mCthtghMeiqJPN+9rAMTAj7aubkBo+q/yv37bNX+Xt4owF7AoNCwqRbG8+ASo5JxiItHCpqONnBarGQ9ek2lEJF1G3dUAc5LyJUx0QTkJxMxQrvOJmxnUrRKXPYZJwGmsAmzZUwqjflogTlYcs58cyGCIpEDnuCF42pKKXkxSEvev1zpFQoeXnIyyiEgmc3PUvuq69SuWsXca++2uRsQiEEMc/8E920aRR99BHli+xSRwfTClnyzl78zJJO1ydx7929miyQ6gxXUpj1QoiKM1/6877XCyG8JjcrhFACH2Jv89wFuFEIUbegYy/QV0rZA5gPNEnSRqFQ8OADyQQMikRXZuXdF7dgXvsmpPxkX4F0nXJ2rElvpHTOUSyYafXwYNQBbiTVKRQw5WNssd3597YXkTYbLw55scFKfYVKSeLDwzHJasrnn8Ckd/8GNdavNxN2w+YeGgyJ3lv2OuOXRcdBKEg8sZLyJUuaPmH6KntbYy9ulYE9HpMUmuQweHvjjC5UaCBjTc6Fq1x3aD/GvtWXsdntU42bt4BSSeAAz9os70spICCriprWgXTr1HgWVM+onghEo6nMhz9Zgc4WQWZULpFd27p8/ZDx46g5fBhTRoa7ptdDufn/6KRdi7U6gp378po0l0KhIGhYLAEKLcfnOl7NrG7Rnm0BATxi9iM2MKZJ122MOG0cT/d/muDfdlE+ew7hf/kLumsmOj/RBYQQtHj+PwT270/Oc/8iddlWln9wAAGMeLA7Y0denD6TrmSXBUspQ858BZ/3fbCU0gv5qWfpD6RLKU9IKU3AHOCCu4uUcq2UsrY5+TbAK1oIf7m9B/4DIwkts7JpaTG27jPssZTzOPL+SrRCh/rKcILjPbhxq/35acAtbPdT8WS1kngHqr/a2Aj8x8UQpAjhyMfub5sVf/Y5KpT8OEzwv93/c99WDzBbbFQfqaAsREFo22iKv/q66cJ7qYvtAoatmi6nUovVZmV/wf4LUpcbQq1S0PXq1mgt8N33HqY0txoE6kB74a6bGDdvJqBXL5QutOltiGXfpWEW9kQGR+j8dCSFJTUYl8lev4/gLC2lAUXY+jQc6G+M2i2zJq9mCo9C2hLaDWmDBcnaX040bT6g1fh+6CmFg9VYG9Grq7JU8ebe92jvF8GMzIP25JNmYryqJ/eugrTWSiz33uDVuYVGQ8J772KLSWDL3CxUNhh+d1eSu3tBddxFXK74P9Mh82agjZTyJSFES6CFlHKHl2yJB86ruiIbcPQYdxfQYCGCEOJe4F6AqKgo1q1b5/TineLKMGs3kmKYwPbDNQxcv/7cwQN5JFXEc0qTickvgZMuzFcXo9XImzlf00kRxbXZuznx/WOcan1ONdZgMFxopxL8VaeJL27Jmi/no2jnWnc7RXExkfPnUzVkCN3jA1l0fBFJxiQS/RLdtrkh6tl5hoOHLQRZFVTHWygIH4Bu5ky2fvwxJg/VBRTWGoakLSMvdgTHNjjZP3fDzmxTNgazAf9if6fvC63GRpG/jaDdxSyNW4M20P1the7BXQg4uIQdgQ038WrITmEwEJWSgnHiRDI8eK+lHLOiKxOUJNg4dngXx5wkysWYY9hVtos1a9ecXV3LiioSNoIVK0X9AjFWGl36HJ1PWJs25CyYz6GOnsfn2h/9mBZCRap/d0p0ktCsKn5ZvoaggIb/Fo393esRZyQpJ4FNH8xFJtd3oMvKlpFjzOGxqAcx+5+matGT7O7ztr3+qYlcYKPNRtjb76BUavj4Gpi/8h/cG31vk69xPlarjZ2dHiDE5E+XksVUlitYt66J2ZPuIKV06Qv4GPt2VtqZ78OAna6e78L804Evzvv+VuCDRsbegn0l4+ds3g4dOkin2GxSfjdNWl+Mke88vUy+d99vcvWGTCmllMaCUnnsyV9l6lOLpLmq2vlcjfDClhdkz296yiMlR6Sce4eUL0RImXfo7PG1a9fWO6eqtEIefXKZPPzkEmmqdO3aOf/+j0zt1l2acnKkwWSQw2YPk3etuMtju+vSkJ1SSvnfZ9fLtx74TRorTdJaUyOPDBkqM++91/MLpS6R8j8hUh5v+Hqe2jkrdZbsNrObzNHnuDTPlp058oP7Vst33t7ukR1y26f2n6P4uMt2li1dKlM7dpKV+/a5fTmL2Sr/+9hq+fqDq6XeaHLpnKXHl8puM7vJtOI0KaWUVrNFHnz2J5nx1BqZuyOtUTudUfTV1zK1YydZc+qU2+dKKaWsLJXy5VgpFz4opZRy3ZYs+cF9q+UXX+9v9BRX7bSaLTLtqcUy7akl0mq2XHCssLJQ9v2ur/zbur/ZX9j7g/1vmLLIk5/CoY1FX34lUzt2kmU//yy/OviV7Dazm1yTucYr16nlnbe2yw/uWy3nPjlTpnbsJItnzXLpPGCX9MK93R23PEBK+RBQfcY5lQLezIs9DZyfApNw5rULEEKMBp4FJkkpvaOhsG8WpP+GYuyL3PrUCIxqwe45x8jO1XP807VohD9h17ZH5e+ZuEFKUQrzj87nxk430iGsA1z9FgSEwqKH69XPnI9/aDCakREEKXQNN1+qg/n0acp++onQ6deibtGCIHUQ9/S4h+2529mas9Uj210hO1ePtsgMrYMIDFCj0GgIu+EGjOs3UHPScSuARkldBAHh0LoRrSkP2Vuwl9igWFpoW7g0flDfFlREa1Ac1ZOeUeb+BZPOFFK6sd1i3LwFhU6Hf7dubl9u9rzD6Kqh5YgWaANdy76o3Tqsjcsc/nwloZZIqjqaie3nuQZZyNgmZpntmwXmShhgf7IfNiCOcj/I31fssU21KFRKlMkhaIWOzOUXbsZ8fuBzzDYzj/Z+1P5Cjxn2TMGNbzVaWO0JplOnKPzf/9BeeSUhkyZxS5dbSApN4rUdr1Fj9c6tbenKE2iOGTAk+DP99dsIGjKEgrfexpRd79babLjjZMxngvMSQAgRBXizO89OoL0Qoo0QQgPcACw+f4AQojfwKXYH04SS7POoyLFLhrceAv3uJjIsgFF3dkFjhd/eXE6YIZKK6HJi+3f2aHopJa9sf4WIgAge7PWg/cWgCBj3KuTsgb3fOjy/9VX9KdUUEXQqgPIMx1W4RZ99DkDkveeW2zM6ziA2KJb39rzXbM2Jli5OR4lg5NXnAsNhN1yPUKsp/d71yuOzWGrOqRgrm9gi4DyklOzJ39NgfYwjpt1u3/Kb/02K+xcNb2uvTnfRyUgpMW7aRNCgQW4LHuoNJnI25VIeIJgx1XXNuBbaFsQGxbK3YC/ZGw6gzQik1K+IDneMduv6dVHHx+PftSsVnjgZm9Vep9Jy4FlRVIVCQVSPcHTVkm17ml6R3mbKIKpsBiq3nGtqlmvIZd7ReUxJmnJOnVqhhKGPQ+5+r8Zm8l95FaFSEfvvfyOEQK1Q83T/p8kx5vB96vdNnj8330jazyep0MBDj/e1JwK89CICyPv3v5q9WVkt7jiZ94CFQLQQ4r/AJrxY6S+ltAAPAyuANGCulDJFCPGiEKJW3/1NQAvME0LsE0IsbmQ6Vy9qF7y0muzieGfSZPsnx+LXLYiBiiD0ljI63D/G40usyFzBgaIDPJb8GMGa84K43afbHdtvL9irix2QcKv9DXJq5rZGx5jz8i5YxdTip/TjwZ4Pcqj4EGtOrfH452gMm81G6aFSygLFBcFEVWQkIVdfRfnChdiMbmbIHV8LJr1XtcoAThtOU1BV4DToX5eO7cKxtA1Cm1vN1l1u3tyEsPc8ObkBLA5SZs9gSk/HUlBA0BDHBY8N8c3MgwRZBQOmtnM7LbV3dG9OnEijaulpqqWRpMeu9EoxbfC4cVTvP4A5183f27FVUJpxdhVTy6RJ7bEg2bgio8m2qfw0WJIEOhlBzmZ7csenBz4F4L4e9104uMcNdmmjjW81+bpgl3syrFtH5MMPo44597kZ0GIAVyRcwRcHv6C4yvMVm81m4+v3duNngyvv6II2yL7ppI6LI/qpJzFu2UrZvHlN/jlcweV3kZRyFvAU8CqQA0yWUnrVSinlMillByllOynlf8+89m8p5eIz/x8tpYyRUvY689W05iKHFtgrsq/8l7150XkMsRSiVYWw02gkp8Sz1sdmq5n39rxH+7D2XNP2mgsPCgFXvwnV5XbRPweEtW+JvoWRsOpIstc1XJ1d8t13YLUScdfd9Y5d0+4aWgW34rODn3n96WX9lmxCzJDQp37GXej112OrrKTiVzcLElMX2eVD2ni3iLQ2g8rdlQzAbXf3pFoBa3447LruXS1Jo8FshKzGHxJqMWy2pzu7Wx+TnlGGJaWM8nAVVw53vz9M77Be/C3lOjTCn+BpiQSEeydx9OyW2apV7p246yvQxtbrHxQTFURltAblqUoMRudO2xltZgzBZKumeOUxsvXZ/Jz+MzM6zqi/narSwJBH4dRWyGyk06armM3kv/IqmnbtCL/1lnqHn+j7BFWWKj7e/7HHl5j701F0xRZUPcPon3xhC5DQGTMIHDCAgtffwFzgnQ0hR7jsZIQQ1wGnpZQfAuHAK0II7ykWXmxq9PbeES16woD7LzhUeiyLkFwtBcoCSmQUP3y8z6NLzD06lyx9Fo8nP45S0cDWR0xX6H8P7P6aQOMph3N1uGsk1TYj5StO1atCtxoMlP04l+BxY9Ek1K/cVSlU3NntTlKLU9ma693YzPbVWZiEZHIdXSyAgN690bRrR9m8+a5PaDHBkV+g4wT7B9uL7M7fTbA6mPZh9W11RlR4ANFDYwitlPwwz80i2cRhoFC7lMps3LQZTdu2qOPcSxme+8VBhIRr73I/jgPQfqmSVqq2HEvMpMVA7/QbAtAkJuLXoYN7W2YVOfYaqV432fvz1CF5REv8pGDxL02XrfEPDaYypgpddTg//fYtQgju7Hpnw4OTb7On1G9o2momcO1azFlZxD77DEJd/+drq2vLdR2uY/7R+Rwvc/9nLCypImvNacoDBPfc06vecaFQ0OLFF5AmEwVveWdl5gh31sP/klLqhRBDgVHAl9gzzn6frH8D9Llw9dv2PdfzyP5uF1JK2t0zGE3PMHQlFhYvd++PbTAZ+HT/p/SP7c/QeAfB6yv+ARotbU843oPVBAdh7aJCJ8M5ufhCR1E2fz42g8GhCOakdpOIDojmy4NfuvVzOKKotAr/3GpM8QENdpMUQhA6fTpV+/ZRc+yYa5NmbLCv7rxcgAnnmpS52q66LjfP6EJZgCB/Yx6FJW60jfDTQquBTvfzbTU1VO7cSZCbq5jlv51EV2RG0VVHx3bhbp0LcGz2WmLL49jJdjb3aoJeWyMEjx1L1e49WBy0Mr6AfT+AtEHv+k/5AKOHt8KggpM78hs87i6tZgxAYqPlNg2T2k0iJqiRwkt1gF0i6vhqj3sFWSsqCPp1BUHDhxE0uPEt0Qd6PYC/yp8P9n7Q6JjG+PrjvfjbYOTNnVA3sm2qad2a8LvvomLxEip37XL7Gu7gzqfNeubfCcDnUspf8G522cWj8Ahs+wh63QItL9TEyvx1B2GmSIytqtAltuDOO3tQoYa0XzLtsjMu8nXK15TWlPJEnyccy1EEhsOQR4ks3g6ntjucM+mmERhtFZi3lp4tIpMWC6XffkdA3z4EdG+88E6j1HBb19vYkbeD/YX7Xf45HLFo0THUCIaMabxyWDd5EqjVlM13cTWTugg0wdBupFdsrKW2SVmtvL0nKFUKRt7UEX8bfPOZm7/DpNGQfwgqGo9NVO3ejaypQeuGXllVtYX9i06iV8Gdd7kv3pi7LRXNPihXFPPbiOMuKzK7Q8i4sSAl+tUuBM1tNnvPptZD621h16JUKQjqpCPUYCPlSNMzzUJaxpCpzqC3TObGKCeClP3utr8/t7h/8wco/vwLRFUV0U84VpIO9w/nti638dup30gpdj3hZMPWbAKzqqhpE8Sgvo4zKCPvvRdVXAvyXnwJ2VgzNy/gjpM5LYT4FLgeWHamWdllpX3mElLC8qdAEwSjn7/gkKW6huo1BRhtFXS4y55ZE+CvInlqW7QW+OoL124sJdUlfJf6HeMSx13Qr6RRBj5IjSbMLmXuIGai1KhQDdShFTrSf7QXi+pXrsSck+OSlP91Ha5D56fji4NfuPRzOCN/XzHlfjC4X+NvZlV4OMGjr6T850XYTE720K0WSFtq14tTebcXXlPiMeczuF8clS0D8MswuidxknQmU+t44zdaw6bNoFYT2M91MdCvvz5AsBk6T2jlcspyLaXHsjD+lEWNrKL1I8PoFZfM8fLjlFWXuTWPMzRJSWjatKFihQvy/5mbofQkJDvu4DphUhI2JCu9sGVmNBv5KmYJKoUa6/Isx4P9Q+wKzSkLoczJ2DqY8/Mp+fZbqvv1c6k99a1dbkXnp3N5NWO22Nj041EqlXDX/b2cjlcEBBDz9NPUHD1K6Q+zXbqGJ7jjJGZgz/waJ6Usw16M+WRzGNWsHP7F3sp35HP1+oMf+24tQQodmuERF2iTjRuVSEWUGplazuF0510EZ6bMpNpSzYM9H3TNJk0Qma2vtwcVjzr+INqbL5WgOGjCVFlN8Vdfo0lMRDtihNPLBKoDuanTTazLWkdGeYZrtjXC1l256KolUT3CnWYhhU6fjrW83HnwN3MTVJU021aZWqGmW6RnMYvzue2entQoYNU3aZgakSWpR0xXeyDbQVzGuHkzgcnJKAJdE4E8dLgY8/5SysJUTL4qyTU7aq+VX0LB5/tRoCDslo5oW0ScdcD7Cve5NZczhBAEjx1L5Y6dWEqdNOXb+x34hdQL+NelTSsd+lAVlnS963+DRph/dD67Q45RpMjDP1uDyehkK7Q2hrv9E7euU/TBh0ibDcOka5wPBoI1wdzZ9U42nd7kUjuG2XPT0FVDq5HxhOmcC5mCXf4naPBgCt9/3/nfxkPccTITgFVSymNCiOeAjwDH/UMvN6wWe8e7yA7Q98In/6qSCjTHFJQpimh9df96p95wTw8ksPBbx0vX4qpi5hyew1VtrqJtqOuCgrktxkBYG1j3isPVjEKhIOiKFgQotBz7eBHVhw4RfsftCBfTTWd0nIFaoeaHw01rAbRpZQYWJJMmOQ+iBw0ahKpFC8oXO8k4T10E6qBzT/1epLEmZZ4QGx1EwpXx6KokX3x5wLWThLAXZp5YZ68BqYO5oICaI0dclva3Wmws+vwgVgE3PeDeNpnJWEXG/zbiL4LQTIgiqod9W6pbZDdUChV7ChoWy2wKwWPHgNWKYY2DNPrqcvt7oPt0l9SWOw5uQaBNsGxlhsd2WWwWZqXNom9MXyKubIefIoCT85wImoa2hK5TYfc3dptdwJR9mrKFCwm77jpska5JRAHc2OlGIvwjnNa5letryN+UR1mgYMY012V8atWabUYjRR81T4jd08D/aH6Pgf+930LxMfs2WZ0iv+PfrMdPEUDk5E4NPpm3aaWDjiGEFJjZvKPxatmZKTOpsdZwf8/7Gx3TEFKhsjdGy91vrxFwQMtxfamgBHVuECI8Et1k15/8IwMiuarNVSxKX4TepHfLxloMRhPKrEoqo/2IiQpyOl4oFOgmTsS4aTOW4kb20G1WSFsCHcbaA6xepNJcSWpRapO3ys5nxtQOlIerMO8vZV+KiwHtdqPszfBy9tU7ZNxiT4t1NXX5q28OEGq0ETksxv7edBFzVQ1HX/2VEFsYlgFqEq7odfaYv8qfrhFdmyUu49+lC+qEBMdZZqmL7arbvW52ac6J49tSqZCkbnHS4dYB67PWk2vM5ZbOtxA/spddODO1Gpul/oPABQx+2F7LtcdxMXUtxV98jhCCiHvd64cTqA7knh73sCt/F9tyG0+B/+arA402p3OGX1ISodddR+ns2V5Rza6Lp4H/z353gf8aA6x91a6M2/FCscLyzFy0uUGUBhQRO6Dxyv5b7+xGlUKybu6xBptZFVUVMefwHK5uczVtdG3ct7HnDaBrBRvecLqa0XTzI1Clo+aK61EEuHdTvqnzTVRaKvk5/Wf3bQQWLU3HTwqSR7ougq2bdA1YrVQsa1DTFE5tA2Nhs2yV7Svch0Va6BfrvcZnCoWCWx7qhUXAL18ecm3Lpu0IQMDx+k/zxs1bUIaH4+fCXn3q0WKMO4sp0ym55QbX043NVTUceWUZoZZIKruYaDetftZjcnQyh4oPUW1x0DnSA2q3zIxbtmKtaKRDyMG5doWE+IabydXFT6NC2TaY4BIzmdmedR2ZdXgWLYJacEXLK1AoFKiSdQQp6kvN1COutz05YdsnYHWcEGTOz6d8wU/opk1DHRvrcGxDXNfhOmKDYvlg7wcNrmZOnirHllZBeZS60eZ0zoh6+CGERkPB2+94dL4j/jyB/60fgrEAxrxYr1f8qe+2oRAKEm7q63CKiNAAQvtFEmqwsWR5fcnxmYdmYrKZ6lcLu4pSDUP/Ctk77dsqDgg4spXyqhwCrG0dN19qgK4RXekd3Zsf0n7A2sDWjTMydhagV8HoYa4X/fm1b49f586N95lJXQSqAEjyXF2hMXbl7UIplF5dyQC0ig8hblQcoZWSjz904ek/KNJel1XHyUibDeOWLQQNGeJ027OyyszPHx3AJuD6B3q6/NRqNlZz+JVlhJojMXSspuPtDW9J9o7ujcVmcSujyVVCxo4BsxlDQyrJFTlwciN0n1Hv8+mIMRPaoECwdJGLKfLncbT0KDvzdnJDpxtQKew7G20mn5Ga2epCevTgh6Ei2/7edUDxl18ibTYi7qlfKO0KGqWGe3vcy4GiA2w6vane8R+/PoQApt3uQpJRI6iiooi4+y70q1ZRuce726VNCfyH83sJ/BsKYct79g6LLS+MtxQeSEenD6c8opyw9s6fAm69uSt6NaSuOHXB02tRVRE/HvmRCW0mkKhL9NzW3rdAcBxseLPRIZaSEvSLF2FVnSBQEcyJ+e43xbqp801kG7LZeNo9Gf3T+TZCDTaCO+vcli7RTZxI9YED9ZfkNhukLbbHLPy0bs3pCrvyd9ElogtBaudbe+5y43WdMcT5oTxSwfLfXBADbTfK3nW1+tyTd83hw1iLi12Skvno3d3oqiWtr2pJUmKoSzZWFpZx9OVfCTNHYuhQTac7G3fkvaJ7AbgUaHYX/x49UMXENLxldmgBIKH7dW7N2b1zFGVaBfq0crdbZc8+PBs/pR/Tks6lLav8NJjbgs4WQd52J0W37cdBRHv7vaWRnQdLURFlP85FN2kSmgTP219NaTeFuKA4Ptr30QWrmZQjxQTlVmNuE0SnJPdrpM4n4o47UEVHk//6615VBnFHVqZSSvmTlPLYme9zpZTe6a/a3Kx/HcxVcOV/6h3Km3cQqzTT5jbX1H79NCraXRlPiAl+XHDk7OtfHfoKs83MfT09XMXUovKzN0zL3AwZ9Z9aAEp/mI2sqaH9A9ehl6XI/ZVY3cxzv7LVlcQExvB9mntCfMdSbNiQTHAh4F+XkIkTQAjKlyy98ED2TnthrJe1ysAejzlYdJC+sY5XqU3h/sf7otcIUn46wclTTgLB7UaBzQIZ55x7rZSMo+I8gPmLjhKQUUllYgDXTnItuFt24jSn3tqE1qajOtlGp784XimG+YfRVte20U6ZTUEoFPYts42b6uvZHZxn34KKdC9LDqB132iCLfDbetdTistryll6fCkT204k1D/0gmNtZgzBbDNR+KuTnisKBQx6yB5HbeSzWjJzJtJsdjsWUxe1Us19Pe/jUPEhNmRvOPv6ktlpWIEZtzRdpUERGEjUY49Rvf8A5Y1ta3syr6sDhZ1bhBD/PvN9KyFE/TSsywyFzQy7v4Y+d0DkhTfG7LV7CTNHUtmqBm1s4y1q63LtpPaU+0PO5nxqTBYKKwuZe2QuE9pOoHWIF1qa9rkdgqJh0//qHbJVV1P6ww9oR4wgICkJdb8wghQhZCx2XMhZF7VCzfUdr2d77nZOlrsmx19jshBUJKgIU5PY0n1tK3VMDIEDB1C+ZMmFT0qpi0CpgQ7j3J7TGfsL92OxWegX4714TF10wX6Mu6cbSgmz39lNWYUDmfaWA+wZdOdtmRk3b8GvY0fU0Y13K9y6K5fs5VmUBwgeesw1h3nqt90Uf5KCn/RHjNGRNMO1vvHJMcnsK9iHTXpTZN1OyNgxyJoaDBvO3SgpPGq/UXef0fiJDphyTRI1QrJ7retOZuGxhVRbq7mx0431jgWEh2CIMqCrDKfshBNJ/J43QGAkbK1fy2ItK6P0h9mEXHUVfm08iNHW4Zp215CgTeDDfR8ipeTQ4WKC8mqwtg2iVbx3tOZ0Uybj17Ej6bPc7+baGO7sd3wEDAJq/yp67E3MLmv8aopB6Qcjnr7gdZvNRsWKU1TZjLS/fYRbcyoUCrqOaYXWArN/TOOrQ19hsVk8j8XURR1gV59NXwX5qRccKl+8GGtJCeF32vWV2kwZRKVNT82OIre3C6a2n4pKqJh/1LVq/CXLTxBoE3Qd4p6u1vnorpmE+dQpqvbts78gpd3JtLvSXujmZXbm7WyWeExdkrtH025yIsHVkg9f2Ya5MRFNlQbaDDsnMVNTQ9Xu3Q6lZI5nlrHx61RMSrj5b30IDHBcdGm1WEj54BdYZcCMCe0tbWg12nWlg+ToZPRmPUdLj7p8jqsEJCejjIi4cMvs4Fx7x8lu13o0pzZIg7VlIIEFNZQbnH8GpJTMPzaf5OhkOoY33BKh5bV2R54134nkijrArgJw9Fe7szyP0jlzsFVWEnFe642moFbYVzNpJWmszVrL0jn2Vcx1N3tPa04olYQ/9leCY0d4bc7LqWlZs6CyGGDwI6C98Cnx5MLNhBCOrbsaTbD7e/XXXNWW8gBB/vZ8Fhz+iQltJ5zrP+EN+t5lf+Ld8v7Zl6TNRsnXM/Hv0oXA/vYnc6VKha2TmhDCOb3OPamTyIBIRrYayeLji11qknRkSy5GheTqsYluXed8gseOQWg057LMTu+xB0+bIasM7KKYXSK6oNV4P9ZTl0nj2xE4MIrQMitvv7ylcUfTbpS9qr3kBJqjx5Bmc6PxmIysCua9tQe1DUbe05XWCY4dceGB4xx57hd02SGUB5SQ+MwVZ+tgXKU2C29Hrrc6q59DKJUEjx6NYf0GbNXV9oeMg/OgzRUQ3IhmmAtcMb4NKgQph5w7mV35u8isyOTaDo07tdC28ZQHlqAt0lJV4iRzrd/d9gfZbeeeuW0mEyWzZhE0ZAj+TWg/XZeJbSfaFdXXf+/1VUwtOenVBGnCvDbf5dS0rFmQQmnPAjkPS40Jy/YKDLKMpBtd20Koi0KhoMdVrdFaFLTNTebeHt7ty01guF1a4+A8e+YNYFi/HtPJk4T/5S8X6KG1vX4oNbYqytdkuH2Z6R2mU1ZTxm+ZjpfH6Rll6MotVEVLNBrPG4kptVqChg1Dv2IF0maD1IV2heKO4z2eszGqLFUcKDrQrPGYutx1Rw+sXUIIzjPx1otbqGkotbndmW6Zx9eiSUtF+PkR2Le+jccyypjzxi78LJLet3SgX6/G018rC8s4+OYiKmedws8WQHWyja7/nox/aHCj5zRGbFAsiSGJ7MjzvpMBu5aZrKzEuHmzvXFfaYbbAf+69E+OpTxAIE/jdEW/4NgCgtXBjGntOD4VNb4TaoWGk3OdJNZoo+zbZvvngNFen16x9BeshUVndxy8hUqh4v6e9xN9pANWYWPGLZ5nlDVEVUkFfukKyvBeCwBPmpbFnGlathkvNi1rLmr8wsHvwg/ase/XEaQIwW9oJEqV5zfMAUOCyQ0+SXL21USoPN9CapSBD4C0wjZ7zWvJ1zNRtWhhFxw8D01QANUtzYRaIsnf694Wx8AWA0nQJjDvqOPWQMsWpyMQdOza9Kz1kPHjsRQUULV3L6QssothBnjvyamWixGPaYhHH+0LPXSEFJh465lNZOfWKXqNaGevhzq+Br/UNAL79UPhd6ESwbrN2Sx6Yzcai6TnTe0brX8w5BVz6N2l5L25k9CiMCqCy4h+rDdJM65oUtOx/rH92ZW/C4vN+8KJgf36odTp7FpmqYtBoYJOVzs/0QmxvSIINSvYvKNxEdLymnJWZaxiQtsJBKgc15fFDuhMuaIY9QmclwkMetheSLrzC6SUlMyciV+HDh41n3NGy+p+tC/qS3rcXuJbeDdj8vjMdfai9Gne24LztGlZNc3QtEwIMV4IcUQIkS6EeLqB435CiB/PHN8uhEh0NqdZfeFSsrpMj+aIpFwU03rCgCbZ+13ad+xquYwgcxA//OD9ugLCEu0ZV7tnUrVnO5U7dhB+660N9qBIvGEwFpuZgiXu2aEQCqZ3mM7u/N2cKKtf+wN24b3qI+WUhSiIjWq6k9GOHGnfMpv/LZSfskt0NAM783aiEIpmj8c0xEMP9kE3IhatwcoPL+9g8a/nCTkKAe1GYj64EVVe3gXxmBqThQ8+2M2B745gUQhGPdydUXXqkawmC5nLd3DwxYUUvbOf0FwdlX4G1NfF0P25qQTH128g5y79W/THaDaSWpzqfLCbCLUa7ZVXYli7DnnwZ/tWmRceMiZPbo8ZyZZVGY2OWXpiKSabiekdprs0Z+CgGAIUWk7+7KQPU1QHe0rzjs8xblhLzdGjhN9xh2MFdg/5dW46ViHZEfszqzLdbAbngPKMXILzg+1F6R62m28Ip3cMIcRAIcQ6IcRPQABwP/AQsF4I4bU9jjNbcR8CVwFdgBuFEHXd6V1AqZQyCfg/4HUXZr7gu/SZ6/FTBBI20X35hfMpqS5hzpE59OyVRJlWQfmeYvSGpnfqq8eQR6GmgpJ3X0ah1RI6o+FthaCoMPQRenTGMOcZMXWYkjQFlULV6Gpm+W8nCbIK2g90LB3uKkptEEHDh6FfswEp1PUUGLzFrrxddAm/OPGYhrjlhi70v7sLVoUg6+dM/vv0elauzbR31ky6EuMpe6W4dugQyipq+PaHFP7vbxsQh8oxRGm4498D6NU1GmNhKdnr9pL2+QoO/mshp55bh3J9DVpDMHpdBX43xdHtpanE9m04iO0JZ+MyzbRlFjx2DDa9HuPhXOjStAa3tUSEBlAaKtHkVDeY4SelZP7R+XSL6NZowL8ura/qj9FWjmWvC3U4gx+GyiJKPngTZVSkPWXfy+xPLSQovwZLGy2xUZF8vO9jjwqqG+LU93bZGmdF6e7iyl32A+zbYrOBNcBdUspYYDj2VY236A+kSylPSClNwBygbjR4MvDNmf/PB64Ubjwq6LML0OYEUOpXRNyQpqnxfpvyLdWWau7rcR8DrmlDoE0wqzlWM3G9MYcNpGJHOqHXTkOpbfyG2XJ6X0CQ7Swjpg4RARFc2epKFh9f3KCcyKENp6lSSK652r0AsiNCxo/HUl5NlWYABIR6bd5aTDYTB4oOeFVKxlVsNhsVWfmc3nSAmNMnmdTbQpvQAnrrT8H8Daz+6yx++1RPivY/lIx4nC0f7ODgs/Npu20/QxV59NMVM8lWRNnbazj+1EpK3z4EvxoIPh6IX40fhhA9Nf0VJPxnKN2fneJ2YN8Vwv3D6RDWge257qXGu0rQ4MEo/NVUZAdAp4lemzeug0AjBYsW11cAOFB0gPSydKZ1cNIz5jwUKiV08SeYME6v3ed4cOIwqlVdMB7MIPymm1FovJ8XtezHI1iBG27txgM9H+B4+XFWZja9XLFg3zF0+nD0ERUuFaW7gysBCVVt0aUQ4kUp5XYAKeVhLy8F44HzE92zgbr7WWfHSCktQohyIII6atBCiHuBewGioqJYd0bGwn/VaeJEPIWdFGdf8wSj1cj3p7+nd2BvTu07hQoo8rcRuK+E5SvWEODn/grJYDA0alPkgRCUSErCiklzYneQIpfIomjWLP0VhdY1uW+A9lXtWWFawXu/vkd/7bnyp+JyG9oSSUmUZPu2TQ7tdIfgygyCFJLMwwryvTBfXVLLU7HYLGgKNF6x1xG2ahPiRCl++Wa0lQFoRQgahf13rwE0BNCDeDgTGrRKCzZpQ2ps2LAhpbT/iwRhQ9okFpMFo9KIWVWBOUBiCVMhY7UoIrRAIMWYydrZuGCiN4izxLE5bzOr1q6ixljj9d9jm3gLFaeDOLptPygbaE/uAS0iqzio8qd4Rx7rEi4UiZ9VNAuN0BCcHcy6nHUuzylbSFqmVFKxMofjSseZZtGHQlEoS8jRFnOokd+Xp5+h7Dwb2nxJcZQk/chu/KQfLdQteHvL2/hl+Hnc8RUgZHk+oTKCgs7e/7y44mTOXyPWbbTgPe0BLyKl/Az4DKBjx45yxIgRFKWcpNIiKA8tZdSNU5o0/3t73sOUbeJfo/9FUpi9QtkiMjky+ziZmWHcf6/7MYB169YxooGeMNaKCtKfOIG2g4Z4uY3OV7zpUNspLzANy09FxJ6qocuD9edrjCvkFSz5eQkpyhSeGvHU2dc/+ngPSsqYemMPenaJatROt1mxiuw4E1Unyrhi+HCXWxW4yqKFi1AJFXeOubNZ5GSsFguZv+zAuCef4CodKkUcNmlFryrHGGykJsqGf5yOgEgdATGh+IUFo/LXoFCrUCgUVB04QMaM64kbVIbuwxR7NuHlRhasW7OO0M6hGA8bvfN3r6XwCBUtiqk8Hk6/wECCBg3yyrTr1q0joocO655SgsM606enPS3aYDLw1LynmJg0kfGD3d/lP3R4KdG5cbQMj2t05WguKCD9UDahHRXEWrfCiGcbtdGT3+Wr/95EADXc/eAAElrYn1jMGWb+vv7vVLWuYkJbz7bnstbsRQgl5a30jLrG+1vXrnyyewohKoQQeqDHmf/Xft94v1/3OQ2cv05LOPNag2OEECpAB7jUfzV37j6s0kLibe71T69LeU05Pxz+gTGtx5x1MACjr2hNWbAC/b4Sr8ZmSuf8aC/ouuM2yD/oVDgztn9nyhVFaDIUWKqd177UIoRgWvtp7CnYczYBwGazUZFaRplWQc8uTQ8mn+VMAWZwvyQshUX2LDMvc6T6CD2ienjdwZiMVaR99ivHn1mJZquVwKpA9GEVWEcFEPtcP7q+Opnuz0yh8z3jaDNhILEDOqNLbIG/TovKT3M2DmjYtAmEICi2Gk6u96qN3qJPTB8UQtE8cZnUxWhjaxD+/o7l/z1g8uQOWJCsXX5OyWJ5xnKqLFVc296zgs/EGYOwSgt5SxrvH1Q66wewWgm/5Ua7bFCud9qcA+xLKURbUIOtnfasgwEY03oM7cPa88n+TzzKBLTZbOhXnqLKZqD9Hd5teV6LUycjpVRKKUOklMFSStWZ/9d+716/V8fsBNoLIdoIITTADUDdLleLgdvP/H86sEY6UXITJhOnNx0krCYSY3xVkzNvvk/7HqPZ2KBG2cBr2no1NmMzmSj57luCBg/G/5pH7FIzDchX1CVoaBz+iiBO/LTFretNajcJlVCx4NgCAFatP0WwGRL7NS534hGnd0N5FtpJNyL8/KhY/qtXpy+rLiPblM3AuIFem9NqsXDk29VkvrCe4BNBmJUmagYoSHz5Srr/cwqtx/Z1q6jXuHkL/l06Q2BAg9L/lwPBmmC6RnRtlqJM0hahaNMf7YgR6H/7DWn1TvAaoEVMEMYoDSLTiKHSnlyx4OgC2oe1p3ukZ8/F2hYRVISUE1IRiv50/f5BtspKSufMIXj0lWiuehQ0WtjiWttkV1h+JhZTV6NMIRQ82PNBMioyWH7Sfb2xEz/Zi9JlDz80Qd7t41TLZSPVL6W0AA9jV3pOA+ZKKVOEEC8KIWrTT74EIoQQ6cATQL0057ooSksp++U41bZKku4Y0SQbK0wVzEqdxehWo+kQVr+K98rhrSgLVmDw0mqmYskSe0HXXX+xC2cOuNfevjffcVppq/H9MMhyrPsNbknNnK8AYLKa2LM2ixohmTzRfdFCh6TYCzCVvaaiHX5eYaaX2Ja3DYlkUAvvbMEU7DvGked+IShVg1lRA+O0dH11Cu2mDkHpQWGq1WCgat8+goYOozSsBxxf67B/0KWkf2x/DhQeoMbm+qrYKSUnIO8gdJlMyNgxWJthNdv7igT8pWDJL+kcLjlMSnEK17a/tkkpxbGTuqMUKjLn1U+GKFu4EFt5ub34MiAUet8KKT9BuXuZng3R2CqmllGtRtExrKPbqxlLdQ22Hfai9HY3DL/wYLUTlQM3uGycDICUcpmUsoOUsp2U8r9nXvu3lHLxmf9XSymvk1ImSSn7SykbLuy4YE4lOhmBpZMCf13TUllnHpqJ3qx32PVy0KS2BHhhNSNtNoq/+hq/zp3PqfP2vcvec2WrY8k4hUKBonsgwSKUrJXuZZpNb29XAFiwdwWBBSasrQPRBnkxS+asVtkoCAglePx4LIWFVHmxh8W2nG34C3+6RTYtg9BmsZL68XKqZ5/GzxZAVS8rnV65hoSRTau7qdy2DaxWgoYMpiS8F5RnQZH7/VAuBv1b9MciLZyocfpRc53UMxsUna9Be8UV9i2zZcu8Nz8wdkRrDCo4sS2f+Ufno1FomNi2aVlsUd3bUaYuIiBHg8l4LjwtrVZKvvkW/549COh95r0x8H6QNtj+SZOuCedWMdff2nB1v0IoeLDXg5zSn2LpiaUNjmmIY9+vI1ARgt/wqPpF6Vvea4LFdezz2kyXKUr/MAymEtrdOKxJ8xRVFfF92vdclXiVwxz7UcPOrWbK9Z4//RnWr8d0/DgRf7nz3NNXYLi938zBuaB33FSpzbVDqLYZ0W9070lqYNxA4rXxbF6dhgrB2EleXsVkbbffVM8UYGqvGGEvzPTSvryUkm2522jv3/5sIypPqCwsI+WFxYRkain3LyXm8T60v2FEk2qrajFs3owiMJDAXr0oDTtzU7pMt8x6R/dGo9CQVuWkt4o7pC22y/qHtkIRFETwqJFULP8VaXbcYdIdlCoFId1DCTXa2HhgF2MSx6Dzc71NdWPoRibipwjgxNxz0v76NWswnzpFxJ3nfVbDEqHzJNj9DdR41uYc7KuY4IIabEla4mMbf0ge2XIkncM788n+TzDbnP8eq0r1aI4KyhXFtL6qjph+Ra5Xt/r+8E5GoVBRkTqfypUrmjTPFwe/wGQ18WCvB52OrV3NzP7B82rpki+/skvIjK+TCTPwAXu71x2fOTxfHeBHTWsbodZI8nYdcTj2fBRCwaQ2U2h5uh0lIVbvBvwBDvxoX411tj9VKrVBdi2zlau8smWWpc/itOE0nQKctzFujMIDx8l+cws6Uxj6pEq6/mcy2haut4JwhnHzFgIHDEBoNFQHxEB4u8vWyQSoAkiOSeZwtZPeKq5Snm2PyXU+V4AZMvEarKWlGLe4F0N0xrRpHbEIK0nZfTwO+NclfkRP9JQi0kzYLPY4UsnXM1HHxxM8uk630cGPQk057J7p8fWW/3gEi4DrnWiUCSF4qNdDnDacZsnxRrrPnketfEz4Ne3rPzite9Xe88hL/OGdjEWaiQyqpODdd7HVeLayyDHkMPfIXKYkTXGp6+XZ1cx+z1YzlXv2ULlrFxF33F5fQiaiHXSaADu/AJOx4QnO0GbGYCw2E4XL3HN22pN90ZrCqOrs5S0ci8kej+k04QI9uZBxY7Hk5VF98GCTL7Et11470snfMyeTvX4f+u9PoECJ8poIOt89ziurl1pMp05hPnXqQmn/dqPs2UgWL8Y9vMjQ+KHkmnPJM+Y1fbK0MzfA81S3tUOHoNTp6jezayIxUUGcijpC+6J+tFZ7R0hSoVCgStYRpAjh5NJtVO3fT9WePYTffhui7pZTQh+7ZM7m9+xNE91kX0qBfRXTLtjhKqaW4QnD6RbRjU/3f4rZ2vhqpjwzF21uEKX+RbQYVOf3UpAGe7+D/k1rsnY+f3gnYw0UxDz5JJacXEq/n+XRHJ/s/wSBcBiLqcvgyZ6vZoo++hhleDihMxpp4jT4Uagug30/OJwnMCoUfYQBnTGM8ozGRQPrkrXNgF6tZ0vAPJeW3i6T/htUlUKP6y94WTtiBKjVVKxo+pbZ1pytxAbFEqVyfwV2/OfNWJeVYsZExD1diB/qzQx9O8YzXTC1Q+s4GXOlfSvxMmRInN3Wzafdb/Ndj9RFENPN/rB0BqHREDx+PPrVq+t3zGwCJ8pOsCfmF9Q2DQt/8l5vnDaT7T2cTNuKKfrqaxQhIeimNbJSGv4kGAtgz3duX+fcKsY1sUohBA/2epAcYw4/H/+50XGnvtuGQiiIv7EB+ZhV/wZNsN1uL/GHdzKolQQNHEjQ8GEUffop1rIyt04/WX6SRccXcX2n64kNalxqvS4jh7aiLMT91UzVgQMYN20i/M47UAQ0klLYagAk9LMnADjRLUqY1gcQnJrvWhrq3oMFhOptWJKguKaIDVkbnJ/kKgd+tHcRbHdhPr4yJISgwYPsWWZNyLIy28xsz93O4LjBbmcRHf9pM+qtFoyigvgnBnpdWqMWw+bNqOPjUbc+r4Nqm2F2JeLaRmaXGe1C2xGqDGVzThOdjD4fTm27YKusFt01E5FVVejXeG/bcMGxBZQF51EaaKP0QIldM84LqPw0yG5+BBNG7rESwq6fgVLbSPp64lBoNQg2/8+tleregwUEF5hcXsXUMjR+KD0ie/DZgc8wWetnuBbsPYpOH05FRDnhHeu8x4+vhWMrYfjfvVoc/Md3MmeI/tvfsOn1FH32uVvn/W/3//BX+nNXt7vcvuaQye0IsAm3FJqLPv4EpU5H2I03OR446GF746vDvzgcFtY+gfKAErQFQVSVOg9ArlpyHAuS2667gujAaOYfc61rplOqy+HIcnv3Q2X98qqQseMwnz5NdYrncax9BfvQm/UMi3cvyeP4z5tRbzejV5TR5h+j3GrF7Q7SbKZy6zaChgy50An6BdvbMl+mcRkhBJ0DOrM1Z2vTVraHlwCyQUHMgORkVHEtKF/iPJ7gCiariSXHlzCy1UjaDYon2AzLPei31Bjtrh9GpaWcoPZXo7vJwWdVCPuqoOI07J/t8vzLfzyCWcCNjWSUNX45+2omz5jHwmML6x0vWJCCRZpoc2edlGWbDVb9C0JbQX/v9sb60zgZ/44d0U2eTOn332POyXHpnB25O1iTtYa7u99NRID7N54RQ1pSFqLEuL/UpdVMdWoqhrVrCbv9tsafjGrpfA2EtnapODNyfEfUCj9OnpcR0xDFZVWosyqpivWjVVwoU5Omsvn0ZnIMrv2+HJK2BKw19bbKagm+chSoVOhXeJ6gsTF7IyqFikFxrtfHZC7fgXqrGYMop+2TIwkIc7/Jl6tUHTiAzWgkaGgDqhPtRkLeATDUL/S7HOji3wWD2cDBwibEzVIXQ2QHiKofLxMKBboJEzFu3oKl2CURD4esObWG0ppSrm1/LZMnJlGlkBxYk+X8RBcR1VWUnVqNLiCe3L2nHA9uNwrikmHjO/akHSfs3JeHrsiMokMILWLcV6wYHDeYXlG9+OzAZ1SaK8++nrlqF6GWSKrbWAiKqtNa4cCP9tqlK/8Datc1D13hT+NkAKIefQSAwned54BbbVbe2PkGcUFx3NrlVo+vOeRMbOaHWc5XM0Uff4JCqyX8llucT6xQwqCH7Pv4WY63wloM7GJvvnTccfOleT8eRiMFw65uA8C09na12oXp9Z+I3ObAjxDeFuIb7jWvDA0laMAAKlZ6vmW2IXsDfWL6uCwlk7cjDblWj5EKEp+8goBw77axrYtx82ZQKAga2IASQW23zBNrm9UGT+kQ0AGlULLptOMHlUYxFkPGJvtWWSNbmSHXTASrlYpfHK/OXWH+sfnEBcUxKG4QgQFq1B1D0JVZ2ZfiHSdeOncuQYdWUWnVU7khz3HRsxBwxVNQlmnvdOuEVXOPUiOk26uYc5cTPN7ncQqqCvjy0JeAvear8rccKm162t9WRz7GVAlrXrI7wq6uK1S7yp/Kyajj4gi/7VbKFy+mKsXxTX/R8UUcKT3C430ex1/luWc/u5o54Hg1o8rMRL9qFeG33YoyxMWbXa+bwV8HW953OtRZ86Uak4WKAyWUaRUM6R8PQJw2jsFxg1l4bGHTelaUnYKTG+2rGAexkuBxYzFnnqLmiOsp17WcNpzmePlxhscPdz4YKD2WhWH+KcyYiH+wP4ERoW5f010MmzYT0KNHw3/fFj0hIPyy3TILVATSI6oHW3I8TDM+8ou9y6uD3jH+HTrg360bZQt+alJsLqsii+2525nWftpZZeJrZ3TCgmSFFxIApMlE6XffEzywP7YuakIIJ2uFk6LnDuMhtjusfx3hYMtxy84cdCUWVJ11REcGemxjckwyV7W5ipmHZpKtz+b4vA0EizBEciDqoDr3s60f2rfzxr4MXhaqhT+ZkwGIuPdelGFh5L/0cqN1GXqTnvf2vEevqF6MSxzX5Guejc04WM1of16EMjTUvZ7gflq7CsDhpXapDge0vqo/Bls5lj0NN1+av/AoQVZBtysTLnj92g7Xkl+Z37Sg794zWX29HMeZgkePBoUCvQeFmRuzNwIwLMF5PMZYWErB5/tRoCD0lg6EtHY9ocNTLKWlVB88SNCwoQ0PUCih7Qi7k7lMJWaGxA0hpTiFoqoi54PrkrrYvr0b28PhsNDp11Jz5AjVhzxXzFhwbAEKoWBK0pSzryW0CKamZQD+p6s5dbppkikVy5djKSgg/M47SbpxOFU2A8b1uc5XM1f+B0oziMtp/P29dsExqoXkJg9XMefzRJ8nUCqUvL/h/xB7a9BTSrvpdT4fZadg49v2FWZi08SDG+NP52SUISFE/+1vVO3bR/nPixoc8/7e9ymtKeXp/k97pX3qiCEJlOkaX80Yt27FLy2NiPvvQxnsZkyg/70glLDtY4fDFColoqs/wSKMrNUXSrjYbDYyt+RRoYGJY9peaHvLEUT4RzD/qIcJADYr7P3evi8d2srhUFV4OIH9+nmUyrwhewMtg1uSGJLocJzVZOHk/9bhL4LQXB3ZLA2/GsK4eQtIiXaYAyeYdCUY8iG/GZrfeYERLUcAsC5rnXsnVpXZ1cO7THa4kgUImTAB4e9P2QLP3m9WaeXn9J8ZnjCcmKCYC45dfW1HlMCCHz0vLJVSUvz1TPzaJxE0dCgqfz9kDz9CCOfET04exJJGQ+IwWmf+CDWGeoc3bM0mtMyKf7dQIsOaLlYZGxTL3d3vpsfGUPwVQYRMbGNvwnY+K56x/zvulSZfrzH+dE4GQDd1CgE9e1Lw9ttYKy58qjlYeJA5h+dwY6cb6RrpnQIugKFT7KuZWd9feAORUlLw9jtYw8MJu/FG9ycOaQHdr7PfyCtLHA5tO30o1bZK9OsvDID+ujoDXQ3ED4xGqbrwLaFWqJmcNJkN2RsorPRgP/v4GqjIhuTbXBoePG4spuPHqUlPd/kSVZYqduTtYHjCcKcPBWnvLSPUGkl1NxsJI5qmQeYOxk2bUOp0+Hd18J5qe2av/DLdMusQ1oG4oDjWZrkZNzr6K9jMFxRgNoYyOJiQcWOpWPoLtir3CxgPVR2iuLqY6e2n1zvWrVMEFRFq5DE9peX1O8C6gnHLFmoOHyb8jjvOvtfa3TAcgyzDuqPCYcwTIWD082jM5Q3qD278KZ0qheTmW5umuXc+kxQjGCqHkSoPEjGw/YUH01fbE3KG/w1CmydlH/6kTkYoFMT8619YS0oofP9cdpbFZuGFrS8QFRDFw70e9uo1rxhkX81UHiy94A2u//VXqg8dwnDNRBR+fp5NPvhhezHf7q8dDlMH+VPTykKoJZKCvef2pveuPEWlQjJ9asOabNe2v/bsE6Lb7J5pr43p6FozpODRo0EIKtzIMtuZt5Maa43TeMyxH9cTWhRGqa6Yjrde6fL8TUXabBg2bbKnLjvqAKmLt2deXaZORgjByFYj2Zaz7YKsJaekLoaQeHtg2QV0116LzWBw6z1Qyxb9FqIDoxkS3/DWz9CJbfGTgh9/9EyLrfiTT1HFxBByzTVnX1OqVPgNiyJIEcKx79c5niChL4WRg+wClOdlEi5deYJQvY3g3hGEhnh4H2iAoh9TsEkLb7X+gY/2f3TugMUEy/9hT8YZ/KjXrtcQf0onAxDQrSuh18+gdNass0kAXx78kiOlR/jngH+i1TRNsbkhhk9NIsAm+PZrexqoraqK/DffxK9jR6oH1O007QYxXe3bUds/dVrwlXjdICw2M/lL7T/zmo2n7G/uXuEEBjTcHqhVSCv6x/ZnwbEF2KQbBW36fPtTbK8bQeWakrM6OpqAPsno3dgyW3NqDYGqQPrGNlDBfIa8nYfR7LFRLorp/IT3u/85oubIEaxFRQQ52iqrpd2VkLnFnvFzGTKy5UhMNhNbcxpOIKlHjQGOr7an3LsYVA7s1w9161aUz1/glm05hhzSqtOY1n5ao+KowwclUKZVoN9fcrbXjKtU7tlD5c6dRNz1FxSaC9/Pra/uT7miGM0RnNajnWh7C1iqYfXzAJgtNg78koFBBbd5cRVzcslWQs2RVLU1M7jXaL5N+ZaU4jM7KVveheJjcNUb9jYizcif1skARD/+OMqIcHKfeZaU3H18sv8TrmpzFaNbj3Z+sgcMGxhPRZQaebiC9Iwyij77DEtOLrH/eq7pWR2DHrbv5x/40eGwoJhw9OEV6AxhVGTmsXXxCfsS/SbHW4PXtr+W04bTHK12Iztn/w92ob3erm2V1RIydhw1R49Sc/Kk07FWm5W1WWu5IuEKNMqGHVlVqZ6KeccxyWpaPzIUlZ8XWxe4gGGjPe03aMhg54PbjbLXE53yrlikt0iOSSZYE8yaLBdXW8dW2m+oLmyV1SKEIHT6dCp37aLmmOv6ebWp9lOTpjoc1/fqRAKt7hVJAxR98gnKsDBCp9ffilMoFIRf0x4/RQDHv3S8nVgVmAADH7RvcWfvYvbcNHQ1kDgqjgB/z5XDz6e6TI9lYxkGWU6HO0bxRN8nCPcP57lNz1Gdux/WvwFdpkD7MV65niP+1E5GqdPR4vnnqTlyhN/++xARARE8O6DhvtzeYtodXRHAok92UvLFl4RMuobAvo0/gbtMu1HQopc9U8RJwVf8lGRAcPDrjYTqbWh7hhOsdXzjvbL1lej8dGwxuHjzs1pg51fQeihE1W/w5ojgsfY3vn7lKqdj9xTsoaS6pNEHA5vNRvp7v+EvtARcHYs2LtItW7yBceNG/Dp3Rh3tQofR1oNB6WeX+LgMUSvUDE8YzobsDa41yEpdZO/o2tK9lXro9OkIjYaSWa7pDVpsFhYeW0gn/07EaeMcjh03KpEyrYLyPcUuNxesSknBuGEj4bffjiKw4dTiFoO6UqotIqQwhIJ9TpzjFU9BcAtqFv+D/M15lAcIrpvi3ufEEcc+XY2/CCL4mlao/P0I0YTw8pCXSS9L583ld9s7d179lteu54jLwskIIcKFEKuEEMfO/BvWwJheQoitQogUIcQBIUTDpeNuoh01ioz+LRm1poRX4+73Ss8JR3RsF46tvRb/MiVloW2I/vvfvTOxEDDin1Ca4XQ1E96pFeX+JbQwhmIWNdx4k3MBPj+lH5PaTeJA5QFKqh0nGABwZBmUn7I3b3ITdWwsAb16uVT9vypzFX5KP4bGN5wanD5nPWFVkejj9Rc10F+L1WCkcu9etEMbSV2uiyYQWg+6bHXMwJ5lVlZTxt4CJ90szVVwbJW9rYPCQSyqAVRhYYRMnEj5osX1knMaYn3WevIr8xkS7Foa7sBJ9lbp38865NL44k8/Q6HVEnaz4zT8NncPxyLNFP6Y4jil2S8Yxr7MwROtCbQK+k9p6zW179ObDhJaEk5ZWAnxQ8+ljA+OH8ydod2Zq6xm1aA7QevlNh6NcFk4GextlFdLKdsDq2m4rXIlcJuUsiswHvifECK0qReec2QOLw3KwaYNIOLNWR63A3CH6TGnUJv07Oh6B8pILz5ZdxhnX81seNPpauZ0QigapT8dwirQBbu2Jzu9/XSsWFmcvtj54O2f2FOWXQz41yV47FiqU1MxZTUuBWKTNlZnrmZI3BAC1fWfLotSTqLZZ4/DdHpwfAMzND+V27eBxdJ4fUxDtBsFhWlQ4QU5n2ZgePxw/JX+rMhw8hCQvhrMxgYFMV0h/JabkVVVlC34yenY2Ydn0yKoBd0CXItpXDncLmBr3F/qNNOs5tgx9KtWEXbzzU5LDLSxEZi7CHQyguM/OhaXPaa9kp2GGbT228no7k0odj4Ps7Ea/ZIMqqWR9vfXSW7JO8QjB36jmwjg39nLOV523CvXdMbl4mQmA9+c+f83wJS6A6SUR6WUx878PwcoAJrkirfnbueNHW+Q3GEEbV57i5rDhyl4/fWmTOkUc24ulf97g7iqvSjR8eMC96vbG8XF1YzZYmPPIUlhTQFJlmCsJtcaFLUNbUtbv7YsOLbAcUV27gHI3Gyv4XHzCbaW4LFjARwWZh4oPEBBVUGDW2XSbKHw24PYsJFw34D67WUvEoaNG892wXSZdqPs/16mW2aB6kCuaHkFqzJXOd4yS11kVzFI9KwrrX+XLgQkJ1P6ww9Ia+M34eNlx9met50ZHWegFK6/34adScT5bqZjPbbC995HERhI+B23uzRv+1tGUkEJir0mDDmNF67O++IgJlQMi5gNPz/oVFHdFY58uAKtCEU9Ihz/0PMcYo0B5t2BOiCUd8Z/iZ/Sj4dWP+TarkQTuTSfvPrESClrG57kATGOBgsh+gMaoEFXLIS4F7gXICoqinXr1tUbk1mTyfv57xOlimKCmMAehQLt6NHww2xOBmmp6eNauqVbWK2E/e9dVGYz2ildKdlso2pNDosCclFS2aCdbiP96KNth2rFS+wojUU2kGWzfbcFXY2Cw5HVDLNEs/HDudDb8T52LcmqZOZXzOezXz+jY0DDKc8dD79LtMKfrcY2WJrwM4W3bs3pefM52K7hgsmFpQtRokSZqaxXIKhel0OwaEN6/GlOZRyBDC86c1eRkshVv2Fu3571jXR9NBgM9f/uUjJYHUrp1tmklcc3v50uUNfOhMoEVlSv4IsVXzTYhVRhNTE4dQkF0UM5utFDvTPALzmZ0C++YNt771HTu+HtzrnFc1GhIqYgBkNVA79PBxQEWwlLq2DugjVER9R/5lZlZBCxahWGiRPYtH+/y/Pautpod0jNkfd+o2JsDEJxrn7LYDDw3ie/oStWUBIvyWk/Cd3hdzn+/eNktfJcO0ym5dO+JI4s1Slq/r+98w6Pquga+G82m2x6DyQkEHpAegdFehN5pQgI6AeIgoroCxYUu2Lh9RV9xQICKgqKYqGIgFRp0jEIhF4TCIT0XjY73x93wZBskk2yuwlxfs9zn707d3bm7Ozde+49c+Yc91DOFxiHJsf+R82E0xxq9QbJUQmM9x3PnKtzGLt8LI/XfBw3XcUXfxYvmJQO2YCNwBEL22AguVDdpBLaCQFOAJ2t6bdx48ayMEeuHZFdl3aV/X/sL69mXL1RbsrNlWdHjpTH27aTWSdOFPlcRbn63mwZFdFEJq9YIaWUcs+BWDnnkY1y1hs75JYtW2zX0fG1Ur7qLeW+L4ocSk7Nlu9O3ijfnLpZ5uXkyuPPrpZRz62U+fn5VjW9fvN62e27bnLKximWKyRHS/l6gJS/PlORbyCllPLa/PkyKqKJzI2JKXLMmG+UvZb1kpM3Ti5y7OzqXTL6uW3yr3eWV1iGipB95qyMimgiE5cuLbZOsb/7T5OknFVXSit/F3tTWM6svCzZ6ZtO8uUdL1v+wPE12jl4akOF+jUZjfJUv37y7NBh0mQyFTmempMqOyzpIF/Y/oJFOUvj5Lkk+b9HNsq3X9pm8fiFCQ/JE506S2NaWpllPzp3jYx+bps8sWTzTeVrf9sk33l8k3xnyiaZkZkrpckk5Xf3S/man5TndpS5HymlTLt0TZ56dp08Nn2VzEnPvPngnvnab7H57ZuKN13YJFt/1VqO+XWMTMsp+v2A/dIG136HmcuklH2klM0tbCuBq0KIEADza5ylNoQQ3sCvwItSyt3lkWN7zHYe/O1BPJw9WNB3ATXc//b4Ec7OhH34ITp3d6IffRTjNduFXU/dsIGEBQvwHTECn8GaO2fHtsHkNfDE81IOx8/YxiYLaHMztTvDlrch52af/c/nReKeL7j93gboXZzhNi35UszmSKuadhbOjIwYydaYrVxIvVC0ws45gLTJAi9vs8ksdUNRL7MDVw8QlxnHv+r/66by1AtXMG1NJSU/kSZPVM48zHUydmjx1DysnfQvSINekJUIV6y/e3YkrnpXetXuxcaLGy2n+o1aCa6+WvrhCiCcnAicOJHsqCgydhQN27LqzCqyjFmMaVJK/qViaFTXF9HUG+9reWzefnPI/oy9e8nYuVOLd+hZ9nVzEQ/3JUUk4HzIRELU+Rvle3aY8DJCq8H1tLVpQsDgT8C/HvwwvsxzccbsHC58tANn4YLffY1x8SjwVHJqA6ydDo3v0jzaCtCrTi/e6/4eUfFRjF83nkvpl8r8Ha2hqszJrAKuGzzHAUWCigkhXIDlwNdSyjIHNsoz5fHxnx8zZfMUwr3DWXzXYmp7Fw2l4BwcTNjcueQnJRP9yKPkp6SUtasiZB48yOVnnsW1ZUtqvnSzi/RDj7YmXQ9JByXJqTZyOhAC+r+lpX3d+Xdag90HY3E+k056qIGeXbU4YvVG3KGFmtl8sWRvmALcF3Efep2eJVFLbj6QdhUOfgWtRtkkTIVLeDiGpk0tujKvPrsaD2cPutf++yKWbzQS/dkunNBztY0sGm3WwaRt2YJLgwa4hIWVXrkw17OHVmEvswH1BpCWm1Y0MrMxB46vgSZ3W0xQV1Z87rkHfXAw8Z/Nu6ncJE18d/w7Wga1rFAIqAcfakWGk2TPD6fJzNIUppSSa7PfR1+jBn5jyhHuCS0SQOjDHTCRz7WvjpCdks7vO6MJiBOkhxq4q0+9vyu7+sB9SyA3A5YM19KUW8mx99fiIwPIbaujZtsCJuzofZrSqtkM7l1ocX60d3hvPu79MZfTLzN69Wi2Rm8t13ctiaqiZGYBfYUQp4A+5vcIIdoLIRaa64wEugHjhRCR5q21NY1vurCJ4auG89lfnzGo/iAWDVhEkHvxPgNuzZsR9r8PyDl1iosTHqqQosk+dozoxybjHBxM7Xlzi4SO8fEy0HZ4A7zyBZ/9r5Rw4WUhrL2WG+KPjyD1Mrm5RjYvPk6ODsY/2vpGNRcPN/Iag48poEjgzOIIdAvkrnp3sfLMSlJyCozNro8gPxe6PmWzr+Hdvx9ZBw+Sd/XqjbJsYzYbLmygT50+uOn/vms7Pu83fEyB5DSX6Gr52kyG8pCflkbmvv149exRvgY8a2ih4avo5D9Al5Au+Bn8WHWmkLfh2a2Qk6It9rMBwsWFgAkTyNp/gMx9+26Ub4vZxvnU89zf5P4Kte/l6UKTf9XFOxcWzIsEIPWXX8g6dIigqVPRuZb/ZsW3QSj6Pv6448XJ99az+9uTpDtJJj3ZrmjlGk1h1BJtJf43Iy0G0SzMsc/X45caQHJgEo3uK/DUGL0PFg/VzqMxy7SI7cVwR+gdLB20lED3QKZsnsK0LdM4kWi7OcwqoWSklAlSyt5SykZms1qiuXy/lPJh8/4SKaWzlLJ1gS2ytLYv511m6u9TMUkTc3rO4a2ub1mV1Mqze3dC53xIzsmTnL//fnIvlpL9zgKZ+/Zx4f/GonN3p/bnC9H7W86b3bdHOAk1JZ6Xc/hhuQ0nqPu8quXw2Pwm8+ZF4pMlCesVSs2gm79/w9HdyTKlk775ktVPM2NvG0uWMYufT5ndS1NiYM98LVhngO0iG9/wMtuw8UbZ1pitpOelM6jBoBtll3YcxivakyTXeBo90LNIO44mY+dOMBrx7FkBWRr00pLS5ZQcpqSycHZy5u76d7M5ejNJ2QXuvKNWgsEH6lfMVFYQ3xHD0QcFETf7/RuejV8e+ZJaHrXoV7dfhdu/Z0AD0oIN6E6k8seOs8S9NxvXFi3wGWJ9pILiCO/XnvR6mfjnBdFJxOLTCvx8ilFcDXrBvZ/Dpf3w1SBItzhzAMCppb/jdcqNJOd4mk4tsFTg+Br4erC2DmbcavAu3akn3Duc7+/+nifaPMEfl/9g+C9FoxqUlyqhZOyJi3Dhgx4f8PPgn+lZp2x/eK+ePam9YD751+I5N2KkxbkBS0iTiYRFi7jw4AT0QUHU/WZJqSaT2+/UkeImiF4fw+FjNpoL8qsLnR4hdu9+dFEppNZ0YdTwop5Azh6u5DfV4yP9ubhuX9F2LBDhH0HH4I58e/xbLe/7lrcBCb1eso3sZgz162No1PCmhZk/n/qZmu416VCzAwCZCclkrIomW2bQ8MneNlvUVhHSt2zBydcXt7K4LhemQW8tevFZ25swbMXQRkMxmoz8etaczTI/T8tvFHGXTWNi6dzcCHxiClmRkaRt2EBkXCQH4w4yttnYYuOUlZUJU9qQ5QQHvzpKdkIqwS++gLDRubTbrRYn0s/TyDOclpdLyaR52z0w6luIOw7ze8D5onNRp77fiiFSkKJLoMnzd2ku+sYc2PgafDdGi7Ixfo0WdNVKnJ2cmdRyEuuHr+fpdk+X/UsWQ+X/G+1MoD6QPuF9cNaVzzbs0bkzdX/8Aedatbj0xJNEPza52KyaUkoydu/h/KjRxM36D549ulP3++9wrlX6nYSzXse9U1phEvDrp4e5llj2MOeWuNh4CmuTn8XdKYFJT7Qotl7D0d3INKWRue1qmZ5mrmRcYe2fCyDyW21dTCk5Y8qDV7/+ZO7fjzE+nui0aP64/Af3NroXJ50TJpOJMx9twVV44HFPbbunULYGmZ9P+tZteHbvVnLU5dIIv117Ijix1nbC2ZjGfo1pFtCMn0+bs1me2wrZyWWKVWYtvsOG4dKgAdfe/4BFhxbiY/ApNU5ZWagR6E7Hnp4InSt7O07F0LLkBGvW8vvOGNJ2xbPbrTaJXvGEZ4dz9J2VJa9Pi7gLJqzVFPWiu2HF45B0AZPJRNS8tbj9qSPNKYkG03vj7KqHo8thXlfY8QG0eQAeXKulASkHPgYfxjcfX74va4Fqr2RsgUvt2tRb9j1BTz9F5v79nL93OGfvGcyVt98m8auvSPhyEbGvv87ZuwZycfx48mIvEzLrHcI++sj6VMpoIWfajGqEe55k/jt7yhwltjDpGbks+fAYGSZf/uX7DgFHPyu2rt7VAC1d8caPcyuti7DbLawbEX4RLDi8gHxXH7jTdnc/BfHq3w+kJG3jRn48+SM6oWNoI+3icmrxZvyyA0mrnU5o1+KVqCPJiowkPzm5YqYy0CbNG/eDk2ttslDPXgxtOJRTSae0CL9RK8HF6+8FpTZE6PXUeOZpcs+fx/3nLYxuMtpipIfyIvPzCf/hfepFryPbUJuP5hyocJuRR+M4sOQEWXrBhGc60HzGYC64XsAvLZDjr/1CyoXY4j9cqw08sh26PA6Hl5E1+w6OTl+A93lPksR5Gvc5j+uW6fB+E22CX+jg/h9h8MfgbMd1L2VEKRkrEc7OBE6cSMPNm6j5wgycfHxIXvYDV9+ZRdx//kPqql9wrlWLkLffpuH69fgOGVKurJq9u9XBv0cIvmkmPnzjjxveLmUlK9vInLd2451lotbAcIJat9bCzZSQdbHByG6kyxSMu5IxZpfu6SaEYJJnY84LI+s7jgF3y3NOFcXQqBEu9eqRsm4dK06voHtYd4I9gomLPIXhqI5kXTxNH61cd+WCpG/ZAnp9+VyXCxMxEDITtLmZKsrA+gNx17vzbdQSOLYaIgaAs308+zx79CC6dQgjt5sY6WW7OR+AxK8Xk33oL7o82oP0Wgb0x9NY8EX5XciPnUpk/aeHMQkY/O/WhNT0QKfTkdcjjMzmeXgYfUj45AjH5q8jL6uY/5vBE2OPVzkZ+gWXchbi49SElNxVNHN+Audtr8LpjdoT78jF8NgfDomqXFaqyor/WwYnLy/8x47Ff+xYpJTkJycj9Hp0Hh42s98+MOo2vszNhz+u8cGrO3lkRqcypWNNS8/lo7d24ZOUj6FTIPfe0xjS34XzO+DHCTBxixaIsfB3c9Fj6BaI8/Y8Ti3eQtOJpVy40+Pos3cJDYIDmJ92jP7ShE7Y/r5FCIFX/37Ez19AXifBiDtGkJuWQeLS4zjjQvjkO4qmla1E0rb8jnuH9uVaW1GEhn1A5wzHf9UuJlUQLxcvBjcczA8nlvFUbjKBdjCVXedc6jlmdY3nw+N6smbNQc7/zCYp0rOjorj2/vt49uyJ778GMW1APu+99gc+exOYZ/yTRyeVLbjqvsgr/D7/KE4S7ph4G00b3XwD1viBXsQfPcuVbw/hezaQi69uJdM/E7eGAbjX8kPodGTGJpF5Mh63BAPuOl9SnRLxGFKHZu3fgtwZmkuyq30D+toC9SRTAYQQ6P38cPLyspmCuc6DY1vg1a0GXqn5LHh1F7sPlvBYXYDjpxP56KUdeCcZce0cyMMPttIOeAbB0Hlw7TissxR/VCP8ro4kO8VjOOVExrUSfPVNJlj+KLq8bCa2nsLp5DNsuGCdY0R58OrXD2EyMSA6gDtC7+DEnPV4Cl/0vfzwCrMihL6DyL14kdwzZ/CqqKnsOq7empfWiTVQUry4Sub+pvdjlPl87xugKUY7MTdyLul+rvhNfYKM7dtJ+vbbCreZn5ZGzNRpOAUEEPL2WwghcHHR8+RLXUgJ0JN/MIl33/zDqrQAJpOJJUuj2DnvKAjoNbkFndtanhsJbFaf22YOJr+3G5luGXgn+eC6H0yrkshfkYBhjwnvRG+yDVnk3elMkzcHEdL5Ni0BoLv/LaFgQCmZKs3YMc2JuK8BeqNk7/wo3v/vHmJiLbuzJiRn8cknB1j33p+45kjqDK7LQ+MLTVw27A13TNUWTO5dYLEdnU5H0L234SwMnP2yhCiyf3yoZTwc8A4DWo6noW9D5hycY3n1tw2I9Enmii/cdd6Hsz/uwC8tkOSgJMIHdLRLf+UlbbOWzKvC8zEFiRgIiWfhWiXEX7OScPdgumXnsczHmxw7efedSDzBuvPreKDpA4SOm4hn9+7EzfoP2VFR5W5T5udz+bnnybt0idD3Z6P3+zvLiKe7M8++3pWchh54xGTzyYwd/LjyRLGOMbsPxvLOjO2kbL1ChqcTI2d0oE2Lkm+AdDod4X3b0+L1oYS+fjtOQwLI6+pMbhcnnAb7U+uVLjSfOZR6d3euUk/rZUGZy6o4/XvWpVWzIBZ9GonHmXR+en0v6b56vEM98PQ1kJ2ZR1JMBm7xubhIQaa/MyMmtaRRXV/LDfZ+RbtYrZ0OPmGaF0sharaN4PCaKHwS/Ij78yQ12hRKpnRsNWx8XVts134CTkIwrd00Ht/0OMtOLuP+phVbHGeJL48uollzD7pFZeG0L5cUpwyaTCkqe2WTtn4DhiZNcKld8YgHN4gYCL8+pbkG1yjqgl4lOLWBcUmJPOTqzI8nf7TLOfDRnx/h5ezFuGbjEEIQMusdzg0dRvRjkzUvzuDgMrUnpeTqW2+TvnkzNV96Cfe2RYPiOut1PPVMJ9ZtOsefK85xde0l/rv+ErpQN3xruqHTCVISssm+lIlPlsRNSJzbB/Ds2Oa4uJTt8qp3NWhPKtUM9SRzCxBcw4PnX7uDO59oibGeB07p+eiOppK58xqmP5PRJ+aSE+xKqwcjeOHtbsUrGNDsuMM/h+CWsGwcnLScE6Tew93Ik7lcW3YMk/FvzybfpL/gp4cgtB0MmauFsAHuDL2TTsGdmHdoHmm5tl08eCT+CLtid1Gz72AMHSYikYQ+3N7haZRLI+/qVbIOHsS7f8UXB96Ed4g23ifW2LZdW3L4BzrovGhfox0LDy8k21hyjpaysvPSTrbGbOXhlg/fSCyo9/Oj9mfzMKWnEz1xEsb44sPqF0ZKSdysWSR9+y3+Eybg/0DJSnFA73o8Pbsb/r1DMHo54RydSe6+RLL3JKA/nY4U4NTWjwdmdmHSw63LrGCqM2okbiFaNwuidTMtHE5aei5xCZl4exkI8DWUbQGiiwf833JYMkxbuHXXu9B+wg2FAVrypcst9fgc8efUN1uIGNcHji6n5V+vQ2AjGP3dTc4DQgimtZ/GqNWjmP/XfJ5ubxt3Zikl/zvwP/xd/Gl6/Da8XINITF1P/QZVz4vmelQCr/79bd94xEDYPBNSY8u9/sFuZKfCyXWItmOZ3GYkE36bwLITyxjbbKxNms/Lz2PW3lmEe4fzQNMHbjrmGhFB2CcfE/3YZM7ffz9OEx4qtT1TRgaxr75G6urV+I39P2o8a112WhcXPaNHNIURTTGZTMTEpiOEIMDPVQt0qbCIepK5RfHydKFBuC9B/m7lW+Hu7g9jV0H9npop5vsHIPHcTVUajulBii4B56OS1CXT4IfxpHk1gAfXWEzd2iygGcMaDWNx1GKOJRwr71e7iV2Xd7Hnyh5eiH2AgKwaxBuP4LJjFcYk6wMIOoq0337D0Kghhvr1bd94U3O06WNWZCV1NMd/BWM2tBhBh+AOdArpxOdHPrfZE+03x77hfOp5pneYjotT0adXj86dqfPF55iSU/B/+22Sli5F5lmeG0zfsZNzw0eQumYNQVOnUnPGjHJ5p+l0OuqEelO7lpdSMKWglMw/GVdvLXhen9fhzGb4uD18e5/mFHDsF3SRS6hZbztOOHHxwG2YuvybyNZvlbge5ql2T+Fr8OW1Xa+VnDXRCvLy83h337vck9iFplcbk+QcT8SE7pCXR+qaqmU6MsbHk3ngAF59bWwqu05QBNRsDkd+sk/7FeHwD1qkhzAtzM+0dtNIyk7i08hPK9z0uZRzfBz5MT1q96BbWLdi67m3aUO9lSvIq1uXK6+/wen+/Yl77z1SVv9K6rp1xM+dy7nhI4h++GGk0UidLz4n8NFHbOL+rCgZZS77p6PTQdep0PI+2P2pdhE7ue7G4UCDD9c8A/HN7MrJS+HI+iXftfkYfHi+0/M8u/VZvjjyBZNaTiq3aIuOLsLlfBYPxY4gkzQaTuuNm783hiZNSFmxEv/7bT+5XF7SNm4Ck8k+prLrNBuqmcxSYjSnjapAehyc/V07h8wX7GYBzRjeeDhLjy9lSMMhRPhbzqBaGkaTkZd2vISr3pVXu7xaan3n4GCSp/6b9jqdFonjq6+hwBON4bam1Hz5JXxHjEDnUrXm86ozSskoNLxDoN9M6PsGpMVCRrwWHtw3nAgEUa+sxOuELyZD6Waq/uH92Vx3M59EfkKbGm3oENyhzOKcTjrNil1Lee/SNKQwUXNiqxtxyXyGDCZu1n/IOXMGQzGpmR1N2vrfcKlbF0PjRvbrpPkwTckcXQ63P2G/fsrCkZ+0SN8tRtxU/GSbJ9l0cRMv7niRb+/+1qKZqzQ+++sz/or/i3e7vUugW6B1HxICz+7d8ezeHVNWFnmXLiFNJpyDg8sU4klhO5S5THEzQmihwUNagn990Dlp9udHbscoc6kVqSczIbmUJgSv3v4qdbzqMH3bdOIyiw9XbonMvExe/O05Zp56BDfhgfvQMPwa/e0S7DNoEDg5kbJiRTm+oO0xJiSQsWevtmDUnuYX//oQ0rrqmMykhIOLNc+3Gk1vOuTr6ssbt7/BiaQTfHDggzI3veniJuYdmsfgBoMZULd8IYN0bm4YGjbEtXFjpWAqEaVkFFbhXbsmhoE1cNd5cfaDLeQbS55v8XD2YHaP2WTmZfLIhkduTm5WAkaTkdc3vcy0/UMIdArG1NWNkC43Zz3UBwbieeedpKxchcyv/MCRqb+ugfx8fP41qPTKFaX5MLj8p7Y4s7KJjYS4o1rUXwt0r92dMU3GsOTYEn44+YPVzR64eoAZ22fQPKA5L3d5Wc2b3OJUCSUjhPAXQmwQQpwyv/qVUNdbCBEjhPjYkTIqIKxHG877x+BrDCRq9q+lpgRo7NeYD3t9yIXUC0xcP5GrGVdLrG80GZm5+VUGb2xJLac65LSD+vd0sVjXZ8hgjHFxZOzaXe7vYytSfvkFQ9OmGBrZ0VR2nWbm0PZHfrZ/X6Xx5xLQu0Lze4ut8kyHZ+ga2pU3d7/J6rOrS21yT+weJm+cTLBHMB/1/giDk+1y0igqhyqhZIDngU1SykbAJvP74pgJlBDvRGFPTJ3CSPJLxC/Jn6g5pXt4dQ7pzIc9NUUz5tcxbIux/NNdybjCM8ufZNC6ZtR2qkd2KxONRhYfZdezZ0903t6VbjLLOXuO7MOH8bnnHsd06FsHwjrC4R8rN5ZZXpbmVdb0nhJjaDnrnJndfTZta7RlxvYZzDk4h9z8ojHA8kx5LDy8kEkbJhHiEcLCfgutn4dRVGmqysT/YKCHef8r4HfgucKVhBDtgJrAOqC9g2RTFKLZ04M4OmsVflcCOfLBL9z277tLXKtzZ9idfH3X1zy77Vke3/Q4nYI7MaDeAMK9w0nNTWXX5V38deAPXjk3ES8nX3I76Wg8rHh3VQCdwYDPoLtJ/uln8pOTcfL1tfG3tI7U1b+ATof3wIGlV7YVrUZpa5su/wmhRUOhOITjv0J2SrGmsoK4O7szv+983tzzJgsOL2DNuTUMazSM5oHNQcLRhKMsP72c6LRo+ob3ZeYdM61Kka64NRCyCkR2FUIkSyl9zfsCSLr+vkAdHbAZeADoA7SXUk4ppr1JwCSAoKCgdsuWLbOf8DYiPT0dT1uEhrcz1+WU+SbcN8cSml+HyyKGjB6BCEPJ7s1GaWRr6la2pW0jMT/xRvmQi514MO0+AC40SkY0KrrQ0xL6mBgC3nyLtOH3ktnn5si/DhlPKQl4+WXyg2qQ/O8ny9VEeeTU56XTZdeDXAnuzanGj5ar37JSWM5WkS/jmn2FPZ0+05JlWcmxrGP8lvIbZ3LO3FRe31Cfvt59aebWrEJzMLfC/+hWkBGgZ8+eB6SUFb+Zl1I6ZAM2AkcsbIOB5EJ1kyx8fgow3bw/HvjYmn4bN24sbwW2bNlS2SJYRUE58/Pz5ZGPVsvo57bJY9N/kbF7oqxqI9+ULy+kXJA7IjfK/a98J6Of2yaPPrdCJp68WGZ5zo0aLU/36y9NJlOxctqLjL17ZVREE5m0fHm52yi3nD8+JOU7taXMzSp332XhJjmvnZTyVW8pf3+33O3FZ8bLvbF75d7YvTIhK6HiApq5Ff5Ht4KMUkoJ7Jc2uPY7zFwmpSw2yYQQ4qoQIkRKGSuECAEs+bx2Ae4UQkwGPAEXIUS6lLKk+RuFHdHpdDSbcjcX1u1Fv1lP7k9xHF5/nNAR7fGPKD4KccblBFKXHaJWrBtOoibJwck0eWyAlgK6jPiNuo/Lzz1P5u7deHSx7CRgL5KW/YDO0xPvfnZa5V8SbR7Q5kSOr4YWwx3b976FWiK1duPK3USAWwABbgE2FEpRVakqczKrgHHALPPrysIVpJQ3lncLIcajmcuUgqkChA/oSEa7JM5+vhWfJD8yvzxPrDgAwXoMIV7oPV0xZuaSE5uKvJKLt9EPH3xIdk0geERL6rQo/4JKrwEDcHpnFklLv3OokjEmJZH222/4Dh+Ozt12eeatpm438KkDkd84VsnkpEHkt5qXm2fVSRanqLpUFe+yWUBfIcQptPmWWQBCiPZCiIWVKpnCKjyC/Gjx/BB8HosgJTQVnUmH92VvXA/q0G/LxXU/+FzyRm90JrVGKm5ja9PijaEEVUDBgNkBYNgw0jZtIi/WuuyhtiBl5Upkbi6+9410WJ83odNB6zFwZkuRwKZ25a/vIScVOpY/XJDin0WVeJKRUiYAvS2U7wcetlC+CFhkd8EUZcanbgg+T9wNQHZyGmkXr5Kbmone3YBPg1DCfGw/4ek3ZgyJX31F4teLqfncdJu3XxgpJcnLfsCtVStcI8oXl8smtBsH29/TzFf937J/f1JqwVNrtYEw5dypsI6q8iSjqIa4+noR1LIhoV1bUrNtBK52UDAALmGhePfvT/KyZeSn2TZhmiUydv5B7tmz+N53n937KhHvWto6lYOLISfd/v2d3gTXjmtPMWoVvsJKlJJRVAv8H5qAKSOD5O+/t3tfiYsW4RQUiPegu+3eV6l0egRyUjQzlr3Z8T54h0JzBzsaKG5plJJRVAvcmjXDvXNnEr9ejMwtuqLcVmSfPEnGjh34339/1QgXX7sThLSCPfOglDA/FcE75Rhc2KlFf9ZXge+tuGVQSkZRbQh46CGMcXEkL19htz4SF32FcHWtfFPZdYSA25+E+JN2zZpZ5+JP4OYPbW2TUlnxz0EpGUW1waPrHbi1akX83Lk3JauyFbkxMaT88gu+w4ah9ys2hqvjaTYUAhrCtvfsE88sZj+BCfug82PgosK9KMqGUjKKaoMQgqBpUzFeuYL7NtvHUI3/dC5CCAIeqWLuuzonuPNpuHoYTv5m27alhI2vkevsoykZhaKMKCWjqFZ4dO6Me5fOeKxbR3667Tyucs6dI2XFCvxGj8a5Zk2btWszWowA33DY8iaYbJhj58wmOL+dC+EjweBlu3YV/xiUklFUO2o89RQiPYP4jz+xWZvX5sxBGAwETJposzZtipMz9H4FrhzWVuTbgnwjrH8FfMO5XKu/bdpU/ONQSkZR7XBr0YKsO+4gcfFisk+erHB7Gbv3kLZ2HQETJqAPqMLxtprfq+Wa2fSGFv6louyZp2W+7P8WUldyhG2FojiUklFUS9KHDMbJ05Mrb7yBrIBrr8zN5crMmTiHhREwsUjwiaqFEDBgFmTEwe+zKtZWcjT8/g406g9NHJBWWlFtUUpGUS2Rnp7UmD6drP0HSPzyy3K3c+2TT8k9c4aaL76AztXVhhLaibB20O5B2PUJXCxnampTPix/RNsf+K5a3a+oEErJKKotPsOG4tW3L3H/+5Csw0fK/PnMfftImD8fn+H34tWzpx0ktBP9ZoJvbU1RZCWX/fPb39cWXg78L/jVtbV0in8YSskoqi1CCEJmvoE+KJCYyZPLFKU5NyaGmKnTcK5Tm+AZM+wopR0weMGwBZByCX6coE3gW0vUStjylhY6ptVo+8mo+MeglIyiWuPk60vtefMwZWURPWkSeXGW8uHdjDEhgehHHkXm5VF77lx0HrfgAsQ6neHu2ZoL8i9PWufWfGYz/DwJwjrA4I+VmUxhE5SSUVR7XBs3JuyTT8i7dJkLo8eQfaJ4j7Oc06e5MOZ+8i5dIuzjjzDUr+9ASW1Mu3HQY4aW2OzHB4v3OJNSc3v+ZqQWOWD0UnB2c6ysimqLUjKKfwQenTpS56tFmHJyOD98OHGzZ99kPsu7Gse1OXM4d+9w8tPSqPPFF3h07FiJEtuIHs9Dv7fg2C8w9w449B3kZmrHpISY/bB0NKx4TAu2Of5X8AisXJkV1YoqkbRMCOEPfA/UBc4DI6WUSRbq1QEWArUBCQyUUp53mKCKWxq3Fi2ov2olV9+ZRcLCz0lYsBB9jRqg02G8cgXQ0jkHv/gC+qCgSpbWhtw+BULbwZpnNGeAVU+AVwhkJ0N2Chh8oM/rWoRlnVNlS6uoZlQJJQM8D2ySUs4SQjxvfv+chXpfA29JKTcIITwB+8U2V1RL9P7+hP73XYKmPE7axk3knDkDUuJSrx5efXrf2uaxkgjvAo9sh/PbtLmX1Mtg8NYyXEYMBDffypZQUU2pKkpmMNDDvP8V8DuFlIwQ4jZAL6XcACCldEAqQEV1xSU8nICHJlS2GI5Fp4P6PbRNoXAQQtojNHhZhRAiWUrpa94XQNL19wXqDAEeBnKBesBG4HkpZRG3GSHEJGASQFBQULtly5bZU3ybkJ6ejqenfdIT2xIlp21RctqWW0HOW0FGgJ49ex6QUravcENSSodsaErhiIVtMJBcqG6Shc8PB1KA+mhPYD8BD5XWb+PGjeWtwJYtWypbBKtQctoWJadtuRXkvBVklFJKYL+0wbXfYeYyKWWf4o4JIa4KIUKklLFCiBDA0mKGGCBSSnnW/JkVQGfgc3vIq1AoFIqKU1VcmFcB48z744CVFursA3yFENfdfnoBUQ6QTaFQKBTlpKoomVlAXyHEKaCP+T1CiPZCiIUAUpt7eQbYJIQ4DAhgQSXJq1AoFAorqBLeZVLKBKC3hfL9aJP9199vAFo6UDSFQqFQVICq8iSjUCgUimqIUjIKhUKhsBtVYp2MPRFCpAEnKlsOKwgE4itbCCtQctoWJadtuRXkvBVkBIiQUnpVtJEqMSdjZ05IWywosjNCiP1KTtuh5LQtSk7bcSvICJqctmhHmcsUCoVCYTeUklEoFAqF3fgnKJn5lS2AlSg5bYuS07YoOW3HrSAj2EjOaj/xr1AoFIrK45/wJKNQKBSKSkIpGYVCoVDYjWqhZIQQI4QQR4UQJiFE+0LHZgghTgshTggh+hfz+XpCiD3met8LIVwcIPP3QohI83ZeCBFZTL3zQojD5no2cSksC0KI14QQlwrIOrCYegPMY3zanN3U0XL+VwhxXAjxlxBiuRDCt5h6lTKepY2PEMJgPidOm8/Fuo6Szdx/bSHEFiFElPm/9G8LdXoIIVIKnAuvOFLGAnKU+BsKjTnmsfxLCNG2EmSMKDBOkUKIVCHE1EJ1KmU8hRBfCCHihBBHCpT5CyE2CCFOmV/9ivnsOHOdU0KIcZbqFMEW+QIqewOaAhFoGTXbFyi/DTgEGNASnZ0BnCx8fhkwyrw/D3jMwfLPBl4p5th5ILASx/Y14JlS6jiZx7Y+4GIe89scLGc/tMypAP8B/lNVxtOa8QEmA/PM+6OA7x0sYwjQ1rzvBZy0IGMPYLUj5SrPbwgMBNaiBdHtDOypZHmdgCtAeFUYT6Ab0BY4UqDsXbQkkADPW/r/AP7AWfOrn3nfr7T+qsWTjJTymJTS0qr+wcB3UsocKeU54DTQsWAFcybOXsCP5qKvgCF2FPcmzP2PBJY6qk870BE4LaU8K6XMBb5DG3uHIaVcL6U0mt/uBsIc2X8pWDM+g9HOPdDOxd7mc8MhSCljpZQHzftpwDEg1FH925jBwNdSYzdaipCQSpSnN3BGSnmhEmW4gZRyG5BYqLjg+VfcNbA/sEFKmSilTAI2AANK669aKJkSCAWiC7yPoegfJwAtM6exhDr25E7gqpTyVDHHJbBeCHHAnFa6MphiNjt8UcxjtDXj7EgmoN3JWqIyxtOa8blRx3wupqCdmw7HbKprA+yxcLiLEOKQEGKtEKKZYyW7QWm/YVU7H0dR/E1kVRhPgJpSyljz/hWgpoU65RrXWyasjBBiIxBs4dCLUkpLSc4qHStlHk3JTzFdpZSXhBA1gA1CiOPmOxGHyAnMBWai/bFnopn2Jtiyf2uxZjyFEC8CRuCbYpqx+3jeygghPNFSm0+VUqYWOnwQzeSTbp6bWwE0crCIcAv9hub53XuAGRYOV5XxvAkppRRC2Gxtyy2jZGQJ6ZtL4BJQu8D7MHNZQRLQHqf15jtIS3XKRWkyCyH0wDCgXQltXDK/xgkhlqOZXmz6h7J2bIUQC4DVFg5ZM84VxorxHA8MAnpLsxHZQht2H08LWDM+1+vEmM8LH7Rz02EIIZzRFMw3UsqfCx8vqHSklGuEEJ8KIQKllA4N9mjFb+iQ89FK7gIOSimvFj5QVcbTzFUhRIiUMtZsWoyzUOcS2jzSdcLQ5sFLpLqby1YBo8yeO/XQ7hL2FqxgvhhtAYabi4pL/2wP+gDHpZQxlg4KITyEEF7X99Emt49YqmsvCtmyhxbT/z6gkdC89FzQzAOrHCHfdYQQA4DpwD1Sysxi6lTWeFozPgVTkA8HNhenKO2Bef7nc+CYlPL9YuoEX58nEkJ0RLt+OFoRWvMbrgLGmr3MOgMpBUxBjqZYS0VVGM8CFDz/irsG/gb0E0L4mc3m/cxlJeNozwZ7bGgXvxggB7gK/Fbg2Itonj0ngLsKlK8Bapn366Mpn9PAD4DBQXIvAh4tVFYLWFNArkPm7SiaWcjRY7sYOAz8ZT4RQwrLaX4/EM0j6UwlyXkazV4cad7mFZazMsfT0vgAb6ApRQBX87l32nwu1nfw+HVFM4n+VWAMBwKPXj9HgSnmcTuE5lxxeyX8zhZ/w0JyCuAT81gfpoDHqYNl9UBTGj4Fyip9PNGUXiyQZ75uPoQ2/7cJOAVsBPzNddsDCwt8doL5HD0NPGhNfyqsjEKhUCjsRnU3lykUCoWiElFKRqFQKBR2QykZhUKhUNgNpWQUCoVCYTeUklEoFAqF3VBKRqFQKBR2QykZhUKhUNgNpWQUikpECPGG0HKjnKzEAKgKhd1QSkahqCSElkSvDdAauBcHpphQKByFUjIKReVxD1poIWe0ECM/Vao0CoUdUEpGoag82qFloUxAix12KyeuUygsopSMQlEJCCF0QJiUchEQCBwAnqpUoRQKO6CUjEJROUSgRbxFSpkF7ETLBa9QVCuUklEoKoc2gEEI4SSEMABj0DIjKhTVilsmM6ZCUc1oDbih5TyJBz6VUh6qVIkUCjuglIxCUTm0Af5PSunQTKcKhaNRScsUikpACBEN1JNSGitbFoXCniglo1AoFAq7oSb+FQqFQmE3lJJRKBQKhd1QSkahUCgUdkMpGYVCoVDYDaVkFAqFQmE3lJJRKBQKhd1QSkahUCgUduP/AVldgYy4+uUsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEHCAIAAAACoPcnAAAAAXNSR0IB2cksfwAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeNrsXWdAFFfXPrO9L0tZei/SpKuIWFHsGqNJLNGoSSzE8iVRozGJJcWYqEneJPbYNTYiYgGNIiqCClKkCdI7S9vKsnW+H2tQcVl2V8A2zy+YmVvmzsyz55577nMQFEUBAwYMGF5N4LAhwIABA0ZhGDBgwIBRGAYMGDBgFIYBAwaMwjBgwIABozAMGDBg6DEQXtqeIQiCPR4MGN4QGB3dhXvJ7+pFISYmBmsda/3Naf3F3jg2kcSAAQPmC8OAAQMGzBeGAQOGXkZbW5tKpXqeGkgkkkQi6SXSIRDIZDJGYRgwYAAURSsqKtRqNR6Pf556HB0dm5qaeqfPCoWCQqHY2tq+7BQml8tzcnIUCsWAAQO0XpCYmNjU1DRy5Eg2m429ixgwGAGxWAwAzs7Oz1kPn883MTHptW4XFxfLZLJuscV6kMIGDRpEo9EEAkFmZuazZ5cvX15bW+vn57dx48akpCQmk4m9jhgwGAqVSkUikV65bpNIJIVC8bJTWGpq6oMHD6ZPn/7sqfr6+piYmNLSUhwOV19ff/To0UWLFmGvIwYMRkwkX8UIym7s9ovxheXm5vr5+eFwOADo379/UlIS9i6+4VCj6qTqpOSa5JzWnPL08hEOI3zNfbFheaVRUFCQlpbGZDJHjx7djf77l4LCBAIBnU7X/M1gMAQCQfup9evXb9iwQfP32bNnX+ADwFrvNVSpqs60nqlX1ZMRMhWhZmdn78ne40n0nESdxMKxsJHXASqV6uLiwufzn7/pbqmkHenp6WvXrh0xYkRNTc3q1auvXr1KpVLbz4rF4ry8PJlM1j0WXc8hPz/f39//2eNJSUkjR47U/L1nz56lS5dqDdjForTfhNbjS+ODDwdHno6ML41XqBQxMTEiuWh/zv5+R/qNODniYctDbOR1oLm5uba29vmbbmlp6eyURCI5ePBgcnLyl19+qX8P1Wp1+9+DBw9OSEh48mx5eblYLO6Wj71XrbDbt28HBwcTicTAwMCCgoKWlhYOh3P+/Pl58+ZhVvebicTKxNU3V/tb+P86/FcT8qMVMQaRMddnbrht+KJ/F310+aMjY4/YMe2wseoS/+bVFzWIjSsrlUqtTYUz+js8e0ooFC5duvTzzz8fOXLk8uXLLS0tQ0NDN2zYIJVKn7xs7ty5np6e7f+2u7qkUmlpaamrq+urN5GcM2fO7du3KysrfX19165dO2PGjDFjxjx48MDKyopGo/34449DhgyxsLCwsbGZMGEC9v69gSgXlq++udrL1Gv7yO00Aq3DWTcTt72Re2fHzV6SsOT4+OMUAgUbMd2Izao5l1VjdHEXC7pWCgMAExOTb775RvNR37lzJzQ0NDQ0VKFQPHmNqampZjaqmZDa29vj8Xi1Wj137tyoqCgHB4dXj8IOHTqkY7I9c+bMadOmtba29mY0CoaXB3KVfMX1FSQc6ZfhvzzLXxo4sZ1+Hvrzwn8Xbk3bujZ0LTZourF5qt93bxm5BiIQCEw5nX6JHA5H8weFQtFEoiUlJXWwwlxdXblcbnx8/OnTpwFg9+7dHA7nww8/dHJyWrNmTc/d9YuMzieRSK9iSAuGbsG+nH0Pmh/8GfGnJc1Sx2Wh1qGzvWcfyj00wmHEQJuB2LjpAI2EBzAyRh+VERhkA9hg2LBhHawwc3NzAJg+fbomjgpF0YULF3I4nM2bN/foXWMbjDC8AFSKKvdm7x3rPHaI3ZAuL14WuCyxMnHT3U3/TPqHgMPe2JcCERERui+4fv363r17vb29fX19AWDLli1jxozBKAzDa4ItaVuIOOKKkBV6Wet40qp+qz65+smxB8fmeM/BRq+XYWVl1b7BZsmSJfqbaWq1uhe6h4ntYOht5DTmXKu4Ntd3LpfG1bPIELsh4bbhe+7vkSgk2ABiwCgMw4vEHxl/mJBN3vd636BSywKXCWSC4w+OYwOIAaMwDC8M2Y3Zt2puzfOdRyfSDSroZeY1xG7IwdyDrcpWbBgxYBSG4cXgSN4RBonxbp93jSi7wH9Bi6wl5mEMNowYMArD8ALAa+VdLr88zX2aoSaYBn7mfgHcgKP5R9WoGhtMDBiFYeh1Eyz/iBpVT/ecbnQNMz1nVogqkmuSscF8+SGXy9PT0+/cudOjrWBBFRh6CTKVLLoweqTjSFuG8YrDoxxHcWnco/lHw23DsSF9yaFb9BSzwjC8YrhaflUoF07vM/15KiHgCO/2efdW9a1KUSU2pL2D1tbWQ4cOpaSkrF271iAtoNTU1F27dvV09zArDEMv4Z+if2wZtiFWIc9ZzxS3Kdszt8cWx34S8Ak2qr0A45Qqeg0YhWHoDdSIa1LrUj8J+ASB55Ub5tK4YTZhscWxi/0X4xBsGvGkobsBihOMK8pUqcDUCd47ovWs0UoVGIVheE1wpugMAExyndQttU1ynbTqxqrUutQB1gOwsX0MIh0oRuq+oEolkDsVyDVOqUJDahiFYXjlgQIaWxwbZhNmRbfqlgpHOIxgkphni89iFPYUhqyAISuMKyo2MAlbl0oV2EQSw+uD7IbsGnFNN7quyHjyGKcx50vOfxP6DSaF+ELQpVIFaBM9ffUoTEeyW7lcHh8fLxKJhg4dameHyQq/zogviyfhSSPsR3RjneNcxp0qPHWj+kakYyQ2wj0K45QqQJvoaU+gB72hy5cv3759e35+/pAhQ0Qi0ZOn1Gp1WFhYQkICj8cLDw/PycnBXpTXFWpUfansUrhtOIPE6MZqg7hBFlSLy2WXsRF+w9FTVpjuZLfV1dVNTU2//vqr5sorV65odNEwvH7I5GXyWnljnLpZ7g6H4CIcImKKY6RKKZVAxcb5jUVPWWEdkt1mZGQ8edbW1tbV1XX37t3x8fFJSUk9JOeI4SWZRVIIlKH2Q7u95kinyDZlW1I1lkcZs8J6ADqS3QIADocLCgo6d+6cpaUlg8F40lOGpcJ9nVpHAT0vOO9GcPv3wr/d3joKKAPH2H9rf2tm6xs78i9tKlzdeAVS4epOdnvjxo3Q0FDN39u2bVu+fDmWCve1bD2Tl+l7wPdiycUeav3blG/7H+kvVUixVLg9lwq3J9CNqXB7aiLZnuwWAM6fP69Zgr19+7YmlgSHw7W1tWm6LpVKNfNNDK8fEisTCTjCYNvBPVT/KMdRrcrWlNoUbKixiWQ3Q2uy2/ZUuGFhYX379u3Xr5+VlVV5efm5c+ewJ/G6UliwZXD3rkU+iWDLYCaJeaPqxnD74dhov0TPvfNoqleGwkBbstv2yTaCIIcOHRKJRK2trZaWltgjfy1RJaoq4hdN9Zjag68vjhBmE3a98jo6EH3+3ZcYugXLly+vra318/PbuHFjUlISk8l8VSkMukp2y2Qye/r2MLzIn+KqRADQJ1Pk82CY/bBLZZfymvJ8zHywMe8JtLa2nj592t3d/fz58/379588ebKOi3VHU716FIbhDZ9Fupm4OTAderSVwbaD8Qj+euV1jMKkSqlCrTCurEghIigIDKKWKb9BYjsdoqmSkno85AWjMAw9ArFcnF6fPsenxzPXsslsfwv/xKrEqICoN3zM1yWviyuNM7q4E9vp3FvavdL6i+3ojqbCKAzDK4OkmiSFWjHMblgvtDXUfuiv936tb623pL3RftWp7lP7W/U3erZoadLp6OkvtsPlcpuamjRHmpqauFxuT981RmEYegQ3q25yKBw/C7/eoDC7ob/c++Vm1c1pHtPe5DEfYD3AaPUhfjeJ7bRHU3E4nPPnz8+bNw+jMAyvHlBAU2pSwmzCekdV1dXE1ZpunVKb8oZTWG+iM7EdrdFUGIVheMVQ2FzYIG0YaDOw11ocaDPwSvkVNarGpKi7HYaK7TwbTdWjwJ43hu5Hck0yAshA616lMKFcmNOEqTa9FCCRSL3DXxiFYegRpNSmuHHcuDRur7WombSmVGM7jd44YBSGoZshU8nS69PDbMJ6s1EWieVt5p1ci2X5xigMA4bnQ1p9mkwl601HWLshlsXLEsvF2CPAKAwDhueYRdakkPHkYG5w71OYClXdrbuLPQKMwjBgMB7JNclBlkG9n1gogBvAIDJSajB3GEZhGDAYiwZpQ1FLUW+uRbYDj+D7WfVLrsHcYS8Ycrk8PT39zp07vdMcFheGoTuRWpuKAhpqE/pCWg+1Dr1Wea1GXGPDsMGexYvCoEGDaDSaQCBojybDrDAMrwzu1t1lk9l9OH1eSOv9rfsDQGp9KvYguhGtra2HDh1KSUlZu3atPtL+qampu3bt6rXuvbBUuABQVFSUlJRkbm4eERFBpWJ5tF4TCgu2DH5RIfKuJq5mVLPUutTJrpPfwMGXpNxWVFYYzVM4S0vW2LHPnjJIbKf377oHKUy3eOPJkyc3bNgwc+bM3Nxce3t7f39/7Pt/1VHfWl8pqpzlNetFdQABJNgy+G7tG7ooyT99SnjhotHFpc7OWikMDBHbeX0oTLd4o1wuX7Nmzc2bN21sMJ/Fa2SC1d4FgH5W/V5gH/pZ9btcdrlaXG3LsH3Txt/6u++s1q0zrqxAIDD5T1HnWegvtvP6UJhu8cb8/HwzM7Nt27ZlZGQMHz589erVBAK2sPA6zCJNyCZuJm4vsA8away7tXenuE9508YfR6WCsQ4ZnFqNYxiQpaUzsZ3Xh8J0izc2NDSkpaVt3Ljxu+++mzVr1p9//rl8+XLNKSwV7qvb+nXhdVu87bnYcy/23lk4VnRqNC4P9yaMfC+kwhUKhSqVSnNWKpW2tbXx+fzg4ODOali0aFFaWlpVVZWXl9eKFSumTtWS/+WVT4WblZVlY2Oj+Ts6Onrq1KlYKtxXo/XWFvTBRTTtAJp3FhXVP3mmRlzje8D3WP6xF37vK6+vHHFyRIeDspISwblzLdHR4pQUtUyGpcJ9bVLh9pQVplW88fbt28HBwUQi0cvLi0QiNTY2mpub5+fnOzo6YrOwlx2CKkj4FrJPg1r56AiCA48xMHI9WPR5SRxh7XPJuNK4cmG5I8sRACRJSbxtv7Tl5T2eNDGZpu+/b7bgYxy2Dv7q48WkwiUSib///ntERISDg0N9fT2WCvdlR14sxH4CaiUMWATek4BlBxIeFMTB3V2weyiM2QzBH6TWpZpSTF1NXF94ZzU0mlqX6kC3q//++5Zjf5McHKy++YbWvx+OzpAVFgpiYhp37RJeuGD3x+9kDw/s8WIUph06UuECwIQJE8aOHdvY2Iilwn3ZkboXLq4E+/7w9h4w+S+jGtsWbAKh/8cQsxjOLQNxfWpjaj+rfi9DPlpHlqMlzTKt6nbo79dF/14xmz/f4tP/Q4hEzVmitRVj6BBO2r3qFSvK33/fbscOWnAw9pBfXfRsCKJu8UY8Ho/x18uOrL/hwgroMw7mnH3MX+2gW8CMExAwq+rm5hpxzcswi3w0l7Ts570zQXTlquVXa7mrVrbz1+NZQkiw099/Eyy4lQsXyQoLseeMURiG1xHlyRC7DFyGwDsHoDPlCRweJv2e6hQCAP2UyEvS8dFJrf3uS0lR80zff7+za4jWVg779+GZjMqFC5WNjdjTxigMw+sFaQtEfwgcR3j3MOCJOl8i/D2HQDMUcb60DlqbX3zHMzO5R68meePuj+7CMUfgcu137lS18GtWrwEUxZ45RmEYXiOcWwaSRpi6DyjsLq+915gVZNUPkTTChU9fbK/VbW01q9cQraxOv2WW3pDR5fXkPn24a1ZLkpKaDx3Gnnm3oKCg4OjRo7Gxsd0T9oVRGAZj8OAC5MXCiK/Auutcto3SxipRVaDDMBi2GnJjoOjKC+x44/bt8ooKm00/eNoHpten61OE8957jOHDG375RVFdjT3550RqaupHH31UUlJy4cKFkJCQ1tZWjMIw9DbwajlcWgNcbwiN0uf6e/X3ACDIMgjCloK5B1xcCcq2F9JzRVVV88FD7MmTaf37B1sGV4gqeK08fQpaffMN4HB1GzZiT/9ZGCS2ExIScvPmza+//nrXrl0cDqcXhA+xnYkYOsKjPhZaKmB+XBcusP+QzkunEqiepp6A4GHsT3D4LUjdCwOX9H7PeVu2Ijgc9/+WA0AQNwgAMnmZkU6RXRYkWltZLF1Sv/knupvrq/vg0uLKagqN3GmkVCrZ5vSID7yePWWQ2A6CPFrSkUqlpaWlrq49Pp4YhWHo8MLWuPLiwf89cNBXPDqjPsPfwh+P4AEAXIeD63BI+hWC5wGJ3psdl2ZmCi9dsli6lGBpCQBeZl50Iv0e754+FAYAnNmzW46fMI+LhxUrAIfNTp6CoWI7arV67ty5UVFRDg4OGIVh6E60CNpuJFXxalsVCiWDTfbyNg/xs3xKoPDGzwiqhmFr9KxQrBAXtBQs8n+spAQR62D3cLizEwZ/3pu31vjndoKpqen8eY+mwwi+r3lfPd1hAIAQCBbLl8s/+0x48SJrwoT2420y5a2UmvIyQZtUQaESHV3ZgwfYkUgvI8eFjHWCsUaW5fP5OkI4DRLbQVH0ww8/dHJyWrNmTS/cNUZhbwruptcnnHlIb5C3f3wigLs36hMJuQxf05mzvNhMMrSUQcbhcvNhzhwnPavNashSo2rNrO0RbAKhzxhI/h/0XwBkZu/cXVtOjvjmTe7nn+Moj+PXgi2Dd2TtEMlFTJJe3WCNHVOydSvvt/8xx4xBCISiMv7Z4wW4cgnpv3ALKcCD2w33jxWhLoxpM70dbBlv7OvUmdgOiqILFy7kcDibN2/unZ5gFPb6Q9yq2PVHOqlEQsaBwpXhP8DKx9vMhEkurxSmptYKMhrVmc27sm+5j3OYotgGOEKh5SRnvSvPqM/AI/i+Fn2fOjp0NeweCvcOQNjSXjLBduzEs9mcmTOePBhkGaRG1VkNWeG24fpZYkhjZCR5//6Ws7HHG5wUWXwSgMSS5BRiFRxoxTWnNDS1pWXUFdytoxeLo7+7yw61mP9B3zfzpYqIiNB6/Pr163v37vX29vb19QWALVu2jBkzBqMwDMajpEJ4fNs9VhsqdaR9FBXAYT82Uvq4mfZxM4UZcON2za3jBTXnKm7SKQMj5rUpTPSvP52X7mXmRSPQnjpqEwDOg+HOTghdDLgef8dkRcWihASLJUtw9Ke8b/4W/kQc8V79PX0pDEDSxwO8/M//04wyTSSmxOmL+ro4PB4NexuGvY0bjHfLe9gcsyeblNLwY+mtZV8MoFFf5+/IysqqPRfRkiVLurTO1Gp1b3YPc1u+zsh72Bz9UxpVhjpMdly5JvRJ/noSQ0JtPv9pqIXFw/uSCb/eGKFQ6lu/Uq3Mbsx+ahbZjoFLQFAFeb0hH9hy5AhCJJpMf6/DcTKe7GXmpb87DACahLjLlh9I6A4WdqIvfxj8JH89CW930zU/DgU/E0ad7Nevb4kkcuxle1HAKOy1RVEZ//yvmTgUHbzIZ9LYLta2SWrxu7RvfR2SKHx8bhJdz28ytym3TdkWyA3Ucs59NJh7QPLvPX2bapFIEBvLnjCBYGb27Nlgy+CcphyZSq8w8YelfN4dugohBVT/3T/raBeTThx8EhVkPtKGKVb9b32KtE2JvXIYhWHoNghEslO/ZhBQdOgC3xB/PeRA7u0DmWjovLc4w61Npbg/vrutVHY9HdAYOAHcAG2fOAKhi6EmA6rTe/RO+f+cUbe2cjrZzh3EDZKr5LmNuV3WU1Mn+WdrOglFwj709pw9WpqdLdUjk+v0aZ7mETZskeq3zXewt+6FQNccPiUlJTo6ur6+nsFgSKVSS0vLyZMnh4WFYaP2kkOlVv+56Q6rDXV9x0Uv/lIr4c4ucBkG1n6z3oNvi8pNK+GXn+6s/LKL0LAMXoYjy9Gc2kneh77vwuWv4N4BsA3qqVtF0ZZjx6hBQRRvL+0UZhmEQ3D3ePeCLHX1QdyqOPDTXboKcP6S0BBrtfck3tZtzUeO2gYEdNmFGe94/lHfyszh79iZuXjRo+t56YUNNwqBp6QqqXiEpAaVHNoULCXNh+swth+BTMTe0p61wmQy2bZt2wQCwaZNmw4fPrxjx44DBw78+OOPKIoeOXKkrU3f7SOJiYnR0dEdcn88icLCwnv37mGPoXuxd28Wu1lJGWA+NkK/pcWCiyCsgQGPYrv8fGVydwatQrr/cI4u9gA0syEz2LJzvUAyA/pOg5zTIBP10J22pqXJy8tNn16IfBIsEsuF7dKlO+yPzXdYraj9OHsHazUA4Gg0k7eniC5d0lOE55OoIKEFSZXZfP1mZWlsSv7qWPnJemYtE0FxrWypmCuSmEkUZAVNwCDdVlV8nZC/+5JSKsNe1B6ksMbGxqVLl44ZM4b4hFYcgiCDBg2aMWNGQ0ODPlUvX758+/bt+fn5Q4YMEYm0vMRNTU3jx4///PPPscfQjbibXi9LbxGYET+a56dvmbR9wLYF98dR7Ms+DRGYEITJvNvpdZ0VKhWUtrS1aHeEPbaC5oJcAtmnemoWGR2NYzIZI0fquCbEMiSTl6lGO50X7z+UzayXI34mb090bz/ImTULVan4J07q0w0EB1Er+uHxIsY/d4jJSjxKEPdpM//cz3vTJN+1b/l8Psl31WTfjVOcfxiuHEqWktqYJbSi9VdqUnJeyzcwNTX10KFDp06d6pa8SkZSmK2tbVxc3GeffZaZmSkQCBITExv/+znC4/H29vZd1qtJhXv8+PGvvvpqyJAhR49qcY5++umnS5cuxUinG9EmUyYczJPjYf6nes/dmkugOBGC5gIO334Mj8PN+yxYhoMb+/OaW9p0OMK6oDDbILD2h3sHeuJm1WKx6NJl9vjxT4azPotAbqBmC4F29s6qF6Y0CNiERYuemjOSHBwYgwa1nDyJKvXy09fFJo1jsEyJJqnKarfvIj3njaJxO2aWRQh4p7H9fb6brBpGwQNOGdP0YP+/r5sTQ6X67bff6urqUlNT/f396+rqXgyFoShqamq6devW1NTU7du3V1dX//jjj1euGCCi0iEVbkZGR+Wmc+fOWVlZBQUFYbzTvVNIpgztM9HJylzv/Ylp+wGHh6DZHQ5bc+mhsz2pCtj9273OHGFmVDNNliBdCJgJtVnAy+v2mxXGxaulUvbbXaS8DbYKBoCM+gytLrArf+UqcDD3s2D8M/siObNmKuvrxdev665fKZVl/xBDzyWJCYJLprhqMfdqcheiPY5j+tmvGSwitzAKKDk/nQX1S622aJBSBR6PP3LkyKpVq3766acBAwZ0yIHdE9DuzkcQRCKRIAji6elJJpP79+8/a9asY8eO6V+v7lS4fD7/559/jo+PT0/v6KTAUuEa3XojH6fKpjXR1Xay7LNns/X6BVMrRufub2QFpibc1dp6oyWFWwebt130dFV0KHtTeNMWb9tlP8lK+mgEXxT9fZ7Nu9177/Z79+ItLS+XlkJpqe4rTXAm5zPO0ws70vq9uxSunCjzkabevqKldbXahcUq2L6jWizudADlKrtUlQXOsoRYwg9im6nFRZW01FMPBY2ZxK7CXZFgnOndUqdm5+S1Rxv6MwCHwPOlwlXKZSql8bEdDW1SIkVLVjoej7dkyZIlS5YMHDhw9erVdDo9JCRk8+bNHXziM2fOdHd/NBNPSEiorq4uKSnx9/fXOp3sxlS4nQ5z//79L168aGlp6ePjozni5ubW1tZG0Wm0t4PL5TY1NbX7vDT7P9uxfft2Mpm8cePGqqqqkpKS7du3R0VFtVPY+vXrNTQ6efLkF8ggr1zrP6y+QUUU8/9vgJM9S29rOQayRDYT1052Ha619bFj1VtXXScVU/q/P9Sa+5gCeK28llMtHwd/PNlbj362xbrzMt0nHQYE1133Li8rKy4vt/ziC389Lk6+mZxWl9ah2pu3qy2aCqT21JVLR3TWOq+0tPmvfeMHDSKYa1l1lTbwy7beYODM2gLQIdM/0ByMY5WWRJfW1dkt+USPxEiTIfeXcw71jqyHzb6rJhvx3FtaWmQymWaH9oXffnqQfMPot87Uxm7eLzu1PL22Ng6H88MPPwBAQUFBbm7uyJEjn90j6ejo2L5RPDMzs6ysjMvlmpmZad09LhQKBw8eTKfTe5DCOBzOuHHjamtrb9++jSAIj8draGjo37+/nvXqToX7zjvvaKaQubm59+/fx6aTz4/YuGI2X0kMNjOAvwAg6xiwbMB5SGfnSSTcqHneyTtyD/6ZuXrDoMeOMF46AOhajnwSfu9B9IdQngxO4d11v8LzFwCHY40fp9fbyA28WHKxWlxty7B9xD5tylvHCnEEWLhE17tn8vbbTXv2Cs6eNfvww4781SIs23qTjrJU4WS3iaHtx8eOct6UWEnJ4VfViu2su94H7vPpxJyfz5o0mT7Ycxm4zzUmnoOGWji5GFdWKpVyLLg62EDzhz5KFQCwceNGAFixYsXu3btXr179AiaSjx0i1tbW1taavysqKhITE8lk8sCBXStJ6U6F6+7urrE5GQzGuXPnQkNDMQ56HiiV6rz4CoQEn37gZ0AxSQMUJ0DY0icd+c8ixN8y2buSmSe8dK189PBHnq/0+nQagdbHtI9+39Z4oLDg/snupLD4OFq/fgSuXh+9ZgtUen16O4Xt3pXBkKOuU53ZbLKOgiQnJ1pQEP90tNn8+YA8zs8kF0tLf77GQNnocLrTmI6p5ybP9b26LfPvfdkr1+qluebz+aTc9THsYjOyuPZ5xsQ1ZIBryADjyuoW23kWnSlVyGQyEomkET7k8XjOzs49/fITOrNO23m3HQ4ODhoBM61nn4XuVLgahIeHJyYmYhz0nDh+6gFThnLH2BqmY3X/JKgU4D+jyws/+jjg95U3Mv4pHjLQlkohAEAGL8Of+5/MYZcgUsFzAuTFwLifgUB+/vuVFRTIioqtZs/W83o3Ezc2mZ3By5joOhEA8h42I/kisRVp7KiuPzD221Nq134lzcqi/hfmqpIrCn+8xFabKgbgXMZoSZ3p7W560YlKLZXyGqsSAAAgAElEQVRm5TX4e1t02QSCQzxWRhZ/n+BRayMoq2U7Wb/8r1xnShX5+fkzZsxwdHSsqalxdnaeP39+T/dE+xuPIMjBgwcrKys7HK+srDxw4ID+tetOhYuhWyBuVdQk1QloyLRJfQwrmXUM7ELA3KNrm5pK8J3szFTAX3vvA4BYIS5sKewinKIDfKdBmwBKrnWPCRYXj+DxrFGj9H3LEZy/hb9m8gsAMX/lqBCYtSBAn7KssWNxNBr/n3/aj+RtuWiiNG31Vri83alROWuenwIHF47k6/ulMOncD/wQBFe95w6qVL1UL1gHpQrdE8OAgICsrKw9e/akpKScPXuWSqW+GCvMxMRkzpw5J06cSE9Pb2hooFKpUqmUy+X27dv3gw8+QBAEI45umP01NgpiY8UJCfLSMlSpJNra0vr3M5k6lezublA9R4/k0FXg+ZYrYtCG17ocqMuB8Vv1vHz8KOdNN6poOS0PS/g8Sm5HmcMu4TwEqBzIiwWPblCPEl68SAsNxT+hdNwlArgBN6tu8mX8a1ca2XwlMdjU3kYvwUIcjcaMjBTFx1t99RVCIj346zJHaCqw5PvMmajLA8OlE33YxGzB7bTa0BC9rCozL8d0k2teAte8bcd9PJKg8i60NgKRBlZ9wXMC9H0HiNRX4sUmkUj6hI72uC8MQZDp06dPnz4d45puByqXN+7a1bxvv1oqpfbtyxw1ChBEXlHRcuzv5kOH2ZMm4gL0NXBapUphVrOCRYgYYqBIedYxIJDBd6r+JWYs8D/7Q9rp/dnMqVlaZA51A0+EPuOg4AKoFHpmFekMbbm58ooKs4ULDCoVxA1CAb1dmV4YB2oSfD7PAKche+IEQUyM+PqNZpRNKyTzKY0+y9/qstSs9332r0m+Fv1QTwoDAJxLW8u9HJNmL15GMdfHG5g20MaHqlSIXQqJm2DkevB7D/t89KWwZ6FWq/Py8jRijBiMhqK6umr5/7Xl5rLGjbVYtozk+Dg0VCUUNv+1r+mvv5wSE9v8/Drbuvwkjh3Po6kQj/FOhnVCrYTsU+AxGqgc/Qs52bNw3ixmrjAzs8zT3LOjzGGX8J4EmUeh9Aa4RTyfCRaHEIlMvWeRGvQ170vGkxNjSu2Uzn1muJIIBpis9NBQgplZ7bkrROpIGSL1+DwSwXU9EeGwKSRvE1IO/3Z6XWiQVdfNZJ8aVvC1nGNX07JJIltiPmUcrj20rCwJrqyHfxZA0RWY8BuQaNh31IUvrOOUR6lcv379F198cfjw4V6WZHzNICsqKps+Q1FRYffnH7Zbtz7JXwCAZ7EsPv0/pxPHUQRX/sEHralpXdgjMmXLvUYBAz9qqKNh/Si7BWKeET/pc+f7teLBLscvwCLQ4Jt3GQ4U1vOLIAovX6YPCsOzWAaVIuFJ3tRAy1JbkTnJ4OHC4xljxyuQQBRQ64+DSSx9o5lmzvKW49CE04VdX3pnJ0R/3EJ3pS6NRwYyGMB58NcTe4+cwuHDyzDia8iJhsNvQdvjQHEcDvcqfpIoinaXP4qg3xPER0ZGhoWFKZVKHJafymj+Ki4unz0HIZGcjv9Ncuk0fofi41O5eJHXyVOVixc7HjlM8fTs7MoTpx/QlOAUabjfIf8skOjgarA1xKST6AOBnmQnyWOBocv3BDJ4jIGCC6DeZrQataywUFFZab5ggRFl7XIHE1D82NluRpRtRF04VGuRWSnb1QDrz5RDIXqxSbnCjNyGQJ/OlyYzj0HcavCemEKcPJFh6TLFMiczhlnKEhTXsF1t/vPs4GDICuB6wun5cGgyfHAeyAwAoFKpPB5PKBQSicTnIQWFQqG/As1zoq2tTS6X6xkk3z0UplarDx48eOrUKU9PzwULFryx7nyhXNgkbVKhKnumPRlvWHCAsqmpcuEiBI93OnKY2JWzU8lmO+z7q+y99yoXLnI+fYpgYaHNNFbXpfBUNNz4SAOjGdUqyD8PHqONcw+zAmseZsmZaQ6CaXI2k2TgXHIy3D8J5ck6gml1Q3T1KuBwjBHDDS2YlddgU2ObY30jzMQUwMqgsuXxdzkSa15LhnljDsAHBpV9Z4bXia/vXI4u7JTCypLg3DJwHQZT96nPX9Qcs583oGXHg4pDd/pueHoHqOcEeO8IHJ8Jp+bAjBOAJ5JIJBsbGz6fr1AoULSLvZYKtUKhUiAIQsFTOnzFPB6Py+X2zndEIpHs7Oy6yxjqlMKeDHXD4/Fz584NDQ2tqKh4nfhLIWlTtsmpZqwumSu6MPpcyblifrFGswWH4Pws/Ca6TJziPoWI69o5jSoUVVGfqJqaHA8fIuq3WEPgcu137y57972alasc9v31bHLWsxeKGUqwHGVr8G1XpIC4HrzfMm7QMhszyt2bh6XPPrj//rJlIYYVdo0AEh3yzhpNYeKEa1R/f60a07px8XA+BQfptpfTeXb6birQkGZ1g/IaX4rIbDyBvzdF2dRkUOtW5nS5A41a3lpRLdaStE3SANEfgqkLvHv4yVUOtpN1lX06p8q8KjHTbtjTwR/ukTDhFzi7FK6sg9E/AACdTte9U6elreV4wfG40rhSwaPNpDgE18+q3yTXSeNdxmuC++7fvz9gwIBX8SvulAi/++67GzdutO/DHDhwIIIgjo6OrzxtSduKjl/P/SameNXl+m9Tm37OqvgiMX9NbO5v5wUlNR2pB9DThafH/TNu271tLBLrk4BPtg7dunnw5oV+C6VK6be3v50UM+lWza0uG+Vt+0V6/77NT5sphiyGkN3drdZ9I7l9u3H37mfPFtysERPgrfGGJ3zPjwUiFdxGGUlhvEx3LyuxBQnNE5RUGCgIRaSC6wgojAPUGG0GZX29NCeHGWHw/PfqjQpWi5Lsx7G1sMrgZRjgslGjFdtv4YFoPsuHM3ECqlIJ4+IMbX3SOx44gH9O5j/rEIIzi6BNANP2P5tw02NehFQtFsVXagkTC5wNoYsgZTs8uNCFwY2q/37w95joMTuzdlrTrT8L/mzr0K2bBm+a7zuf18pbm7T2rbNv3a27+0p/0Z1aYQQCITo6esWKFQwGY+jQoWPHjtV/g+RL6kFUqgqPXCPkqykIFUXJUpZEZqpECHiVSIZrQpk1TMGuh5Wsuy4fDqZZmQGARCFZm7T2asXV/lb9v+j/hQfnqRDQqIColJqUn1J/iroS9VHfj5YELkFAu30qvnmz+cABzsyZhi6iAQD7rbfEN5Mat+9gRUY+6T5LSatli1XEfqYEgoHWOKqG/HPgPsq4Va0qURWvlRfIDfT/wPvSlszTB/NWfW2gEHmfsZB/DupzwMrgDIyihARAUWbECEPv+E5MCZEAi2b7Nt4PjC+LV6NqnH5BdPk74tgqs9a+SvO+LgBA8fQUxcWbdqLT3+kdu5n+Y0EkPxQKRDI28wn/w/3jUHQFxm0BSx8tbE+n4Acwqalo4dHEPh88w9qjNkLlXTgbBda3gG2ntd1WZeuq66uuV10Ptw3/ot8XTmynJ88uD1p+rfLa1rStH1/++KO+H9mD/etGYfPnz/fw8ACAxsbG69ev7969+8KFC+0yOK+EuQUFcVB0BZqKQCYUKGyqq99l4WyF+GbSCDP3EeHw9Lq4oKy28tRdVqNJ3bYM3BCGBJXMjptdKihd3X/1TK+ZWulpoM3A4xOOb7qzaff93bxW3oawDc9+GCqhqPbLtZQ+fSxXrTTuPiy/XCNJSqpdt87x0KH2bXrXz5WQEZg5zdNwEkoFYQ14GSnCoTFhArmB7hzTC64MarE4LateL3n+J+dBCA4K4oyhsKsJJGdnkoHb7k7884DdqjYZbs2kkwK5gacKTxXxizr8IGlFTVI2o4LOpzX6vv/IIcUcM7rhf78reTyCgW6j8PEu9w8UnDxR8PFH/8WjtTbD5a/AfgD0+7CzUi5Tw/PunSXlkuViKYnxtOMST4Jp+2FnGJxbBu//82xZgUzw8eWPC1sKvxzw5QxP7XvIhtsPH2g98Me7P+6+v9uP5DdePV4fr4hKIBDGx7feTVVUVKBqNY7BoPTpw4wYQQsJATy+9z/0Tn+LNPwFAObm5lOnTt27d29ERES7fs5LDWUb3NgCv/jA6Xnw8BIQyFXyQU3Vi2hgLlX+5W26wp51D6Cjcc52svZdOZk+20GGkxKS5Kq04ipR1c6RO2d5zerMvAIAMp68Pmx9VEBUTFHM+pT1KHScH/G2bFE1N1tv2oSQjdwbSDAz465a2Zqa1r7HpaxSSK+XqZ1oneWF1IW8s0CgGB0in8HLYJKYriauADD7w74KHFw+9sCwKugWYBcChQZPx9RiceudO4aaYNI2ZcX1WiEFmf5OHwDQJAFp32mkq2CTUBJb1QYSt+WPbWfW6NGgVov+NVhqdXCorYCOa77f+Fj++t9voE0IE3/VLUDEHutMwdGLDidqOcdxhJEboOgqZHaURBYrxIuuLCoRlPwR8Udn/KUBhUBZH7b+s+DPsuXZq2+s1iHPrSGv+s2bHw4ZWrduvTQ9HW9mSrK3R+Vy/qlT5R/MLR4/QXjhgnEugh6hsA7YsmXLgwcPejmi4tdtd3fszDx7oaiWJ9G3TPU92DEIEr4D+wEw9wKseFjC+kJdO1GByFnz3d0XzQauF1xcCXtGQLMWnTwzXxfbteEPIG+4ctgfZZ8NsNRr7rzYf/Fi/8VnHp7ZkbnjKUv+3j3+qVOmc+dSvDyfZxxM3n6bGhjY8Nv/1FIpAJw59QAAJkz1MLgiFIX8WHAdoVmPN47CArgBGmPTwpTKCDRlC1QX/i01rBaPsVCTCSLDJInFN26iCoWhjrBDh7LpCjRworNGlNWWYWtJs9THHVb8+1UyQmVOcaKYPB4rkrMz2cNDGH/JiKFzGWjFkMPFq6UAAHU5kHkUQhcD11t3KdvBfnxSI6WMIG0RajkdMh8cB8GlL0HS+KT/a9WNVQXNBb8M+0XPNObzfOeNpY69XH5Z68+wBpLk5JIJE5sPHWZPmOB85ozbtQT7nTttf/3F6e9jHinJttu24SiU6s9XVC5YqKyv13NMCoqa/z714M/t6b1BYfPnz4+MjNRHoKIbQSwUqzObq85VRH9z54c1NxKSKrpyNR+D/eNArYA5Z2HG3+AUXhKTQryjFuMFDivCTT0dwS0C5sTCu4dBUAm7h0BJ4rPuz69S163y3FWAe2Ajss3ZGqtnV6MCoqa4T9mZtfN61fX/XG/KunXriLa25kuXPO9AIIjlqpVKHq/5wIFWqRItEovNCH3cTA2upyYd+JXgbeQsUigXlghKAiweL5DNmeMrJsD982X6JJ18gsJGA6qGh4YRgSghgWBmRvX3179IQ7NUktkiMCGMiXjsBgqyDNIqQv3Up3XwqkmbucRZah3akWJYo0e3pqcrDZ+OvDXRTYqDrIRKAIAr3wDVBAbrlfiG+5YPESGXHNSmZYjgYOJvIG+FhI3tx/7I+ONm1c0vB3w52G6w/t0LI4d9EvDJmYdn9ufsf/Zs84GDFR99jGeznaNPW3//XYefZIRCYY0b6/xPtNW6b1rv3SudOk2alaXLmlOrj57M3/Rp4pUtmc1Xa+A+vzcozNTU1MnJqZdNxE92jpizNdx3tofCg0EUKvKPFP3w5c3Kmk5UgG9sgZjF4BAKC66Dy1AAKL+cSritECEtbmtGUi2eEMzwngQLbwLbHo69C/nnnqxje9b2a5XXVoauEg/g8k1bTJpM83fp+6V9NeArTzPPr5K+qpPUAUDL8eOyomKrr77CdUcIHzUwkDlqZNNf+86duk9WQ+AIB2NqyYsFPAn6jDWuD1m8LDWqfjIhI4VMcBlpy5KhR08YIo1v6QMmDlBoCIWp1ZJbt+iDB4Mh84DD++6T1BA54ykBj0BuYK2ktlbSqTJXQ1YxJQ8nIDR5LdAy3WaOHg0qlejyZUNHj0ImEPswmS3K8luXoegqDP4cKGy9KCzIQ0BtotfQJDXaMsKZu8OAhZB+GGrvA8CNqht7s/dO85g2zWOaoT1c5L9onPO439J/S6lJecoZsu2X+h9/ZEVGOp8+pSPQGnA4zowZTqdO4mi08jkfSDpRzU9Jq/3ps+v8hFpEjRJDzAYs9vn4j2G9QWEvCkw6aeggu08/67/45yGIvwm9WX7yu7txV5+Zudz4GRK+Bf8Z8H60Zt9fY3YJekUoQUTOK4aTmM9EzbDtYO5FsPaH6A+h9NHvW1p92p77e6a4T9G4D3xWTGyhNDFKqWXnb+vTVRKetGXoFqVaufrmaoVA0PjndnrYQMawod01FNxPP1VLpc03iyVEGD3cqJ+T/LPgMkzPL0frLJKII/qaPRUXMm1SHwEd15DME4jkhhhiY6DkGiikel7elpenamlhhA/Sv4WiMj6+WCK2JndYbdBoBHVmiCEKdfOxfCUonKI6Lvg88n66uZLdXEWXLhsxgJPf7oMAFJ67AyYO0O9j/QvavBuIxxFK/07WfnrIKqCbQ/wX/LaW9cnrPUw9vhzwpXGPeEPYBneO+6obq3itPM2Rpt17mnbv5rz3nu22rYgeP8ZkV1enkyfIri6Vnyx5lsV2781K25tPUKIWo22/+GX4go/8Q/wtSQTcy0thOlLhFhQUHD16NDY2Vs8UAAwaMWpx0IjlAXIiUnSq9ODRJ3Lwpe2HhO/Afwa8tV2zc0XaJGw+8kCFqGyj+ncauUo1gVmnwcwNjs+EumyBTLD6xmoHlsOa/mv+M9IRzy/GSICP3hC3PKzSp5MOTIcv+n9xr/5eyo+fqwQC7qpV3TiYJBcX2Ygparwp042GGPHcau9Dc6nRs0gNhXmZelEIlA5TmUHT3CgqOLT/vgF19RkL8lYou6mvI+zWLcDh6IZkkj99MBcA3p3XMV7Bg+PBIDE6c4dZ3BPTEBZxpBndxrzTn9XRo1tTU1XNzYYOoJM9C+W0Vgj8ZAM+NUj60dTLSUBrpvPo0gZtcy4KC0Z8DeXJP1xZwpfxvx/0vT4Li9pNRQJl69CtMpVsXfI6FFBBTAzvl19YEyZYrftGf/sXb2LisH8/2dWlaslSafajNDRypfrnH1IUaU1ic9K8jQPfndIH6Sbu6UEK05EKNzU19aOPPiopKblw4UJISEhra6uedfb1MovaGCZiE8Q3eXv23gcAKEmEuJXgMRom/6lZ3EHVaMkvVylAo060YjnoXO+nsGHWaaCw4fjMb2993SJr+WnwT1TC49VrIpVi+WEQiqD1f6UrZQq9fmndJkeSA0zOJVMmjNFldRuFZIthCIqOaDMq/3lezCPFG6OgUCuyG7MDuFpkAocOtBNZEFX5wopqsb7VOQ4CMgMK4/W8XJJ0i+Lpqb9AWFpWPaNWpnZluDh0VNzEIbgAiwCti5Il0Un2qJPQUuAwSlf4Pmv0aFSlEl25asQwjrY414YyT5cGG1rQcnJfAkIsOdZJTrPA95Os+8Q13V/sv1BfNfDOngzL8bOQz5Kqk85f/K123Xr6wFCbHzeBget4eDbbYe9evIVF1eIoRW2tUqneujGZViFVeDBWbww3N+1O4TPtPfvhhx98tUH/enWnwg0JCbl58+bXX3+9a9cuDodz584d/Wtms8krvg8XmBFlaY0n9l2HUx+AuQdM3dcuAJ+/5xJbad7mpbAJ10MTimUD7x5KVPIvVV5b7LfIy6yjvg3H3Q4XzmQAp2CHXr4bBJDFd0zUCLp/UDdvmpXL1dJ6hCqrQqIPqcVig8vnx4LTYKCZGtd6flO+TCXrTKl1ygc+eIDj+/Q2xAhkcB4KRXplJlVLJNLMTLohs8jLxwrkOHh/vvbQswBuQBG/SCh/ao2PX1yF3G1rVjV4LenCV0j28CA5OwsvGb4uWZ3uITyOEIUVqQZbcBb+rgJyM62GonVpUoGqfjShu8gV81TdkBPovT7vRbD7m2zYjZia2G7dihCM2ZOPNzW137kDlcuqoj7Z9t0tFk+OBJj832f9ke62mrTX9+mnnyZpg/716k6F277RUiqVlpaWuroatkuGRMB99s1AkQmu6a6ypNUPZpxojxLgpRcySih8cpPHXH1D4SVcz+9t7Dzkirli7a4Zp4mhfEYjs5ZZd6drHWF5aani8jXe2OAY/k2D9rJ0iXNxxRQVWA51VgmFT+og6/eTkguND59zFgmd5+72dDNVODOo1W3p2Tx9a3QbCS3l0FTU5YWtd++iCgUjXN/UIZeulbMFSnoAx6KTX/sgbpAaVWfyMtuPqOSKmr33AKDcR44jdv3FsiIjW+/cUfENXEpL2gZUDjXAjiVFb6cbnObaYqInESGVHtXyGR7OO1ze1rgaMSdc3wwq+XO+aQggyxIoJhL4e449/jmCEMiurjY/b8mXOtPrFCpvVtSiHklUpv1pUalUjeh1RkbGyZMnw8PDIyMj4+PjJ06cqGe9ulPhPvp1Vavnzp0bFRWlySqigf6pcKfYnsiWDLvAW0aMzrI2TwcAUKo8bhOICKmkj6JY75Si56Xn6xWStTIL5Mq3VytJYor1s60j7irPtFbJ6Yd3KvOBqCsE2fr4CQYeL/EbyULLvrz85ULmQh2RsTrw7L1nJ9JoeJzMhC91dqrasTOJyUT1Nu896854ILhLZXhZ1VnjWr8ouWiON0+63OnPmJUjUltKj92fVTlUL7cATaYeBZB95pcSi0jdrXPPxrJJpCuVlWht1wl+UDVkJ9BJOMTVrOLsWe1ROApUgQf8yVsnWygtmiNmdwVOqHOeebGaw9EnGS2ZTHZUKm9u2Srop+9Gd5qsYeSDCw8tJ1KZtQKEfuFkVn3lHX1G/knYqaUmFWZnT0UD6fGXK1QL/xT+6U30RnF+UPXT/f2fl1qMfJ5XjpmZZX05IWukVzQuk3TqBx+Sj9H88qCYyHAab1V319RadvZsdY94rNDOkZqa2q9fv3Xr1n377bcoioaHh8vlclQ/JCUljRw5UvP3nj17li5d2uECDX+tWrWqsxp09w0tvISuY9f9vXZL1NVNSxOEYhmKotk/xVR+cb3s0l1UbxQ0F/gd9Nt0ZxMqqkM3O6F7IlCVEkXRmJiYDleWxd2t/OJGzv/O66hNVlKS5+1T//PPKIqeKz7ne8D3fPF51HA823phScvvC6/+9lsqiqLCS5fy+ngKr141oMY/B6AHxhvduhpVDzk+ZG3SWt0Fd+3J/GPh1Yv/lujbq9+D0SPTumy9aPSYioWL9Kzy71P5fyy8euR4nu7LZl6YOSdujubv0nMplV9cz/4xRmvrnaFoVGTFxwsMeASX1qIbzVBBNYqim9YlbVt0VfPS6r73DqhOyq784kbuzrgnD25I3hB0OKhKVIWiKLp/HLqlD6poM/qVUzQ0FAwILX33PaVCNi122shTIyUKCWoU0nN42xZd+f7/Eh6+O+tBSD95ba2RH7tO6PoZP3PmzLZt28aOfeQasLGx4fH0nSa0p8IFgPPnz2tSNt2+fVuTew5F0YULF3I4nM2bNxvDu20CiF0GVj6W0772m+bKkKM7fkmru5vPbuLw2c2Okf30r+mn1J/YJHZUQBQwLGHsz1CVCql7tbs5x/TjUxoZVTQdq5ONO3biSCSz+fMBYLzLeB8zn/9l/E+hVjz/L01cbBEKMG6SGwAwIiKINjYthw7rW7ixEHj5RqvrAECFsKK5rbnLlEVzZvtIiJB5vkylp46oawSU3QSlLqehorpaXlampyOsVfrUdiIdCOIG5TbmylVyQVmt+oZYBALPZYZtumJGjpKkpKiEIv1WQ6SQcRi8JgLLBgD6RdiTUDgbW2Tog7AZ5CvAN5NKQCV/9FJViarOFJ2Z5jHtUYrMoatBVPvsliMDXA4//KBua7P5cROeQPo69GteK2/3/d1G1CNtU8bvyVEhyMzPgh23/ggqVd26dT1hhOmiMDMzs/Lyco0/S6lUFhQUWFrqu6G3PRXuiBEjGAxGeypczS7L69ev79279/Lly5pVgvj4eMN6ffkrkDTApD+BQB413FHhwWBUSRtPFcrRNtcFBuyhS6hIuFN7JyowikViAQD0nQbuoyDhWxBr3yFhPzcURdGaw2mdecEEFy5wZs7ULJwhgCwNWlojrokpinnOh6RUqmUPhSITgpuTCQAgeDxn1kzJ7duywkK9yufGAIIDz/FGdyC9Ph3+SyirAxQywWmELasNPXpcv+RjbhGgkEJ5ii5P5a1bAMAYpBeF7fvrPl2BhkxxwXc1xQ7kBspUsry6nOpdd3GA4872JVDJBlJYJKpQiBMS9Lo66zhI+TBgkea/iMEOIhJSkcYz4lnQw60pCL0k+pHE0/as7XgE/6Hvf3vFnQeDQyjc+hXUSiMql9y+LbwYZ75ggWYvvZ+F33iX8UfyjtSIawytasfv6cw21GOio5M9i2hnx/38M/H1G4KYmF6lsPnz52/ZsuX777+/fPnywIED33//fYIhaxMzZ868d+/eP//8c+TIETweDwB8Pt/KygoAhg0bplarc/7DmDGG/ACWXIf0wxC2FGweLfB/siTEjlRrgjcV+xC71C98/LuoVmy7t82F7fKOxzuPj47eBEoZXP1WaxG2k7XUWcaWm5XFaZFYaty9B0cimc6f135kkM2gIG7Qnvt7ntMQu/hvKU0JnoMeJ8IxeecdhEJp+fu4fquJseAQCkzjE6xmNGRwyJwOai1a8c7kPgIarv5WvV6Rrk6DgUDRvS4pTrpFtLHRR52irFKozOUL9ZPGD7QMRADh78tkoaaq/kQzH4OTTlP79iVaW+sbpn93N1j7g/1jTUGOrwlbos7IbTC0XafR/SSoQJUlAjVaJii7WHJxltcsLu0J5YzwT6GlHLJPG+xTUirrv/ue5OBg9uHj/LX/F/R/CIL8lvGbQVVdulZOKhZLHWmTxj5aqePMmEHrF1L/wyZlQ0PvUZiJiUlKSsrs2bNnzpy5c+fOFStWGFp796fCVUjh3DIwd4Nhj/NxSqvq/Cg2NW01cQ8NiOg7ln+sXFi+qv+qp1JSm7vDwMpNzHoAACAASURBVCjIPMqRaDfy3eePlKBCWSKvgxCdsqFBeOGCydSpHSQ9F/ovrJXUPqchlnOzWoqDCaMfr9viWSzW6EjB+fPqLvXOm0ugLhu8Jj1PBzJ5mQHcAH3WJRAcDJrqRlXB4QPZXddLpIJjmA4KQ1Wq1tspes4ij/+VjaDotPl6hf5wyJx5dWPcJG58TrPrtMHGDAqCMCNHiW/dUku60iCovAO8POj/VDj+xMkeagQSzhcb/skiiB+dASbll9N2ZO2gEqjzfOc9/Y6OBqu+kLQNUMPSgrQcPiIrKrL8cs2TqipcGneO95y4krjsxmw96xG3KjKji8UkWLTsCbMdh7P+7jtULq///ofeo7DCwsKcnJypU6c6ODhs2bLlypUr8MJxcyu0lMPE3+CJGPGKg3cAINuWy2yQn7mgl39BLBfvvr97sN3gQTbPfB5DVgHD0rdGu4FDIBOJoWw6wn54/Kltt82Hj6AqlekHczpcH2YTFsAN2HN/j9Iowx4AKmvEzGYl3o1BIj31sEymvaMWiURdqibknQVAniecormtuUxQpjWoVSuGDrITWRCVeQK9Il3dRkLDAxBoX6tqu39fJRTR9ZhFXk+pYtTJwIvl7qLXT2Z9WsGU5jG1qirPT8caPTLMyEhUJhMnXu/KiD0CZAb4PJWy08aSLjYnIuWt0jaDXwyXaeFtaonwRuWlskvv9nnXhGzSgVth8OfQUAD55w0gAqm0cccOxtAhjGHDOs7GfOebUc22pG7Rs6o9OzPoSgie4sqkP5VageToaLZ4kTA+XpKc0ksUduTIEU1agaVLl7733ntr1qzROONfGFrKIPl38HsXHB+/07UpuRyZmcReOnv5UBEZeXixQiDoesfS0fyjIrloaeBSbaYjHYatMRUXQoF2TSuXKeFCpBl3Xyb/L45M3dbGP3mSNWqUVl38hX4LayW1caVxxt107JkCBGD0xI55d2j9Qsiurvzo011TmF2IxotsHNLq01BAQywNkMmfPMcHD3Bcny1HmpySnRhi4lu3AI+nh4bqrkOlVt86VSQlwNz5eulYSBv4wlPFSlT+tfPustYKo0eGFhhIsLDoQj5MLoGcaPCZ+qxMbsBQO7IaYi8Y7NQnkIkKZ5Sjtghpcn3fW5uErNckMHeHpK3612l2LVElkXBXahHmpBPpUQFR6bz0G1U3unabZvMIhWKJDXnUcC3TebP580nOznUbNqByeW9QWGtrq4mJyd27d8PCwt566y1PT896vZWAegTxawBPgFFPKce2nCuSqaXuc4eRSLhBMzxoKti3N6tLE+xQ3qHhDsO9TDvJNRv4vohiA/9+05lPlDXGkYKjFx26pvmXf+qUis83nTdX68XhtuF9TPvsz93fmRKT7o9TnC8QMvHe7lqi6tlTprSmpsmKO5+M8CugJvN5TDAAuFd/j0qgept561/E291U7kynVrWlZnb1wlh4AtsOirVTmCTpFrVvXzy7i33pBw/lslvVdkNt9MmopJIrSn69TgaabDy9mt70XOHHOBxz1EhxYqJGx60TL0A0yCUQNPvZM5EjHCVEpPiOMd8UZ5KPQi2b2zjRgqotMRIOD2FLoSYTyvQKR1fW15skJ7MnTSK7ac9QN8Vtij3T/o/MP3S/w6ga4g/kyfHoB1HabXaESLT6aq28vLz5yJHeoLDQ0NCvv/565cqVU6ZMAYDy8nIzwzPHdBuKr0HBRRiy6km3dMnZFJbaVOlL0GhRDA61ldiQ8Q/FeQ91beA4nH9YJBct8Os8FyEO/8B6GjQWwv2TWs/bDQ0QkJpo5WRpkwBUqpbDR2jBwTqkrGZ7zX7Y8rCDhok+uHytnKEElwHaF4LZU95CCATBP2c6N8FiAFDwmvg8A59WlxbADSAYmPnx/fl95Xj491B+11JibhFQfA1UHQ18lVDUlp3dpSOsrFIouNMgYOFnvKPHjlQ1mrf5PFvFkQeCz9DBFlSL59xBwYyMVLe1SZJu6ZpFmnuAnZZAHzwOR/NksYQq3a+rVpysj0nDpzmqnJ/NWfMIftOBYQnJv+tTW8P/fgcAi2VLO7X7cIRF/ovym/KvlOvyJh09kcuWqC3DrazMO93nRB80iDliROOf25XdZA/porBp06YtW7Zs9erVb7/9tlKpnDdvniZk/wVAJYe4lWDuDqGLH7+NCqUiuVmCCjxmPp69z/zIX4VAzP6czmoSyUWH8w6PcBjhY6Yr5riGHQy2wZD4Ayi1T0u5U3zwCLHkyE3hlSvyigrTuXN11DbOZRyXxj2Qe8DQ+85MrJLhYPIE7b+NBDMzxvDhgpgYVNmJPyUvFmwCgeNk9MAL5cIifpFBWcs0sDSn2UXYsFvVf+3L6todJhNBdcdQldbbKahKxehKneLvnZk4FH3rY72U+HP/d54jMRfYidymDwOAQMtATbyI8XPJfv3wHE6n65KNhVB5B4LmdFZ8wiR3ALh8zrC5pEQhOVFw4kE/PgBURqd2NtuEfh9C4SVo7CLyRl5Swo+J4Q8MJVrrWrOe4DLB1cT1z8w/OxOnFknktUn1Qipu1ntdRPNbfrkGVal427b1OIUVFhZaWFhMmjTp4sWLs2fPtrd/cTlO0vZB40MYvQnwj2cKhUeu0REWebA5Qni8pGhvwyD7m7CblXFXtKshH847LJaLF/sv7qJFBIGIb4BfCZnHtE+AAt0F5GZ6DbX+4DGSg4NuTXcijjjLa9btmtsFzQX633RNvYTRqEAdaVRKpxaQydS3lU1N2uXlhDVQlfacs8j0+nQ1qjbIEdaO9972FHAIbRktBUU6rQznYYAjQHHHACtx0i0ck0nRKdN65nwRq0lJ9OdonWh3QMGBK+w6kxZWs8+SRyFygdzAanF1uzaWEUDweGbECFFionbnTsYRwJPAf3pnxZ3sWUIOQVkslhsiextbHCuUCycPmSmgtTAaGNo1qQGg30dApEDKH7pra9yxE0cmNz/jxe/IFAguKiCqmF98sfSi1gsO7LtPVUHoNLcuN3IT7exM58wRnDvflpfXsxT2srjzZSK48TO4DAX3xzu3ZXwxKV8twDU5Tejo650/z09MgMzY0menMEK58HD+4QjHCL0ESVyGgf0ASNr27BznkSE22YeAEPk4J9N5c7tUI3nH4x0akXY477D+933ubCEOhRETdO2Bp4eH4zkcwTlta095ZwHQ53eEkfFkX3Nf44pPX+ynBojena1rfZ/CAruQZylMkpxMDw1FOk+KU8uTFMWVCynIRx92vVr68O9E2gMSn9jou2pC+0FNsK4+2UC6mEuKRFpW2VA1ZJ8C91FAt9BR3CvchqqCC5dK9GwOBfTvB3/7mfv5mftZjPMk4EhlJzqZxtLMwH8GZJ0ASaehWPKKCuHFi5yZM1T0riUuRjmO8jL12p65/dnl9YpqsSpPKDInDR9kp89dmC9cQOBw6n/c3LMU9rK485O2gaQJRm588ljRgUQSjmo2WQsTUcgE11H2LDkcP/XgWRNMIpd0bYK1Y+gq4FfA/RPaKSzIvamtxMJmMGlI11sCmCTmJNdJ8WXxLbIWvd5UNbTktAjouE4T2WusAAKBNXaM6OpVtUikhcKs/cDU5TkpzNfcl4w3Mv2Si4MJJ4zLFqp279XpcnIZDjUZIH08MvKyMkVVlW5H2P5f08kqZNQ87w7hJlr8qKdvkjMRIaGlz+qxT9rsfUz70In053SH0cPC8CyWlrlk2S34f/auM6CKc2nP7umcfui9V8ECiCgEURR7RaNGjSUmJrZUzU2iiSmmehPjNZYk1xhjr2DvioICUkSkN+n1cHov+/2AIODplNzk4/mlZ3dftrw7OzPvzPMI6yHkRcOHT5vkJcNBYYqp5e8P6h9UCipfCnwJAOzDAwS4NkIF0tlv1BOj14FGqa9nDgC4e/cBHs9ZtswklxOQdSPW1Yhqksp79qIf2/8YxWDWMlPXfFAq1WbNGmlGhvjOnX40Yf8T6XxRA6TtgaEvdtbiA4CwppnaQOVTuA6jdC8pJszwFVih9amNXYtuRErR4cLDE90nmqIh+CxN4xwK97brXJpU1dRoH53Go8SnpzNNckkCFio1yjMlJvHk3EqtpivBLdy4XiFzxgxMLhfd7M7AJ26CmnSL9SI7vmFqaQG3INwhvDeDLF8aLOAQFNm8jGz93z/v8aDVQEVylygyBQAMJMIOHslntqlIoWyjKpalR+8QMzERnuf3wSQCtRvlLA7BhdiEGFUDMfJi4/G0cbGiGzewHjFK3gkg0cFvkuHDiXgU70Nn8NRPa4Sm/LnDhYc5ZM5E946IhBblQEapFWf1cFJbe4P/FEjfB0od9CGqhgbB+fPsBQvwtrYmXmyMS8xQ26E/P/65a8NJdl4zpU6u9qaZEs4/y4EsXEDy8W769jtMo+kvE/Y/kc6/tQ20GhjXjQu8+uB9FBDnl/S2cyMojJjmTlXDH134qX/P/12sFK8ettq8E4jZCG2V8OS0ji/Yb79R2qr5hBarWpKCb7yM04vpFeEYcbz4uNaEsumHN2uUCMya6WN0T8qIEUR3d8G58z1dMEzby7XInOYcDaaxLBHWLbR/J1SBg1sHCvSW7DmHAYXdNZaUpKQS3d0JetKvmblNvHtNAgZu1SojhWCFey5TclEhrs33OfvVmQ4r5hWLleLeXCA9Pl4jFEofdsmsqxVQkASBM4Fg/JWJn+4NABfOlRrds0ZUk1KXssB/AfHPpLD75AgJJlDn6Dd/o9eBjKczkuDu+xkA9BUD6cOa4WvqxfVJZc8csasnitUILF5hXrYBweFs33pbWVHBP3Wqv0wYADg4ODx48ODixYsYhtnY2Ay0/WouhNwjEPFa1zW1ltxypogjtBGwfQ1F3VPiPAUMnDCrrf21ESlFR4qOxHvEm+GCtcNvCjiEwN3tPdo1NHy+4Gwic+YMm+lBBJRUftykApxFAYsaJA2dQm163R8ZQmmUq10pPeqb9YExfZokPV3dlUek8BzYBYJtrziIsxqzcAhuqO3QXj5GBxvq8Be9aUps97cZukksUBx4xkB5hyOJqVTSjAx9UWRLm+zWr/lKFJa+FWagnVurUj/5JoleReNbtfl/PK2nGnZnOsw+VItpc1tze3OBtOholErtpglSehXkAgiZb8rhQb4cIR0nKRQY/bQdLTqKImg3dSIUQYIpdGDV3NST0XMfA86hkPZTjwmsbmrinznDmjvX8ELk84hyigq1D/358c9KjbL9c0JvUaEBdHsbK7NN/4Q4q5Hhrf/Z1V8mLDMzc/Xq1SQSKScnh0AgfPvttwOdzr+xFYi0HnJ7Tafy1Fql93LjykBj5/mQtXDw9zwAOJB/QKKSvD7sdfPjBAReeA9aS6DoYtefeceOaeVyzvLlDqMCBTgusRxMIdePdY11pDoeLTpqJPYpI+ABeWGyqb3HzBkzQKMRXvxzqUjSAlX3e5nIb0+EDbEZYoW36v2TnDjWnTiSw+Cqdv1HD/G/dxwIaqGlGABkjx5ppVKdfUVqtfaXbx6SVTBqaYCrk15BX3F9S+HWiyweh2/DC948C0/S2zw7zHYYDsH1NpYkkWhjY0Q3bkBnTJR3EugO4BljatJwlD1NDRW1horvZGpZYllivEd8t6ZuAM95UUqtVJBcpd8RWw+tpT2UCri//QZarfVrr1pwvW8Me6NB0nC27CwAXD9ZqkLgpaUWLvjYbdqk5Av7y4T1hi+sb1ByBV54pyvde83NbJbKWu6l6qYLqe9zEeEsssarCwUltQ1HCo9MdJ/ow/Kx5DQCZwDbA+7v7PwBUyp5hw7TYl5or2amjXUmo9SKk8YdMRyCm+8/P60+7angqaHdmghCChIZ6mDiCRI9PChDhwrO/xlLFl0EraaXrd0KjeIJ90nvo8hOvPbKcIkzGVcoOnS0QHc6DKA9lpSkpCJ4PHXUqB67YFr495cPmAI1M9ouJlJvy1TNjazGHVk0NV02TBP83kydWmrPwnA8Jcg66GHTw15eHT0+Xs3lSrOzAQDkAii5BkPmduo5GMXMaT4KFPhVhpzuq0+vipSihf49SzQIFLLMVc1SWrfm6VnWDJoJLDd48NOzGEIo4p88xZg2leDsbMHFRjpGhtqH/vL4lwePaumtSjSAbmupogclJEQ5bml/mbDe8IX1DZjOENEldaXFxNdrZVqx7zJTScGmLg7EY8j+Q1elaqklLlhnmDN6HdRkQHWHoKTg/Hl1aytneQdDgHv8SBHwtXlSTGu8hSjBN4GAIxwvPq5vh5T0OpYKdRhhXtjOmD5NXlCgrKrqSITZ+IL9kN7c+8ctj5UapQVFrQawYVOEgInjJTeeOPtcfRzLFWx8202YODWVMmI4+twy/w/bM2j1Ck0QY9kS3d98OV+c92UickOiQTSUBa6+i2JNOauRDiPzWvLk6l7JtdDGjkXI5I5YsiAJ1HIY+qLph1tR8Jgb1UaMa2zVy3txquSUN8tbJ/Gk54ujNZi68byeplQUD6Neh6cpUN/hbPJPntBKJJ0T2AKsHb62Sdp05WR6b1wwAJDxhEyrYf1lwnrJF9YHGLe5aza09ORdOrCRUCvT2emGBdkK7VCHavsJttMsdME6sr5LwMq6wxHDsLbfDpD8/amRz9wEQhiThjAqLxhvIeKQOXFucecrzis0unPb969XqRGYPcvXPBM2ZQqgqPDyZZByofJuL10wAMhsykQR1ChTq1kgk/AbPh4toqFNV+sOHsnX4YhVpRBEAnlBQY8oUq3WfvvFfVKFWOZJ2bAhXGfmq+TA9fovU1lCjsCG77U1zi7U1Bs4ynGUSqvqZXUYSqHQXogWXr8OGAb5Z8HaG5zMu3Vjp3jgAM4l6U7ql/HLclty5/rO1W0B7TlCppAhYOlW/AaA0GVAZrSXuWJqNe/QIeqY0eRAy0UCIxwiIgjjbdtYqD/VtheiauW/JRMQUn+ZsN7zhRmQwjW6FQC6ljWrZQrIkoqB5/1ijFnnoI18jNcSbfPjevXyESgwchUUX4bWUvG9e4qyMutXVgLyLELxnhMlw0TyBybRuSX4JggUAp3tZgKRglAna6Wr2UyyWSeIt7W1GjFCdOUqFF4ArRqGzOmluXnY+NCf408n0vv2q0SnEtduGS1i4kR3m3Z8n9Gt/Nh7PCildvkpoNV2NWFNrdJvt6RQa+XqAPq7G0f3GFAlkRcfuFG2+ZpVEVmOlxPm2A55byaBYsbdC7ULJaCE9Ib03l5afLy6qUmWkQJP71nwCQkfZs8larm5ujsZzpSeIeKIM7z1LjE7zxmOIOjTU3qU50k0CFsB+YkgqBVevqxqaDTcEmcK3PMnqVAFNarE4hEETxvoTTS+VVt/mTAAIJPJCQkJCxYsCDBf1dWAFK7RrX+mSZ+dXsnB2xSURp3gjKBmCALxFfyL/CN1NjWkcjDgopv23XkV8CR4sKvtt9/wDg6Mqd00ZRE8TuNPYGCc2uRHxkdyjHBnuJ8u1VGokZhUSsQQG09Llk3okyfJi4qUKcfB2gccQnpzrXK1PLclN9Ixsl/SA0zSe9tekLhQCCXib9+/+4y51OMFwBFpRQU4FosypCMKTrpUfnBrGo2npoy2ffOtkZ0zQqtS1956lPdlYs1n96hFJA2qVo3BB305S1+poKFJjieH2IY8bOx1Oiw2FiEShSf2g0Zl2VoK4qhiKOFuWs8yV6VGeaH8QpxbHJukVxKNE+ghJLaRa4kqiZ6IOGI1IAik72377TeSjw/thRd6c7GZuU0cLrnSteBw5X6LY/CaQ2kIIK6Lw/vFhO3atSsyMvLTTz/98ccf3dzcbGxsDpnDj2FYCtfwVh0BM1dArsDx8VzXCealZn578ptMLYudPZyAIccO5vdqhlJtYdhCxZ0TkrR0zstLn9cH9V7wggKT8W9WGp+pgMzxmZPZmFkl7LmKVJ/VKiIhHk6W8CMyJk8GFBWm5vXeBctuzlZqlKMcR/VThoCIRzdtHm0T70SWaVP+k/f11tTk1FoNngKuEUh1GzVqjFiuOXOudNvG5NpzVRoUGbkq8OUX/XiltU/PpxX8dOnJx2erNifDNRGdz5BQJTCZHvjVTM+Zoy0+n1EOo/K5+SKlqFfvEp1OHTNalJoNTDdwHG7BCH7eKhUCadef9vj9RtUNnoKX4Jtg5NsQ50FCKZUn7+nNLAfNllw4KC8o5KxY3jWGsADXTpSoUJiXMLZV1nqi5IQFIzTnljLF1iIbIcvbpe9NWF1d3d69e3fu3FlaWnr58mUul1tUVPT111+bPq5hKVzDW59Hxf5kAkKym29efpqn4B0vPj7Fc8qk8OEiWyJWKuqtIzZ6PTefjJLw7Pk66n0IVLLcRWVoYagLZvvMxqG4M6XdKvXTshsZMq3NcAtbIPC2tla+zsJqcm/EitqR3pBOQAlG9T4sgFqhaskrr0h6ULT/WnBt2XhnwTBq81heDfF4SubbJ7Jyl0miP27UjCr5KMn3Tv5MDW8sTTiHIrE/kd/4aYbkv5X4VBWjhkZQECVskXIU4rRlVMjHs11ih/fyrCIcI7SYNrMps5fj0MfHqPhKOT3GMgNBJmFKJzKxXt6jBvh06WlnmvNIByPSXC5jh4uAhxUq9S4rjVnf9gSHZ1CY06f3KsnwqInBVeECGDG+I0c7jf718a9StdRsE3YqX61Vei2P6eU9152eLy0tnTBhQkRExJIlS27evEkkEt3d3c3K5RuWwjWw9XkpXJQnG9bqUIdWNz3lwVMzWtuvyq9KVVKfFp+kpCS2B07dYrX7x5SwcFOd3udFSfF8gXc1meEvuXTjigbVsf6NWCuH1VLKjtxPjTRONO6H8ztRcMKj1gP980OS9YDCQfAcylMwJomqDyNsuIpi/OULaUrb8t5MiyuFV5xR52sXr/WR3dJQnoqoPISpoDNQDoqgRAAiUDAgKzUyCkoEIqi1Gg1oEAwwVKsCtQbBtIgSRTENqpEBKPFtKoJWTQYlE6+2pmBkPAACwM271Tdk6BrQEBHisdRjUylTLbvz7XDlZlkhWP4Dbq2thYOQbHj4OsrO3beGBnVQX/C0vIfChxPIE873aMDQBQqHH9Tmde37g3JfHVVHxOZmjwYya5j4/OWLGIIzOuH1IeuuFRtFHezqk5KShmqGPlA8+Pj0xy+QzYhMiVXCEJVHGbXi8X1Jv5gwtVrdbrDweDwOh7NgXDs7u3a9NQDgcrl2dnYmbt26devWrVsBAEGQWbNmAcCTzxIx0AatiY90tTP9BNrkbdtOb5vmNW3VC6vaf/n6aQqnFUZGRjvZU02xX+1/vVv8+/XXPARn68ub7iKAkat0HvikOtGJ5zIkfAjd2UjfmXWd9Rs33qAOp8a7xwOAQKSouJKqcCQtWjhe5183DilXnV5ditqNVKlsZlle13os8VijtvH1Ya/PGtbb4tjaO494d5/SxUw8aqvB1GKiUGgjJDkx6J52NBcbqoNNj8xm9apVqrx73h+Mh9l7YGBx5fqVFlkLYDCrF7cOjp+sdkIItfwwiwZJSkp6841pX711G9dCnjWrox7zh6wf0Hz0g5kf6CZo7Q6tSl3+0XVXHjNI1wk0bNkiJBLsPBtn+mAQPMvohNedZMhrrrn8BAtiLFrYsUSWfyM/g5vx2bTPTK2C1mKFH56XacVRmxaYtfBiXi5sx44dZDJ56tSp27dvJ5PJZDL58ePHpo9rWApX51adaEwvZEk5Ykcpwxz7BQD7n+xXapRda8HiX/TDY3DyiIUURRqhiH/qNGPqVIJ/GDz4SZ88jNPsUARBq0+mGR1wjNMYR6pjZ9f32cRSIgaj4z0tf5iF5/FEpVWwv9CoJohBVKortZi2V4kwLVZxJqXwX+fhiogqoYqZIm2clfPWMUO2zQp+e4bvgrEOEYE0J9se9gtTKKSZWeDBhPJbgGEDbMJGOYwq45VJsF44BSoZlN2gjwlRVlUpSkstHsY6hM2UYpm5TQCg1qrPlZ+LcYkxxX4BAErAq31Qhsa6Mb2nlKeayxWcO8+ck4Bz9jGRzVW3rT9arEJh0ZJnWZ01w9fw5LyjhUdNHKH8TAod2DCM3Hv7pdeExcXFyeVysVgslUrb/yEWi5XmMPYblsLVuVUHMKwtqUSByX2Wx5p1Va2y1uPFx6d7T3dnPNMgCA2xE9kStCWiplapBXeKf+KEVizmrFwJo9dBW0WPfqNOcALcBKQ2SgNZKTLyMqAIOsd3zoOGB+06ow3ZLUISYqDo3IQE5Fmw8aXPnKsoLlZWVFg8TIW6wgpvNdTGwtbI2juPCj86T8zAUAyRBCldP34h+KPZbhPDjFbzSbOyMLlc5BcIokZoLhhgEzbScSQGWKW60vIhSq+DSkafuwxwuG79kmZi5ixfDUDy5acAcKfmTqustZvUqTF4vRilwhStV3oyTfGOHsVUKs7yZTB6LdTnQFWqBeeWkd3EaFPhAxk2XWrBQmxCYlxi2nv4TEmGah6KxMD3WRTbJw9OtwlDEASvC2YNbUAKV+fW51H041GGlqMOREksmll/+pe8X9Ra9etDe5bjT14YQMDg2CGzlyYxlart4MGOasCA6cDxNECGyYn3ISLkihPGp0h7peKZsjMZ2U0MGWY/oheN9FIuPE2BIXMY8fGAor1xxMrV5WEOYeaS5QOAjCfM+zIRrgjxGoJsmMbvq2n+L8fp5IfQCUlKKkIiNQXFACCdLd8DhmDrYDqRXqG23PRDQSJYWeOHTbIKDRVetfz+O9hQJbZEpFoilalPl562t7KPco4y/XASiya1lTKkHEH5s+IMTC7nHTlKj40lenjAsEVAs4P7ljRX3zxdokJg0eKeC2vrhq8TKASHCw8bHaHs0G0rhE6JtTerOsqSQLJPYFgK16hQLlJDlWAC38XmWesmadPpktOzfWa70Hsu1o4YYiuyJWiLzXbEhBcuqJubrV95BQAAxcGoN6A6DWp1VxI5RQUL0TZciaaHXO7zsLeyAi5OmgAAIABJREFUj3aOPlt69s6lcgsq8ru/P+dAq4ag2Xg7O6swy1+hZmlzi6ZllIPZUWTdvce1X91nCtgCG77HJ+N8F8WaO0fFqalWYaFyKxuwD3qexLW/gSJomH1YucrSZRC1HEqvQuB0QPGMyZMVpaW9iSVHxLqQtHA0Kft+/f05vnNQxLz31GXeSASBmjPP5qfg3DlNWxtnxQoAADwJwldCyRXgmsfZn5bdSOeq8EHdXLB2BFoHxrrGHiw4aJi2SM4XE4pBgOO6T4549qseFdH/CRPWS1AJHIzTiBLMcwd+fvwzBpg+gaJJL/oTMDh22BxHDMO4/91P8vendjLwjVgKFLaBhAI50paC0CoS7xsdO8E3gS8SEuolckcSh92L1EDeSbD1b++LpMfHK4qLlZWWxETtRermJcK0WOG+q9qLPAzRdhTHU82+EHVrq6KkpKMo33s8VD0AlWyg02GOo7habntcb77vehsU4naOScaUyQger5sN3DRMGuchJiC1mbUAMMfH7Co/pocjvyutPoa1/X6QHBxsNfLPItKRqwBH7Nr4bQpunSpRothiPQ2qa4avESqEhwoNVY+WH7hNQsk9yZbvfPWPNWFtsircuQNaqRkeU724/mzp2QTfBEeqbhak0BA7kQ1RWyRqaTP1DRHffa6jiGgF4Sug6ALwnuo8xHP6aAkmVGYa55ge6zp2SFsMUYuLmuRh+Z3i10D1g06OY/rEiYAgRiRa9X1pG9KoCNV0VjW1TPHk80R6pZWAxHP9V7RjZJBlVyBJSQUMe2bC1HLLkjW9QbRTNACk1KVYcnDhOaCw2tl1cBwONWqM8MIFixclEBRYw1k2YtZo3CQnmiXpUbsutPri5GRFebn1ii5N3VRbGLYQHh0BUaPpLhijTU0MZOn70AZwAuLc4w4WHNRXISysaaY20PgUrkNElw6KliLIPfKPNWGcWHt1Wxt3/37TD9n7eC+KoKtCVhn6xC3wI2Bw9A9THbHWffsITk49OoogYjUgOEjbrWcKIhBEpgO79paRfiMcgvOvi2mh1viFECy/U09OAYZ1EuwRHBwow4YJzc8oazFtan2qN8HbxMhFxhMWf3GFJbMWuouDP5lFYTMsvgJJairexobs7w8A4DYaCJSBjyU9mB5slJ1ab77p1Kig+BL4TwVcx0Nkzpihqq+XZlneOu4ZLVDi5A6lUZYd3kGrX4moZQru/t8ITk70yd0psKPeAq3aqL5RJ26fLFGhsHCxoU/UG8PekKgkBwsO6tzaTrbssqR7ge71T4BI+8eaMJc5ExmTJ7ft/03dYlL7dBm/LKksaYH/gh6ccDocMWu8pkhoiiMmSUuTZWdbv/Zqz44iugOEzIfsgyDV3aTqNS9Kgcn4t41Ec5dvVLJk9DzH5MSyRMvv1OMT4D4a2M+WXxmTJsnz85XV1WYNU9RWxJVx/fAmuWCiupaqb5LpaqZsBBb0xhToTXYWwyT371Ojozr8XAIF3EZD+e2Bn3K+BN/0hnS11swGr8pkkPG79kXS4uJQKyvhBctjyUv1iRV2jzmN9PpGC+s86LEuZIRa8vMFaUYG5+WXe2pBcTwhZB5k/hckrSZlwXhqQhDLxiAphR/bb4L7hEOFhwSKntwN7WTLPduJnqZAyRWIee8fa8IAwO7ddzCVqvWn3abs/H3W91QC9dWhxokoJ77oT8DgqAlLk6279+AdHFhzdZGcjFkHKjlkHdB5YEe/kcpIv9GjmzVyHLCG4M6UnjGFU18HGh5Dc0EPpRz65MkWxJL36u6hCOpLML6qIKlvrd+ZTtZSkYl03wVje/mU5YWFai6X2lXsw3s8NBf0MtFriQnD+0pUkkctj8w7rOAckGjgFfvsvaJQaOPHCy9fxiwiOubKuMm1yTYjrFCAxMRiy67FbWKYEGkj1JCByWYl6JrAL7wLKrm+SKJbFuxkiRKFxUuNZwneGPaGVCV9XmywnWzZa2WXqYJp4dpHwHLrxgn4zzNhBBcX9oIFvJMnFWVGlorSG9Lv1d57behrLJJxQtfwYfZCa4Km0IgjJsvJkWZkWK96BSHqotO0CwKf8ZC+B/R06nstjFJjmsZzekuCSyv4NJ6a4M+YFzC3TlxnId9L3gnAEXtQIxAcHSjBwXpVpvUgtS41yDqIihjpXpA2cmt+TCODFW4Sy9zGe72JMAShjh7dzYQBQMVAO2JeeC8CSjAvHabVQPEl8JsC+G5JIuaMGRqBQLdKsTEkliVqtJrlsbOEdJzkCV+t1lp2OeRwBgXPUMYuQum6SJNs/CBoFmT8DDK+gUEeZDYweGpSMMsUAigfls8kj0mHCg/xFc/GrLmdw1JZy701FGvms11zj0H9I5iwFfCkf7IJAwCbtWtQCqXlxx2Gkzj/zvq3E81pUcAiE4edvNDfaI1Yy3924W1s2PPm6d1j9HoQN8MT3bpqFFuWmC1gCFmiOt2B8LmTRQAwc45fnFsci8TSSb9jLATTwpPT4BvflZ67wxGLj5c9zlM1NJg4klApzG3JNVqCJOeLq3bcp4AVGs9yjeubPnBxaio5MKCbFJhdENAdB96EkRDScLvhqXXmpMOqUkHSAkE9CcKo0VF4a2uB+bEkBtjp0tPhDuHuDHf/aCcrNZy7ZGGpB7Usgy+ttcJ89ApNjn0flBLI2GcwC1aqQGHJYlNJFl4f9rpMLfv58c+dL6fkao1MK/Z9+ZmXCmo53N4GzmEwZG4vH9nfwITh2GzrVa+Irt+QZetNjl6suFjILXwz9E3TRVtDQ+yEHIK6SNjG0+1DyXJzJffvW7+yEiHr//h4xYL9EHiwS9/ak4F+I4FIgVZJJfZED1dGO5vdrepbPDnPvLtTeReE9To5jumT4gHDRNdMjSXv19/XYtoYZ0PMARqlqnz7TRowYBy9r+yXViaT5eRQe0hGIgh4j4fy24BpB3i+RTlFFbcVt8haTD2g8BwQKOAzscfPCA7HmDJFdPOWRmgeh09GQ0aNqGae7zwAmDHNW4qHonuW1HloxWL+yVMYWkZBaeXH7+rJ1ASC/xRI24PX6A5HklNrmQK11TA2k2nqm+XF9JrrO/dI4ZEyfhkAlJ68SwM2hHUnW36wGwS1EP95Lzl//h4mDAA4y5cTHB0av9gGuiS8pGrpzpydQ6yHTPGcYtawE+b5EbRw+NAT3S7YDzvw1tashQsNDYEgMGY9NOXr8xcM9BudOFlM1ELUlI6myATfBJVWda78nHm35tERIDN16q0S3dzIQYGmx5IpdSksEivYJtiAr1vwzQWmmi0P0bpPHtlXD1eano4pldSo6J4bvMeDlAsNuQM82aKdozHA7tffN2lvTAuFF8B3ok69SObcuZhcLrxoniN2quQUk8SMc48DACIeZQxlM0WaB5kN5l4I/+RJrVjs+1qCCHjIE6UhR0zG92m+rDu3kFQuQ2HJEvN4rjaM2GBFsNr+cLtKIodsqQh4vvO7fBrFTZDyPQRMB/eo3j+vv4cJQ8lku42b5AUFOlUz9zza0yxt/nDUhwiYZ9EjQu1F1gRVoeB5R4xaUiJJS7NZswY1qv4bPA8YTgbKXHX2GynV2rbsVgEVfSGyQ0KmXdnBvFhSLoDCczB0QY8sTNdYUpqTozZBdwoD7H7d/dFOow2UU+TvvMiW2AhdxL6Lx/XhwxXfS0EpFKuw53w673GAoANfWuHH8bOzsrtbe9ekvWvSQdSgj6CNHBRIDgrknzLjmfIUvFs1t2Z4zeiMJxYuCFKikJxkXiyJaTRtB/+gRkaSg4IoYx0oCK308B3duzoOgyGzvZsvg7in3PrNO9VMoYYRxjFRz7QTbDJ7zfA1qfWpGT+doiA0erxbtwXr6x+DRgkTP+0b4wB/EzCmTrEaNar5399r+N1Sj2X8skOFh+b6zrVMsTUuwY+oRf440J3eC8NsrlwluLiwXjShvRZHgIjXoPwWNOrmCHOKChYibbgSddd+o5NnimlqGBLXTa06wTehUlBphg5F7jFQyWCEXg0rxuTJoNWasi5ZxC1qkbVEO0fr26HiTAqzkcFncIPWTe3bJyu5d88qMlLHgomVNTiEDLwJQwAZ6zI2tS61XerVCArOAZ4EvvH6trMSEuT5+fLCIhP/+rmyc0qNMsHvGUErk0lCfGjUFmVRmRkc86LLl1UNDe0dRR5TIoRoG6EIUwr11GdM2IpiGri7vcfP6RcqpDhY8pIlAkWLAhZFYyNcuM48cqvL+C6clNVpkHscot4Ea5//XyYMABw++lArFrf85z9dfYfP0z6nE+hvhr5p2ZgRofZiexKUiJ7WPNPjFF66RKqrs3vrTYRgWrlp+EogUg0sTpMj7SgIvbPfCNNCTWqjiITMnOzddbdJHpNoRNrpEpM/2jl/gNMIcNRru4keHiRfX1NqXG/V3MIhuBgX3Ymw5uxSNF0lRHgB707r22eqrK5WVlfTovWYTp84qEkHhWiAZ9o413ESlSSjMcOYq4NB0XnwjgOSXpEUxowZCIkkOG3SM21P5A+3G95DbSthYZAWgfMnTRbawDDu/v0kb29aTAcNIXuGDwkhlx7Q44ixPaqsYyDrN2h7VsZ48XolU6y1HmlrRbFEtwyH4F4tm45hWFpEF3Z1rQYuvQdMJ4h6u89CtL+RCSP5+bFfeol37Li8oIML6Wzp2eym7LfD3jalkEIf5iwNRDA48XtHRgxTKlt+3KlwcuxZjm8AZCaMWAp5p0CkO2HhNSNS3KXf6PzVcroCc41y6BG0kfHkaZ7TrlVdk2MmUMvW50BjHoS+bMR7nTRJmpWl/pNgUq8Jq74Vah+q8zbKWvj846UaTOmyZrQBWWxLXbAUAKC+oMeEeceBRgVPUwZ4pkU4RljhrW7X3Db+CPg1EDjD0JvMYNAnTBCcP4+ZwFVVra6uFFS2J/K7wtWJpnAmE6ul9U0mlbmK796TFxRav7qqM1nuOHoIn8yl1lL0LY6XOMwGHAFufd7+X41W+/jiUzEeXloUaNk9rLmRZad2zGMU/NR6oKjtTyc087/QmAeTvwai1f9HEwYANuvX49nshs2bMY2mXlz/3cPvRjmOmu3bK6p4fx+OyotqVSvPLWgFgLYDB5TV1S1TpwFqzs2JXAOYBtL1LE6jCBpIpAO79s4jAHhys1aCh/mz/Z/fMcE3Qa6WP1KaUFqZ/TsQrSB4nuG96JPiQaMR3TBE0Fwrqi3hlYx30yEwjKk1FTvukMHKao6LuayTJr1sKSlENzeim5vuza4RQKQOfCxJwpGinKPu1NzBwGCTY+E5wBHA38injjVvnkYgEF03zpH9UPmQRqRN8tCxODN1nj+KwXHTeKJa9+4lODszutPwOS4IxaG4qj9014vICSwYswGenGlvTT16vJAhxzzjnMkkS1wwtUIlvd4gxUTR6xdyyJyP73+swTQgrIdbX4D3+N6LnP6NTRiOQXf45GN5QQH31/9uSd0CCHwe9bm5Wfzn8dLyYBUClw4XqhoaW/fspcfHS33NDNTZ7hA4AzL3g1yoc7vn/A59o8s3K5liDSfMhkjUcfMDrQODrIOylFnGAjAJ5J2CoDlANtKWSPL1JXp5GWbgu1VzCwDGu+owYQV7rjA11vIQzHH0kD5/mphSKU1P1+uCAQCOCB4vDDx3GADEusY2S5sLuAVGTJhnDFCMRADUURFENzfeESPNzEKl8InyyXTP6WRdizPBAdYSBxJaJjbabyTNyJDl5FiveqVHS5x1oLuAzWfw2M3ZegLSqLeA7QaXNorFsvqUJoEVMn+Wv2V3r/jna1SESRprzWbafBT5USG3cE/uHrjwNmhVMO37vn1S/WvCDIjdFhcXHz58+Ny5cwqFwqwx6RMnMiZNatq1s/5Jxr9G/ksfI4VZcLSjEoOZDK7q4cc/YRhm//4mS0aJfhfkQkjXTfre2W9UeS5XiofFi/T2aiT4JjRoGvK5Br+3j46AQgThJgnKMyZNkqana9r0JoNvVt8M4AQ8z4hQm/yYXkvjk1v9lozrj+khzcrWSqVGBA29xwO3HHhVA2zCYlxicAjudrX+WLIpH7jl7ew6xl4ylP3SS9KsLPmTJwb2Ol9+Xg3qron8Hpi+KACHgVEtwda9e/E2Nqw5Oih6fFbHqTB568lC0ClxRKDApK+gKf/qf45RNRA51xuxyDxw8yvptVS+Fdd96igAiHOLm+M755fcnx9W34bxHwPH829jwgyI3T58+HDVqlUVFRUXL14MDw+XSs0jIGx5Y7YUp3n/NmOW5/S+OtuXl4eoQFUm9eKsfo3g7GyRIRwKAdMgbbc+R8xrYZQaU4dopXaRdhSyXv98qtdUIkI8VXJKv/eCQcY+cAkHF5OKs+jx8ZhGI7qt+23kyXmPmh89H0XKuELZxTo5SHzemthPM0SSkoIQiVajRhkxYQADH0uySKxQ+9Cb1fodwIIkQHEQYFLClDl3LmplxTuil10eA+x48XFXnGsAR6/mdLC/tcSJhKvotvTU86k9fiy5/4CzcoXOemwyi6YdRmRgnJKjd3QfHzBN6DqdW20r42jHR7tZ4llrsabDj9WY2nPVM+f6gyGveKg1/3J04g1/sc+fVH+ZMMNit+Hh4ffu3duyZcu+ffvYbHZ6uhm9ga2y1nfzPj83y86+rK11776+OmErjWJodZKI7n6ZMsbyUca+DzIBpO/VuZFszaqUN7hZOc4cayipRCPQhhGHXai4IFTqmallN6C1FEa9YeJJkQMDiG5u+mLJWzW3tJj2+SiyfOctEkJhJHiSWbR+miTilBSrsFAjlXc2vsBy/UtiyXiP+DJ+WXuJue4o0n0MUE1S5cAx6MxZswQXL2p4ursv0urTKgWVo0hGmCZnvxSIAnLykN7wtnX3HhyLxdZfj+27KFaItuFyVTKuQOcO/61eoQXSEpeDlpGdFe+/ztByNCPwVCebTqtGOf/Ot1yBAMW9m7zRbBaQv8qEGRa7Rf5cKJHJZJWVld7e3qZ+t1WSNTfXiJXiZW//lzl7Vsvu3dKsrD454aYvv3SquicjqVozuJbpg/zpiE2FB7tArmN+HDlV+FRBQxFc/WkjJnsUcZRcLe8hlNtlvu8GuqNZkvf0SfGSBw90drpcrrzswfTw53TLepQcuM5SWIu95N3Y6foU6qYmRUkJNTra+K7e46HyLvT11DduwtzjUQS9UnlFl6koheZCCDKDT5W9eDGmVPJPntS59WjRUQ6ZE0wwUoHl78ORu1LI1dInxTqWmGWPHonv3LFeuRK10r/ehyK284OIKKlstw7H9lZKNaEJZTo3OzQnQdZv5t6xlrxySimBT+D6dpX2SP0Rym74j//806jPMhszP0v7rG8fE76fHr9hKdx2aLXa5cuXr1mzxq3LgtTzUrid0IDmoPhgpbpyKW1pfnI+GhbmnpJavnZd9Yb1aiq1N2fLyM11SExsi4ujhShVmYRd2++Fj7ZQjJaJRcbKLxX9/naxQzcTo1BBXTJNQaA2auus623OnzyjJeoV6HTAOXjgPPZn72eVsXosVtDldePLbxc6zSu5cMn0syKRSO4q1d3t24Xdi+BFmChDkDGOPK7rxeKaJKRyegvWUG1HLO2FLqyRe56Z6YBhD9VqxXN/osedd+IzRsoF947taKP6DoDl6vrXPXGep/NPu1a79jQljUn+gFyrwsvrzbg/zj4+9b/8msrhYN3rDfla/h3hnbHksXgEb3TWOXqizbXUk/uyy8f2/NC6/PwLiU5PZbMwY4OwiHxvide1b3+X+T9bizh9NqnoFpWAQ2z9qM01wZxL/0quUIlJDqZenkrjk46SEEqFn6L8zxPgiEuiy76qZ4/KrONAnTqWHHu29GxbTdtEct9lJ7DeQaVSHThw4NcuuHjxIoZhKSkpEyZMaN/nl19+Wb9+fY8D2+3Xpk2b9I3c49ykKulr114LORCSWJbY+aMsv6Bo2PDKRS9pFQqLL0FeVlY0IvTpS4u1ajWGYdu/Sdu5+uaPu89bflOOvoR95YpJuF1/2/FDxn9W30x+UFd373HN+3cLf7lqYIDExMRrT68FHwi+VX2r57Yzr2HbHDBJq3mnpNWWjo+rfv2NHj//UfBH8IHgSn5l5y9KsSz/3aSyTVfFdS1Yf6L2rbdLYsZiWu3z195zVykP+5SN3f4S63/0+OunSk4FHwguaC3oud/u0dj+KeYOLklPL/APaDt6tMfv32d+P+z3YY2SRh3Xrgu792bvWn3z0rWKrj+KU+8X+Ae0HTpkyggaparg/aTyTdeEtc2dF753X/au1TfPnC/FMAwT1GHfemE/jcIUYhOvLu+bxJr3kysvpT/7iV+LbffDdo7A5MKOaYhpP73/afCB4B1ZOwy87Gaht4EkHo9ftmzZK10wdepUMCaFi2HY6tWr2Wz2N998Y5KDKmtZdW1VekP659Gfz/J+5t2QgwIdv/lalpPTsGWLZaG7Riis2/AmSqE4//B9O63lqtXDZXgQ55PFUpWFNyVuCyglkPzs0kor+FAkFDuQYiKdnKJDhEgbrlRtWN9ovNt4B6rDkcLuK/G8p5B3CsJWgpW1eaeEIPT4iZL797XibgIzlysuB1oHejA9On8p+vEKHc/Cj2c/y2X0AzCNRpKaSouONomogMIC57CBz+gDwAS3CXgUf+Vp91iSWwZN+WYF8h351ogIyogR3F//i2mePXqFRnGm9EycW5y9lb2J46xYHiImILnnnyqV2k5PpGXHDoKzM+tFk/LlKAFvtyQYB/jqPffb52FzG06ewxOw8XOm+wAAMJxg3m/QWgpJa0x5s0qP3mG1cfjWPI8pf0oTKcRwZD6opLDwSGf3AgLIltFb5vvN/zXv149SPlJoFL1/Rv2VCzMshZucnPzrr79eu3YtODg4ODj4ypUrBoZKrk2ef35+Ka/0h3E/dLVfHfHIpEm2b24QJJ1r/m672S+SXF77xhplba3zjz/i7TpS7EwmaegcL4Ya/fmnHAsv3jYAQl+GzP8CtxwAMC2c2JerRWDhKyEdljfSjoLQy04bKjrHIbgF/gvSG9IrBF1IX1N+ABQPY9ZbErhNmoQpFOI7z5aiakW1ea15Uz2fralVnE1lC62f4ivdJ43sV9Mgy87WCIW0WJPpXr3HQ12WYWa+/gCTxBztNPrK0yvdalwLzgGCGi7K17s4sfo1VW2t8MIzHeVLFZf4Cv7CgIWmD0Im4QOnutGV2M/7Oqao8OpV2ePHNmvXmNoSB2Ad7KUIAaaaU/DjRbVa25BD1iDw0pouzYyeMTDxU8hPhKsfGh6qMb2Q9AgEuLagt/7sP1PJ4NhCaC2B+QfBttsaa7sVWzdi3YWKC8suL9O7WvKXmzAwKIUbGxur1Wqf/InJkyfrHCG7KXvtzbXrbq7jkDnHph8b5zpOz7RYzV68mLt/f/O335nui2EKRe1bb0lzcpy+/cYqvBv16OQ4j2aWmlAuvnmv2sKLj/0A8CS48QkA/HEsnyXQMCPtPFw7ylA9Z0SKga/NFmtVhlLUCX4JRBzxmbyooBZyj8KIJUB3sOCMKMOG4R0cuvZLXqq8hCDIZI+Omy+oqEceyETA44Ux+9s0iG/fQYjEDr0iE02YVgOVd2HAMd1zer24/mFjF83QgkRwGQkMS4SFaGPHkgMCWvftA40GADDAfi/4PZATONLBvG/GzCneInsiViDIzmvG5PLmb78jBwWyZpnnGPotGcdjcJktrHOfnbVWos5xTp1TtAOj18HotZC2G25/qW8Qfnmt+HSVAmSeb8Z06CUqpXBkPlTdh9l7wFvHO4sAsnro6h/H/dggaZh/fv4XaV/8j5owMEHs1jCWXVn2uOXxe+HvnZh+wovpZSBKctj8UbsVq3tvIyY33mCo4fOrV70qvnvPcetWxiQd/RxDwuVSIuQcK6ttEFty6jQ7iHobCs9Xpd3mpjTx6bgVS0OenS+KkMbYUBFG2fF7htawSOyZ3jOTypK4Mi4AwK0vAEEh+h0L7yaCMCZOlNy7p5XJ2l+exLLEcPtwB6oDAGhV6rpfHyII4rByBNZHMssGILp9mzpqlKGFs56Z8DAgM/+S0oo49zgGkXG29GzH/9sqoSHXgiiy8ynYrF2rrKjgnz4DAMk1yeX88uXByy15O9aOUCBwdX9+48/7VQ0N9h98CDicuYMEvjuNq20NV1iTyY0LEnSVpMVvg9CXIfkbuPQeaHumPkR1Lc0/P0YBz3rJz8qODQAgrIffJkPVfZizr1NSS/dX3jU2aXbSPN95Z8vO/u+asF7i86jPb8y/sWzIMjyKNzozHDZ/ZPfuu8LLl58uWiQvMsRtIs3KqpwzV5ab67x9uz46HTIBi3tlCEELB7/PspC5fPRaNdMj5UglYJCwOqRHobPn9EgRwkPy5GqFoYzb8uDlKq3qUOEhaHwCj49DxGpgOlt8P+nx8Vq5XJycDH9Sgyb4dtSCF+6+wtBy1OEEtp9rfz9W5dOnyspKWmysOfMUD15joey6xcqMFoOEI031nHq96nqHTnVhEgBiuQkDoE+cQAkNbdm1SyuX//bkN2eas86mSKNwtKN6TXaly7CMG82MKZOfydyag8Y2xW0JRaASxJEcam5k6XyzYMZOiHoLMn6B32cAv6Zzi6C8vn5nBgFIlDmOtsO8AQAKz8O+GGirgEXHDNuvdrBIrI8iP7qScOUfa8Jm+8w2nUgaEMT61VWue/eoW1qfzpvf8PEnz8tZywuL6jduqlqyFPB4j6NHGFMNsbyGD7O3GevAFGl2fp9pydkTKAdEn/CV7hHBBQE+nOduPGI1zpGC0MoOG6JDcKO7xbvHHys6JrqxGchMeOGd3txPq7BQvI1Ne43r6dLTndSgtbceMRoYfFqrz/yYAXis4tt3AIA2Lta8w/yngqAOGh8P/Dyc4ztHoVFcfnoZAKAgCVzCgOnSmwHtN76nbm4u+Omr7ObsZUOW4RCcZePMnenLkebXOsWkD19oweFSmfrHJs/BAAAb7ElEQVTgvzMRLUk6I0CqFWHXRWUn7+q2YhM/hbm/QONj+Gkk3PwMhPVNmUUt+x4TMRJhqq1jZBA8TYE/ZsPxJcB0gVU3DRCo6UgdU2z/sSbMkgAuJsbr0kX2woWCpKTyKVMrpk+v37ip8bPP6t9/v3zK1Mo5c0Q3btisXu11Lok8xHjf8uKFQXIvKqlCvO9ns1P7+w/kKepZrta5UbzP2/P6PeAeP1KItuGLtCqJoch3ZchKsUp8siULxm4Ccu+yVChKj58oTk7mC5puVt9spwaVNvPkVxulmMjvzfiBeUai27dJ/v4EJzNzSb6TAMVD0cWBn1RB1kH+HP9TJaeAXw11Ob1xwTrykiNG0OPjsQOnfKWMOT5zLB5HeOHC8If7MExY80Cc/KDWrGPVau2OLx4wxFrHeOdR4/zLQlUiHJ+cBU++PaeW6VooHPoivPEAAqZjKTuLtm5TnGzAMA3N/4ZL03fwQxAcmAaNeTDpS1h1A2z9B/Lp/NNMGADgGAz7zR/53Lpp/+EHBEcn6aNHwgsXpdk5JE9P+80f+STfsX3rTeN00n/irfdGCm2Jqmze/gN5pp/DibPFkrQWIRs/deMiIJAhaa3O4nLGJE8ySi39zVC5QKCV8xgldojNUYQt6/3NocfHa6XS5NM/dlCDarGKXXeIQGbN9yHSqQPwdDRCoSwriz7O/L5xKw64RULxxb9kUr3o92IBtyAnax8A6KOZNguStQtUKPbuHToZT7ZsBDWX27jtS6thIXO3TpATIOuPkuy8ZtPt1/ZtD5hcFSnC5sU5/gCAWRH8t0zhc3isNlbF1ptlp+7pWGtiuFTRVhdJ/0sjLhRqq5zZn9i2HoXmInCLhIRf4a0nMHotoPgBfjR4+IcCb23Nefllzssv99YgoujbmyN/2HofSWvZKcxcvy7caPv+wSP5grtNIhq6fnMknkqEqf+G069A8rcwrufitMvYoU9uJdKqGaLaZrqLnsbJm1tX8bgr7W1OlJ5ZGrS0l5dDHTkSx+GIrl6LWBnhw/Ip+vkKS2kj9pe5hQ/Ql1Ny7x6m0ZgdRXbGklc/BH41sNwGeDrN9J65M2fnoZqrI5yG98lf/6nuGHM85aXLVYLz55kzzK/P0GrrN27CZDKnL7cRHWlz3wpN/Hf27T1PxC8HxEQacW8FIuVPX6Uz21RYMOvVlc8of/EUUvCmWTU3srQ3BFaZUJlxU8aS4R2oBAZZLVGqmsRELsEKoROAJB+uDX5xGaDL/xfedBQGYQxkEv7dz6PFTiRcgfDrj+42NEsMJBe++ypNdLdJxMSv/3RMh2hCyDwYsQTubYdKHeuPzovDUAStOqBHuLD4EjzcP3L4qkjHyF8e/yJRSXp7MTgcf5RfYJFkud/ixvRCq3Iyn8QNWBk/YDdTdOs23tqaEhJiycEB0wDgL4klyXhyguuEGyCv85/Q+9EKuAV3au64LnuVMmJE42efq2przR2hdc9eyf379h9vIXp5AYCvF2vG28PVOCTnQOH+3w2FC5m5TXs2p9LbVKRRNuvW6ZDRc50Q5v/ldHUUQUaRWQmotBIyKROohUQal6EiKOTDNR5bx/ksHAv9v2w9aML6EkQ8umlzFCGMQ+Wpj25N37Mvp7W7DLhMrj56smjXpnuUKqnCh/retuhuoi9TvgMbPzixFFpLe4zM9nMV2gmZYuumjOdWUfnVkLgGnIZD3JY3Q9/kK/jP67xbgCTXZisFBBWrhWcqFZjMe8O4AbuNmEoluXeXFhtrHiPus5vlAfZD/qpYcpECEIBjeE3vh9qZvZNFZi0estR5+3cIAnXvvIuZw5onunmzZfdu5uzZrLnPdGQDfDgvb4mQsAiyBy3bNt65ebe6hwJnaQV/+zcP0vbkE9SY3wLvVSv0Si4gKOIxIzL409leX01grPGjLHNjrPFz++KFIV/M8VkY200O8n8h3ho0TyYCQeG1V4dnRzZfOVREyuEdfvRAQseROGQEB3KegsxXk7SgISP+c70njnN/zgRawaLj8N8JcGQ+rLwGtG4xo88r4+u+ui9KLLYP93/2cZPx4fA8AID5BwBHDLYJnuA+4ff83xcGLOyNUEBGY8ZFdvUiGqX2Sj2H7Imbad1NI76/o8gHDzRCET2+F06f/1RI+QFkPKCwB3gCOBRenkyjnnh6aWXYBjbZ8r/+sPFhan3qu+HvUglUcKY6fvVV7foN9R984LzdpPYS2aNH9e++RwkOdtz6SY9NjnbUD76MOXD4iSytuehIWeaJMi2HSGYQVTK1mqdkSLUkAJkb5eXXhtnbmFaRhyIMN/v/8Rdz0AszD6Ehdh9+EzPytSEaTxqoMaRaApViVKxR2pM8Ejw3fT9Wh/3q8CDcYdExEDfBgWkg7CbOTGbRNEMJDC2n+FBHXp+glsCRF4H3FBYeBrZH+4/rRqyTqWU/5fzUm/PflbPLhmavil5sTfYWuUucooIH8u6Jrl3DMejUMaMtHyJgGmjVUHJ1oB98Yx60FL3hu0Cuke9/st/iYbSY9uuMr51pzosCFrX/Qo+Ls9/4nvDS5cbPPkeMVb1JH2ZWr3oV7+Dgume3TlJDBIUVS4Nf/+4F1jhHLZOAtimhQoxrlAGKQAhzxkfhGz8cbar9+ptg0AuzBBGh9hGh5n+dnMNgyVk4Mh9+jYP5B8D1Gb+d36LY/IIkaj5dWNPMoEmjy74EVTPM299V7tiL6bUwYOHRoqMzfWaG2FiSS0qpS8lpzvmS9q41yaNVUOQTNKCL35hGI7p5izZunOl9fDrgOBwYTlB8EYYtHNBHnncKcET34cuna7lHi44uDVpqZ2WJGMrx4uMlvJId43Z0LXjkrFih4Qta9+1zLCjQTpyI6mGO4p863fjFF0QXZ7f9+3EcjoG/QrMiLF4QCAv+X7yMg17YwMItElZcATwZDkyDqx+CtK3TY3dYMgIFXNWea7A3iqJqg8WnIKAnrfa64es4ZM7XGV9rMbMbBrSYdkf2jlBNwJB0RylISLmHhBcHNKkkTc/Q8Hi9iiIBAEEgcAaUXgelZOBOHdPCk5PgEwdWnNXDVqu16p8f/2zBMFwZ96dHP0U6Rsa5xfXYZPv2W/b/+hftyZOK2XNEt271aEJQVlbWrlnbsHmzVWio+x9/dFISDGLQC/srYD8EVt+Fa5shfS88/BW8xoHTcMARrbllTRo2G5lSpl5SERgY76mjUJ5GpL0T9s6HKR8eKTqyJHCJud//6qbK/aWbUcDbvuynsooTJCZqJR+jVOrAXLfo2jWUSqWZQtNqGEPmQPo+KL5kSgtL36D6AQjqYMJnAOBGd1sUsOhI0ZEE34RAa/MobT998KlcLf9wlG7iB87yZZkiofely7Vr1hLd3anRUQR7B41YJMvOlmbnoFZWdps2Wi9fbuFKyKAXNoi+BIkOM36ENx7AyFeBWwrJ38LNz6D8VkBEkxBrwYknKsV6K29neM8Y5zpuR9YOs1hKWmWtu3N2f1+2nolYY9FW1kM8mbNnaWUy4dWBSippNKLr12mxYxFSr9ezXCOB6QxPzgxoFEmkdupFrh2+lkPmfJH2hVm+8Lnyc7drbm8I3eDJ1CvhI3Nz87pw3um7bwmuroKkc83ff9+2/zetXGG7Yb3PtavWK1cO2q9BL+x/Cbb+MGkbTNrW9XviOKJW8GuxWwEeU2sQvO7WuU/HfDrn3Jx/3fvX4amHTekhxQDbkrrlzcczPMBb7C0NmBkDAJRhw4ienoKziV0X5vsxiszOVnO5vY0iO2PJoDnw8BeQC3rbcWUK1HLIPwsB0zsFqGlE2saRG9+/+/4veb+sHrralDGeCp5+lfFVmH2YUd8ZweGYM2a0F7tiGg2Cww2+KINe2N8JbF8XdTiBg9rl79CbqGKT2duit5XySj9M+dCI3DQAAPxR8EdwMiMSG83n8AJefUaKwJw9S5qZqaqrG4DrEl68hFIotJg+aiMPTgC1AoouDMQjKbwAMh6M6GZ6pnpOneY1bc+jPY+ajeuui1XiDbc3EFHi1y98jZojzThov/56E2ZACrcdJSUlWX0kQfSPgc/8mCq0ktXKLtUn9gcQ5RT1Ttg7155e++7hd4at2K3qW23HH81STeORWoe8162RhTlrFqCoIOlcf18RplIJr1yhT5xoemuqETiHAsdrgGLJR4eA5QYePVN4m0dtdqG7bLi9oUpoSKZXppatvbG2RlTzfez37dRsg/jbmDADUrjt4HK506ZNe/fddwcfQw+0htMFOC7pEeimcAIAgGVDli0NWvpHwR9fpH2hT5svuTY5d//FeYrZfAI36KPpSPemEIKDA3XkSEFiYn+TcInvJGv4fMaM6X056JDZUHEHJC397D3WQ+VdGLEEnvOeaETangl7EEBeu/5aOb9c59Ft8rbXr7+e25L7bcy3YfZhgxP772TCDEvhtuPtt99ev3794DPQARzq9c44KSLSXBfWp+hlyNo0ctOqkFUnik8su7KsG8U+gEKj+OnRT+V7bs6Xz+LhWwM2T8cRdVRjMWfPVlZXS7Oz+/VqBOfP462tqWPG9OWgQxJAq4aCfnYhc/4ADINhL+nc6Ep33Ttxr0qjWnp56aWKnpp4KXUpL55/saCt4Nux3050nzg4qfsJ/ZXO7yGFm5LSU+ri/PnzDg4OoaGhZ86cGXwMz4NizXTdMLr2x3TsvLZK/NB9sm5u9TdD3wy0Dvz0/qdzkuZEO0dHOERQ8JQKQcXN8hvrH00LRSa2UVuHvD9Dp/0CAPqkePSLL/gnT1qF9ZePoBGKxMnJ7AUL+jiz4xAMDiHw6BCMfKXfAmAMco+CVyyw9DLZBnICj04/+s6dd96/9/4veb9McJ9gb2XfKmtNrk1+0vrEk+m5K25XACdgcD73HxCsf4KIs2fPHj9+/NixYz3+3Q4+nz9z5swrV65kZ2dv3rz5ThdZna5SuImJif/fH49Q4f2YyMCxS2iV4hC9fXkSTJKmSHukfMTT8gDAX+S8ueoVG5x9JeFpWyjDMKmAXWIi82Fm5YcfqPunQIyZnmF/5kz1hvVyZ+e+Hdmr5XpI7R+3A7YJKf1Clm0rKhhT9nWmx5o6dqQRWwdYrjI3XZFep6nTghYBxBHnGE4KDyeGo4MrZiZg9uzZlhuiv0QKd9u2bRMmTHj//fcXL17s6ur6008/GZXCHWCYKEo6AH9dzhPlfXS25v27T7ac7RQu1Qe+qC1nV2LlplsVG6+XJ6WapARcXFzgH8Ddv7+frr1y0UvlU6f1y52XcLHPbbErH/TXcz+2GPvGE1PJzJBVVstrhDUycw75H5l1f+2E783L3ttAsl0K9/nfO6Vw2Wz2hQsXVqxYAQBpaWlhYWEEAmH+/PmhoaHt8ebjx4/b/z0InSCxaMGfzSr89RqtnMn9Ma/aSeIyO5zp4dhjNxlPWHUmDVeisUE4AhLXZXkE08skZmeSnx8lNJR39Bhn+XKThGnNgaK8XJaTY79pU7/cGisO+E+BxydgwqeAI/Tx4IJaKL4MURvAHFZVEo7kQncZnLT/hFxYpxSura2tk5NTpxRuUVGRg4ODr6+vr68vANBotPPnz0dGRg4+CUNAkcDXJnELqxqOZzMbrYV7S+uQDC0bwTFJmFaLSVTAw+hqJg2hCNE24ljSkMnmMSOzFy6o3/S+JC2dOrqPHwT/2HGEQGDOmtlfd2bEUshPhJIrlgnTGkLmfgAMwlYOzr7/pyYMAF566aV58+ZJpdJOKUk+v6cac3R0dNdE2CAMwDrQ3XqrO6+0tv5KLtIANC4d34YHAC2mkSJCka2QE+0TFPmCBSMzJk9u+vob3qFDfWvCMLlckJREj483TKvQu3zYOGA6Q+b+PjZhagVk/w5+Uwwk8gfxzzdhAEAkEolE4uBd7kOwfV3Yvh2hilIo0WoxMovWyzERIpG9aGHrnr3Kiop2IuM+gfDKVY1QyF7wYn/6pzgIfwVufg6tJWDj12fD5p8BSStEvDY43/4GIcrgLfj7gsig9t5+tYOzeDFCJHIPHOjD02s7eJDk42MVHt6/dyF0GeBJkPFznw2IYXD/P2AXCJ4xg3Ns0IQN4u8BHIfDmjNHkJikbumbendJWpq8oICzou+XCHqCagPBc+HREZAL+2bA0qvQlA9Rb/X7mQ9i0IQNog/BWbEc02h4hw73jQt24He8tTVz+vSBOPWI1aCUQPbvfTNayg/AcoXghMEpMWjCBvG3Ckvd3BgTJrQdOYKTyXo5lKK8XJyczF68uA/YwUyB03DwioUHu0At7+VI1uJiqE6DMRv6vkpjEIMmbBD9DZv167QSCTs5uZfjtO7eg1Io7EUDSG8fsxFEjZB9sJfDBDacBroDjFg6OBkGTdgg/n4g+fgwp09np95Xt7Za7oKVlQkvX+YsXYpjD6BOmkc0uI+B1B2gUVo+SOk1a3ERjH0fCJTByTBowgbx93TE1q0Ftbp1zx6LR2j5cSdKpXJWrhjoU4/ZBII6ePirhYdjWrj5qYQ86IINmrBB/J1BdHMTREbyjh2XFxZZcLgsN1d044b1smU4JnOgT917HPjEQfI3z3ShzELOH9D4pNBx3mAWbNCEDeLvDe6keDyL1fjZZ2ZTIWo0jZ99jrez46xY/tec+qSvQCmBO1+ZfaC0DW58Cu5j6pgjByfAoAkbxN8bGjLZbuNGWU4O/+Qpsw7kHT8hz8+3f//9ARN26wlbfwhdBpn7of6ReQde/QAUIpj+w2At2KAJG8Q/AcxZM6mjI5u+/lpZVWXiIcqqqubt26lRUYypU/7KU4/7GGh2kPi6GQUW+YmQewxeeAdsB7kJB03YIP4ZQBCnr79GiMS6d9/D5MZtAaZS1W/chBAITl9u+4vPnMyEmbuguQiubTbNdayCC2+CawTEbBx87IMmbBD/HODt7Z2+/kpeUFD/rw9Aa1DzFcMatmyR5eU5fvEF3t7+rz91nzgYsx4yfoEsY/X6Mj4cmQ8ICnN/BXRQU3XQhA3inwVabKz9xo3CK1caPvkENBp99qv53/8WJCbZblhPnzjhf+XUJ2wFnzi49C7kn9Vvv3hwOAF4VbDwCLDdBx/33/VbO3gLBmEAnBXLNSJh6+496lbu/7V3fjFNXXEcP6UUWigjzsK0pBUmhpASSjSIoiINiNURNRKm0pm5EVEJgeiTJMuiPEg2DDHxwQczWEbKEhibk0TNQqBRwp+UpLLIGqIZCUFLS4s2QSptoXu4syFAr1fovb2F7+fp9pxyf+d7fuf+uPf03POT198Qvt/6jWJhdnayrs55789NujLZpUt8+tcsJKW/kF9PkY5y4pwge6uWztPbzKT9a/JmnJT+TJR74WiEsJUxGAwOh6OwsDB+pVVCL1686O3tlclkBQUFEgnWQ/OUhOrqyIQE6436f78o/vTbb+IOHYpKSvJMTc109zju3vXYbAnV1bLKS7xrd7SU6H4jf1SQv74j/9wjuTUkJY+IJGRqlAy3kqFmIv6EfPU72ZYLFyOErUxNTY3FYsnMzKyrq+vt7Y2Li1tc29bWdv369bKyspGREYVCoVar4QzesunMmZidO60//GhruGlruOkvl6jV8psN7CVwWysiCfmyhTxtJYYbpG3RmnthFFGfIQXfk1gZnIsQtjJUKtyxsbGIiAir1arX6y9evOivdbvdtbW1T548kcvl8EFYEJ2Wpmz6yT0+PjswMP/GGSGVxuzaGZ2WFgZNzyojmafIeD+Z/Jt450i8gnyej+CFEPYB6FPhms3mzZs3NzY2mkwmjUZz9erVyEjMyoUBUUpllFIZfu2OEJLk/SR5Pzy4/ghNKtyurq6ioqIHDx7k5+frdLq8vLyamhqqCqlwAdhohF8q3OHhYblcTh13dHSUlJQgFS6swzpS4YZNKtz09PSoqCi73S6Tycxm87ZtWJUDAODTXBh9KlyRSHT79u2CggKlUmm1Wjs7O+EJAACPQhj5UCrc4uLiI0eO2O32z/jwSgoAACFsOfSpcIVCIeIXAGAt4B1JAADuwthBgP3nAADhG8JYWrPGMHrCOqxvHOshF44HSQDARgQhDAAQxgivXbvGz5a9e/eusLAQ1mEd1iGc7iE0hA/AAACAB0kAwMaFR79Iut3uZ8+eeTyenJwcfyH9vq/0tatgZmZmYGDA/zE1NTU5Odn/8fHjx263mxAiEokOHjzIRifQmwi63sWMjo4ODQ3FxcUdPnw4Ojr6oxq2ajj2b8j1Mj8/e9rpBzl72lm6wHn0IJmdnR0TE+N0Op8+/T+PqX/f1/b29uX7vtLXro6XL182NDRQx21tbY2NjadPn/bXbtmyhfookUjq6+vZ6AQaE2zo9WM0Gq9cuVJUVDQxMdHX1zc4OBgTE8OwYauGe/+GVi/z87OqnX6Qs6edrQvcxyfMZrNaraaOJycnlUrl/Py8z+erqqq6c+fO4m/S164d6uVNl8u1uDApKYntHghkgm29CwsL/uMDBw50d3czbNiqCa1/udfL/Pxsa6cf5KxqZ+MC5+9c2JJ9X00mE/PatdPS0lJSUiIWixcXejye/Pz8EydOdHV1saQ6kAm29frXFrpcrrGxse3btzNsWJj6l3u9zM/Ptnb6Qc7NOA/iAODv6nyn0xkbG0sdS6VSp9PJvHbtNDU1NTc3Lyns7OxMT08fGRkpLS199OiRSqUKuupAJtjWS7GwsHDu3LnKykrlst2lg649tP7lXi/z83OjPdAg52acB3EAcB3CvF6vXq/3er3+kq1btx49enT5NxMTEx0OB3XscDgSExOZ166xGUajUSAQ7FqWmGf37t2EkD179pw8edJgMKzatTTWA5lYo14m1n0+X3l5eXJycm1t7fK/CpZ2bvzLBI71Mj8/B9ppBjkH2oM8AHg7F/b27VuFQjE9Pe3z+Y4fP05tjNvf3+92uwPVBosLFy7cunXL/5EyOjc3R02geDye3Nzc+/fvB13+iiYo66zqpeaGzp8/f/ny5SXl7GkPpGi96mXoaLbHNv0gD9Q2Pl/gPAphZ8+e3bFjh1gsVqlUra2tPp9Pr9dnZGRoNBqdTuf1en0+X3x8vMViob6/vDYozM7OJiQk2O12fwlldGhoKC0tTavVpqamVlRULJ4PDhYrmvBLZkkvRU9Pj0AgUL3n4cOHHGhfUdE61svQ0WxrpxnkgdrG5wuc76vz3W734n1fP6qWjcZYrVaZTMZe7nF6Exzr5UA7r/zLpa8/eP51rD24AwAvGAEAwhi8YAQAQAgDAACEMAAAQAgDYQwmZ8FHEYkuADzh9evXg4ODUql0enr62LFj6BCAuzAQTvT19Wm12n379hkMBvQGYAgWVQBeYLFYXr165XK5zGZzdnZ2VlYW+gTgLgyEDaOjoyqVSiQSORyOlJQUdAhACANh9TggEIjF4pycHIVCwd72MgAhDABWsNls1IHJZMrIyECHAIbgF0kQesbHx6empoxG4/Pnz7VarUwmQ58ApvfvmM4HIaenp0ej0bhcLg7eKwZ4kAQgyFB7HyN+AdyFAQBwFwYAAAhhAACAEAYAAAhhAACEMAAAQAgDAACEMAAAQhi6AAAQvvwHJ68WM++hvMYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -111,13 +98,6 @@ "needs_background": "light" }, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.7651976865579666\n" - ] } ], "source": [ @@ -133,8 +113,8 @@ "plt.xlabel(' $ \\\\beta $ ')\n", "plt.plot(x, y)\n", "plt.legend()\n", - "plt.show()\n", - "#plt.savefig('bessel.pgf', format='pgf')\n", + "#plt.show()\n", + "plt.savefig('bessel.pgf', format='pgf')\n", "print(sc.jv(0,1))" ] }, diff --git a/buch/papers/fm/Python animation/bessel.pgf b/buch/papers/fm/Python animation/bessel.pgf new file mode 100644 index 0000000..cc7af1e --- /dev/null +++ b/buch/papers/fm/Python animation/bessel.pgf @@ -0,0 +1,2057 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.750000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.331250in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{1.331250in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.331250in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.331250in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}7.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.912500in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{1.912500in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.912500in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.912500in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.493750in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{2.493750in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.493750in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.493750in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.075000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{3.075000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.075000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.075000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.656250in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{3.656250in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.656250in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.656250in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.237500in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{4.237500in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.237500in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.237500in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.818750in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{4.818750in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.818750in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.818750in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.400000in}{0.500000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.400000in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10.0}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.075000in,y=0.212809in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \beta \) }% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.605796in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.605796in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.605796in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=0.553034in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.952919in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.952919in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{0.952919in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=0.900157in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.300042in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.300042in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.300042in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.323873in, y=1.247280in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.647165in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.647165in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.647165in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=1.594403in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{1.994288in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{1.994288in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{1.994288in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=1.941526in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{2.341411in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{2.341411in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{2.341411in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.288649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{2.688534in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{2.688534in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{2.688534in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.635772in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.035657in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.035657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{3.035657in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=2.982895in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.382780in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.382780in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.750000in}{3.382780in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.431898in, y=3.330018in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.268318in,y=2.010000in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Bessel \(\displaystyle J_n(\beta)\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{0.834947in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{0.881029in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{0.906629in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{0.932230in}{1.971486in}}% +\pgfpathlineto{\pgfqpoint{0.962950in}{1.928646in}}% +\pgfpathlineto{\pgfqpoint{0.993671in}{1.880474in}}% +\pgfpathlineto{\pgfqpoint{1.029512in}{1.818502in}}% +\pgfpathlineto{\pgfqpoint{1.075593in}{1.731696in}}% +\pgfpathlineto{\pgfqpoint{1.137035in}{1.608436in}}% +\pgfpathlineto{\pgfqpoint{1.229197in}{1.423447in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{1.338266in}}% +\pgfpathlineto{\pgfqpoint{1.311119in}{1.278235in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{1.372560in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{1.398161in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.140817in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.126046in}}% +\pgfpathlineto{\pgfqpoint{1.464722in}{1.114825in}}% +\pgfpathlineto{\pgfqpoint{1.485203in}{1.107268in}}% +\pgfpathlineto{\pgfqpoint{1.505683in}{1.103467in}}% +\pgfpathlineto{\pgfqpoint{1.526164in}{1.103488in}}% +\pgfpathlineto{\pgfqpoint{1.546644in}{1.107370in}}% +\pgfpathlineto{\pgfqpoint{1.567125in}{1.115129in}}% +\pgfpathlineto{\pgfqpoint{1.587605in}{1.126753in}}% +\pgfpathlineto{\pgfqpoint{1.608086in}{1.142205in}}% +\pgfpathlineto{\pgfqpoint{1.628566in}{1.161422in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{1.674647in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{1.700248in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.369671in}}% +\pgfpathlineto{\pgfqpoint{1.797530in}{1.446409in}}% +\pgfpathlineto{\pgfqpoint{1.838491in}{1.541833in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.669363in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{2.084842in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{2.177528in}}% +\pgfpathlineto{\pgfqpoint{2.130338in}{2.251280in}}% +\pgfpathlineto{\pgfqpoint{2.161059in}{2.308003in}}% +\pgfpathlineto{\pgfqpoint{2.191779in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{2.217380in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{2.283941in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{2.304422in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{2.324902in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{2.345383in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{2.386344in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{2.406824in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{2.447785in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{2.468266in}{2.445710in}}% +\pgfpathlineto{\pgfqpoint{2.493866in}{2.421230in}}% +\pgfpathlineto{\pgfqpoint{2.519467in}{2.392195in}}% +\pgfpathlineto{\pgfqpoint{2.550188in}{2.351932in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{2.306515in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.248188in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.167068in}}% +\pgfpathlineto{\pgfqpoint{2.826674in}{1.871952in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{1.816084in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.773136in}}% +\pgfpathlineto{\pgfqpoint{2.923956in}{1.735550in}}% +\pgfpathlineto{\pgfqpoint{2.949557in}{1.708802in}}% +\pgfpathlineto{\pgfqpoint{2.975158in}{1.686562in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.672198in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{1.661005in}}% +\pgfpathlineto{\pgfqpoint{3.036599in}{1.653070in}}% +\pgfpathlineto{\pgfqpoint{3.057080in}{1.648453in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{1.647191in}}% +\pgfpathlineto{\pgfqpoint{3.098041in}{1.649294in}}% +\pgfpathlineto{\pgfqpoint{3.118521in}{1.654744in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{1.663501in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.675496in}}% +\pgfpathlineto{\pgfqpoint{3.179962in}{1.690635in}}% +\pgfpathlineto{\pgfqpoint{3.205563in}{1.713801in}}% +\pgfpathlineto{\pgfqpoint{3.231164in}{1.741413in}}% +\pgfpathlineto{\pgfqpoint{3.261884in}{1.779941in}}% +\pgfpathlineto{\pgfqpoint{3.292605in}{1.823711in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{1.880369in}}% +\pgfpathlineto{\pgfqpoint{3.374527in}{1.959949in}}% +\pgfpathlineto{\pgfqpoint{3.446209in}{2.091693in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.221778in}}% +\pgfpathlineto{\pgfqpoint{3.558851in}{2.290381in}}% +\pgfpathlineto{\pgfqpoint{3.594692in}{2.344698in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.385878in}}% +\pgfpathlineto{\pgfqpoint{3.651014in}{2.415775in}}% +\pgfpathlineto{\pgfqpoint{3.676614in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{3.702215in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{3.743176in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{3.784137in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{3.825098in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{3.845578in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{3.866059in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{3.886539in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{3.932620in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{3.983821in}{2.316819in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.261173in}}% +\pgfpathlineto{\pgfqpoint{4.045263in}{2.199366in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{2.120526in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.010684in}}% +\pgfpathlineto{\pgfqpoint{4.188626in}{1.854728in}}% +\pgfpathlineto{\pgfqpoint{4.301269in}{1.566729in}}% +\pgfpathlineto{\pgfqpoint{4.347350in}{1.457926in}}% +\pgfpathlineto{\pgfqpoint{4.383191in}{1.380189in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{4.449752in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{4.500953in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{4.526554in}{1.156269in}}% +\pgfpathlineto{\pgfqpoint{4.547035in}{1.137987in}}% +\pgfpathlineto{\pgfqpoint{4.567515in}{1.123487in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{1.112826in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{1.106036in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{1.103122in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{1.104062in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{1.108809in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{1.117291in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{1.129411in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.145049in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{4.777440in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{4.803041in}{1.225198in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.270199in}}% +\pgfpathlineto{\pgfqpoint{4.869602in}{1.329314in}}% +\pgfpathlineto{\pgfqpoint{4.910563in}{1.403883in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.504307in}}% +\pgfpathlineto{\pgfqpoint{5.105128in}{1.790337in}}% +\pgfpathlineto{\pgfqpoint{5.146089in}{1.863354in}}% +\pgfpathlineto{\pgfqpoint{5.181929in}{1.920969in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.964744in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{5.268971in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{5.294572in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{5.315053in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{5.335533in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{5.356014in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{5.376494in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{5.396974in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.696626in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.840343in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{1.909768in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.964990in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{2.007118in}}% +\pgfpathlineto{\pgfqpoint{0.952710in}{2.043605in}}% +\pgfpathlineto{\pgfqpoint{0.978311in}{2.069190in}}% +\pgfpathlineto{\pgfqpoint{1.003911in}{2.090009in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.103027in}}% +\pgfpathlineto{\pgfqpoint{1.044872in}{2.112669in}}% +\pgfpathlineto{\pgfqpoint{1.065353in}{2.118827in}}% +\pgfpathlineto{\pgfqpoint{1.085833in}{2.121422in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.120397in}}% +\pgfpathlineto{\pgfqpoint{1.126794in}{2.115724in}}% +\pgfpathlineto{\pgfqpoint{1.147275in}{2.107401in}}% +\pgfpathlineto{\pgfqpoint{1.167755in}{2.095453in}}% +\pgfpathlineto{\pgfqpoint{1.188236in}{2.079933in}}% +\pgfpathlineto{\pgfqpoint{1.208716in}{2.060921in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.032409in}}% +\pgfpathlineto{\pgfqpoint{1.259917in}{1.998874in}}% +\pgfpathlineto{\pgfqpoint{1.285518in}{1.960642in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{1.909112in}}% +\pgfpathlineto{\pgfqpoint{1.352080in}{1.842184in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{1.758442in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.646346in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{1.362289in}}% +\pgfpathlineto{\pgfqpoint{1.613206in}{1.280362in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.215890in}}% +\pgfpathlineto{\pgfqpoint{1.679767in}{1.167290in}}% +\pgfpathlineto{\pgfqpoint{1.705368in}{1.132210in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.102582in}}% +\pgfpathlineto{\pgfqpoint{1.751449in}{1.083102in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.067590in}}% +\pgfpathlineto{\pgfqpoint{1.792410in}{1.056219in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.049132in}}% +\pgfpathlineto{\pgfqpoint{1.828251in}{1.046700in}}% +\pgfpathlineto{\pgfqpoint{1.843611in}{1.046782in}}% +\pgfpathlineto{\pgfqpoint{1.858971in}{1.049407in}}% +\pgfpathlineto{\pgfqpoint{1.874332in}{1.054594in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.062353in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.076696in}}% +\pgfpathlineto{\pgfqpoint{1.930653in}{1.095578in}}% +\pgfpathlineto{\pgfqpoint{1.951134in}{1.118939in}}% +\pgfpathlineto{\pgfqpoint{1.971614in}{1.146687in}}% +\pgfpathlineto{\pgfqpoint{1.997215in}{1.187350in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{1.234366in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{1.287354in}}% +\pgfpathlineto{\pgfqpoint{2.079137in}{1.358190in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{1.449684in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{1.563913in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{1.717153in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{2.217374in}}% +\pgfpathlineto{\pgfqpoint{2.411944in}{2.327896in}}% +\pgfpathlineto{\pgfqpoint{2.442665in}{2.403052in}}% +\pgfpathlineto{\pgfqpoint{2.473386in}{2.470271in}}% +\pgfpathlineto{\pgfqpoint{2.498986in}{2.519452in}}% +\pgfpathlineto{\pgfqpoint{2.524587in}{2.561823in}}% +\pgfpathlineto{\pgfqpoint{2.545068in}{2.590485in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{2.614254in}}% +\pgfpathlineto{\pgfqpoint{2.586029in}{2.632938in}}% +\pgfpathlineto{\pgfqpoint{2.601389in}{2.643518in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.651092in}}% +\pgfpathlineto{\pgfqpoint{2.632110in}{2.655617in}}% +\pgfpathlineto{\pgfqpoint{2.647470in}{2.657057in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.655390in}}% +\pgfpathlineto{\pgfqpoint{2.678191in}{2.650603in}}% +\pgfpathlineto{\pgfqpoint{2.693551in}{2.642696in}}% +\pgfpathlineto{\pgfqpoint{2.708911in}{2.631677in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{2.617568in}}% +\pgfpathlineto{\pgfqpoint{2.744752in}{2.594005in}}% +\pgfpathlineto{\pgfqpoint{2.765233in}{2.565112in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{2.531028in}}% +\pgfpathlineto{\pgfqpoint{2.811314in}{2.481388in}}% +\pgfpathlineto{\pgfqpoint{2.836914in}{2.424317in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{2.360295in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{2.275073in}}% +\pgfpathlineto{\pgfqpoint{2.929077in}{2.165443in}}% +\pgfpathlineto{\pgfqpoint{2.970038in}{2.029041in}}% +\pgfpathlineto{\pgfqpoint{3.021239in}{1.846491in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{1.212928in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.080664in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{0.975558in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{0.894817in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{0.834903in}}% +\pgfpathlineto{\pgfqpoint{3.354047in}{0.782238in}}% +\pgfpathlineto{\pgfqpoint{3.379647in}{0.737258in}}% +\pgfpathlineto{\pgfqpoint{3.400128in}{0.707053in}}% +\pgfpathlineto{\pgfqpoint{3.420608in}{0.682146in}}% +\pgfpathlineto{\pgfqpoint{3.441089in}{0.662653in}}% +\pgfpathlineto{\pgfqpoint{3.456449in}{0.651634in}}% +\pgfpathlineto{\pgfqpoint{3.471809in}{0.643726in}}% +\pgfpathlineto{\pgfqpoint{3.487170in}{0.638940in}}% +\pgfpathlineto{\pgfqpoint{3.502530in}{0.637273in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{0.638713in}}% +\pgfpathlineto{\pgfqpoint{3.533251in}{0.643238in}}% +\pgfpathlineto{\pgfqpoint{3.548611in}{0.650812in}}% +\pgfpathlineto{\pgfqpoint{3.563971in}{0.661392in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{0.680076in}}% +\pgfpathlineto{\pgfqpoint{3.604932in}{0.703844in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{0.732506in}}% +\pgfpathlineto{\pgfqpoint{3.645893in}{0.765842in}}% +\pgfpathlineto{\pgfqpoint{3.671494in}{0.813703in}}% +\pgfpathlineto{\pgfqpoint{3.697095in}{0.867935in}}% +\pgfpathlineto{\pgfqpoint{3.727815in}{0.940570in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{1.034286in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{1.150816in}}% +\pgfpathlineto{\pgfqpoint{3.860938in}{1.321912in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{1.715539in}}% +\pgfpathlineto{\pgfqpoint{4.029902in}{1.830883in}}% +\pgfpathlineto{\pgfqpoint{4.065743in}{1.923621in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{1.995699in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.059964in}}% +\pgfpathlineto{\pgfqpoint{4.152785in}{2.106979in}}% +\pgfpathlineto{\pgfqpoint{4.178386in}{2.147643in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{2.175391in}}% +\pgfpathlineto{\pgfqpoint{4.219347in}{2.198752in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{2.217634in}}% +\pgfpathlineto{\pgfqpoint{4.260308in}{2.231976in}}% +\pgfpathlineto{\pgfqpoint{4.280788in}{2.241750in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.246082in}}% +\pgfpathlineto{\pgfqpoint{4.311509in}{2.247857in}}% +\pgfpathlineto{\pgfqpoint{4.326869in}{2.247097in}}% +\pgfpathlineto{\pgfqpoint{4.342230in}{2.243835in}}% +\pgfpathlineto{\pgfqpoint{4.357590in}{2.238111in}}% +\pgfpathlineto{\pgfqpoint{4.378071in}{2.226740in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{2.211228in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{2.191748in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{2.168497in}}% +\pgfpathlineto{\pgfqpoint{4.465113in}{2.134469in}}% +\pgfpathlineto{\pgfqpoint{4.490713in}{2.095377in}}% +\pgfpathlineto{\pgfqpoint{4.521434in}{2.042531in}}% +\pgfpathlineto{\pgfqpoint{4.557275in}{1.973957in}}% +\pgfpathlineto{\pgfqpoint{4.598236in}{1.888550in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.752047in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.546791in}}% +\pgfpathlineto{\pgfqpoint{4.797920in}{1.452145in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.385218in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{1.333687in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{1.288362in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.255807in}}% +\pgfpathlineto{\pgfqpoint{4.946404in}{1.228334in}}% +\pgfpathlineto{\pgfqpoint{4.966884in}{1.210185in}}% +\pgfpathlineto{\pgfqpoint{4.987365in}{1.195552in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{1.184507in}}% +\pgfpathlineto{\pgfqpoint{5.028326in}{1.177095in}}% +\pgfpathlineto{\pgfqpoint{5.048806in}{1.173335in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.173219in}}% +\pgfpathlineto{\pgfqpoint{5.089767in}{1.176711in}}% +\pgfpathlineto{\pgfqpoint{5.110248in}{1.183749in}}% +\pgfpathlineto{\pgfqpoint{5.130728in}{1.194245in}}% +\pgfpathlineto{\pgfqpoint{5.151209in}{1.208087in}}% +\pgfpathlineto{\pgfqpoint{5.171689in}{1.225140in}}% +\pgfpathlineto{\pgfqpoint{5.197290in}{1.250725in}}% +\pgfpathlineto{\pgfqpoint{5.222890in}{1.280719in}}% +\pgfpathlineto{\pgfqpoint{5.253611in}{1.321959in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.376320in}}% +\pgfpathlineto{\pgfqpoint{5.330413in}{1.445009in}}% +\pgfpathlineto{\pgfqpoint{5.381614in}{1.537494in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.597703in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.597703in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.216606in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{1.221334in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{1.230156in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{1.242306in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.257718in}}% +\pgfpathlineto{\pgfqpoint{0.840068in}{1.281435in}}% +\pgfpathlineto{\pgfqpoint{0.865668in}{1.309880in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.342765in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{1.387602in}}% +\pgfpathlineto{\pgfqpoint{0.957830in}{1.446431in}}% +\pgfpathlineto{\pgfqpoint{0.998791in}{1.520692in}}% +\pgfpathlineto{\pgfqpoint{1.049992in}{1.620888in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{1.906162in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{1.978026in}}% +\pgfpathlineto{\pgfqpoint{1.265038in}{2.026309in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.068752in}}% +\pgfpathlineto{\pgfqpoint{1.321359in}{2.099055in}}% +\pgfpathlineto{\pgfqpoint{1.346959in}{2.124290in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.140574in}}% +\pgfpathlineto{\pgfqpoint{1.387920in}{2.153205in}}% +\pgfpathlineto{\pgfqpoint{1.408401in}{2.162042in}}% +\pgfpathlineto{\pgfqpoint{1.428881in}{2.166971in}}% +\pgfpathlineto{\pgfqpoint{1.449362in}{2.167905in}}% +\pgfpathlineto{\pgfqpoint{1.469842in}{2.164788in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{2.157590in}}% +\pgfpathlineto{\pgfqpoint{1.510803in}{2.146316in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{2.130996in}}% +\pgfpathlineto{\pgfqpoint{1.551764in}{2.111695in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{2.088506in}}% +\pgfpathlineto{\pgfqpoint{1.597845in}{2.054244in}}% +\pgfpathlineto{\pgfqpoint{1.623446in}{2.014409in}}% +\pgfpathlineto{\pgfqpoint{1.654167in}{1.959785in}}% +\pgfpathlineto{\pgfqpoint{1.684887in}{1.898458in}}% +\pgfpathlineto{\pgfqpoint{1.720728in}{1.819647in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.722017in}}% +\pgfpathlineto{\pgfqpoint{1.823131in}{1.566276in}}% +\pgfpathlineto{\pgfqpoint{1.915293in}{1.332110in}}% +\pgfpathlineto{\pgfqpoint{1.956254in}{1.236020in}}% +\pgfpathlineto{\pgfqpoint{1.992095in}{1.159534in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{1.101214in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{1.058625in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{1.022179in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.997838in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.978071in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.963123in}}% +\pgfpathlineto{\pgfqpoint{2.150818in}{0.955205in}}% +\pgfpathlineto{\pgfqpoint{2.166179in}{0.950198in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.948173in}}% +\pgfpathlineto{\pgfqpoint{2.196899in}{0.949189in}}% +\pgfpathlineto{\pgfqpoint{2.212260in}{0.953295in}}% +\pgfpathlineto{\pgfqpoint{2.227620in}{0.960530in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{0.970921in}}% +\pgfpathlineto{\pgfqpoint{2.258341in}{0.984483in}}% +\pgfpathlineto{\pgfqpoint{2.278821in}{1.007506in}}% +\pgfpathlineto{\pgfqpoint{2.299302in}{1.036155in}}% +\pgfpathlineto{\pgfqpoint{2.319782in}{1.070372in}}% +\pgfpathlineto{\pgfqpoint{2.340263in}{1.110064in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{1.167179in}}% +\pgfpathlineto{\pgfqpoint{2.391464in}{1.232315in}}% +\pgfpathlineto{\pgfqpoint{2.422185in}{1.320479in}}% +\pgfpathlineto{\pgfqpoint{2.452905in}{1.418727in}}% +\pgfpathlineto{\pgfqpoint{2.488746in}{1.544721in}}% +\pgfpathlineto{\pgfqpoint{2.529707in}{1.701401in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{1.911607in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.264717in}}% +\pgfpathlineto{\pgfqpoint{2.739632in}{2.590813in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{2.773303in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{2.904226in}}% +\pgfpathlineto{\pgfqpoint{2.857395in}{3.023000in}}% +\pgfpathlineto{\pgfqpoint{2.888116in}{3.113554in}}% +\pgfpathlineto{\pgfqpoint{2.913716in}{3.180177in}}% +\pgfpathlineto{\pgfqpoint{2.939317in}{3.238121in}}% +\pgfpathlineto{\pgfqpoint{2.959797in}{3.277873in}}% +\pgfpathlineto{\pgfqpoint{2.980278in}{3.311504in}}% +\pgfpathlineto{\pgfqpoint{3.000758in}{3.338818in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{3.355062in}}% +\pgfpathlineto{\pgfqpoint{3.031479in}{3.367610in}}% +\pgfpathlineto{\pgfqpoint{3.046839in}{3.376420in}}% +\pgfpathlineto{\pgfqpoint{3.062200in}{3.381465in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{3.382727in}}% +\pgfpathlineto{\pgfqpoint{3.092920in}{3.380203in}}% +\pgfpathlineto{\pgfqpoint{3.108281in}{3.373901in}}% +\pgfpathlineto{\pgfqpoint{3.123641in}{3.363840in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{3.350056in}}% +\pgfpathlineto{\pgfqpoint{3.154362in}{3.332591in}}% +\pgfpathlineto{\pgfqpoint{3.174842in}{3.303681in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{3.268501in}}% +\pgfpathlineto{\pgfqpoint{3.215803in}{3.227253in}}% +\pgfpathlineto{\pgfqpoint{3.241404in}{3.167529in}}% +\pgfpathlineto{\pgfqpoint{3.267005in}{3.099239in}}% +\pgfpathlineto{\pgfqpoint{3.297725in}{3.006858in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{2.904226in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{2.773303in}}% +\pgfpathlineto{\pgfqpoint{3.405248in}{2.611735in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{2.375278in}}% +\pgfpathlineto{\pgfqpoint{3.610053in}{1.742341in}}% +\pgfpathlineto{\pgfqpoint{3.656134in}{1.563621in}}% +\pgfpathlineto{\pgfqpoint{3.691974in}{1.436012in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{1.336179in}}% +\pgfpathlineto{\pgfqpoint{3.753416in}{1.246270in}}% +\pgfpathlineto{\pgfqpoint{3.779017in}{1.179576in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{1.120828in}}% +\pgfpathlineto{\pgfqpoint{3.830218in}{1.070372in}}% +\pgfpathlineto{\pgfqpoint{3.850698in}{1.036155in}}% +\pgfpathlineto{\pgfqpoint{3.871179in}{1.007506in}}% +\pgfpathlineto{\pgfqpoint{3.891659in}{0.984483in}}% +\pgfpathlineto{\pgfqpoint{3.912140in}{0.967105in}}% +\pgfpathlineto{\pgfqpoint{3.927500in}{0.957769in}}% +\pgfpathlineto{\pgfqpoint{3.942860in}{0.951581in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{0.948509in}}% +\pgfpathlineto{\pgfqpoint{3.973581in}{0.948513in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{0.951539in}}% +\pgfpathlineto{\pgfqpoint{4.004302in}{0.957524in}}% +\pgfpathlineto{\pgfqpoint{4.019662in}{0.966396in}}% +\pgfpathlineto{\pgfqpoint{4.040143in}{0.982570in}}% +\pgfpathlineto{\pgfqpoint{4.060623in}{1.003504in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{1.028948in}}% +\pgfpathlineto{\pgfqpoint{4.106704in}{1.066671in}}% +\pgfpathlineto{\pgfqpoint{4.132305in}{1.110414in}}% +\pgfpathlineto{\pgfqpoint{4.163026in}{1.169944in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{1.247581in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{1.344626in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{1.486961in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{1.747046in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{1.842878in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.919592in}}% +\pgfpathlineto{\pgfqpoint{4.506074in}{1.978779in}}% +\pgfpathlineto{\pgfqpoint{4.536794in}{2.030989in}}% +\pgfpathlineto{\pgfqpoint{4.562395in}{2.068636in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{2.100580in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{2.121838in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{2.139158in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{2.152462in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{2.161700in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{2.166855in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{2.167941in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{2.165001in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{2.158105in}}% +\pgfpathlineto{\pgfqpoint{4.772320in}{2.147355in}}% +\pgfpathlineto{\pgfqpoint{4.792800in}{2.132879in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{2.114830in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{2.087519in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{2.055307in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{2.010820in}}% +\pgfpathlineto{\pgfqpoint{4.925923in}{1.960790in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.896680in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{1.807644in}}% +\pgfpathlineto{\pgfqpoint{5.176809in}{1.473501in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.412018in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{1.364487in}}% +\pgfpathlineto{\pgfqpoint{5.274092in}{1.322519in}}% +\pgfpathlineto{\pgfqpoint{5.299692in}{1.292260in}}% +\pgfpathlineto{\pgfqpoint{5.325293in}{1.266622in}}% +\pgfpathlineto{\pgfqpoint{5.350893in}{1.245856in}}% +\pgfpathlineto{\pgfqpoint{5.371374in}{1.232884in}}% +\pgfpathlineto{\pgfqpoint{5.391854in}{1.223225in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.216606in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.216606in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.597703in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{1.453986in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{1.384562in}}% +\pgfpathlineto{\pgfqpoint{0.891269in}{1.329340in}}% +\pgfpathlineto{\pgfqpoint{0.921989in}{1.287212in}}% +\pgfpathlineto{\pgfqpoint{0.952710in}{1.250725in}}% +\pgfpathlineto{\pgfqpoint{0.978311in}{1.225140in}}% +\pgfpathlineto{\pgfqpoint{1.003911in}{1.204320in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{1.191302in}}% +\pgfpathlineto{\pgfqpoint{1.044872in}{1.181661in}}% +\pgfpathlineto{\pgfqpoint{1.065353in}{1.175502in}}% +\pgfpathlineto{\pgfqpoint{1.085833in}{1.172908in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{1.173933in}}% +\pgfpathlineto{\pgfqpoint{1.126794in}{1.178606in}}% +\pgfpathlineto{\pgfqpoint{1.147275in}{1.186929in}}% +\pgfpathlineto{\pgfqpoint{1.167755in}{1.198876in}}% +\pgfpathlineto{\pgfqpoint{1.188236in}{1.214396in}}% +\pgfpathlineto{\pgfqpoint{1.208716in}{1.233409in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{1.261921in}}% +\pgfpathlineto{\pgfqpoint{1.259917in}{1.295456in}}% +\pgfpathlineto{\pgfqpoint{1.285518in}{1.333687in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{1.385218in}}% +\pgfpathlineto{\pgfqpoint{1.352080in}{1.452145in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{1.535887in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.647984in}}% +\pgfpathlineto{\pgfqpoint{1.572245in}{1.932041in}}% +\pgfpathlineto{\pgfqpoint{1.613206in}{2.013968in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{2.078440in}}% +\pgfpathlineto{\pgfqpoint{1.679767in}{2.127039in}}% +\pgfpathlineto{\pgfqpoint{1.705368in}{2.162120in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{2.191748in}}% +\pgfpathlineto{\pgfqpoint{1.751449in}{2.211228in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{2.226740in}}% +\pgfpathlineto{\pgfqpoint{1.792410in}{2.238111in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{2.245198in}}% +\pgfpathlineto{\pgfqpoint{1.828251in}{2.247630in}}% +\pgfpathlineto{\pgfqpoint{1.843611in}{2.247548in}}% +\pgfpathlineto{\pgfqpoint{1.858971in}{2.244923in}}% +\pgfpathlineto{\pgfqpoint{1.874332in}{2.239735in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{2.231976in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{2.217634in}}% +\pgfpathlineto{\pgfqpoint{1.930653in}{2.198752in}}% +\pgfpathlineto{\pgfqpoint{1.951134in}{2.175391in}}% +\pgfpathlineto{\pgfqpoint{1.971614in}{2.147643in}}% +\pgfpathlineto{\pgfqpoint{1.997215in}{2.106979in}}% +\pgfpathlineto{\pgfqpoint{2.022815in}{2.059964in}}% +\pgfpathlineto{\pgfqpoint{2.048416in}{2.006975in}}% +\pgfpathlineto{\pgfqpoint{2.079137in}{1.936139in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{1.844645in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{1.730417in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{1.577176in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.076956in}}% +\pgfpathlineto{\pgfqpoint{2.411944in}{0.966434in}}% +\pgfpathlineto{\pgfqpoint{2.442665in}{0.891278in}}% +\pgfpathlineto{\pgfqpoint{2.473386in}{0.824058in}}% +\pgfpathlineto{\pgfqpoint{2.498986in}{0.774878in}}% +\pgfpathlineto{\pgfqpoint{2.524587in}{0.732506in}}% +\pgfpathlineto{\pgfqpoint{2.545068in}{0.703844in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{0.680076in}}% +\pgfpathlineto{\pgfqpoint{2.586029in}{0.661392in}}% +\pgfpathlineto{\pgfqpoint{2.601389in}{0.650812in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{0.643238in}}% +\pgfpathlineto{\pgfqpoint{2.632110in}{0.638713in}}% +\pgfpathlineto{\pgfqpoint{2.647470in}{0.637273in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{0.638940in}}% +\pgfpathlineto{\pgfqpoint{2.678191in}{0.643726in}}% +\pgfpathlineto{\pgfqpoint{2.693551in}{0.651634in}}% +\pgfpathlineto{\pgfqpoint{2.708911in}{0.662653in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{0.676762in}}% +\pgfpathlineto{\pgfqpoint{2.744752in}{0.700324in}}% +\pgfpathlineto{\pgfqpoint{2.765233in}{0.729218in}}% +\pgfpathlineto{\pgfqpoint{2.785713in}{0.763302in}}% +\pgfpathlineto{\pgfqpoint{2.811314in}{0.812941in}}% +\pgfpathlineto{\pgfqpoint{2.836914in}{0.870013in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{0.934035in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.019257in}}% +\pgfpathlineto{\pgfqpoint{2.929077in}{1.128887in}}% +\pgfpathlineto{\pgfqpoint{2.970038in}{1.265288in}}% +\pgfpathlineto{\pgfqpoint{3.021239in}{1.447839in}}% +\pgfpathlineto{\pgfqpoint{3.195323in}{2.081402in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{2.213666in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{2.318771in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{2.399513in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{2.459426in}}% +\pgfpathlineto{\pgfqpoint{3.354047in}{2.512092in}}% +\pgfpathlineto{\pgfqpoint{3.379647in}{2.557072in}}% +\pgfpathlineto{\pgfqpoint{3.400128in}{2.587277in}}% +\pgfpathlineto{\pgfqpoint{3.420608in}{2.612183in}}% +\pgfpathlineto{\pgfqpoint{3.441089in}{2.631677in}}% +\pgfpathlineto{\pgfqpoint{3.456449in}{2.642696in}}% +\pgfpathlineto{\pgfqpoint{3.471809in}{2.650603in}}% +\pgfpathlineto{\pgfqpoint{3.487170in}{2.655390in}}% +\pgfpathlineto{\pgfqpoint{3.502530in}{2.657057in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.655617in}}% +\pgfpathlineto{\pgfqpoint{3.533251in}{2.651092in}}% +\pgfpathlineto{\pgfqpoint{3.548611in}{2.643518in}}% +\pgfpathlineto{\pgfqpoint{3.563971in}{2.632938in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{2.614254in}}% +\pgfpathlineto{\pgfqpoint{3.604932in}{2.590485in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.561823in}}% +\pgfpathlineto{\pgfqpoint{3.645893in}{2.528487in}}% +\pgfpathlineto{\pgfqpoint{3.671494in}{2.480626in}}% +\pgfpathlineto{\pgfqpoint{3.697095in}{2.426395in}}% +\pgfpathlineto{\pgfqpoint{3.727815in}{2.353759in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.260043in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.143513in}}% +\pgfpathlineto{\pgfqpoint{3.860938in}{1.972417in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{1.578791in}}% +\pgfpathlineto{\pgfqpoint{4.029902in}{1.463447in}}% +\pgfpathlineto{\pgfqpoint{4.065743in}{1.370709in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{1.298630in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{1.234366in}}% +\pgfpathlineto{\pgfqpoint{4.152785in}{1.187350in}}% +\pgfpathlineto{\pgfqpoint{4.178386in}{1.146687in}}% +\pgfpathlineto{\pgfqpoint{4.198866in}{1.118939in}}% +\pgfpathlineto{\pgfqpoint{4.219347in}{1.095578in}}% +\pgfpathlineto{\pgfqpoint{4.239827in}{1.076696in}}% +\pgfpathlineto{\pgfqpoint{4.260308in}{1.062353in}}% +\pgfpathlineto{\pgfqpoint{4.280788in}{1.052580in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{1.048248in}}% +\pgfpathlineto{\pgfqpoint{4.311509in}{1.046473in}}% +\pgfpathlineto{\pgfqpoint{4.326869in}{1.047233in}}% +\pgfpathlineto{\pgfqpoint{4.342230in}{1.050495in}}% +\pgfpathlineto{\pgfqpoint{4.357590in}{1.056219in}}% +\pgfpathlineto{\pgfqpoint{4.378071in}{1.067590in}}% +\pgfpathlineto{\pgfqpoint{4.398551in}{1.083102in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.102582in}}% +\pgfpathlineto{\pgfqpoint{4.439512in}{1.125833in}}% +\pgfpathlineto{\pgfqpoint{4.465113in}{1.159861in}}% +\pgfpathlineto{\pgfqpoint{4.490713in}{1.198952in}}% +\pgfpathlineto{\pgfqpoint{4.521434in}{1.251799in}}% +\pgfpathlineto{\pgfqpoint{4.557275in}{1.320372in}}% +\pgfpathlineto{\pgfqpoint{4.598236in}{1.405779in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.542283in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.747538in}}% +\pgfpathlineto{\pgfqpoint{4.797920in}{1.842184in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.909112in}}% +\pgfpathlineto{\pgfqpoint{4.864482in}{1.960642in}}% +\pgfpathlineto{\pgfqpoint{4.895203in}{2.005968in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{2.038523in}}% +\pgfpathlineto{\pgfqpoint{4.946404in}{2.065996in}}% +\pgfpathlineto{\pgfqpoint{4.966884in}{2.084144in}}% +\pgfpathlineto{\pgfqpoint{4.987365in}{2.098778in}}% +\pgfpathlineto{\pgfqpoint{5.007845in}{2.109823in}}% +\pgfpathlineto{\pgfqpoint{5.028326in}{2.117235in}}% +\pgfpathlineto{\pgfqpoint{5.048806in}{2.120995in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{2.121111in}}% +\pgfpathlineto{\pgfqpoint{5.089767in}{2.117619in}}% +\pgfpathlineto{\pgfqpoint{5.110248in}{2.110581in}}% +\pgfpathlineto{\pgfqpoint{5.130728in}{2.100085in}}% +\pgfpathlineto{\pgfqpoint{5.151209in}{2.086242in}}% +\pgfpathlineto{\pgfqpoint{5.171689in}{2.069190in}}% +\pgfpathlineto{\pgfqpoint{5.197290in}{2.043605in}}% +\pgfpathlineto{\pgfqpoint{5.222890in}{2.013611in}}% +\pgfpathlineto{\pgfqpoint{5.253611in}{1.972370in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.918010in}}% +\pgfpathlineto{\pgfqpoint{5.330413in}{1.849320in}}% +\pgfpathlineto{\pgfqpoint{5.381614in}{1.756835in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.696626in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.696626in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{0.753026in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{0.773506in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{0.793986in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{0.814467in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{0.834947in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{0.855428in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{0.881029in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{0.906629in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{0.932230in}{1.971486in}}% +\pgfpathlineto{\pgfqpoint{0.962950in}{1.928646in}}% +\pgfpathlineto{\pgfqpoint{0.993671in}{1.880474in}}% +\pgfpathlineto{\pgfqpoint{1.029512in}{1.818502in}}% +\pgfpathlineto{\pgfqpoint{1.075593in}{1.731696in}}% +\pgfpathlineto{\pgfqpoint{1.137035in}{1.608436in}}% +\pgfpathlineto{\pgfqpoint{1.229197in}{1.423447in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{1.338266in}}% +\pgfpathlineto{\pgfqpoint{1.311119in}{1.278235in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{1.372560in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{1.398161in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.140817in}}% +\pgfpathlineto{\pgfqpoint{1.444242in}{1.126046in}}% +\pgfpathlineto{\pgfqpoint{1.464722in}{1.114825in}}% +\pgfpathlineto{\pgfqpoint{1.485203in}{1.107268in}}% +\pgfpathlineto{\pgfqpoint{1.505683in}{1.103467in}}% +\pgfpathlineto{\pgfqpoint{1.526164in}{1.103488in}}% +\pgfpathlineto{\pgfqpoint{1.546644in}{1.107370in}}% +\pgfpathlineto{\pgfqpoint{1.567125in}{1.115129in}}% +\pgfpathlineto{\pgfqpoint{1.587605in}{1.126753in}}% +\pgfpathlineto{\pgfqpoint{1.608086in}{1.142205in}}% +\pgfpathlineto{\pgfqpoint{1.628566in}{1.161422in}}% +\pgfpathlineto{\pgfqpoint{1.649047in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{1.674647in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{1.700248in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{1.730968in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{1.761689in}{1.369671in}}% +\pgfpathlineto{\pgfqpoint{1.797530in}{1.446409in}}% +\pgfpathlineto{\pgfqpoint{1.838491in}{1.541833in}}% +\pgfpathlineto{\pgfqpoint{1.889692in}{1.669363in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{2.084842in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{2.177528in}}% +\pgfpathlineto{\pgfqpoint{2.130338in}{2.251280in}}% +\pgfpathlineto{\pgfqpoint{2.161059in}{2.308003in}}% +\pgfpathlineto{\pgfqpoint{2.191779in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{2.217380in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{2.242980in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{2.283941in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{2.304422in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{2.324902in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{2.345383in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{2.365863in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{2.386344in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{2.406824in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{2.447785in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{2.468266in}{2.445710in}}% +\pgfpathlineto{\pgfqpoint{2.493866in}{2.421230in}}% +\pgfpathlineto{\pgfqpoint{2.519467in}{2.392195in}}% +\pgfpathlineto{\pgfqpoint{2.550188in}{2.351932in}}% +\pgfpathlineto{\pgfqpoint{2.580908in}{2.306515in}}% +\pgfpathlineto{\pgfqpoint{2.616749in}{2.248188in}}% +\pgfpathlineto{\pgfqpoint{2.662830in}{2.167068in}}% +\pgfpathlineto{\pgfqpoint{2.826674in}{1.871952in}}% +\pgfpathlineto{\pgfqpoint{2.862515in}{1.816084in}}% +\pgfpathlineto{\pgfqpoint{2.893236in}{1.773136in}}% +\pgfpathlineto{\pgfqpoint{2.923956in}{1.735550in}}% +\pgfpathlineto{\pgfqpoint{2.949557in}{1.708802in}}% +\pgfpathlineto{\pgfqpoint{2.975158in}{1.686562in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.672198in}}% +\pgfpathlineto{\pgfqpoint{3.016119in}{1.661005in}}% +\pgfpathlineto{\pgfqpoint{3.036599in}{1.653070in}}% +\pgfpathlineto{\pgfqpoint{3.057080in}{1.648453in}}% +\pgfpathlineto{\pgfqpoint{3.077560in}{1.647191in}}% +\pgfpathlineto{\pgfqpoint{3.098041in}{1.649294in}}% +\pgfpathlineto{\pgfqpoint{3.118521in}{1.654744in}}% +\pgfpathlineto{\pgfqpoint{3.139002in}{1.663501in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.675496in}}% +\pgfpathlineto{\pgfqpoint{3.179962in}{1.690635in}}% +\pgfpathlineto{\pgfqpoint{3.205563in}{1.713801in}}% +\pgfpathlineto{\pgfqpoint{3.231164in}{1.741413in}}% +\pgfpathlineto{\pgfqpoint{3.261884in}{1.779941in}}% +\pgfpathlineto{\pgfqpoint{3.292605in}{1.823711in}}% +\pgfpathlineto{\pgfqpoint{3.328446in}{1.880369in}}% +\pgfpathlineto{\pgfqpoint{3.374527in}{1.959949in}}% +\pgfpathlineto{\pgfqpoint{3.446209in}{2.091693in}}% +\pgfpathlineto{\pgfqpoint{3.517890in}{2.221778in}}% +\pgfpathlineto{\pgfqpoint{3.558851in}{2.290381in}}% +\pgfpathlineto{\pgfqpoint{3.594692in}{2.344698in}}% +\pgfpathlineto{\pgfqpoint{3.625413in}{2.385878in}}% +\pgfpathlineto{\pgfqpoint{3.651014in}{2.415775in}}% +\pgfpathlineto{\pgfqpoint{3.676614in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{3.702215in}{2.461767in}}% +\pgfpathlineto{\pgfqpoint{3.722695in}{2.474508in}}% +\pgfpathlineto{\pgfqpoint{3.743176in}{2.483791in}}% +\pgfpathlineto{\pgfqpoint{3.763656in}{2.489498in}}% +\pgfpathlineto{\pgfqpoint{3.784137in}{2.491535in}}% +\pgfpathlineto{\pgfqpoint{3.804617in}{2.489835in}}% +\pgfpathlineto{\pgfqpoint{3.825098in}{2.484355in}}% +\pgfpathlineto{\pgfqpoint{3.845578in}{2.475078in}}% +\pgfpathlineto{\pgfqpoint{3.866059in}{2.462016in}}% +\pgfpathlineto{\pgfqpoint{3.886539in}{2.445205in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.424708in}}% +\pgfpathlineto{\pgfqpoint{3.932620in}{2.394040in}}% +\pgfpathlineto{\pgfqpoint{3.958221in}{2.357982in}}% +\pgfpathlineto{\pgfqpoint{3.983821in}{2.316819in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.261173in}}% +\pgfpathlineto{\pgfqpoint{4.045263in}{2.199366in}}% +\pgfpathlineto{\pgfqpoint{4.081104in}{2.120526in}}% +\pgfpathlineto{\pgfqpoint{4.127185in}{2.010684in}}% +\pgfpathlineto{\pgfqpoint{4.188626in}{1.854728in}}% +\pgfpathlineto{\pgfqpoint{4.301269in}{1.566729in}}% +\pgfpathlineto{\pgfqpoint{4.347350in}{1.457926in}}% +\pgfpathlineto{\pgfqpoint{4.383191in}{1.380189in}}% +\pgfpathlineto{\pgfqpoint{4.419032in}{1.310014in}}% +\pgfpathlineto{\pgfqpoint{4.449752in}{1.256823in}}% +\pgfpathlineto{\pgfqpoint{4.475353in}{1.217924in}}% +\pgfpathlineto{\pgfqpoint{4.500953in}{1.184315in}}% +\pgfpathlineto{\pgfqpoint{4.526554in}{1.156269in}}% +\pgfpathlineto{\pgfqpoint{4.547035in}{1.137987in}}% +\pgfpathlineto{\pgfqpoint{4.567515in}{1.123487in}}% +\pgfpathlineto{\pgfqpoint{4.587995in}{1.112826in}}% +\pgfpathlineto{\pgfqpoint{4.608476in}{1.106036in}}% +\pgfpathlineto{\pgfqpoint{4.628956in}{1.103122in}}% +\pgfpathlineto{\pgfqpoint{4.649437in}{1.104062in}}% +\pgfpathlineto{\pgfqpoint{4.669917in}{1.108809in}}% +\pgfpathlineto{\pgfqpoint{4.690398in}{1.117291in}}% +\pgfpathlineto{\pgfqpoint{4.710878in}{1.129411in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.145049in}}% +\pgfpathlineto{\pgfqpoint{4.751839in}{1.164059in}}% +\pgfpathlineto{\pgfqpoint{4.777440in}{1.192309in}}% +\pgfpathlineto{\pgfqpoint{4.803041in}{1.225198in}}% +\pgfpathlineto{\pgfqpoint{4.833761in}{1.270199in}}% +\pgfpathlineto{\pgfqpoint{4.869602in}{1.329314in}}% +\pgfpathlineto{\pgfqpoint{4.910563in}{1.403883in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.504307in}}% +\pgfpathlineto{\pgfqpoint{5.105128in}{1.790337in}}% +\pgfpathlineto{\pgfqpoint{5.146089in}{1.863354in}}% +\pgfpathlineto{\pgfqpoint{5.181929in}{1.920969in}}% +\pgfpathlineto{\pgfqpoint{5.212650in}{1.964744in}}% +\pgfpathlineto{\pgfqpoint{5.243371in}{2.002657in}}% +\pgfpathlineto{\pgfqpoint{5.268971in}{2.029378in}}% +\pgfpathlineto{\pgfqpoint{5.294572in}{2.051393in}}% +\pgfpathlineto{\pgfqpoint{5.315053in}{2.065480in}}% +\pgfpathlineto{\pgfqpoint{5.335533in}{2.076349in}}% +\pgfpathlineto{\pgfqpoint{5.356014in}{2.083946in}}% +\pgfpathlineto{\pgfqpoint{5.376494in}{2.088244in}}% +\pgfpathlineto{\pgfqpoint{5.396974in}{2.089238in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{2.087558in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.521515in}}% +\pgfpathlineto{\pgfqpoint{0.783746in}{1.606794in}}% +\pgfpathlineto{\pgfqpoint{0.947590in}{1.905224in}}% +\pgfpathlineto{\pgfqpoint{0.988551in}{1.970384in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.021154in}}% +\pgfpathlineto{\pgfqpoint{1.055113in}{2.059124in}}% +\pgfpathlineto{\pgfqpoint{1.080713in}{2.086366in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.109260in}}% +\pgfpathlineto{\pgfqpoint{1.131914in}{2.127526in}}% +\pgfpathlineto{\pgfqpoint{1.152395in}{2.138650in}}% +\pgfpathlineto{\pgfqpoint{1.172875in}{2.146565in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{2.151195in}}% +\pgfpathlineto{\pgfqpoint{1.213836in}{2.152486in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.150404in}}% +\pgfpathlineto{\pgfqpoint{1.254797in}{2.144938in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{2.136097in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.123915in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{2.108444in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{2.084598in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.055922in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{2.022656in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.977081in}}% +\pgfpathlineto{\pgfqpoint{1.454482in}{1.925878in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{1.859898in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{1.777673in}}% +\pgfpathlineto{\pgfqpoint{1.582485in}{1.667422in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.250513in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.171326in}}% +\pgfpathlineto{\pgfqpoint{1.848731in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{1.879452in}{1.059883in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.016970in}}% +\pgfpathlineto{\pgfqpoint{1.935773in}{0.985773in}}% +\pgfpathlineto{\pgfqpoint{1.961374in}{0.958934in}}% +\pgfpathlineto{\pgfqpoint{1.986974in}{0.936595in}}% +\pgfpathlineto{\pgfqpoint{2.012575in}{0.918855in}}% +\pgfpathlineto{\pgfqpoint{2.033056in}{0.908010in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{0.900144in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{0.895242in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.893271in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.894176in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.897889in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{0.904320in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.916024in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{0.931580in}}% +\pgfpathlineto{\pgfqpoint{2.232740in}{0.950717in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{0.977990in}}% +\pgfpathlineto{\pgfqpoint{2.294182in}{1.009426in}}% +\pgfpathlineto{\pgfqpoint{2.330023in}{1.050554in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.102180in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{1.178446in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{1.368082in}}% +\pgfpathlineto{\pgfqpoint{2.611629in}{1.425304in}}% +\pgfpathlineto{\pgfqpoint{2.652590in}{1.471530in}}% +\pgfpathlineto{\pgfqpoint{2.688431in}{1.507772in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{1.539721in}}% +\pgfpathlineto{\pgfqpoint{2.760113in}{1.567175in}}% +\pgfpathlineto{\pgfqpoint{2.790833in}{1.587085in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{1.603704in}}% +\pgfpathlineto{\pgfqpoint{2.852275in}{1.617160in}}% +\pgfpathlineto{\pgfqpoint{2.882995in}{1.627654in}}% +\pgfpathlineto{\pgfqpoint{2.918836in}{1.636514in}}% +\pgfpathlineto{\pgfqpoint{2.954677in}{1.642236in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.645737in}}% +\pgfpathlineto{\pgfqpoint{3.051959in}{1.647130in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.648885in}}% +\pgfpathlineto{\pgfqpoint{3.200443in}{1.652741in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.658876in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{1.668230in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{1.679201in}}% +\pgfpathlineto{\pgfqpoint{3.333566in}{1.693172in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{1.710332in}}% +\pgfpathlineto{\pgfqpoint{3.395008in}{1.730798in}}% +\pgfpathlineto{\pgfqpoint{3.425728in}{1.754608in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{1.786557in}}% +\pgfpathlineto{\pgfqpoint{3.497410in}{1.822800in}}% +\pgfpathlineto{\pgfqpoint{3.538371in}{1.869025in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{1.926248in}}% +\pgfpathlineto{\pgfqpoint{3.640773in}{2.001687in}}% +\pgfpathlineto{\pgfqpoint{3.799497in}{2.218490in}}% +\pgfpathlineto{\pgfqpoint{3.840458in}{2.267812in}}% +\pgfpathlineto{\pgfqpoint{3.876299in}{2.306295in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.335020in}}% +\pgfpathlineto{\pgfqpoint{3.937740in}{2.359200in}}% +\pgfpathlineto{\pgfqpoint{3.963341in}{2.375494in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{2.387988in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.396441in}}% +\pgfpathlineto{\pgfqpoint{4.035023in}{2.400153in}}% +\pgfpathlineto{\pgfqpoint{4.055503in}{2.401059in}}% +\pgfpathlineto{\pgfqpoint{4.075983in}{2.399087in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{2.394186in}}% +\pgfpathlineto{\pgfqpoint{4.116944in}{2.386320in}}% +\pgfpathlineto{\pgfqpoint{4.137425in}{2.375474in}}% +\pgfpathlineto{\pgfqpoint{4.157905in}{2.361653in}}% +\pgfpathlineto{\pgfqpoint{4.183506in}{2.340228in}}% +\pgfpathlineto{\pgfqpoint{4.209107in}{2.314278in}}% +\pgfpathlineto{\pgfqpoint{4.234707in}{2.283939in}}% +\pgfpathlineto{\pgfqpoint{4.265428in}{2.241999in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.194403in}}% +\pgfpathlineto{\pgfqpoint{4.331989in}{2.132385in}}% +\pgfpathlineto{\pgfqpoint{4.367830in}{2.064259in}}% +\pgfpathlineto{\pgfqpoint{4.413911in}{1.969404in}}% +\pgfpathlineto{\pgfqpoint{4.470233in}{1.845837in}}% +\pgfpathlineto{\pgfqpoint{4.613596in}{1.527360in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.434431in}}% +\pgfpathlineto{\pgfqpoint{4.695518in}{1.368451in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.309246in}}% +\pgfpathlineto{\pgfqpoint{4.762080in}{1.264666in}}% +\pgfpathlineto{\pgfqpoint{4.787680in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{1.204569in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{1.181713in}}% +\pgfpathlineto{\pgfqpoint{4.859362in}{1.167058in}}% +\pgfpathlineto{\pgfqpoint{4.879842in}{1.155707in}}% +\pgfpathlineto{\pgfqpoint{4.900323in}{1.147708in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.143088in}}% +\pgfpathlineto{\pgfqpoint{4.941284in}{1.141851in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.143981in}}% +\pgfpathlineto{\pgfqpoint{4.982245in}{1.149438in}}% +\pgfpathlineto{\pgfqpoint{5.002725in}{1.158163in}}% +\pgfpathlineto{\pgfqpoint{5.023206in}{1.170075in}}% +\pgfpathlineto{\pgfqpoint{5.043686in}{1.185070in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.207964in}}% +\pgfpathlineto{\pgfqpoint{5.094887in}{1.235205in}}% +\pgfpathlineto{\pgfqpoint{5.125608in}{1.273176in}}% +\pgfpathlineto{\pgfqpoint{5.156329in}{1.316305in}}% +\pgfpathlineto{\pgfqpoint{5.192170in}{1.372195in}}% +\pgfpathlineto{\pgfqpoint{5.233131in}{1.441903in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.544396in}}% +\pgfpathlineto{\pgfqpoint{5.412335in}{1.770126in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.736111in}{1.521515in}}% +\pgfpathlineto{\pgfqpoint{0.783746in}{1.606794in}}% +\pgfpathlineto{\pgfqpoint{0.947590in}{1.905224in}}% +\pgfpathlineto{\pgfqpoint{0.988551in}{1.970384in}}% +\pgfpathlineto{\pgfqpoint{1.024392in}{2.021154in}}% +\pgfpathlineto{\pgfqpoint{1.055113in}{2.059124in}}% +\pgfpathlineto{\pgfqpoint{1.080713in}{2.086366in}}% +\pgfpathlineto{\pgfqpoint{1.106314in}{2.109260in}}% +\pgfpathlineto{\pgfqpoint{1.131914in}{2.127526in}}% +\pgfpathlineto{\pgfqpoint{1.152395in}{2.138650in}}% +\pgfpathlineto{\pgfqpoint{1.172875in}{2.146565in}}% +\pgfpathlineto{\pgfqpoint{1.193356in}{2.151195in}}% +\pgfpathlineto{\pgfqpoint{1.213836in}{2.152486in}}% +\pgfpathlineto{\pgfqpoint{1.234317in}{2.150404in}}% +\pgfpathlineto{\pgfqpoint{1.254797in}{2.144938in}}% +\pgfpathlineto{\pgfqpoint{1.275278in}{2.136097in}}% +\pgfpathlineto{\pgfqpoint{1.295758in}{2.123915in}}% +\pgfpathlineto{\pgfqpoint{1.316239in}{2.108444in}}% +\pgfpathlineto{\pgfqpoint{1.341839in}{2.084598in}}% +\pgfpathlineto{\pgfqpoint{1.367440in}{2.055922in}}% +\pgfpathlineto{\pgfqpoint{1.393041in}{2.022656in}}% +\pgfpathlineto{\pgfqpoint{1.423761in}{1.977081in}}% +\pgfpathlineto{\pgfqpoint{1.454482in}{1.925878in}}% +\pgfpathlineto{\pgfqpoint{1.490323in}{1.859898in}}% +\pgfpathlineto{\pgfqpoint{1.531284in}{1.777673in}}% +\pgfpathlineto{\pgfqpoint{1.582485in}{1.667422in}}% +\pgfpathlineto{\pgfqpoint{1.771929in}{1.250513in}}% +\pgfpathlineto{\pgfqpoint{1.812890in}{1.171326in}}% +\pgfpathlineto{\pgfqpoint{1.848731in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{1.879452in}{1.059883in}}% +\pgfpathlineto{\pgfqpoint{1.910173in}{1.016970in}}% +\pgfpathlineto{\pgfqpoint{1.935773in}{0.985773in}}% +\pgfpathlineto{\pgfqpoint{1.961374in}{0.958934in}}% +\pgfpathlineto{\pgfqpoint{1.986974in}{0.936595in}}% +\pgfpathlineto{\pgfqpoint{2.012575in}{0.918855in}}% +\pgfpathlineto{\pgfqpoint{2.033056in}{0.908010in}}% +\pgfpathlineto{\pgfqpoint{2.053536in}{0.900144in}}% +\pgfpathlineto{\pgfqpoint{2.074017in}{0.895242in}}% +\pgfpathlineto{\pgfqpoint{2.094497in}{0.893271in}}% +\pgfpathlineto{\pgfqpoint{2.114977in}{0.894176in}}% +\pgfpathlineto{\pgfqpoint{2.135458in}{0.897889in}}% +\pgfpathlineto{\pgfqpoint{2.155938in}{0.904320in}}% +\pgfpathlineto{\pgfqpoint{2.181539in}{0.916024in}}% +\pgfpathlineto{\pgfqpoint{2.207140in}{0.931580in}}% +\pgfpathlineto{\pgfqpoint{2.232740in}{0.950717in}}% +\pgfpathlineto{\pgfqpoint{2.263461in}{0.977990in}}% +\pgfpathlineto{\pgfqpoint{2.294182in}{1.009426in}}% +\pgfpathlineto{\pgfqpoint{2.330023in}{1.050554in}}% +\pgfpathlineto{\pgfqpoint{2.370983in}{1.102180in}}% +\pgfpathlineto{\pgfqpoint{2.427305in}{1.178446in}}% +\pgfpathlineto{\pgfqpoint{2.565548in}{1.368082in}}% +\pgfpathlineto{\pgfqpoint{2.611629in}{1.425304in}}% +\pgfpathlineto{\pgfqpoint{2.652590in}{1.471530in}}% +\pgfpathlineto{\pgfqpoint{2.688431in}{1.507772in}}% +\pgfpathlineto{\pgfqpoint{2.724272in}{1.539721in}}% +\pgfpathlineto{\pgfqpoint{2.760113in}{1.567175in}}% +\pgfpathlineto{\pgfqpoint{2.790833in}{1.587085in}}% +\pgfpathlineto{\pgfqpoint{2.821554in}{1.603704in}}% +\pgfpathlineto{\pgfqpoint{2.852275in}{1.617160in}}% +\pgfpathlineto{\pgfqpoint{2.882995in}{1.627654in}}% +\pgfpathlineto{\pgfqpoint{2.918836in}{1.636514in}}% +\pgfpathlineto{\pgfqpoint{2.954677in}{1.642236in}}% +\pgfpathlineto{\pgfqpoint{2.995638in}{1.645737in}}% +\pgfpathlineto{\pgfqpoint{3.051959in}{1.647130in}}% +\pgfpathlineto{\pgfqpoint{3.159482in}{1.648885in}}% +\pgfpathlineto{\pgfqpoint{3.200443in}{1.652741in}}% +\pgfpathlineto{\pgfqpoint{3.236284in}{1.658876in}}% +\pgfpathlineto{\pgfqpoint{3.272125in}{1.668230in}}% +\pgfpathlineto{\pgfqpoint{3.302845in}{1.679201in}}% +\pgfpathlineto{\pgfqpoint{3.333566in}{1.693172in}}% +\pgfpathlineto{\pgfqpoint{3.364287in}{1.710332in}}% +\pgfpathlineto{\pgfqpoint{3.395008in}{1.730798in}}% +\pgfpathlineto{\pgfqpoint{3.425728in}{1.754608in}}% +\pgfpathlineto{\pgfqpoint{3.461569in}{1.786557in}}% +\pgfpathlineto{\pgfqpoint{3.497410in}{1.822800in}}% +\pgfpathlineto{\pgfqpoint{3.538371in}{1.869025in}}% +\pgfpathlineto{\pgfqpoint{3.584452in}{1.926248in}}% +\pgfpathlineto{\pgfqpoint{3.640773in}{2.001687in}}% +\pgfpathlineto{\pgfqpoint{3.799497in}{2.218490in}}% +\pgfpathlineto{\pgfqpoint{3.840458in}{2.267812in}}% +\pgfpathlineto{\pgfqpoint{3.876299in}{2.306295in}}% +\pgfpathlineto{\pgfqpoint{3.907020in}{2.335020in}}% +\pgfpathlineto{\pgfqpoint{3.937740in}{2.359200in}}% +\pgfpathlineto{\pgfqpoint{3.963341in}{2.375494in}}% +\pgfpathlineto{\pgfqpoint{3.988941in}{2.387988in}}% +\pgfpathlineto{\pgfqpoint{4.014542in}{2.396441in}}% +\pgfpathlineto{\pgfqpoint{4.035023in}{2.400153in}}% +\pgfpathlineto{\pgfqpoint{4.055503in}{2.401059in}}% +\pgfpathlineto{\pgfqpoint{4.075983in}{2.399087in}}% +\pgfpathlineto{\pgfqpoint{4.096464in}{2.394186in}}% +\pgfpathlineto{\pgfqpoint{4.116944in}{2.386320in}}% +\pgfpathlineto{\pgfqpoint{4.137425in}{2.375474in}}% +\pgfpathlineto{\pgfqpoint{4.157905in}{2.361653in}}% +\pgfpathlineto{\pgfqpoint{4.183506in}{2.340228in}}% +\pgfpathlineto{\pgfqpoint{4.209107in}{2.314278in}}% +\pgfpathlineto{\pgfqpoint{4.234707in}{2.283939in}}% +\pgfpathlineto{\pgfqpoint{4.265428in}{2.241999in}}% +\pgfpathlineto{\pgfqpoint{4.296149in}{2.194403in}}% +\pgfpathlineto{\pgfqpoint{4.331989in}{2.132385in}}% +\pgfpathlineto{\pgfqpoint{4.367830in}{2.064259in}}% +\pgfpathlineto{\pgfqpoint{4.413911in}{1.969404in}}% +\pgfpathlineto{\pgfqpoint{4.470233in}{1.845837in}}% +\pgfpathlineto{\pgfqpoint{4.613596in}{1.527360in}}% +\pgfpathlineto{\pgfqpoint{4.659677in}{1.434431in}}% +\pgfpathlineto{\pgfqpoint{4.695518in}{1.368451in}}% +\pgfpathlineto{\pgfqpoint{4.731359in}{1.309246in}}% +\pgfpathlineto{\pgfqpoint{4.762080in}{1.264666in}}% +\pgfpathlineto{\pgfqpoint{4.787680in}{1.232297in}}% +\pgfpathlineto{\pgfqpoint{4.813281in}{1.204569in}}% +\pgfpathlineto{\pgfqpoint{4.838881in}{1.181713in}}% +\pgfpathlineto{\pgfqpoint{4.859362in}{1.167058in}}% +\pgfpathlineto{\pgfqpoint{4.879842in}{1.155707in}}% +\pgfpathlineto{\pgfqpoint{4.900323in}{1.147708in}}% +\pgfpathlineto{\pgfqpoint{4.920803in}{1.143088in}}% +\pgfpathlineto{\pgfqpoint{4.941284in}{1.141851in}}% +\pgfpathlineto{\pgfqpoint{4.961764in}{1.143981in}}% +\pgfpathlineto{\pgfqpoint{4.982245in}{1.149438in}}% +\pgfpathlineto{\pgfqpoint{5.002725in}{1.158163in}}% +\pgfpathlineto{\pgfqpoint{5.023206in}{1.170075in}}% +\pgfpathlineto{\pgfqpoint{5.043686in}{1.185070in}}% +\pgfpathlineto{\pgfqpoint{5.069287in}{1.207964in}}% +\pgfpathlineto{\pgfqpoint{5.094887in}{1.235205in}}% +\pgfpathlineto{\pgfqpoint{5.125608in}{1.273176in}}% +\pgfpathlineto{\pgfqpoint{5.156329in}{1.316305in}}% +\pgfpathlineto{\pgfqpoint{5.192170in}{1.372195in}}% +\pgfpathlineto{\pgfqpoint{5.233131in}{1.441903in}}% +\pgfpathlineto{\pgfqpoint{5.289452in}{1.544396in}}% +\pgfpathlineto{\pgfqpoint{5.412335in}{1.770126in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfpathlineto{\pgfqpoint{5.413889in}{1.772815in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.750000in}{3.520000in}}% +\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathlineto{\pgfqpoint{5.302778in}{2.185746in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.330556in}{2.185746in}}{\pgfqpoint{5.330556in}{2.213523in}}% +\pgfpathlineto{\pgfqpoint{5.330556in}{3.422778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.330556in}{3.450556in}}{\pgfqpoint{5.302778in}{3.450556in}}% +\pgfpathlineto{\pgfqpoint{4.515451in}{3.450556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.487674in}{3.450556in}}{\pgfqpoint{4.487674in}{3.422778in}}% +\pgfpathlineto{\pgfqpoint{4.487674in}{2.213523in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.487674in}{2.185746in}}{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathlineto{\pgfqpoint{4.515451in}{2.185746in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{3.338088in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{3.338088in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{3.338088in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=3.289477in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=-2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{3.134231in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{3.134231in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{3.134231in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=3.085620in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=-1}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.930374in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.930374in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.930374in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.881762in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.726516in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.726516in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.726516in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.677905in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=1}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.522659in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.522659in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.522659in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.474048in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.543229in}{2.318802in}}% +\pgfpathlineto{\pgfqpoint{4.682118in}{2.318802in}}% +\pgfpathlineto{\pgfqpoint{4.821007in}{2.318802in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.932118in,y=2.270191in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont n=3}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/fm/packages.tex b/buch/papers/fm/packages.tex index f0ca8cc..7bbbe35 100644 --- a/buch/papers/fm/packages.tex +++ b/buch/papers/fm/packages.tex @@ -8,3 +8,4 @@ % following example %\usepackage{packagename} \usepackage{xcolor} +\usepackage{pgf} -- cgit v1.2.1 From d9a24e13322ba877475300514412d74ad2e3a238 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 3 Aug 2022 20:07:27 +0200 Subject: Simulation: weitergeschrieben --- buch/papers/kreismembran/teil4.tex | 23 +++++++++++++++++------ 1 file changed, 17 insertions(+), 6 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index c124354..62a34c5 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -5,12 +5,23 @@ % \section{Lösungsmethode 3: Simulation \label{kreismembran:section:teil4}} -\paragraph{TODO Einleitung} Um numerisch das Verhalten einer Membran zu ermitteln, muss eine numerische Darstellung definiert werden. -Die Membran wird hier in Form der Matrix $ A $ digitalisiert. -Jedes Element $ A_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ \{x,y\}=\{i,j\} $. -Die zeitliche Dimension wird in Form des Array $ X[] $ aus $ v \times A $ Matrizen dargestellt. -Das Element auf Zeile $ i $, Spalte $ j $ der $ w $-ten Matrix von $ X[] $ also $ X[w]_{ij} $ entspricht der Auslenkung $ u(i,j,w) $. +Die Membran wird hier in Form der Matrix $ U $ digitalisiert. +Jedes Element $ U_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ \{x,y\}=\{i,j\} $. +Die zeitliche Dimension wird in Form des Array $ U[] $ aus $ z \times U $ Matrizen dargestellt, wobei $ z $ der Anzahl Zeitschritten entspricht. +Das Element auf Zeile $ i $, Spalte $ j $ der $ w $-ten Matrix von $ U[] $ also $ U[w]_{ij} $ entspricht somit der Auslenkung $ u(i,j,w) $. +Da die DGL von Zweiter Ordnung ist, reicht eine Zustandsvariabel pro Membran-Element nicht aus. +Es wird neben der Auslenkung auch die Geschwindigkeit jedes Membran-Elementes benötigt um den Zustand eindeutig zu beschreiben. +Dazu existiert neben $ U[] $ ein analoger Array $ V[] $ welcher die Geschwindigkeiten aller Membran-Elementen repräsentiert. +$ V[w]_{ij} $ entspricht also $ \dot{u}(i,j,w) $. +Der Zustand einer Membran zum Zeitpunkt $ w $ wird mit $ X[w] $ beschrieben, was $ U[w] $ und $ V[w] $ beinhaltet. -\paragraph{title} \ No newline at end of file +\subsection{Propagation} +Um das Verhalten der Membran zu berechnen, muss aus einem gegebenen Zustand $ X[w] $ der Folgezustand $ X[w+1] $ gerechnet werden können, wobei dazwischen ein Zeitintervall $ dt $ vergeht. +Die Berechnung von Folgezuständen kann anschliessend repetiert werden über das zu untersuchende Zeitfenster. +Da die Digitale Membran sich wie die analytisch untersuchte verhalten soll, muss auch sie +\begin{equation*} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u +\end{equation*} +erfüllen. -- cgit v1.2.1 From 05b1350074c1c62340c7c32f240cb46078c152e7 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 4 Aug 2022 17:31:48 +0200 Subject: changed textsize in Strategie.pdf. Did minor changes in Teil0 and Teil1 --- buch/papers/lambertw/Bilder/Strategie.pdf | Bin 151640 -> 151684 bytes buch/papers/lambertw/Bilder/Strategie.py | 9 +++--- buch/papers/lambertw/teil0.tex | 47 ++++++++++++++++++++---------- buch/papers/lambertw/teil1.tex | 36 ++++++++++++----------- 4 files changed, 55 insertions(+), 37 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/Strategie.pdf b/buch/papers/lambertw/Bilder/Strategie.pdf index 91442cc..b5428f5 100644 Binary files a/buch/papers/lambertw/Bilder/Strategie.pdf and b/buch/papers/lambertw/Bilder/Strategie.pdf differ diff --git a/buch/papers/lambertw/Bilder/Strategie.py b/buch/papers/lambertw/Bilder/Strategie.py index 28f7bcd..d7d06cb 100644 --- a/buch/papers/lambertw/Bilder/Strategie.py +++ b/buch/papers/lambertw/Bilder/Strategie.py @@ -34,7 +34,8 @@ ax.quiver(X, Y, U, W, angles='xy', scale_units='xy', scale=1, headwidth=5, headl ax.plot([V[0], (VZ+V)[0]], [V[1], (VZ+V)[1]], 'k--') ax.plot(np.vstack([V, Z])[:, 0], np.vstack([V, Z])[:,1], 'bo', markersize=10) - +ax.set_xlabel("x") +ax.set_ylabel("y") ax.text(2.5, 4.5, "Visierlinie", size=20, rotation=10) @@ -44,9 +45,9 @@ plt.rcParams.update({ "font.serif": ["New Century Schoolbook"], }) -ax.text(1.6, 4.3, r"$\dot{v}$", size=30) -ax.text(0.6, 3.9, r"$V$", size=30, c='b') -ax.text(5.1, 4.77, r"$Z$", size=30, c='b') +ax.text(1.6, 4.3, r"$\dot{v}$", size=20) +ax.text(0.65, 3.9, r"$V$", size=20, c='b') +ax.text(5.15, 4.85, r"$Z$", size=20, c='b') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 8fa8f9b..088cb7b 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -7,7 +7,7 @@ \label{lambertw:section:Was_sind_Verfolgungskurven}} \rhead{Was sind Verfolgungskurven?} % -Verfolgungskurven tauchen oft auf bei Fragen wie "Welchen Pfad begeht ein Hund während er einer Katze nachrennt?". +Verfolgungskurven tauchen oft auf bei Fragen wie ``Welchen Pfad begeht ein Hund während er einer Katze nachrennt?''. Ein solches Problem hat im Kern immer ein Verfolger und sein Ziel. Der Verfolger verfolgt sein Ziel, das versucht zu entkommen. Der Pfad, den der Verfolger während der Verfolgung begeht, wird Verfolgungskurve genannt. @@ -27,15 +27,15 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um % \begin{table} \centering - \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} + \begin{tabular}{|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline \text{Strategie}&\text{Geschwindigkeit}&\text{Abstand}&\text{Richtung}\\ \hline \text{Jagd} - & \text{konstant} & \text{-} & \text{direkt auf Ziel hinzu}\\ + & \text{konstant} & \text{-} & \text{direkt auf Ziel zu}\\ \text{Beschattung} - & \text{-} & \text{konstant} & \text{direkt auf Ziel hinzu}\\ + & \text{-} & \text{konstant} & \text{direkt auf Ziel zu}\\ \text{Vorhalt} & \text{konstant} & \text{-} & \text{etwas voraus Zielen}\\ @@ -59,7 +59,7 @@ Der Verfolger und sein Ziel werden als Punkte $V$ und $Z$ modelliert. In der Abbildung \ref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $v$ der Ortsvektor des Verfolgers, $z$ der Ortsvektor des Ziels und $\dot{v}$ der Geschwindigkeitsvektor des Verfolgers ist. Der Geschwindigkeitsvektor entspricht dem Richtungsvektors des Verfolgers. -Die konstante Geschwindigkeit kann man mit der Gleichung +Die konstante Geschwindigkeit kann man mit % \begin{equation} |\dot{v}| @@ -67,38 +67,53 @@ Die konstante Geschwindigkeit kann man mit der Gleichung \text{,}\quad A\in\mathbb{R}^+ \end{equation} % -darstellen. Der Geschwindigkeitsvektor kann mit der Gleichung -% +darstellen. Der Geschwindigkeitsvektor muss auf das Ziel zeigen, woraus folgt +\begin{equation} + \dot{v} + \quad||\quad + z-v + \text{.} +\end{equation} +Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $\dot{v}$ gestreckt werden, was zu \begin{equation} - \frac{z-v}{|z-v|}\cdot|\dot{v}| + \dot{v} = + |\dot{v}|\cdot e_{z-v} +\end{equation} +führt. Dies kann noch ausgeschrieben werden zu +\begin{equation} \dot{v} + = + |\dot{v}|\cdot\frac{z-v}{|z-v|} + \text{.} \end{equation} % -beschrieben werden, wenn die Jagdstrategie verwendet wird. -Die Differenz der Ortsvektoren $v$ und $z$ ist ein Vektor der vom Punkt $V$ auf $Z$ zeigt. -Da die Länge dieses Vektors beliebig sein kann, wird durch Division durch den Betrag, ein Einheitsvektor erzeugt. Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. -% -Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergeben sich + +Nun wird die Gleichung mit $\dot{v}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. Somit ergibt sich \begin{align} \frac{z-v}{|z-v|}\cdot|\dot{v}|\cdot\dot{v} &= |\dot{v}|^2 - \\ +\end{align} +was algebraisch zu +\begin{align} \label{lambertw:pursuerDGL} \frac{z-v}{|z-v|}\cdot \frac{\dot{v}}{|\dot{v}|} &= - 1 \text{.} + 1 \end{align} +umgeformt werden kann. Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} Als nächstes gehen wir auf das Ziel ein. Wie der Verfolger wird auch unser Ziel sich strikt an eine Fluchtstrategie halten, welche von Anfang an bekannt ist. -Diese Strategie kann als Parameterdarstellung der Position nach der Zeit beschrieben werden. +Als Strategie eignet sich eine definierte Fluchtkurve oder ähnlich wie beim Verfolger ein Verhalten, das vom Verfolger abhängig ist. +Ein vom Verfolger abhängiges Verhalten führt zu einem gekoppeltem DGL-System, das schwierig zu lösen sein wird. +Eine definierte Fluchtkurve kann mit einer Parameterdarstellung der Position nach der Zeit beschrieben werden. Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebene mit der Parametrisierung % \begin{equation} diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 2da07db..0fd0108 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -17,9 +17,10 @@ Nun gilt es zu definieren, wann das Ziel erreicht wird. Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen. Somit gilt es % -\begin{equation*} +\begin{equation} z(t_1)=v(t_1) -\end{equation*} + \label{bedingung_treffer} +\end{equation} % zu lösen. Die Parametrisierung von $z(t)$ ist im Beispiel definiert als @@ -29,12 +30,12 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} \end{equation} % -Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert. +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. % -\subsection{Anfangsbedingung im \RN{1}-Quadranten} +\subsection{Anfangsbedingung im ersten Quadranten} % -Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche -\begin{align*} +Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche +\begin{align} x\left(t\right) &= x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ @@ -50,7 +51,8 @@ Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleich r_0 = \sqrt{x_0^2+y_0^2} -\end{align*} + \text{.} +\end{align} % Der Folger ist durch \begin{equation} @@ -61,9 +63,9 @@ Der Folger ist durch \end{equation} % parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$. -Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen +Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher die Bedingungen % -\begin{align*} +\begin{align} 0 &= x(t) @@ -75,7 +77,7 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding y(t) = \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} -\end{align*} +\end{align} % welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. @@ -101,7 +103,7 @@ Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die % Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. -Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre. +Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste, damit ein Einholen möglich wäre. Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. % % @@ -136,7 +138,7 @@ Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. %Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden. % \subsection{Anfangsbedingung $y_0<0$} -Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen. +Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolger niemals das Ziel einholen. Dies kann veranschaulicht werden anhand % \begin{equation} @@ -184,7 +186,7 @@ was aufgelöst zu führt. Somit wird das Ziel immer erreicht bei $t_1$, wenn der Verfolger auf der positiven $y$-Achse startet. \subsection{Fazit} -Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen in den Quadranten \RN{1} und \RN{2} zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. +Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen im ersten und zweiten Quadranten zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt. Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen. Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden. Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann. @@ -193,18 +195,18 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert. Mathematisch kann dies mit % \begin{equation} - |v-z| Date: Thu, 4 Aug 2022 18:04:11 +0200 Subject: Herleitung fix --- buch/papers/fm/00_modulation.tex | 12 ++-- buch/papers/fm/01_AM.tex | 4 +- buch/papers/fm/03_bessel.tex | 135 ++++++++++++++++++++++++--------------- 3 files changed, 93 insertions(+), 58 deletions(-) (limited to 'buch') diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex index dc99b40..e2ba39f 100644 --- a/buch/papers/fm/00_modulation.tex +++ b/buch/papers/fm/00_modulation.tex @@ -18,10 +18,14 @@ Mathematisch wird dann daraus \omega_i = \omega_c + \frac{d \varphi(t)}{dt} \] mit der Ableitung der Phase\cite{fm:NAT}. -Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, -die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): -\newline -\newline +Mit diesen drei Parameter ergeben sich auch drei Modulationsarten, die Amplitudenmodulation, welche \(A_c\) benutzt, +die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): +\begin{itemize} + \item AM + \item PM + \item FM +\end{itemize} + To do: Bilder jeder Modulationsart diff --git a/buch/papers/fm/01_AM.tex b/buch/papers/fm/01_AM.tex index 921fcf2..21927f5 100644 --- a/buch/papers/fm/01_AM.tex +++ b/buch/papers/fm/01_AM.tex @@ -17,8 +17,8 @@ Dies sieht man besonders in der Eulerischen Formel \[ x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. \] -Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. -Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. +Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reellwertiges Trägersignal ergibt. +Nun wird der Parameter \(A_c\) durch das Modulierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. \newline \newline TODO: diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index eec64f2..5f85dc6 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -3,11 +3,11 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{FM und Besselfunktion +\section{FM und Bessel-Funktion \label{fm:section:proof}} \rhead{Herleitung} -Die momentane Trägerkreisfrequenz \(\omega_i\) wie schon in (ref) beschrieben ist, bringt die Vorigen Kapittel beschreiben. (Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich). -Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das Modulierende Signal \(m(t)\) ist. +Die momentane Trägerkreisfrequenz \(\omega_i\), wie schon in (ref) beschrieben ist, bringt die Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich. +Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das modulierende Signal \(m(t)\) ist. Somit haben wir unser \(x_c\) welches \[ \cos(\omega_c t+\beta\sin(\omega_mt)) @@ -15,7 +15,7 @@ Somit haben wir unser \(x_c\) welches ist. \subsection{Herleitung} -Das Ziel ist es unser moduliertes Signal mit der Besselfunktion so auszudrücken: +Das Ziel ist, unser moduliertes Signal mit der Bessel-Funktion so auszudrücken: \begin{align} x_c(t) = @@ -43,22 +43,22 @@ Doch dazu brauchen wir die Hilfe der Additionsthoerme \cos(A-B)-\cos(A+B) \label{fm:eq:addth3} \end{align} -und die drei Besselfunktions indentitäten, +und die drei Bessel-Funktionsindentitäten, \begin{align} \cos(\beta\sin\phi) &= - J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos(2k\phi) + J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi) \label{fm:eq:besselid1} \\ \sin(\beta\sin\phi) &= - 2\sum_{k=0}^\infty (-1)^k J_{2k+1}(\beta) \cos((2k+1)\phi) + 2\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi) \label{fm:eq:besselid2} \\ J_{-n}(\beta) &= (-1)^n J_n(\beta) \label{fm:eq:besselid3} \end{align} -welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie}. +welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie} findet. \subsubsection{Anwenden des Additionstheorem} Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal @@ -70,70 +70,102 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)). \label{fm:eq:start} \] - +%----------------------------------------------------------------------------------------------------------- \subsubsection{Cos-Teil} Zu beginn wird der Cos-Teil -\[ +\begin{align*} + c(t) + &= \cos(\omega_c t)\cdot\cos(\beta\sin(\omega_mt)) -\] +\end{align*} mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum \begin{align*} - \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] + c(t) &= - (-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} + \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] + \\ + &= + J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth2}}} \end{align*} -wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum +%intertext{} Funktioniert nicht. +wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden. \begin{align*} - J_0(\beta) \cdot \cos(\omega_c t) +(-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \} + c(t) + &= + J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \} \\ - = - (-1)^k \cdot \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)} + &= + \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)} \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m) - \,+\, (-1)^k \cdot\sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t) + \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t) \end{align*} - -Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term -\[ - \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t), +wird. +Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt. +Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt: +\begin{align*} + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t), \label{fm:eq:gerade} -\] -dabei gehen nun die Terme von \(-\infty \to \infty\), dabei bleibt n Ganzzahlig. - +\end{align*} +%---------------------------------------------------------------------------------------------------------------- \subsubsection{Sin-Teil} Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil -\[ +\begin{align*} + s(t) + &= -\sin(\omega_c t)\cdot\sin(\beta\sin(\omega_m t)). -\] +\end{align*} Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu \begin{align*} - -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty(-1)^k \cdot J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] + s(t) + &= + -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] \\ - = - (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. + &= + \sum_{k=0}^\infty -1 \cdot J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t). +\end{align*} +Da \(2k + 1\) alle ungeraden positiven Ganzzahlen entspricht wird es durch \(n\) ersetzt. +Wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht, so ersetzten wird \(J_{-n}(\beta) = -1\cdot J_n(\beta)\) ersetzt: +\begin{align*} + s(t) + &= + \sum_{n=0}^\infty J_{-n}(\beta) \underbrace{2\sin(\omega_c t)\cos(n \omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth3}}}. \end{align*} -Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), -somit wird daraus +Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = n \omega_m t \), +somit wird daraus: \begin{align*} - (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c - (2k+1)\omega_m) t)} \,-\, \cos((\omega_c+(2k+1)\omega_m) t) \} + s(t) + &= + \sum_{n=0}^\infty J_{-n}(\beta) \{ \underbrace{\cos((\omega_c - n\omega_m) t)} \,-\, \cos((\omega_c + n\omega_m) t) \} \\ - = - (-1)^k \cdot -\sum_{k=- \infty}^{-1} J_{2k+1}(\beta) \overbrace{\cos((\omega_c + (2k+1)\omega_m) t)} - \,-\, (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((\omega_c + (2k+1)\omega_m) t) + &= + \sum_{n=- \infty}^{0} J_{n}(\beta) \overbrace{\cos((\omega_c + n \omega_m) t)} + \,-\, \sum_{n=0}^\infty J_{-n}(\beta) \cos((\omega_c + n\omega_m) t) \end{align*} -dieser Term. -Zusätzlich dabei noch die letzte Besselindentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). -Somit wird neg.Teil zum Term -\[ - (-1)^k \cdot \sum_{k= \infty}^{1} -1 \cdot J_{2k+1}(\beta) \cos((\omega_c+(2k+1)\omega_m) t). -\] -TODO (jetzt habe ich zwei Summen die immer positiv sind? ) -Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert vereinfacht sich die Summe zu +Auch hier wurde wieder eine zweite Summe \(\sum_{-\infty}^{-1}\) gebraucht um das Minus zu einem Plus zu wandeln. +Wenn \(n = 0 \) ist der Minuend gleich dem Subtrahend und somit dieser Teil \(=0\), das bedeutet \(n\) ended bei \(-1\) und started bei \(1\). +\begin{align*} + s(t) + &= + \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t) + \underbrace{\,-\, \sum_{n=1}^\infty J_{-n}(\beta)} \cos((\omega_c + n\omega_m) t) +\end{align*} +Um aus diesem Subtrahend eine Addition zu kreiernen, wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht, +jedoch so \(-1 \cdot J_{-n}(\beta) = J_n(\beta)\) und daraus wird dann: +\begin{align*} + s(t) + &= + \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t) + \,+\, \sum_{n=1}^\infty J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\end{align*} +Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden zahlen zählt, kann man dies so vereinfacht \[ - \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). - \label{fm:eq:ungerade} + s(t) + = + \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). + \label{fm:eq:ungerade} \] -Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. - +schreiben. +%------------------------------------------------------------------------------------------ \subsubsection{Summe Zusammenführen} Beide Teile \eqref{fm:eq:gerade} Gerade \[ @@ -151,10 +183,9 @@ ergeben zusammen \] Somit ist \eqref{fm:eq:proof} bewiesen. \newpage - -%---------------------------------------------------------------------------- +%----------------------------------------------------------------------------------------- \subsection{Bessel und Frequenzspektrum} -Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. +Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Bessel-Funktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering \input{papers/fm/Python animation/bessel.pgf} @@ -168,7 +199,7 @@ Nun einmal das Modulierte FM signal im Frequenzspektrum mit den einzelen Summen TODO Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile. \begin{itemize} - \item Zuerest einmal die Herleitung von FM zu der Besselfunktion + \item Zuerest einmal die Herleitung von FM zu der Bessel-Funktion \item Im Frequenzspektrum darstellen mit Farben, ersichtlich machen. \item Parameter tuing der Trägerfrequenz, Modulierende frequenz und Beta. \end{itemize} -- cgit v1.2.1 From ded30e493c1b05f1f412f2e78636d7195ea054e0 Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Thu, 4 Aug 2022 21:24:11 +0200 Subject: added new subsection wird das Ziel erreicht? --- buch/papers/lambertw/Bilder/Intuition.pdf | Bin 186972 -> 187016 bytes buch/papers/lambertw/Bilder/Strategie.py | 4 +- .../Bilder/lambertAbstandBauchgef\303\274hl.py" | 10 +- buch/papers/lambertw/teil0.tex | 5 +- buch/papers/lambertw/teil1.tex | 101 +++++++++++++++++---- 5 files changed, 93 insertions(+), 27 deletions(-) (limited to 'buch') diff --git a/buch/papers/lambertw/Bilder/Intuition.pdf b/buch/papers/lambertw/Bilder/Intuition.pdf index 236212a..739b02b 100644 Binary files a/buch/papers/lambertw/Bilder/Intuition.pdf and b/buch/papers/lambertw/Bilder/Intuition.pdf differ diff --git a/buch/papers/lambertw/Bilder/Strategie.py b/buch/papers/lambertw/Bilder/Strategie.py index d7d06cb..975e248 100644 --- a/buch/papers/lambertw/Bilder/Strategie.py +++ b/buch/papers/lambertw/Bilder/Strategie.py @@ -34,8 +34,8 @@ ax.quiver(X, Y, U, W, angles='xy', scale_units='xy', scale=1, headwidth=5, headl ax.plot([V[0], (VZ+V)[0]], [V[1], (VZ+V)[1]], 'k--') ax.plot(np.vstack([V, Z])[:, 0], np.vstack([V, Z])[:,1], 'bo', markersize=10) -ax.set_xlabel("x") -ax.set_ylabel("y") +ax.set_xlabel("x", size=20) +ax.set_ylabel("y", size=20) ax.text(2.5, 4.5, "Visierlinie", size=20, rotation=10) diff --git "a/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" "b/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" index 9031bfc..3a90afa 100644 --- "a/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" +++ "b/buch/papers/lambertw/Bilder/lambertAbstandBauchgef\303\274hl.py" @@ -39,8 +39,8 @@ plt.plot(0, ymin, 'bo', markersize=10) plt.plot([0, xmin], [ymin, ymin], 'k--') #plt.xlim(-0.1, 1) #plt.ylim(1, 2) -#plt.ylabel("y") -#plt.xlabel("x") +plt.ylabel("y") +plt.xlabel("x") plt.grid(True) plt.quiver(xmin, ymin, -0.2, 0, scale=1) @@ -53,6 +53,6 @@ plt.rcParams.update({ "font.serif": ["New Century Schoolbook"], }) -plt.text(xmin-0.11, ymin-0.12, r"$\dot{v}$", size=30) -plt.text(xmin-0.02, ymin+0.05, r"$V$", size=30, c='b') -plt.text(0.02, ymin+0.05, r"$Z$", size=30, c='b') \ No newline at end of file +plt.text(xmin-0.11, ymin-0.08, r"$\dot{v}$", size=20) +plt.text(xmin-0.02, ymin+0.05, r"$V$", size=20, c='b') +plt.text(0.02, ymin+0.05, r"$Z$", size=20, c='b') \ No newline at end of file diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 088cb7b..6632eca 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -74,7 +74,7 @@ darstellen. Der Geschwindigkeitsvektor muss auf das Ziel zeigen, woraus folgt z-v \text{.} \end{equation} -Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $\dot{v}$ gestreckt werden, was zu +Um den Richtungsvektor zu konstruieren kann der Einheitsvektor parallel zu $z-v$ um $|\dot{v}|$ gestreckt werden, was zu \begin{equation} \dot{v} = @@ -86,6 +86,7 @@ führt. Dies kann noch ausgeschrieben werden zu = |\dot{v}|\cdot\frac{z-v}{|z-v|} \text{.} + \label{lambertw:richtungsvektor} \end{equation} % Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist. @@ -105,7 +106,7 @@ was algebraisch zu 1 \end{align} umgeformt werden kann. -Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, insofern der Verfolger die Jagdstrategie verwendet. +Die Lösungen dieser Differentialgleichung sind die gesuchten Verfolgungskurven, sofern der Verfolger die Jagdstrategie verwendet. % \subsection{Ziel \label{lambertw:subsection:Ziel}} diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex index 0fd0108..e8eca2c 100644 --- a/buch/papers/lambertw/teil1.tex +++ b/buch/papers/lambertw/teil1.tex @@ -30,7 +30,7 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als \left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.} \end{equation} % -Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. +Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die Bedingung \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert. % \subsection{Anfangsbedingung im ersten Quadranten} % @@ -41,7 +41,7 @@ Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleich x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\ y(t) &= - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\ \chi &= \frac{r_0+y_0}{r_0-y_0}, \quad @@ -54,7 +54,7 @@ Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleich \text{.} \end{align} % -Der Folger ist durch +Der Verfolger ist durch \begin{equation} v(t) = @@ -76,31 +76,37 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding &= y(t) = - \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} + \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,} \end{align} % -welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. +welche beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde. Zuerst wird die Bedingung der $x$-Koordinate betrachtet. -Da $x_0 \neq 0$ und $\chi \neq 0$ mit +Da $x_0 \neq 0$ und $\chi \neq 0$ kann \begin{equation} 0 = x_0\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right)} \end{equation} -ist diese Bedingung genau dann erfüllt, wenn +algebraisch zu \begin{equation} 0 = W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right)\right) - \text{.} \end{equation} -% +umgeformt werden. Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde. -Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei -\begin{equation} +Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Mit der einzigen Nullstelle der Lambert W-Funktion bei +\begin{equation*} W(0)=0 + \text{,} +\end{equation*} +kann die Bedingung weiter vereinfacht werden zu +\begin{equation} + 0 + = + \chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) + \text{.} \end{equation} -% Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen. Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null. Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste, damit ein Einholen möglich wäre. @@ -203,16 +209,18 @@ Durch quadrieren verschwindet die Wurzel des Betrages, womit % \begin{equation} |v-z|^2e_y\cdot v$. +Aus diesem Argument würde folgen, dass beim tiefsten Punkt der Verfolgungskurve im Beispiel den minimalen Abstand befindet. +% \begin{figure} \centering \includegraphics[scale=0.4]{./papers/lambertw/Bilder/Intuition.pdf} @@ -220,7 +228,8 @@ Es lässt sich vermuten, dass bei diesem Punkt der Abstand zum Ziel minimal sein \label{lambertw:grafic:intuition} \end{figure} % -Dies kann leicht überprüft werden, indem wir lokal alle relevanten benachbarten Punkte betrachten und das Vorzeichen der Änderung des Abstandes prüfen. + +Dieses Argument kann leicht überprüft werden, indem lokal alle relevanten benachbarten Punkte betrachtet und das Vorzeichen der Änderung des Abstandes überprüft wird. Dafür wird ein Ausdruck benötigt, der den Abstand und die benachbarten Punkte beschreibt. Der Richtungsvektor wird allgemein mit dem Winkel $\alpha \in[ 0, 2\pi)$ Die Ortsvektoren der Punkte können wiederum mit @@ -280,5 +289,61 @@ unterteilt werden. Von Interesse ist lediglich das Intervall $\alpha\in\left( \frac{\pi}{2}, \frac{3\pi}{2}\right)$, da der Verfolger sich stets in die negative $y$-Richtung bewegt. In diesem Intervall ist die Ableitung negativ, woraus folgt, dass jeglicher unmittelbar benachbarte Punkt, den der Verfolger als nächstes begehen könnte, stets näher am Ziel ist als zuvor. Dies bedeutet, dass der Scheitelpunkt der Verfolgungskurve nie ein lokales Minimum bezüglich des Abstandes sein kann. +% +\subsection{Wo ist der Abstand minimal?} +Damit der Verfolger das Ziel erreicht muss die Bedingung \eqref{lambertw:minimumAbstand} erfüllt sein. +Somit ist es ausreichend zu zeigen, dass +\begin{equation} + \operatorname{min}(|z-v|) Date: Fri, 5 Aug 2022 20:54:19 +0200 Subject: =?UTF-8?q?ImPro=20Buch=20als=20Referenz=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/references.bib | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'buch') diff --git a/buch/papers/kreismembran/references.bib b/buch/papers/kreismembran/references.bib index acf8f90..3d9d0c1 100644 --- a/buch/papers/kreismembran/references.bib +++ b/buch/papers/kreismembran/references.bib @@ -52,6 +52,14 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@book{kreismembran:Digital_Image_processing, + edition = {Fourth Edition}, + title = {Digital Image Processing}, + publisher = {Pearson}, + author = {Rafael C. Gozales and Richard E. Woods}, + date = {2018}, +} + @book{lokenath_debnath_integral_2015, edition = {Third Edition}, title = {Integral Tansforms and Their Applications}, -- cgit v1.2.1 From 28fd91bc332b07b3fbde985a92d71e0262a6e6fd Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 20:54:48 +0200 Subject: Simulation fast fertig --- buch/papers/kreismembran/teil4.tex | 123 ++++++++++++++++++++++++++++++++++++- 1 file changed, 120 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index 62a34c5..f660439 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -9,6 +9,7 @@ Um numerisch das Verhalten einer Membran zu ermitteln, muss eine numerische Darstellung definiert werden. Die Membran wird hier in Form der Matrix $ U $ digitalisiert. Jedes Element $ U_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an der Stelle $ \{x,y\}=\{i,j\} $. +Zwischen benachbarten Elementen in der Matrix $ U $ liegt immer der Abstand $ dh $, eine Inkrementierung von $ i $ oder $ j $ entspricht somit einem Schritt in Richtung $ x $ oder $ y $ von Länge $ dh $ auf der Membran. Die zeitliche Dimension wird in Form des Array $ U[] $ aus $ z \times U $ Matrizen dargestellt, wobei $ z $ der Anzahl Zeitschritten entspricht. Das Element auf Zeile $ i $, Spalte $ j $ der $ w $-ten Matrix von $ U[] $ also $ U[w]_{ij} $ entspricht somit der Auslenkung $ u(i,j,w) $. Da die DGL von Zweiter Ordnung ist, reicht eine Zustandsvariabel pro Membran-Element nicht aus. @@ -20,8 +21,124 @@ Der Zustand einer Membran zum Zeitpunkt $ w $ wird mit $ X[w] $ beschrieben, was \subsection{Propagation} Um das Verhalten der Membran zu berechnen, muss aus einem gegebenen Zustand $ X[w] $ der Folgezustand $ X[w+1] $ gerechnet werden können, wobei dazwischen ein Zeitintervall $ dt $ vergeht. Die Berechnung von Folgezuständen kann anschliessend repetiert werden über das zu untersuchende Zeitfenster. -Da die Digitale Membran sich wie die analytisch untersuchte verhalten soll, muss auch sie +Die Folgeposition $ U[w+1] $ ergibt sich als +\begin{equation} + U[w+1] = U[w] + dt \cdot V[w], +\end{equation} +also die Ausgangslage $ + $ die Strecke welche während des Zeitintervall mit der Geschwindigkeit des Elementes zurückgelegt wurde. +Neben der Position muss auch die Geschwindigkeit aktualisiert werden. +Analog zur Folgeposition wird \begin{equation*} - \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u + V[w+1] = V[w] + dt \cdot \frac{\partial^2u}{\partial t^2}. +\end{equation*} +Die Beschleunigung $ \frac{\partial^2u}{\partial t^2} $ eines Elementes ist durch die DGL \ref{kreismembran:Ausgang_DGL} gegeben als +\begin{equation*} + \frac{\partial^2u}{\partial t^2} = \Delta u \cdot c^2. +\end{equation*} +Die Geschwindigkeit des Folgezustandes kann somit mit +\begin{equation} + V[w+1] = V[w] + dt \cdot \Delta_h U \cdot c^2 +\end{equation} +berechnet werden. +Während $ c^2 $ lediglich eine Material spezifische Konstante ist, muss noch erläutert werden, wie der diskrete Laplace-Operator für $ \Delta_h u $ definiert ist. + +\subsection{Diskreter Laplace-Operator $\Delta_h$} +Die diskrete Ableitung zweiter Ordnung kann mit Hilfe der Taylor-Reihen-Entwicklung als +\begin{equation*} + \frac{\partial^2f}{\partial x^2} \approx \frac{f(x+dx)-2f(x)+f(x-dx)}{dx^2} +\end{equation*} +approximiert werden \cite{kreismembran:Digital_Image_processing}. +Dank der Linearität der Ableitung kann die Ableitung einer weiteren Dimension addiert werden. +Daraus folgt für den zweidimensionalen Fall +\begin{equation*} + \Delta_h u= \frac{u(x+dh,y,t)+u(x,y+dh,t)-4f(x)+u(x-dh,y,t)+u(x,y-dh,t)}{dh^2}. \end{equation*} -erfüllen. +Um $ \Delta_h $ auf eine Matrix anwenden zu können wird die Gleichung in Form einer Filtermaske + \begin{equation} + \Delta_h u= \frac{1}{dh^2} + \left[ {\begin{array}{ccc} + 0 & 1 & 0\\ + 1 & -4 & 1\\ + 0 & 1 & 0\\ + \end{array} } \right] + \end{equation} +formuliert. +Die Filtermaske kann dann auf jedes Element einzeln angewendet werden mit einer Matrizen-Faltung um $ \Delta_h U[] $ zu berechnen. + +\subsection{Simulation: Kreisförmige Membran} +Als Beispiel soll nun eine schwingende kreisförmige Membran simuliert werden. +\paragraph{Initialisierung} +Die Anzahl der simulierten Elementen soll $ m \times n $ was dementsprechend die Dimensionen von $ U $ und $ V $ vorgibt. +Als Anfangsbedingung wird eine Membran gewählt, welche bei $ t=0 $ mit einer Gauss-Kurve ausgelenkt wird. +Die Membran soll sich zu Beginn nicht bewegen, also wird $ V[0] $ mit Nullen initialisiert. +Die Auslenkung kann kompakt erreicht werden, wenn $ U[0] $ als Null-Matrix mit einer $ 1 $ in der Mitte initialisiert wird. +Diese Matrix wird anschliessend mit einer Filtermaske in Form einer Gauss-Glocke gefaltet. +Die Faltung mit einer Gauss-Glocke ist in Programmen wie Matlab eine Standartfunktion, da dies einm Tiefpassfilter in der Bildverarbeitung entspricht. + +\paragraph{Rand} +Bislang ist die definierte Matrix rechteckig. +Um eine kreisförmige Membran zu simulieren muss der Rand angepasst werden. +Da in den meisten Programme keine Möglichkeit besteht, mit runden Matrizen zu rechnen, wird der Rand in der Berechnung des Folgezustandes implementiert. +Der Rand bedeutet, das Membran-Elemente auf dem Rand sich nicht Bewegen können. +Die Position sowie die Geschwindigkeit aller Elemente welche nicht auf der definierten Membran sind müssen zu beliebiger Zeit $0$ entsprechen. +Hierzu wird eine Maske $M$ erstellt. +Diese Maske besteht aus einer binären Matrix von identischer Dimension wie $ U $ und $ V $. +Ist in der Matrix $M$ eine $1$ abgebildet so ist an jener stelle ein Element der Membran, ist es eine $0$ so befindet sich dieses Element auf dem Rand oder ausserhalb der Membran. +In dieser Anwendung ist $M$ eine Matrix mit einem Kreis voller $1$ umgeben von $0$ bis an den Rand der Matrix. +Die Maske wird angewendet indem das Resultat des nächsten Zustandes noch mit der Maske elementweise multipliziert wird. +Der Folgezustand kann also mit den Gleichungen +\begin{align} + \label{kreismembran:eq:folge_U} + U[w+1] &= (U[w] + dt \cdot V[w])*M\\ + \label{kreismembran:eq:folge_V} + V[w+1] &= (V[w] + dt \cdot \Delta_h u \cdot c^2)*M +\end{align} +berechnet werden. +\paragraph{Simulation} +Mit den gegebenen Gleichungen \ref{kreismembran:eq:folge_U} und \ref{kreismembran:eq:folge_V} das Verhalten der Membran mit einem Loop über das zu untersuchende Zeitintervall berechnet werden. +In der Abbildung \ref{kreismembran:im:simres_rund} sind Simulationsresultate zu sehen. +Die Erste Figur zeigt die Ausgangslage gefolgt von den Auslenkungen nach jeweils $ 50 $ weiteren Iterationsschritten. +Es ist zu erkennen, wie sich die Störung vom Zentrum an den Rand ausbreitet. +Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum. +\begin{figure} + \begin{center} + \label{kreismembran:im:simres_rund} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_1.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_2.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_3.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_4.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_5.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_6.png} + \caption{Simulations Resultate einer kreisförmigen Membran. Simuliert mit $ 200 \times 200 $ Elementen, dargestellt sind die Auslenkungen nach jeweils $ 50 $ Iterationsschritten.} + + \end{center} +\end{figure} +\subsection{Simulation: Unendliche Kreisförmige Membran} + +Um eine unendlich grosse Membran zu simulieren könnte der unpraktische weg gewählt werden die Matrix unendlich gross zu definieren, dies wird jedoch spätestens bei der numerischen Berechnung seine Probleme mit sich bringen. +Etwas geeigneter ist es die Matrix so gross wie möglich zu definieren wie es die Kapazitäten erlauben. +Wenn anschliessend nur das Verhalten im Zentrum, bei der Störung beobachtet wird, verhaltet sich die Membran wie eine unendliche. +Dies aber nur bis die Störung am Rand reflektiert wird und wieder das innere zu beobachtende Zentrum beeinflusst. +Soll erst gar keine Reflexion entstehen, muss ein Absorber modelliert werden welcher die Störung möglichst ohne Reflexion aufnimmt. + +\paragraph{Absorber} +Sehr knapp formuliert entstehen Reflexionen, wenn eine Welle von einem Material in ein anderes Material mit unterschiedlichen Eigenschaften eindringen möchte. +Je unterschiedlicher und abrupter der Übergang zwischen den Materialien umso ausgeprägter die Reflexion. +In diesem Fall sind die Eigenschaften vorgegeben. +Im Zentrum soll sich die Membran verhalten, wie von der DGL vorgegeben, am Rand jedoch muss sich jedes Membran-Element in der Ausgangslage befinden. +Der Spielraum welcher dem Absorber übrig bleibt ist die Art der Überganges. +Bei der endlichen kreisförmigen Membran hat die Maske $M$ ein binärer Übergang von Membran zu Rand bezweckt. +Anstelle dieses abrupten Wechsels wird nun eine Maske definiert, welche graduell von Membran $1$ zu Rand-Element $0$ wechselt. + + + + + + + + + + + + + -- cgit v1.2.1 From e37397bb3b3c9cf93dff1d1aaecb186ca10fc239 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 23:03:46 +0200 Subject: =?UTF-8?q?minikorrekturen=20m=C3=BCller?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil0.tex | 46 +++++++++++++++++++++----------------- 1 file changed, 25 insertions(+), 21 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index bb8188d..10cd476 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,32 +5,32 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Membran} -Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...". -Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften auf, wie ein gespanntes Stück Papier. +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...''. +Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften wie ein gespanntes Stück Papier. Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. -Eine Membran auf der anderen Seite besteht aus einem Material welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. +Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. -Sie besteht herkömmlicher weise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. +Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. -Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. -Wie genau diese Schwingungen untersucht werden können wird in der Folgenden Arbeit Diskutiert. +Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. +Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. -\paragraph{Annahmen} +\subsection{Annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. -Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: -\begin{enumerate}[i] +Das untersuchte Modell erfüllt folgende Eigenschaften: +\begin{enumerate}[i)] \item Die Membran ist homogen. Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - Daraus folgt, dass die Membran ohne Kraftaufwand verbogen werden kann. - Die Membran ist dadurch nicht allein stehend schwing-fähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. - \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. - Auslenkungen in der ebene der Membran sind nicht möglich. + Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. + Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. Die resultierende Schwingung wird daher nicht gedämpft sein. @@ -38,18 +38,18 @@ Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. -Es lohnt sich das Verhalten einer Saite zu beschreiben da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. %Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii gültig, keine Bewegung in die Richtung $ \hat{x} $. +Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} T_1 \cos \alpha = T_2 \cos \beta = T \end{equation} gleichgesetzt werden. -Das dynamische verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz +Das dynamische Verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz \begin{equation*} \sum F = m \cdot a \end{equation*} @@ -69,14 +69,18 @@ geschrieben werden. Der $ \tan \alpha $ entspricht der örtlichen Ableitung von $ u(x,t) $ an der Stelle $ x_0 $ und analog der $ \tan \beta $ für die Stelle $ x_0 + dx $. Die Gleichung wird dadurch zu \begin{equation*} - \frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. + \frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. \end{equation*} Durch die Division mit $ dx $ entsteht \begin{equation*} - \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. + \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} -Auf der Linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervall-Länge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird mit $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die, in der Literatur gebräuchliche Form +Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. +Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. +Somit resultiert die in der Literatur gebräuchliche Form \begin{equation} + \label{kreismembran:Ausgang_DGL} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation} -In dieser Form ist die Gleichung auch gültig für eine Membran. Für den Fall einer Membran muss lediglich die Ableitung in zwei Dimensionen gerechnet werden. \ No newline at end of file +In dieser Form ist die Gleichung auch gültig für eine Membran. +Für den Fall einer Membran muss lediglich der Laplace-Operator $\Delta$ in zwei Dimensionen gerechnet werden. \ No newline at end of file -- cgit v1.2.1 From 40c2d617a90a81c57489a5c9e220ef577f6882a5 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 23:34:04 +0200 Subject: simulation fertig --- buch/papers/kreismembran/teil4.tex | 61 ++++++++++++++++++++++++++++++++++---- 1 file changed, 55 insertions(+), 6 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index f660439..b67e9e7 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -101,8 +101,9 @@ Die Erste Figur zeigt die Ausgangslage gefolgt von den Auslenkungen nach jeweils Es ist zu erkennen, wie sich die Störung vom Zentrum an den Rand ausbreitet. Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum. \begin{figure} + \begin{center} - \label{kreismembran:im:simres_rund} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_1.png} \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_2.png} \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_3.png} @@ -110,10 +111,11 @@ Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_5.png} \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_1_6.png} \caption{Simulations Resultate einer kreisförmigen Membran. Simuliert mit $ 200 \times 200 $ Elementen, dargestellt sind die Auslenkungen nach jeweils $ 50 $ Iterationsschritten.} + \label{kreismembran:im:simres_rund} \end{center} \end{figure} -\subsection{Simulation: Unendliche Kreisförmige Membran} +\subsection{Simulation: Unendliche Membran} Um eine unendlich grosse Membran zu simulieren könnte der unpraktische weg gewählt werden die Matrix unendlich gross zu definieren, dies wird jedoch spätestens bei der numerischen Berechnung seine Probleme mit sich bringen. Etwas geeigneter ist es die Matrix so gross wie möglich zu definieren wie es die Kapazitäten erlauben. @@ -129,12 +131,59 @@ Im Zentrum soll sich die Membran verhalten, wie von der DGL vorgegeben, am Rand Der Spielraum welcher dem Absorber übrig bleibt ist die Art der Überganges. Bei der endlichen kreisförmigen Membran hat die Maske $M$ ein binärer Übergang von Membran zu Rand bezweckt. Anstelle dieses abrupten Wechsels wird nun eine Maske definiert, welche graduell von Membran $1$ zu Rand-Element $0$ wechselt. +Die Elemente werden auf Basis ihres Abstand $r$ zum Zentrum definiert. +Der Abstand entspricht +\begin{equation*} + r(i,j) = \sqrt{|i-\frac{m}{2}|^2+|j-\frac{n}{2}|^2}, +\end{equation*} +wobei $ m $ und $n$ den Dimensionen der Matrix entsprechen. +Für einen Stufenlosen Übergang werden die Elemente der Maske auf +\begin{align} + M_{ij} = \begin{cases} 1-e^{(r(i,j)-b)a} & \text{wenn $x > b$} \\ + 0 & \text{sonst} \end{cases} +\end{align} +gesetzt. +Der Parameter $a > 0$ bestimmt wie Steil der Übergang sein soll, $b$ bestimmt wie weit weg vom Zentrum sich der Übergang befindet. +In der Abbildung \ref{kreismembran:im:masks} ist der Unterschied der beiden Masken zu sehen. +\begin{figure} + + \begin{center} + + \includegraphics[width=0.45\textwidth]{papers/kreismembran/images/mask_disk.png} + \includegraphics[width=0.45\textwidth]{papers/kreismembran/images/mask_absorber.png} + \caption{Vergleich von Masken: Links Binär für eine endliche Membran, rechts mit Absorber für eine unendliche Membran} + \label{kreismembran:im:masks} + \end{center} +\end{figure} +\paragraph{Simulation} +Bis auf die Absorber-Maske kann nun identisch zur endlichen Membran simuliert werden. +Auch hier wurde eine Gauss-Glocke als Anfangsbedingung gewählt. +Die Simulationsresultate von Abbildung \ref{kreismembran:im:simres_unendlich} - - - - +\begin{figure} + + \begin{center} + + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_1.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_2.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_3.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_4.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_5.png} + \includegraphics[width=0.32\textwidth]{papers/kreismembran/images/sim_2_6.png} + \caption{Simulations Resultate einer unendlichen Membran. Simuliert mit $ 200 \times 200 $ Elementen, dargestellt sind die Auslenkungen nach jeweils $ 50 $ Iterationsschritten.} + \label{kreismembran:im:simres_unendlich} + + \end{center} +\end{figure} +zeigen deutlich wie die Störung vom Zentrum weg verläuft. +Nähert sich die Störung dem Rand, so wird sie immer stärker abgeschwächt. +Die Wirkung des Absorber ist an der letzten Figur zu erkennen, in welcher kaum noch Auslenkungen zu sehen sind. + +\section{Schlusswort} +Auch wenn ein Physikalisches Verhalten bereits durch Annahmen und Annäherungen deutlich vereinfacht wird, bestehen auch dann noch eine Vielzahl von Lösungsansätzen. +Lösungen einer unendlich grosse Membran scheinen fern der Realität zu sein, doch dies darf es im Sinne der Mathematik. +Und wer weis, für eine Ameise auf einem Trampolin ist eine unendliche Membran vielleicht eine ganz gute Annäherung. -- cgit v1.2.1 From 152b3d55898b7aebbd4fd0182a9c45914514a7d8 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 23:34:51 +0200 Subject: beginn mit besseren referenzen auf annahmen --- buch/papers/kreismembran/teil0.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 10cd476..ad41406 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -17,30 +17,30 @@ Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offene Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. - + \subsection{Annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. Das untersuchte Modell erfüllt folgende Eigenschaften: \begin{enumerate}[i)] \item Die Membran ist homogen. - Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + %Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + %Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. - Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + %Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + %Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. - Auslenkungen in der Ebene der Membran sind nicht möglich. + %Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. - Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. - Die resultierende Schwingung wird daher nicht gedämpft sein. + %Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. + %Die resultierende Schwingung wird daher nicht gedämpft sein. \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. -%Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. + Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. -- cgit v1.2.1 From 07467478fad0ab552c794e41442a36e18c296111 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 14:58:37 +0200 Subject: add images --- buch/papers/kreismembran/images/Saite.pdf | Bin 0 -> 17845 bytes buch/papers/kreismembran/images/mask_absorber.png | Bin 0 -> 83443 bytes buch/papers/kreismembran/images/mask_disk.png | Bin 0 -> 15936 bytes buch/papers/kreismembran/images/sim_1_1.png | Bin 0 -> 28449 bytes buch/papers/kreismembran/images/sim_1_2.png | Bin 0 -> 40121 bytes buch/papers/kreismembran/images/sim_1_3.png | Bin 0 -> 47092 bytes buch/papers/kreismembran/images/sim_1_4.png | Bin 0 -> 50305 bytes buch/papers/kreismembran/images/sim_1_5.png | Bin 0 -> 54324 bytes buch/papers/kreismembran/images/sim_1_6.png | Bin 0 -> 49234 bytes buch/papers/kreismembran/images/sim_2_1.png | Bin 0 -> 28449 bytes buch/papers/kreismembran/images/sim_2_2.png | Bin 0 -> 36804 bytes buch/papers/kreismembran/images/sim_2_3.png | Bin 0 -> 34959 bytes buch/papers/kreismembran/images/sim_2_4.png | Bin 0 -> 37099 bytes buch/papers/kreismembran/images/sim_2_5.png | Bin 0 -> 39508 bytes buch/papers/kreismembran/images/sim_2_6.png | Bin 0 -> 44963 bytes 15 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 buch/papers/kreismembran/images/Saite.pdf create mode 100644 buch/papers/kreismembran/images/mask_absorber.png create mode 100644 buch/papers/kreismembran/images/mask_disk.png create mode 100644 buch/papers/kreismembran/images/sim_1_1.png create mode 100644 buch/papers/kreismembran/images/sim_1_2.png create mode 100644 buch/papers/kreismembran/images/sim_1_3.png create mode 100644 buch/papers/kreismembran/images/sim_1_4.png create mode 100644 buch/papers/kreismembran/images/sim_1_5.png create mode 100644 buch/papers/kreismembran/images/sim_1_6.png create mode 100644 buch/papers/kreismembran/images/sim_2_1.png create mode 100644 buch/papers/kreismembran/images/sim_2_2.png create mode 100644 buch/papers/kreismembran/images/sim_2_3.png create mode 100644 buch/papers/kreismembran/images/sim_2_4.png create mode 100644 buch/papers/kreismembran/images/sim_2_5.png create mode 100644 buch/papers/kreismembran/images/sim_2_6.png (limited to 'buch') diff --git a/buch/papers/kreismembran/images/Saite.pdf b/buch/papers/kreismembran/images/Saite.pdf new file mode 100644 index 0000000..0f87c93 Binary files /dev/null and b/buch/papers/kreismembran/images/Saite.pdf differ diff --git a/buch/papers/kreismembran/images/mask_absorber.png b/buch/papers/kreismembran/images/mask_absorber.png new file mode 100644 index 0000000..5d0cccf Binary files /dev/null and b/buch/papers/kreismembran/images/mask_absorber.png differ diff --git a/buch/papers/kreismembran/images/mask_disk.png b/buch/papers/kreismembran/images/mask_disk.png new file mode 100644 index 0000000..4b38163 Binary files /dev/null and b/buch/papers/kreismembran/images/mask_disk.png differ diff --git a/buch/papers/kreismembran/images/sim_1_1.png b/buch/papers/kreismembran/images/sim_1_1.png new file mode 100644 index 0000000..84c7c1f Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_1.png differ diff --git a/buch/papers/kreismembran/images/sim_1_2.png b/buch/papers/kreismembran/images/sim_1_2.png new file mode 100644 index 0000000..ac6312a Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_2.png differ diff --git a/buch/papers/kreismembran/images/sim_1_3.png b/buch/papers/kreismembran/images/sim_1_3.png new file mode 100644 index 0000000..9388074 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_3.png differ diff --git a/buch/papers/kreismembran/images/sim_1_4.png b/buch/papers/kreismembran/images/sim_1_4.png new file mode 100644 index 0000000..e25b4a0 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_4.png differ diff --git a/buch/papers/kreismembran/images/sim_1_5.png b/buch/papers/kreismembran/images/sim_1_5.png new file mode 100644 index 0000000..638ec92 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_5.png differ diff --git a/buch/papers/kreismembran/images/sim_1_6.png b/buch/papers/kreismembran/images/sim_1_6.png new file mode 100644 index 0000000..7678da5 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_1_6.png differ diff --git a/buch/papers/kreismembran/images/sim_2_1.png b/buch/papers/kreismembran/images/sim_2_1.png new file mode 100644 index 0000000..c3c7a03 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_1.png differ diff --git a/buch/papers/kreismembran/images/sim_2_2.png b/buch/papers/kreismembran/images/sim_2_2.png new file mode 100644 index 0000000..91f3d41 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_2.png differ diff --git a/buch/papers/kreismembran/images/sim_2_3.png b/buch/papers/kreismembran/images/sim_2_3.png new file mode 100644 index 0000000..e04475b Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_3.png differ diff --git a/buch/papers/kreismembran/images/sim_2_4.png b/buch/papers/kreismembran/images/sim_2_4.png new file mode 100644 index 0000000..5b203c6 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_4.png differ diff --git a/buch/papers/kreismembran/images/sim_2_5.png b/buch/papers/kreismembran/images/sim_2_5.png new file mode 100644 index 0000000..ec76085 Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_5.png differ diff --git a/buch/papers/kreismembran/images/sim_2_6.png b/buch/papers/kreismembran/images/sim_2_6.png new file mode 100644 index 0000000..9c475eb Binary files /dev/null and b/buch/papers/kreismembran/images/sim_2_6.png differ -- cgit v1.2.1 From 05e358bb076c0680521b0a6d66b9fc8b3ea1af40 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 14:58:59 +0200 Subject: korrekturen in andrea teil --- buch/papers/kreismembran/teil1.tex | 11 +++++++---- buch/papers/kreismembran/teil3.tex | 3 ++- 2 files changed, 9 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 377ba48..f0d478f 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -7,7 +7,7 @@ \section{Lösungsmethode 1: Separationsmethode  \label{kreismembran:section:teil1}} \rhead{Lösungsmethode 1: Separationsmethode} -An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. +An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Abschnitt wird sie mit Hilfe der Separationsmethode gelöst. \subsection{Aufgabestellung\label{sub:aufgabestellung}} Wie im vorherigen Abschnitt gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: @@ -30,7 +30,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d ergibt. Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. +Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran nach den Annahmen von \ref{kreimembran:annahmen}. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} @@ -56,7 +56,10 @@ Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlic \begin{equation*} \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. +Laut Annahme iv) in \ref{kreimembran:annahmen} erfährt die Membran keine Dämpfung. +Daher werden Lösungen gesucht, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. +Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: \begin{align*} T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. @@ -118,4 +121,4 @@ für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membr \end{figure} -An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. +An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass eine weitere Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 014b6e6..276f911 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -78,7 +78,8 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} -Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine, dato che abbiamo assunto che la soluzione è rotationssymmetrisch. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. +Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. +Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, welche unter der Annahme einer rotationssymmetrischen Lösung nicht vorhanden sein können. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. -- cgit v1.2.1 From 617271699ec4a2ad9a0b8ca9940cc19a21901382 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 15:00:32 +0200 Subject: referenzen und equation fix --- buch/papers/kreismembran/teil0.tex | 28 +++++++++++++++++----------- buch/papers/kreismembran/teil4.tex | 2 ++ 2 files changed, 19 insertions(+), 11 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index ad41406..6f55358 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -19,30 +19,36 @@ Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschi Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. -\subsection{Annahmen} +\subsection{Annahmen} \label{kreimembran:annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. Das untersuchte Modell erfüllt folgende Eigenschaften: \begin{enumerate}[i)] \item Die Membran ist homogen. - %Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - %Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - %Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. - %Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. - %Auslenkungen in der Ebene der Membran sind nicht möglich. + Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. - %Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. - %Die resultierende Schwingung wird daher nicht gedämpft sein. + Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. +\begin{figure} + + \begin{center} + \includegraphics[width=5cm,angle=-90]{papers/kreismembran/images/Saite.pdf} + \caption{Infinitesimales Stück einer Saite} + \label{kreismembran:im:Saite} + \end{center} +\end{figure} - -Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} @@ -73,7 +79,7 @@ Die Gleichung wird dadurch zu \end{equation*} Durch die Division mit $ dx $ entsteht \begin{equation*} - \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. + \frac{1}{dx} \left[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\right] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index b67e9e7..74bb87d 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -179,6 +179,8 @@ Die Simulationsresultate von Abbildung \ref{kreismembran:im:simres_unendlich} zeigen deutlich wie die Störung vom Zentrum weg verläuft. Nähert sich die Störung dem Rand, so wird sie immer stärker abgeschwächt. Die Wirkung des Absorber ist an der letzten Figur zu erkennen, in welcher kaum noch Auslenkungen zu sehen sind. +Dieses Verhalten spricht für den Absorber-Ansatz, es soll jedoch erwähnt sein, dass der Übergangsbereich eine sanft ansteigende Dämpfung in das System bringt. +Die DGL \ref{kreismembran:Ausgang_DGL} welche simuliert wird geht jedoch von der Annahme \ref{kreimembran:annahmen} iv) aus, dass die Membran keine Art von Dämpfung erfährt. \section{Schlusswort} Auch wenn ein Physikalisches Verhalten bereits durch Annahmen und Annäherungen deutlich vereinfacht wird, bestehen auch dann noch eine Vielzahl von Lösungsansätzen. -- cgit v1.2.1 From 1d2d99d3999eed897dc1c7a8f383e3fa0600c121 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 15:08:39 +0200 Subject: Typo fix in elliptischen Uebungen --- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index af094c6..2d08e56 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -25,7 +25,7 @@ Auslenkung. Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$ dieses Oszillators. Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung -for den anharmonischen Oszillator ab, die sie in der Form +für den anharmonischen Oszillator ab, die sie in der Form $\frac12m\dot{x}^2 = f(x)$ schreiben. \item Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die -- cgit v1.2.1 From 96ac18247b4b63c31f36971b7b4afeb189fafe85 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 6 Aug 2022 16:02:56 +0200 Subject: simple corrections --- buch/papers/zeta/analytic_continuation.tex | 69 +++++++++++++++++++----------- buch/papers/zeta/euler_product.tex | 2 +- buch/papers/zeta/zeta_gamma.tex | 2 +- 3 files changed, 45 insertions(+), 28 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 0ccc116..8484b28 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -3,12 +3,12 @@ Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. -So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = 0.5$. +So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = \frac{1}{2}$. Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. Es werden zwei verschiedene Fortsetzungen benötigt. Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. -Die zweite verwendet eine Spiegelung an der $\Re(s) = 0.5$ Linie und erschliesst damit die ganze komplexe Ebene. +Die zweite verwendet eine Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden und erschliesst damit die ganze komplexe Ebene. Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. \begin{figure} \centering @@ -23,7 +23,7 @@ Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuat \end{figure} \subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0} -Zuerst definieren die Dirichletsche Etafunktion als +Zuerst definieren wir die Dirichletsche Etafunktion als \begin{equation}\label{zeta:equation:eta} \eta(s) = @@ -36,26 +36,40 @@ Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion durch die Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung. Zuerst wiederholen wir zweimal die Definition der Zetafunktion \eqref{zeta:equation1}, wobei wir sie einmal durch $2^{s-1}$ teilen \begin{align} - \zeta(s) + \color{red} + \zeta(s) &= \sum_{n=1}^{\infty} - \frac{1}{n^s} \label{zeta:align1} + \color{red} + \frac{1}{n^s} \label{zeta:align1} \\ - \frac{1}{2^{s-1}} - \zeta(s) + \color{blue} + \frac{1}{2^{s-1}} + \zeta(s) &= \sum_{n=1}^{\infty} - \frac{2}{(2n)^s}. \label{zeta:align2} + \color{blue} + \frac{2}{(2n)^s}. \label{zeta:align2} \end{align} Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:align2}, ergibt sich \begin{align} - \left(1 - \frac{1}{2^{s-1}} \right) + \left({\color{red}1} - {\color{blue}\frac{1}{2^{s-1}}} \right) \zeta(s) &= - \frac{1}{1^s} - \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}} - + \frac{1}{3^s} - \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}} + {\color{red}\frac{1}{1^s}} + \underbrace{ + - + {\color{blue}\frac{2}{2^s}} + + + {\color{red}\frac{1}{2^s}} + }_{-\frac{1}{2^s}} + + + {\color{red}\frac{1}{3^s}} + \underbrace{- + {\color{blue}\frac{2}{4^s}} + + + {\color{red}\frac{1}{4^s}} + }_{-\frac{1}{4^s}} \ldots \\ &= \eta(s). @@ -87,14 +101,15 @@ Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \end{equation} Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wir durch $(\pi n^2)^{\frac{s}{2}}$ \begin{equation} - \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s} + \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} + \frac{1}{n^s} = \int_0^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^2 x} \,dx, \end{equation} -und finden Zeta durch die Summenbildung $\sum_{n=1}^{\infty}$ +und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ \begin{equation} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -137,13 +152,13 @@ wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir 1 &= \frac{1}{\sqrt{x}} - \left( + \Biggl( 2 \sum_{n=1}^{\infty} e^{\frac{-n^2 \pi}{x}} + 1 - \right) + \Biggr) \\ 2 \psi(x) @@ -189,7 +204,7 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al = I_1 + I_2, \end{equation} -wobei wir uns nun auf den ersten Teil $I_1$ konzentrieren werden. +wobei wir uns zunächst auf den ersten Teil $I_1$ konzentrieren werden. Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten \begin{align} I_1 @@ -201,11 +216,11 @@ Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein &= \int_0^{1} x^{\frac{s}{2}-1} - \left( + \Biggl( - \frac{1}{2} + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + \frac{1}{2 \sqrt{x}} - \right) + \Biggr) \,dx \\ &= @@ -237,7 +252,7 @@ Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein \,dx }_{I_4}. \label{zeta:equation:integral3} \end{align} -Dabei kann das zweite Integral $I_4$ gelöst werden als +Darin kann das zweite Integral $I_4$ gelöst werden als \begin{equation} I_4 = @@ -278,8 +293,8 @@ Dies ergibt \,dx, \end{align} wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. -Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals von \eqref{zeta:equation:integral2} sind. -Wir setzen beide Lösungen ein in Gleichung \eqref{zeta:equation:integral3} und erhalten +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten \begin{equation} I_1 = @@ -356,17 +371,19 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(s) = \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} - \zeta(1-s). + \zeta(1-s), \end{equation} +was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. +Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. %TODO Definitionen und Gleichungen klarer unterscheiden \subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} -Der Beweis für Gleichung \ref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. +Der Beweis für Gleichung \eqref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. \begin{lemma} - Die Fourierreihe der periodischen Dirac Delta Funktion $\sum \delta(x - 2\pi k)$ ist + Die Fourierreihe der periodischen Dirac $\delta$ Funktion $\sum \delta(x - 2\pi k)$ ist \begin{equation} \label{zeta:equation:fourier_dirac} \sum_{k=-\infty}^{\infty} \delta(x - 2\pi k) diff --git a/buch/papers/zeta/euler_product.tex b/buch/papers/zeta/euler_product.tex index a6ed512..5f4f5ca 100644 --- a/buch/papers/zeta/euler_product.tex +++ b/buch/papers/zeta/euler_product.tex @@ -64,7 +64,7 @@ Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche \begin{equation} n = \prod_i p_i^{k_i} \quad \forall \quad n \in \mathbb{N}. \end{equation} - Jeder Summand der Summen in \eqref{zeta:equation:eulerprodukt2} ist somit eine Zahl $n$. + Jeder Summand der Summen in \eqref{zeta:equation:eulerprodukt2} ist somit der Kehrwert genau einer natürlichen Zahl $n \in \mathbb{N}$. Da die Summen alle möglichen Kombinationen von Exponenten und Primzahlen in \eqref{zeta:equation:eulerprodukt2} enthält haben wir \begin{equation} \sum_{k_1=0}^{\infty} diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index db41676..1f10a33 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -19,7 +19,7 @@ Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus &= \int_0^{\infty} n^s u^{s-1} e^{-nu} \,du. \end{align*} -Durch Division mit durch $n^s$ ergibt sich die Quotienten +Durch Division durch $n^s$ ergeben sich die Quotienten \begin{equation*} \frac{\Gamma(s)}{n^s} = -- cgit v1.2.1 From 79c0198f5082851ce28945e8278ab01b82496901 Mon Sep 17 00:00:00 2001 From: runterer Date: Sat, 6 Aug 2022 19:21:47 +0200 Subject: restructured 19.4.2 --- buch/papers/zeta/analytic_continuation.tex | 364 ++++++++++++++++------------- 1 file changed, 203 insertions(+), 161 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 8484b28..a45791e 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -110,78 +110,24 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi \,dx, \end{equation} und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ -\begin{equation} +\begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) - = + &= \int_0^{\infty} x^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^2 x} - \,dx. \label{zeta:equation:integral1} -\end{equation} -Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$. -Im Abschnitt \ref{zeta:subsec:poisson_summation} wird die poissonsche Summenformel $\sum f(n) = \sum F(n)$ bewiesen. -In unserem Problem ist $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist -\begin{equation} - F(n) - = - \mathcal{F} - ( - e^{-\pi n^2 x} - ) - = - \frac{1}{\sqrt{x}} - e^{\frac{-n^2 \pi}{x}}. -\end{equation} -Dadurch ergibt sich -\begin{equation}\label{zeta:equation:psi} - \sum_{n=-\infty}^{\infty} - e^{-\pi n^2 x} - = - \frac{1}{\sqrt{x}} - \sum_{n=-\infty}^{\infty} - e^{\frac{-n^2 \pi}{x}}, -\end{equation} -wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als -\begin{align} - 2 - \sum_{n=1}^{\infty} - e^{-\pi n^2 x} - + - 1 - &= - \frac{1}{\sqrt{x}} - \Biggl( - 2 - \sum_{n=1}^{\infty} - e^{\frac{-n^2 \pi}{x}} - + - 1 - \Biggr) + \,dx\label{zeta:equation:integral1} \\ - 2 - \psi(x) - + - 1 &= - \frac{1}{\sqrt{x}} - \left( - 2 - \psi\left(\frac{1}{x}\right) - + - 1 - \right) - \\ + \int_0^{\infty} + x^{\frac{s}{2}-1} \psi(x) - &= - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} + \,dx, \end{align} -Diese Gleichung wird später wichtig werden. - -Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als +wobei die Summe $\sum_{n=1}^{\infty} e^{-\pi n^2 x}$ als $\psi(x)$ abgekürzt wird. +Zunächst teilen wir nun das Integral auf in zwei Teile \begin{equation}\label{zeta:equation:integral2} \int_0^{\infty} x^{\frac{s}{2}-1} @@ -202,100 +148,11 @@ Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf al \,dx }_{I_2} = - I_1 + I_2, -\end{equation} -wobei wir uns zunächst auf den ersten Teil $I_1$ konzentrieren werden. -Dabei setzen wir die Definition von $\psi(x)$ aus \eqref{zeta:equation:psi} ein und erhalten -\begin{align} - I_1 - = - \int_0^{1} - x^{\frac{s}{2}-1} - \psi(x) - \,dx - &= - \int_0^{1} - x^{\frac{s}{2}-1} - \Biggl( - - \frac{1}{2} - + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} - + \frac{1}{2 \sqrt{x}} - \Biggr) - \,dx - \\ - &= - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - + \frac{1}{2} - \biggl( - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \biggl) - \,dx - \\ - &= - \underbrace{ - \int_0^{1} - x^{\frac{s}{2}-\frac{3}{2}} - \psi \left( \frac{1}{x} \right) - \,dx - }_{I_3} - + - \underbrace{ - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - }_{I_4}. \label{zeta:equation:integral3} -\end{align} -Darin kann das zweite Integral $I_4$ gelöst werden als -\begin{equation} - I_4 - = - \frac{1}{2} - \int_0^1 - x^{\frac{s}{2}-\frac{3}{2}} - - - x^{\frac{s}{2}-1} - \,dx - = - \frac{1}{s(s-1)}. + I_1 + I_2. \end{equation} -Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form. -Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. -Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. -Dies ergibt -\begin{align} - I_3 - = - \int_{\infty}^{1} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{-du}{u^2} - &= - \int_{1}^{\infty} - \left( - \frac{1}{u} - \right)^{\frac{s}{2}-\frac{3}{2}} - \psi(u) - \frac{du}{u^2} - \\ - &= - \int_{1}^{\infty} - x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} - \psi(x) - \,dx, -\end{align} -wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. -Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. -Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten -\begin{equation} +Abschnitt \ref{zeta:subsubsec:intcal} beschreibt wie das Integral $I_1$ umgestellt werden kann um ebenfalls die Integrationsgrenzen $1$ und $\infty$ zu bekommen. +Die Lösung, beschrieben in Gleichung \eqref{zeta:equation:intcal_res}, lautet +\begin{equation*} I_1 = \int_0^{1} @@ -309,8 +166,8 @@ Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und \,dx + \frac{1}{s(s-1)}. -\end{equation} -Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um schlussendlich +\end{equation*} +Dieses Resultat setzen wir nun ein in \eqref{zeta:equation:integral2}, um schlussendlich \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -375,12 +232,14 @@ Somit haben wir die analytische Fortsetzung gefunden als \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. -%TODO Definitionen und Gleichungen klarer unterscheiden -\subsection{Poissonsche Summenformel} \label{zeta:subsec:poisson_summation} +\subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Der Beweis für Gleichung \eqref{zeta:equation:psi} folgt direkt durch die poissonsche Summenformel. -Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. +Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. +Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. + +Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. \begin{lemma} Die Fourierreihe der periodischen Dirac $\delta$ Funktion $\sum \delta(x - 2\pi k)$ ist @@ -492,3 +351,186 @@ Um diese zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta F f(k). \end{equation} \end{proof} + +Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} +\begin{align*} + I_1 + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + . +\end{align*} + +Wir wenden nun diese poissonsche Summenformel $\sum f(n) = \sum F(n)$ an auf $\psi(x)$. +In unserem Problem ist also $f(n) = e^{-\pi n^2 x}$ und die zugehörige Fouriertransformation $F(n)$ ist +\begin{equation} + F(n) + = + \mathcal{F} + ( + e^{-\pi n^2 x} + ) + = + \frac{1}{\sqrt{x}} + e^{\frac{-n^2 \pi}{x}}. +\end{equation} +Dadurch ergibt sich +\begin{equation}\label{zeta:equation:psi} + \sum_{n=-\infty}^{\infty} + e^{-\pi n^2 x} + = + \frac{1}{\sqrt{x}} + \sum_{n=-\infty}^{\infty} + e^{\frac{-n^2 \pi}{x}}, +\end{equation} +wobei wir die Summen so verändern müssen, dass sie bei $n=1$ beginnen und wir $\psi(x)$ erhalten als +\begin{align} + 2 + \sum_{n=1}^{\infty} + e^{-\pi n^2 x} + + + 1 + &= + \frac{1}{\sqrt{x}} + \Biggl( + 2 + \sum_{n=1}^{\infty} + e^{\frac{-n^2 \pi}{x}} + + + 1 + \Biggr) + \\ + 2 + \psi(x) + + + 1 + &= + \frac{1}{\sqrt{x}} + \left( + 2 + \psi\left(\frac{1}{x}\right) + + + 1 + \right) + \\ + \psi(x) + &= + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}}.\label{zeta:equation:psi} +\end{align} +Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt +\begin{align} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + &= + \int_0^{1} + x^{\frac{s}{2}-1} + \Biggl( + - \frac{1}{2} + + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}} + + \frac{1}{2 \sqrt{x}} + \Biggr) + \,dx + \\ + &= + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + + \frac{1}{2} + \biggl( + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \biggl) + \,dx + \\ + &= + \underbrace{ + \int_0^{1} + x^{\frac{s}{2}-\frac{3}{2}} + \psi \left( \frac{1}{x} \right) + \,dx + }_{I_3} + + + \underbrace{ + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + }_{I_4}. \label{zeta:equation:integral3} +\end{align} +Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als +\begin{equation} + I_4 + = + \frac{1}{2} + \int_0^1 + x^{\frac{s}{2}-\frac{3}{2}} + - + x^{\frac{s}{2}-1} + \,dx + = + \frac{1}{s(s-1)}. +\end{equation} +Das erste Integral $I_3$ aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist hingegen nicht lösbar in dieser Form. +Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$. +Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$. +Dies ergibt +\begin{align} + I_3 + = + \int_{\infty}^{1} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{-du}{u^2} + &= + \int_{1}^{\infty} + \left( + \frac{1}{u} + \right)^{\frac{s}{2}-\frac{3}{2}} + \psi(u) + \frac{du}{u^2} + \\ + &= + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx, +\end{align} +wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen. +Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals $I_2$ von \eqref{zeta:equation:integral2} sind. +Wir setzen beide Lösungen in Gleichung \eqref{zeta:equation:integral3} ein und erhalten +\begin{equation} + I_1 + = + \int_0^{1} + x^{\frac{s}{2}-1} + \psi(x) + \,dx + = + \int_{1}^{\infty} + x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)} + \psi(x) + \,dx + + + \frac{1}{s(s-1)}. \label{zeta:equation:intcal_res} +\end{equation} +Diese Form des Integrals $I_1$ hat die gewünschten Integrationsgrenzen und ein essentieller Bestandteil des Beweises der Funktionalgleichung in Abschnitt \ref{zeta:subsection:auf_ganz}. -- cgit v1.2.1 From 77dfbc3727334b88dcf19c673d9ef9812df1806a Mon Sep 17 00:00:00 2001 From: runterer Date: Sun, 7 Aug 2022 17:30:30 +0200 Subject: wip conlcusion not finished --- buch/papers/zeta/analytic_continuation.tex | 11 +- buch/papers/zeta/continuation_overview.tikz.tex | 18 - buch/papers/zeta/einleitung.tex | 32 +- buch/papers/zeta/euler_product.tex | 11 +- buch/papers/zeta/fazit.tex | 28 + .../zeta/images/continuation_overview.tikz.tex | 18 + buch/papers/zeta/images/primzahlfunktion.pgf | 505 ++++++++ buch/papers/zeta/images/primzahlfunktion_paper.pgf | 505 ++++++++ buch/papers/zeta/images/youtube_screenshot.png | Bin 0 -> 378662 bytes buch/papers/zeta/images/zeta_re_-1_plot.pgf | 1147 ++++++++++++++++++ buch/papers/zeta/images/zeta_re_0.5_plot.pgf | 1206 +++++++++++++++++++ buch/papers/zeta/images/zeta_re_0_plot.pgf | 1242 ++++++++++++++++++++ buch/papers/zeta/main.tex | 2 +- buch/papers/zeta/presentation/presentation.tex | 12 +- .../zeta/presentation/youtube_screenshot.png | Bin 378662 -> 0 bytes buch/papers/zeta/primzahlfunktion.pgf | 505 -------- buch/papers/zeta/references.bib | 57 +- buch/papers/zeta/zeta_color_plot-img0.png | Bin 0 -> 37362 bytes buch/papers/zeta/zeta_color_plot.pgf | 402 +++++++ buch/papers/zeta/zeta_re_-1_plot.pgf | 1147 ------------------ buch/papers/zeta/zeta_re_0.5_plot.pgf | 1206 ------------------- buch/papers/zeta/zeta_re_0_plot.pgf | 1242 -------------------- 22 files changed, 5137 insertions(+), 4159 deletions(-) delete mode 100644 buch/papers/zeta/continuation_overview.tikz.tex create mode 100644 buch/papers/zeta/fazit.tex create mode 100644 buch/papers/zeta/images/continuation_overview.tikz.tex create mode 100644 buch/papers/zeta/images/primzahlfunktion.pgf create mode 100644 buch/papers/zeta/images/primzahlfunktion_paper.pgf create mode 100644 buch/papers/zeta/images/youtube_screenshot.png create mode 100644 buch/papers/zeta/images/zeta_re_-1_plot.pgf create mode 100644 buch/papers/zeta/images/zeta_re_0.5_plot.pgf create mode 100644 buch/papers/zeta/images/zeta_re_0_plot.pgf delete mode 100644 buch/papers/zeta/presentation/youtube_screenshot.png delete mode 100644 buch/papers/zeta/primzahlfunktion.pgf create mode 100644 buch/papers/zeta/zeta_color_plot-img0.png create mode 100644 buch/papers/zeta/zeta_color_plot.pgf delete mode 100644 buch/papers/zeta/zeta_re_-1_plot.pgf delete mode 100644 buch/papers/zeta/zeta_re_0.5_plot.pgf delete mode 100644 buch/papers/zeta/zeta_re_0_plot.pgf (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index a45791e..4046bb7 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -4,7 +4,7 @@ Die analytische Fortsetzung der Riemannschen Zetafunktion ist äusserst interessant. Sie ermöglicht die Berechnung von $\zeta(-1)$ und weiterer spannender Werte. So liegen zum Beispiel unendlich viele Nullstellen der Zetafunktion bei $\Re(s) = \frac{1}{2}$. -Diese sind relevant für die Primzahlverteilung und sind Gegenstand der Riemannschen Vermutung. +Wie bereits erwähnt sind diese Gegenstand der Riemannschen Vermutung. Es werden zwei verschiedene Fortsetzungen benötigt. Die erste erweitert die Zetafunktion auf $\Re(s) > 0$. @@ -12,7 +12,7 @@ Die zweite verwendet eine Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden und e Eine grafische Darstellung dieses Plans ist in Abbildung \ref{zeta:fig:continuation_overview} zu sehen. \begin{figure} \centering - \input{papers/zeta/continuation_overview.tikz.tex} + \input{papers/zeta/images/continuation_overview.tikz.tex} \caption{ Die verschiedenen Abschnitte der Riemannschen Zetafunktion. Die originale Definition von \eqref{zeta:equation1} ist im grünen Bereich gültig. @@ -237,7 +237,7 @@ Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:fu Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. -Zunächst wird die poissonsche Summenformel hergeleitet, da diese verwendet werden kann um $\psi(x)$ zu berechnen. +Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourierreihe der Dirac Delta Funktion. @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir den gesuchten Beweis für die poissonsche Summenformel + Wenn wir dies einsetzen und erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -348,8 +348,9 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \, dx = \sum_{k=-\infty}^{\infty} - f(k). + f(k), \end{equation} + was der gesuchte Beweis für die poissonsche Summenformel ist. \end{proof} Erinnern wir uns nochmals an unser Integral aus Gleichung \eqref{zeta:equation:integral2} diff --git a/buch/papers/zeta/continuation_overview.tikz.tex b/buch/papers/zeta/continuation_overview.tikz.tex deleted file mode 100644 index 836ab1d..0000000 --- a/buch/papers/zeta/continuation_overview.tikz.tex +++ /dev/null @@ -1,18 +0,0 @@ -\begin{tikzpicture}[>=stealth', auto, node distance=0.9cm, scale=2, - dot/.style={fill, circle, inner sep=0, minimum size=0.1cm}] - - \draw[->] (-2,0) -- (-1,0) node[dot]{} node[anchor=north]{$-1$} -- (0,0) node[anchor=north west]{$0$} -- (0.5,0) node[anchor=north west]{$0.5$}-- (1,0) node[anchor=north west]{$1$} -- (2,0) node[anchor=west]{$\Re(s)$}; - - \draw[->] (0,-1.2) -- (0,1.2) node[anchor=south]{$\Im(s)$}; - \begin{scope}[yscale=0.1] - \draw[] (1,-1) -- (1,1); - \end{scope} - \draw[dotted] (0.5,-1) -- (0.5,1); - - \begin{scope}[] - \fill[opacity=0.2, red] (-1.8,1) rectangle (0, -1); - \fill[opacity=0.2, blue] (0,1) rectangle (1, -1); - \fill[opacity=0.2, green] (1,1) rectangle (1.8, -1); - \end{scope} - -\end{tikzpicture} diff --git a/buch/papers/zeta/einleitung.tex b/buch/papers/zeta/einleitung.tex index 3b70531..ad87fec 100644 --- a/buch/papers/zeta/einleitung.tex +++ b/buch/papers/zeta/einleitung.tex @@ -1,11 +1,41 @@ \section{Einleitung} \label{zeta:section:einleitung} \rhead{Einleitung} -Die Riemannsche Zetafunktion ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als +Die Riemannsche Zetafunktion $\zeta(s)$ ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als \begin{equation}\label{zeta:equation1} \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \end{equation} +Die Zetafunktion ist bekannt als Bestandteil der Riemannschen Vermutung, welche besagt das alle nichttrivialen Nullstellen der Zetafunktion einen Realteil von $\frac{1}{2}$ haben. +Mithilfe dieser Vermutung kann eine gute Annäherung an die Primzahlfunktion gefunden werden. +Die Primzahlfunktion steigt immer an, sobald eine Primzahl vorkommt. +Eine Darstellung davon ist in Abbildung \ref{fig:zeta:primzahlfunktion} zu finden. +Die Riemannsche Vermutung ist eines der ungelösten Millennium-Probleme der Mathematik, auf deren Lösung eine Belohnung von einer Million Doller ausgesetzt ist \cite{zeta:online:millennium}. +Auf eine genauere Beschreibung der Riemannschen Vermutung wird im Rahmen dieses Papers nicht eingegangen. +\begin{figure} + \centering + \input{papers/zeta/images/primzahlfunktion_paper.pgf} + \caption{Die Primzahlfunktion von $0$ bis $30$.} + \label{fig:zeta:primzahlfunktion} +\end{figure} +Der grundlegende Zusammenhang der Primzahlen und der Zetafunktion wird im ersten Abschnitt \ref{zeta:section:eulerprodukt} über das Eulerprodukt gezeigt. +Danach folgt die Verbindung zur bereits bekannten Gammafunktion in Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion}. +Schlussendlich folgt die Beschreibung der analytischen Fortsetzung die gesamte komplexe Ebene in Abschnitt \ref{zeta:section:analytische_fortsetzung}. + +Diese analytische Fortsetzung wird für die Riemannsche Vermutung benötigt, ermöglicht aber auch andere interessante Aussagen. +So findet sich zum Beispiel immer wieder die aberwitzige Behauptung, das die Summe aller natürlichen Zahlen +\begin{equation*} + \sum{n=1}^{\infty} n + = + \sum_{n=1}^{\infty} + \frac{1}{n^{-1}} + = + -\frac{1}{12} +\end{equation*} +sei. +Obwohl diese Behauptung offensichtlich Falsch ist, hat sie doch ihre Berechtigung, wie durch die analytische Fortsetzung gezeigt werden wird. + +Die folgenden mathematischen Herleitungen sind, sofern nicht anders gekennzeichnet, eigene Darstellungen basierend auf den überaus umfangreichen Wikipedia-Artikeln auf Deutsch \cite{zeta:online:wiki_de} und Englisch \cite{zeta:online:wiki_en} sowie einer Video-Playlist \cite{zeta:online:mryoumath}. diff --git a/buch/papers/zeta/euler_product.tex b/buch/papers/zeta/euler_product.tex index 5f4f5ca..7915c84 100644 --- a/buch/papers/zeta/euler_product.tex +++ b/buch/papers/zeta/euler_product.tex @@ -1,9 +1,9 @@ \section{Eulerprodukt} \label{zeta:section:eulerprodukt} \rhead{Eulerprodukt} -Das Eulerprodukt stellt die Verbindung der Zetafunktion und der Primzahlen her. -Diese Verbindung ist sehr wichtig, da durch sie eine Aussage zur Primzahlverteilung gemacht werden kann. -Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche eines der grössten ungelösten Probleme der Mathematik ist. +Das Eulerprodukt stellt die gesuchte Verbindung der Zetafunktion und der Primzahlen her. +Wie der Name bereits sagt, wurde das Eulerprodukt bereits 1727 von Euler entdeckt. +Um daraus die Riemannsche Vermutung herzuleiten, wäre aber noch einiges mehr nötig. \begin{satz} Für alle Zahlen $s$ mit $\Re(s) > 1$ ist die Zetafunktion identisch mit dem unendlichen Eulerprodukt @@ -65,7 +65,7 @@ Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche n = \prod_i p_i^{k_i} \quad \forall \quad n \in \mathbb{N}. \end{equation} Jeder Summand der Summen in \eqref{zeta:equation:eulerprodukt2} ist somit der Kehrwert genau einer natürlichen Zahl $n \in \mathbb{N}$. - Da die Summen alle möglichen Kombinationen von Exponenten und Primzahlen in \eqref{zeta:equation:eulerprodukt2} enthält haben wir + Da die Summen alle möglichen Kombinationen von Exponenten und Primzahlen in \eqref{zeta:equation:eulerprodukt2} enthält, haben wir \begin{equation} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} @@ -79,7 +79,8 @@ Die Verteilung der Primzahlen ist Gegenstand der Riemannschen Vermutung, welche \sum_{n=1}^\infty \frac{1}{n^s} = - \zeta(s) + \zeta(s), \end{equation} + wodurch das Eulerprudukt bewiesen ist. \end{proof} diff --git a/buch/papers/zeta/fazit.tex b/buch/papers/zeta/fazit.tex new file mode 100644 index 0000000..f696f83 --- /dev/null +++ b/buch/papers/zeta/fazit.tex @@ -0,0 +1,28 @@ +\section{Fazit} \label{zeta:section:fazit} +\rhead{Fazit} + +Ganz zu Beginn dieses Papers wurde die Behauptung erwähnt, dass die Summe aller natürlichen Zahlen $-\frac{1}{12}$ sei. +Diese Summe ist nichts anderes als die Zetafunktion am Wert $s=-1$. +Da wir die analytische Fortsetzung mit der Funktionalgleichung \eqref{zeta:equation:functional} gefunden haben, können wir diese Behauptung prüfen. +Zunächst berechnen wir $\zeta(1-s) = \zeta(2) = \frac{\pi^2}{6}$, welches im konvergenten Bereich der Reihe liegt und auch bekannt ist als das Basler Problem. +Somit haben wir +\begin{align*} + \zeta(s) = \zeta(-1) + &= + \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} + \zeta(1-s) + \frac{\pi^{\frac{s}{2}}}{\Gamma \left( \frac{s}{2} \right)} + \\ + &= + \frac{\Gamma(1)}{\pi} + \frac{\pi^2}{6} + \frac{\pi^{\frac{-1}{2}}}{\Gamma \left( \frac{-1}{2} \right)} + \\ + &= + \frac{1}{\pi} + \frac{\pi^2}{6} + \frac{1}{\sqrt{\pi} (-2\sqrt{\pi})} + &= + -\frac{1}{12}, +\end{align*} +wobei die Werte der Gammafunktion TODO berechnet werden. diff --git a/buch/papers/zeta/images/continuation_overview.tikz.tex b/buch/papers/zeta/images/continuation_overview.tikz.tex new file mode 100644 index 0000000..836ab1d --- /dev/null +++ b/buch/papers/zeta/images/continuation_overview.tikz.tex @@ -0,0 +1,18 @@ +\begin{tikzpicture}[>=stealth', auto, node distance=0.9cm, scale=2, + dot/.style={fill, circle, inner sep=0, minimum size=0.1cm}] + + \draw[->] (-2,0) -- (-1,0) node[dot]{} node[anchor=north]{$-1$} -- (0,0) node[anchor=north west]{$0$} -- (0.5,0) node[anchor=north west]{$0.5$}-- (1,0) node[anchor=north west]{$1$} -- (2,0) node[anchor=west]{$\Re(s)$}; + + \draw[->] (0,-1.2) -- (0,1.2) node[anchor=south]{$\Im(s)$}; + \begin{scope}[yscale=0.1] + \draw[] (1,-1) -- (1,1); + \end{scope} + \draw[dotted] (0.5,-1) -- (0.5,1); + + \begin{scope}[] + \fill[opacity=0.2, red] (-1.8,1) rectangle (0, -1); + \fill[opacity=0.2, blue] (0,1) rectangle (1, -1); + \fill[opacity=0.2, green] (1,1) rectangle (1.8, -1); + \end{scope} + +\end{tikzpicture} diff --git a/buch/papers/zeta/images/primzahlfunktion.pgf b/buch/papers/zeta/images/primzahlfunktion.pgf new file mode 100644 index 0000000..7d4f4fc --- /dev/null +++ b/buch/papers/zeta/images/primzahlfunktion.pgf @@ -0,0 +1,505 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.025455in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.025455in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.776970in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.776970in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.528485in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.528485in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.280000in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.031515in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.031515in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.783030in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.783030in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.534545in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.534545in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.696000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=0.647775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.368000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=1.319775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.040000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=1.991775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.712000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=2.663775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.384000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.633333in, y=3.335775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{4.056000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.563888in, y=4.007775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.025455in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.326061in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{1.326061in}{1.032000in}}% +\pgfpathlineto{\pgfqpoint{1.476364in}{1.032000in}}% +\pgfpathlineto{\pgfqpoint{1.476364in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.776970in}{1.368000in}}% +\pgfpathlineto{\pgfqpoint{1.776970in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{2.077576in}{1.704000in}}% +\pgfpathlineto{\pgfqpoint{2.077576in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.678788in}{2.040000in}}% +\pgfpathlineto{\pgfqpoint{2.678788in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.979394in}{2.376000in}}% +\pgfpathlineto{\pgfqpoint{2.979394in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.580606in}{2.712000in}}% +\pgfpathlineto{\pgfqpoint{3.580606in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.881212in}{3.048000in}}% +\pgfpathlineto{\pgfqpoint{3.881212in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.482424in}{3.384000in}}% +\pgfpathlineto{\pgfqpoint{4.482424in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.384242in}{3.720000in}}% +\pgfpathlineto{\pgfqpoint{5.384242in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{4.056000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/images/primzahlfunktion_paper.pgf b/buch/papers/zeta/images/primzahlfunktion_paper.pgf new file mode 100644 index 0000000..b9d67d3 --- /dev/null +++ b/buch/papers/zeta/images/primzahlfunktion_paper.pgf @@ -0,0 +1,505 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.440000in}{3.480000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.440000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.440000in}{3.480000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.480000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.680000in}{0.382800in}}% +\pgfpathlineto{\pgfqpoint{4.896000in}{0.382800in}}% +\pgfpathlineto{\pgfqpoint{4.896000in}{3.062400in}}% +\pgfpathlineto{\pgfqpoint{0.680000in}{3.062400in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.871636in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.871636in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.510424in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.510424in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.149212in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.149212in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.788000in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.788000in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.426788in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.426788in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.065576in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.065576in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.704364in}{0.382800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.704364in,y=0.285578in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{0.504600in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.513333in, y=0.456375in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{0.991800in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.513333in, y=0.943575in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{1.479000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.513333in, y=1.430775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{1.966200in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.513333in, y=1.917975in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{2.453400in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.513333in, y=2.405175in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.680000in}{2.940600in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.443888in, y=2.892375in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.680000in}{0.382800in}}{\pgfqpoint{4.216000in}{2.679600in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.871636in}{0.504600in}}% +\pgfpathlineto{\pgfqpoint{0.999394in}{0.504600in}}% +\pgfpathlineto{\pgfqpoint{0.999394in}{0.504600in}}% +\pgfpathlineto{\pgfqpoint{1.127152in}{0.504600in}}% +\pgfpathlineto{\pgfqpoint{1.127152in}{0.748200in}}% +\pgfpathlineto{\pgfqpoint{1.254909in}{0.748200in}}% +\pgfpathlineto{\pgfqpoint{1.254909in}{0.991800in}}% +\pgfpathlineto{\pgfqpoint{1.382667in}{0.991800in}}% +\pgfpathlineto{\pgfqpoint{1.382667in}{0.991800in}}% +\pgfpathlineto{\pgfqpoint{1.510424in}{0.991800in}}% +\pgfpathlineto{\pgfqpoint{1.510424in}{1.235400in}}% +\pgfpathlineto{\pgfqpoint{1.638182in}{1.235400in}}% +\pgfpathlineto{\pgfqpoint{1.638182in}{1.235400in}}% +\pgfpathlineto{\pgfqpoint{1.765939in}{1.235400in}}% +\pgfpathlineto{\pgfqpoint{1.765939in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{1.893697in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{1.893697in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.021455in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.021455in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.149212in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.149212in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.276970in}{1.479000in}}% +\pgfpathlineto{\pgfqpoint{2.276970in}{1.722600in}}% +\pgfpathlineto{\pgfqpoint{2.404727in}{1.722600in}}% +\pgfpathlineto{\pgfqpoint{2.404727in}{1.722600in}}% +\pgfpathlineto{\pgfqpoint{2.532485in}{1.722600in}}% +\pgfpathlineto{\pgfqpoint{2.532485in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.660242in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.660242in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.788000in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.788000in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.915758in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{2.915758in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{3.043515in}{1.966200in}}% +\pgfpathlineto{\pgfqpoint{3.043515in}{2.209800in}}% +\pgfpathlineto{\pgfqpoint{3.171273in}{2.209800in}}% +\pgfpathlineto{\pgfqpoint{3.171273in}{2.209800in}}% +\pgfpathlineto{\pgfqpoint{3.299030in}{2.209800in}}% +\pgfpathlineto{\pgfqpoint{3.299030in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.426788in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.426788in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.554545in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.554545in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.682303in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.682303in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.810061in}{2.453400in}}% +\pgfpathlineto{\pgfqpoint{3.810061in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{3.937818in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{3.937818in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.065576in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.065576in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.193333in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.193333in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.321091in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.321091in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.448848in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.448848in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.576606in}{2.697000in}}% +\pgfpathlineto{\pgfqpoint{4.576606in}{2.940600in}}% +\pgfpathlineto{\pgfqpoint{4.704364in}{2.940600in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.680000in}{0.382800in}}% +\pgfpathlineto{\pgfqpoint{0.680000in}{3.062400in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.896000in}{0.382800in}}% +\pgfpathlineto{\pgfqpoint{4.896000in}{3.062400in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.680000in}{0.382800in}}% +\pgfpathlineto{\pgfqpoint{4.896000in}{0.382800in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.680000in}{3.062400in}}% +\pgfpathlineto{\pgfqpoint{4.896000in}{3.062400in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/images/youtube_screenshot.png b/buch/papers/zeta/images/youtube_screenshot.png new file mode 100644 index 0000000..434041b Binary files /dev/null and b/buch/papers/zeta/images/youtube_screenshot.png differ diff --git a/buch/papers/zeta/images/zeta_re_-1_plot.pgf b/buch/papers/zeta/images/zeta_re_-1_plot.pgf new file mode 100644 index 0000000..dd15ba1 --- /dev/null +++ b/buch/papers/zeta/images/zeta_re_-1_plot.pgf @@ -0,0 +1,1147 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.991229in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.991229in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.678290in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.678290in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.365352in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.365352in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.052413in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.052413in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.739474in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.739474in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.426535in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.426535in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.113597in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.113597in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.894551in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.492898in, y=0.855970in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.413962in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.492898in, y=1.375381in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.933373in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.894793in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.452784in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.414204in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.972195in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.933615in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.491606in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.584721in, y=3.453026in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{4.011017in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.584721in, y=3.972437in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.437343in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.040962in}{2.452784in}}% +\pgfpathlineto{\pgfqpoint{3.041938in}{2.448750in}}% +\pgfpathlineto{\pgfqpoint{3.045317in}{2.444722in}}% +\pgfpathlineto{\pgfqpoint{3.050454in}{2.441969in}}% +\pgfpathlineto{\pgfqpoint{3.057405in}{2.440667in}}% +\pgfpathlineto{\pgfqpoint{3.065376in}{2.441381in}}% +\pgfpathlineto{\pgfqpoint{3.073437in}{2.444270in}}% +\pgfpathlineto{\pgfqpoint{3.081535in}{2.449680in}}% +\pgfpathlineto{\pgfqpoint{3.089116in}{2.457647in}}% +\pgfpathlineto{\pgfqpoint{3.097729in}{2.470306in}}% +\pgfpathlineto{\pgfqpoint{3.114507in}{2.495497in}}% +\pgfpathlineto{\pgfqpoint{3.125627in}{2.507753in}}% +\pgfpathlineto{\pgfqpoint{3.138397in}{2.518430in}}% +\pgfpathlineto{\pgfqpoint{3.151970in}{2.527030in}}% +\pgfpathlineto{\pgfqpoint{3.168683in}{2.534840in}}% +\pgfpathlineto{\pgfqpoint{3.186692in}{2.540643in}}% +\pgfpathlineto{\pgfqpoint{3.205162in}{2.544313in}}% +\pgfpathlineto{\pgfqpoint{3.225905in}{2.546053in}}% +\pgfpathlineto{\pgfqpoint{3.245759in}{2.545542in}}% +\pgfpathlineto{\pgfqpoint{3.266931in}{2.542705in}}% +\pgfpathlineto{\pgfqpoint{3.285821in}{2.538106in}}% +\pgfpathlineto{\pgfqpoint{3.305032in}{2.531237in}}% +\pgfpathlineto{\pgfqpoint{3.324119in}{2.521868in}}% +\pgfpathlineto{\pgfqpoint{3.339543in}{2.512008in}}% +\pgfpathlineto{\pgfqpoint{3.354141in}{2.500194in}}% +\pgfpathlineto{\pgfqpoint{3.367504in}{2.486377in}}% +\pgfpathlineto{\pgfqpoint{3.379178in}{2.470553in}}% +\pgfpathlineto{\pgfqpoint{3.386976in}{2.456480in}}% +\pgfpathlineto{\pgfqpoint{3.393121in}{2.441206in}}% +\pgfpathlineto{\pgfqpoint{3.397343in}{2.424812in}}% +\pgfpathlineto{\pgfqpoint{3.399372in}{2.407409in}}% +\pgfpathlineto{\pgfqpoint{3.398939in}{2.389140in}}% +\pgfpathlineto{\pgfqpoint{3.395783in}{2.370184in}}% +\pgfpathlineto{\pgfqpoint{3.389660in}{2.350755in}}% +\pgfpathlineto{\pgfqpoint{3.382987in}{2.336022in}}% +\pgfpathlineto{\pgfqpoint{3.374437in}{2.321281in}}% +\pgfpathlineto{\pgfqpoint{3.363942in}{2.306663in}}% +\pgfpathlineto{\pgfqpoint{3.351444in}{2.292307in}}% +\pgfpathlineto{\pgfqpoint{3.336903in}{2.278365in}}% +\pgfpathlineto{\pgfqpoint{3.320298in}{2.264997in}}% +\pgfpathlineto{\pgfqpoint{3.301627in}{2.252371in}}% +\pgfpathlineto{\pgfqpoint{3.280910in}{2.240662in}}% +\pgfpathlineto{\pgfqpoint{3.258195in}{2.230050in}}% +\pgfpathlineto{\pgfqpoint{3.233551in}{2.220720in}}% +\pgfpathlineto{\pgfqpoint{3.207080in}{2.212858in}}% +\pgfpathlineto{\pgfqpoint{3.178909in}{2.206648in}}% +\pgfpathlineto{\pgfqpoint{3.149199in}{2.202272in}}% +\pgfpathlineto{\pgfqpoint{3.118141in}{2.199908in}}% +\pgfpathlineto{\pgfqpoint{3.085957in}{2.199722in}}% +\pgfpathlineto{\pgfqpoint{3.052902in}{2.201870in}}% +\pgfpathlineto{\pgfqpoint{3.019262in}{2.206494in}}% +\pgfpathlineto{\pgfqpoint{2.985354in}{2.213717in}}% +\pgfpathlineto{\pgfqpoint{2.951523in}{2.223640in}}% +\pgfpathlineto{\pgfqpoint{2.918141in}{2.236339in}}% +\pgfpathlineto{\pgfqpoint{2.885606in}{2.251864in}}% +\pgfpathlineto{\pgfqpoint{2.854333in}{2.270230in}}% +\pgfpathlineto{\pgfqpoint{2.834400in}{2.284047in}}% +\pgfpathlineto{\pgfqpoint{2.815354in}{2.299106in}}% +\pgfpathlineto{\pgfqpoint{2.797326in}{2.315386in}}% +\pgfpathlineto{\pgfqpoint{2.780453in}{2.332856in}}% +\pgfpathlineto{\pgfqpoint{2.764868in}{2.351479in}}% +\pgfpathlineto{\pgfqpoint{2.750706in}{2.371209in}}% +\pgfpathlineto{\pgfqpoint{2.738100in}{2.391989in}}% +\pgfpathlineto{\pgfqpoint{2.727179in}{2.413757in}}% +\pgfpathlineto{\pgfqpoint{2.718070in}{2.436440in}}% +\pgfpathlineto{\pgfqpoint{2.710895in}{2.459955in}}% +\pgfpathlineto{\pgfqpoint{2.705771in}{2.484213in}}% +\pgfpathlineto{\pgfqpoint{2.702808in}{2.509115in}}% +\pgfpathlineto{\pgfqpoint{2.702110in}{2.534554in}}% +\pgfpathlineto{\pgfqpoint{2.703768in}{2.560412in}}% +\pgfpathlineto{\pgfqpoint{2.707869in}{2.586567in}}% +\pgfpathlineto{\pgfqpoint{2.714485in}{2.612888in}}% +\pgfpathlineto{\pgfqpoint{2.723676in}{2.639235in}}% +\pgfpathlineto{\pgfqpoint{2.735493in}{2.665465in}}% +\pgfpathlineto{\pgfqpoint{2.749969in}{2.691426in}}% +\pgfpathlineto{\pgfqpoint{2.767124in}{2.716962in}}% +\pgfpathlineto{\pgfqpoint{2.786961in}{2.741914in}}% +\pgfpathlineto{\pgfqpoint{2.809467in}{2.766119in}}% +\pgfpathlineto{\pgfqpoint{2.834613in}{2.789409in}}% +\pgfpathlineto{\pgfqpoint{2.862350in}{2.811617in}}% +\pgfpathlineto{\pgfqpoint{2.892611in}{2.832576in}}% +\pgfpathlineto{\pgfqpoint{2.925310in}{2.852119in}}% +\pgfpathlineto{\pgfqpoint{2.960342in}{2.870079in}}% +\pgfpathlineto{\pgfqpoint{2.997581in}{2.886297in}}% +\pgfpathlineto{\pgfqpoint{3.036884in}{2.900613in}}% +\pgfpathlineto{\pgfqpoint{3.078086in}{2.912878in}}% +\pgfpathlineto{\pgfqpoint{3.121003in}{2.922947in}}% +\pgfpathlineto{\pgfqpoint{3.165433in}{2.930685in}}% +\pgfpathlineto{\pgfqpoint{3.211156in}{2.935966in}}% +\pgfpathlineto{\pgfqpoint{3.257933in}{2.938677in}}% +\pgfpathlineto{\pgfqpoint{3.305510in}{2.938717in}}% +\pgfpathlineto{\pgfqpoint{3.353615in}{2.935999in}}% +\pgfpathlineto{\pgfqpoint{3.401964in}{2.930452in}}% +\pgfpathlineto{\pgfqpoint{3.450259in}{2.922022in}}% +\pgfpathlineto{\pgfqpoint{3.498193in}{2.910671in}}% +\pgfpathlineto{\pgfqpoint{3.545447in}{2.896383in}}% +\pgfpathlineto{\pgfqpoint{3.591697in}{2.879159in}}% +\pgfpathlineto{\pgfqpoint{3.636612in}{2.859023in}}% +\pgfpathlineto{\pgfqpoint{3.679858in}{2.836019in}}% +\pgfpathlineto{\pgfqpoint{3.721104in}{2.810214in}}% +\pgfpathlineto{\pgfqpoint{3.760018in}{2.781697in}}% +\pgfpathlineto{\pgfqpoint{3.796273in}{2.750581in}}% +\pgfpathlineto{\pgfqpoint{3.829552in}{2.717000in}}% +\pgfpathlineto{\pgfqpoint{3.859546in}{2.681113in}}% +\pgfpathlineto{\pgfqpoint{3.885961in}{2.643100in}}% +\pgfpathlineto{\pgfqpoint{3.908518in}{2.603163in}}% +\pgfpathlineto{\pgfqpoint{3.918269in}{2.582542in}}% +\pgfpathlineto{\pgfqpoint{3.926959in}{2.561527in}}% +\pgfpathlineto{\pgfqpoint{3.934561in}{2.540147in}}% +\pgfpathlineto{\pgfqpoint{3.941047in}{2.518435in}}% +\pgfpathlineto{\pgfqpoint{3.946391in}{2.496425in}}% +\pgfpathlineto{\pgfqpoint{3.950569in}{2.474152in}}% +\pgfpathlineto{\pgfqpoint{3.953560in}{2.451651in}}% +\pgfpathlineto{\pgfqpoint{3.955342in}{2.428959in}}% +\pgfpathlineto{\pgfqpoint{3.955898in}{2.406114in}}% +\pgfpathlineto{\pgfqpoint{3.955211in}{2.383153in}}% +\pgfpathlineto{\pgfqpoint{3.953267in}{2.360118in}}% +\pgfpathlineto{\pgfqpoint{3.950054in}{2.337048in}}% +\pgfpathlineto{\pgfqpoint{3.945564in}{2.313984in}}% +\pgfpathlineto{\pgfqpoint{3.939787in}{2.290967in}}% +\pgfpathlineto{\pgfqpoint{3.932719in}{2.268040in}}% +\pgfpathlineto{\pgfqpoint{3.924359in}{2.245245in}}% +\pgfpathlineto{\pgfqpoint{3.914705in}{2.222626in}}% +\pgfpathlineto{\pgfqpoint{3.903761in}{2.200226in}}% +\pgfpathlineto{\pgfqpoint{3.891530in}{2.178089in}}% +\pgfpathlineto{\pgfqpoint{3.878022in}{2.156258in}}% +\pgfpathlineto{\pgfqpoint{3.863247in}{2.134777in}}% +\pgfpathlineto{\pgfqpoint{3.847217in}{2.113690in}}% +\pgfpathlineto{\pgfqpoint{3.829948in}{2.093041in}}% +\pgfpathlineto{\pgfqpoint{3.811460in}{2.072874in}}% +\pgfpathlineto{\pgfqpoint{3.791772in}{2.053231in}}% +\pgfpathlineto{\pgfqpoint{3.770909in}{2.034155in}}% +\pgfpathlineto{\pgfqpoint{3.748899in}{2.015689in}}% +\pgfpathlineto{\pgfqpoint{3.725769in}{1.997875in}}% +\pgfpathlineto{\pgfqpoint{3.701553in}{1.980752in}}% +\pgfpathlineto{\pgfqpoint{3.676285in}{1.964362in}}% +\pgfpathlineto{\pgfqpoint{3.650003in}{1.948744in}}% +\pgfpathlineto{\pgfqpoint{3.622746in}{1.933936in}}% +\pgfpathlineto{\pgfqpoint{3.594559in}{1.919975in}}% +\pgfpathlineto{\pgfqpoint{3.565485in}{1.906896in}}% +\pgfpathlineto{\pgfqpoint{3.535574in}{1.894735in}}% +\pgfpathlineto{\pgfqpoint{3.504874in}{1.883525in}}% +\pgfpathlineto{\pgfqpoint{3.473440in}{1.873296in}}% +\pgfpathlineto{\pgfqpoint{3.441325in}{1.864080in}}% +\pgfpathlineto{\pgfqpoint{3.408587in}{1.855904in}}% +\pgfpathlineto{\pgfqpoint{3.375285in}{1.848795in}}% +\pgfpathlineto{\pgfqpoint{3.341480in}{1.842778in}}% +\pgfpathlineto{\pgfqpoint{3.307236in}{1.837874in}}% +\pgfpathlineto{\pgfqpoint{3.272618in}{1.834105in}}% +\pgfpathlineto{\pgfqpoint{3.237692in}{1.831489in}}% +\pgfpathlineto{\pgfqpoint{3.202526in}{1.830042in}}% +\pgfpathlineto{\pgfqpoint{3.167192in}{1.829777in}}% +\pgfpathlineto{\pgfqpoint{3.131758in}{1.830707in}}% +\pgfpathlineto{\pgfqpoint{3.096299in}{1.832839in}}% +\pgfpathlineto{\pgfqpoint{3.060886in}{1.836182in}}% +\pgfpathlineto{\pgfqpoint{3.025595in}{1.840737in}}% +\pgfpathlineto{\pgfqpoint{2.990500in}{1.846507in}}% +\pgfpathlineto{\pgfqpoint{2.955677in}{1.853491in}}% +\pgfpathlineto{\pgfqpoint{2.921200in}{1.861684in}}% +\pgfpathlineto{\pgfqpoint{2.887148in}{1.871078in}}% +\pgfpathlineto{\pgfqpoint{2.853595in}{1.881666in}}% +\pgfpathlineto{\pgfqpoint{2.820618in}{1.893433in}}% +\pgfpathlineto{\pgfqpoint{2.788292in}{1.906365in}}% +\pgfpathlineto{\pgfqpoint{2.756692in}{1.920444in}}% +\pgfpathlineto{\pgfqpoint{2.725894in}{1.935648in}}% +\pgfpathlineto{\pgfqpoint{2.695970in}{1.951954in}}% +\pgfpathlineto{\pgfqpoint{2.666994in}{1.969335in}}% +\pgfpathlineto{\pgfqpoint{2.639036in}{1.987763in}}% +\pgfpathlineto{\pgfqpoint{2.612167in}{2.007203in}}% +\pgfpathlineto{\pgfqpoint{2.586455in}{2.027622in}}% +\pgfpathlineto{\pgfqpoint{2.561965in}{2.048983in}}% +\pgfpathlineto{\pgfqpoint{2.538764in}{2.071243in}}% +\pgfpathlineto{\pgfqpoint{2.516912in}{2.094362in}}% +\pgfpathlineto{\pgfqpoint{2.496471in}{2.118292in}}% +\pgfpathlineto{\pgfqpoint{2.477496in}{2.142986in}}% +\pgfpathlineto{\pgfqpoint{2.460043in}{2.168395in}}% +\pgfpathlineto{\pgfqpoint{2.444163in}{2.194464in}}% +\pgfpathlineto{\pgfqpoint{2.429904in}{2.221139in}}% +\pgfpathlineto{\pgfqpoint{2.417313in}{2.248363in}}% +\pgfpathlineto{\pgfqpoint{2.406430in}{2.276078in}}% +\pgfpathlineto{\pgfqpoint{2.397293in}{2.304221in}}% +\pgfpathlineto{\pgfqpoint{2.389938in}{2.332730in}}% +\pgfpathlineto{\pgfqpoint{2.384395in}{2.361542in}}% +\pgfpathlineto{\pgfqpoint{2.380689in}{2.390589in}}% +\pgfpathlineto{\pgfqpoint{2.378844in}{2.419805in}}% +\pgfpathlineto{\pgfqpoint{2.378877in}{2.449121in}}% +\pgfpathlineto{\pgfqpoint{2.380802in}{2.478467in}}% +\pgfpathlineto{\pgfqpoint{2.384628in}{2.507774in}}% +\pgfpathlineto{\pgfqpoint{2.390359in}{2.536969in}}% +\pgfpathlineto{\pgfqpoint{2.397996in}{2.565982in}}% +\pgfpathlineto{\pgfqpoint{2.407533in}{2.594739in}}% +\pgfpathlineto{\pgfqpoint{2.418960in}{2.623168in}}% +\pgfpathlineto{\pgfqpoint{2.432264in}{2.651198in}}% +\pgfpathlineto{\pgfqpoint{2.447423in}{2.678755in}}% +\pgfpathlineto{\pgfqpoint{2.464415in}{2.705767in}}% +\pgfpathlineto{\pgfqpoint{2.483209in}{2.732163in}}% +\pgfpathlineto{\pgfqpoint{2.503771in}{2.757873in}}% +\pgfpathlineto{\pgfqpoint{2.526062in}{2.782826in}}% +\pgfpathlineto{\pgfqpoint{2.550037in}{2.806954in}}% +\pgfpathlineto{\pgfqpoint{2.575648in}{2.830189in}}% +\pgfpathlineto{\pgfqpoint{2.602841in}{2.852466in}}% +\pgfpathlineto{\pgfqpoint{2.631556in}{2.873720in}}% +\pgfpathlineto{\pgfqpoint{2.661731in}{2.893889in}}% +\pgfpathlineto{\pgfqpoint{2.693298in}{2.912913in}}% +\pgfpathlineto{\pgfqpoint{2.726185in}{2.930734in}}% +\pgfpathlineto{\pgfqpoint{2.760315in}{2.947296in}}% +\pgfpathlineto{\pgfqpoint{2.795607in}{2.962548in}}% +\pgfpathlineto{\pgfqpoint{2.831976in}{2.976438in}}% +\pgfpathlineto{\pgfqpoint{2.869335in}{2.988921in}}% +\pgfpathlineto{\pgfqpoint{2.907589in}{2.999952in}}% +\pgfpathlineto{\pgfqpoint{2.946645in}{3.009492in}}% +\pgfpathlineto{\pgfqpoint{2.986401in}{3.017503in}}% +\pgfpathlineto{\pgfqpoint{3.026758in}{3.023952in}}% +\pgfpathlineto{\pgfqpoint{3.067608in}{3.028811in}}% +\pgfpathlineto{\pgfqpoint{3.108845in}{3.032054in}}% +\pgfpathlineto{\pgfqpoint{3.150359in}{3.033659in}}% +\pgfpathlineto{\pgfqpoint{3.192038in}{3.033610in}}% +\pgfpathlineto{\pgfqpoint{3.233769in}{3.031894in}}% +\pgfpathlineto{\pgfqpoint{3.275435in}{3.028503in}}% +\pgfpathlineto{\pgfqpoint{3.316920in}{3.023433in}}% +\pgfpathlineto{\pgfqpoint{3.358108in}{3.016685in}}% +\pgfpathlineto{\pgfqpoint{3.398880in}{3.008265in}}% +\pgfpathlineto{\pgfqpoint{3.439119in}{2.998182in}}% +\pgfpathlineto{\pgfqpoint{3.478706in}{2.986452in}}% +\pgfpathlineto{\pgfqpoint{3.517523in}{2.973095in}}% +\pgfpathlineto{\pgfqpoint{3.555454in}{2.958135in}}% +\pgfpathlineto{\pgfqpoint{3.592382in}{2.941601in}}% +\pgfpathlineto{\pgfqpoint{3.628194in}{2.923528in}}% +\pgfpathlineto{\pgfqpoint{3.662777in}{2.903955in}}% +\pgfpathlineto{\pgfqpoint{3.696020in}{2.882924in}}% +\pgfpathlineto{\pgfqpoint{3.727816in}{2.860485in}}% +\pgfpathlineto{\pgfqpoint{3.758058in}{2.836691in}}% +\pgfpathlineto{\pgfqpoint{3.786646in}{2.811598in}}% +\pgfpathlineto{\pgfqpoint{3.813480in}{2.785269in}}% +\pgfpathlineto{\pgfqpoint{3.838466in}{2.757769in}}% +\pgfpathlineto{\pgfqpoint{3.861512in}{2.729170in}}% +\pgfpathlineto{\pgfqpoint{3.882535in}{2.699545in}}% +\pgfpathlineto{\pgfqpoint{3.901450in}{2.668973in}}% +\pgfpathlineto{\pgfqpoint{3.918184in}{2.637535in}}% +\pgfpathlineto{\pgfqpoint{3.932664in}{2.605317in}}% +\pgfpathlineto{\pgfqpoint{3.944827in}{2.572409in}}% +\pgfpathlineto{\pgfqpoint{3.954611in}{2.538901in}}% +\pgfpathlineto{\pgfqpoint{3.961966in}{2.504888in}}% +\pgfpathlineto{\pgfqpoint{3.966844in}{2.470469in}}% +\pgfpathlineto{\pgfqpoint{3.969206in}{2.435743in}}% +\pgfpathlineto{\pgfqpoint{3.969019in}{2.400812in}}% +\pgfpathlineto{\pgfqpoint{3.966257in}{2.365780in}}% +\pgfpathlineto{\pgfqpoint{3.960902in}{2.330753in}}% +\pgfpathlineto{\pgfqpoint{3.952942in}{2.295838in}}% +\pgfpathlineto{\pgfqpoint{3.942376in}{2.261141in}}% +\pgfpathlineto{\pgfqpoint{3.929207in}{2.226773in}}% +\pgfpathlineto{\pgfqpoint{3.913447in}{2.192842in}}% +\pgfpathlineto{\pgfqpoint{3.895116in}{2.159457in}}% +\pgfpathlineto{\pgfqpoint{3.874244in}{2.126727in}}% +\pgfpathlineto{\pgfqpoint{3.850865in}{2.094761in}}% +\pgfpathlineto{\pgfqpoint{3.825024in}{2.063665in}}% +\pgfpathlineto{\pgfqpoint{3.796774in}{2.033546in}}% +\pgfpathlineto{\pgfqpoint{3.766173in}{2.004508in}}% +\pgfpathlineto{\pgfqpoint{3.733291in}{1.976655in}}% +\pgfpathlineto{\pgfqpoint{3.698203in}{1.950085in}}% +\pgfpathlineto{\pgfqpoint{3.660992in}{1.924898in}}% +\pgfpathlineto{\pgfqpoint{3.621749in}{1.901188in}}% +\pgfpathlineto{\pgfqpoint{3.580573in}{1.879046in}}% +\pgfpathlineto{\pgfqpoint{3.537569in}{1.858560in}}% +\pgfpathlineto{\pgfqpoint{3.492849in}{1.839815in}}% +\pgfpathlineto{\pgfqpoint{3.446534in}{1.822891in}}% +\pgfpathlineto{\pgfqpoint{3.398748in}{1.807862in}}% +\pgfpathlineto{\pgfqpoint{3.349623in}{1.794799in}}% +\pgfpathlineto{\pgfqpoint{3.299297in}{1.783767in}}% +\pgfpathlineto{\pgfqpoint{3.247913in}{1.774827in}}% +\pgfpathlineto{\pgfqpoint{3.195620in}{1.768033in}}% +\pgfpathlineto{\pgfqpoint{3.142569in}{1.763432in}}% +\pgfpathlineto{\pgfqpoint{3.088920in}{1.761068in}}% +\pgfpathlineto{\pgfqpoint{3.034833in}{1.760975in}}% +\pgfpathlineto{\pgfqpoint{2.980472in}{1.763184in}}% +\pgfpathlineto{\pgfqpoint{2.926006in}{1.767717in}}% +\pgfpathlineto{\pgfqpoint{2.871606in}{1.774590in}}% +\pgfpathlineto{\pgfqpoint{2.817442in}{1.783810in}}% +\pgfpathlineto{\pgfqpoint{2.763691in}{1.795380in}}% +\pgfpathlineto{\pgfqpoint{2.710525in}{1.809294in}}% +\pgfpathlineto{\pgfqpoint{2.658121in}{1.825537in}}% +\pgfpathlineto{\pgfqpoint{2.606654in}{1.844090in}}% +\pgfpathlineto{\pgfqpoint{2.556299in}{1.864924in}}% +\pgfpathlineto{\pgfqpoint{2.507230in}{1.888003in}}% +\pgfpathlineto{\pgfqpoint{2.459617in}{1.913284in}}% +\pgfpathlineto{\pgfqpoint{2.413632in}{1.940716in}}% +\pgfpathlineto{\pgfqpoint{2.369440in}{1.970241in}}% +\pgfpathlineto{\pgfqpoint{2.327204in}{2.001793in}}% +\pgfpathlineto{\pgfqpoint{2.287084in}{2.035300in}}% +\pgfpathlineto{\pgfqpoint{2.249234in}{2.070681in}}% +\pgfpathlineto{\pgfqpoint{2.213803in}{2.107850in}}% +\pgfpathlineto{\pgfqpoint{2.180937in}{2.146713in}}% +\pgfpathlineto{\pgfqpoint{2.150771in}{2.187170in}}% +\pgfpathlineto{\pgfqpoint{2.123437in}{2.229114in}}% +\pgfpathlineto{\pgfqpoint{2.099058in}{2.272432in}}% +\pgfpathlineto{\pgfqpoint{2.077750in}{2.317007in}}% +\pgfpathlineto{\pgfqpoint{2.059621in}{2.362714in}}% +\pgfpathlineto{\pgfqpoint{2.044770in}{2.409424in}}% +\pgfpathlineto{\pgfqpoint{2.033285in}{2.457003in}}% +\pgfpathlineto{\pgfqpoint{2.025248in}{2.505313in}}% +\pgfpathlineto{\pgfqpoint{2.020728in}{2.554210in}}% +\pgfpathlineto{\pgfqpoint{2.019786in}{2.603548in}}% +\pgfpathlineto{\pgfqpoint{2.022471in}{2.653179in}}% +\pgfpathlineto{\pgfqpoint{2.028820in}{2.702949in}}% +\pgfpathlineto{\pgfqpoint{2.038862in}{2.752704in}}% +\pgfpathlineto{\pgfqpoint{2.052611in}{2.802287in}}% +\pgfpathlineto{\pgfqpoint{2.070073in}{2.851540in}}% +\pgfpathlineto{\pgfqpoint{2.091238in}{2.900304in}}% +\pgfpathlineto{\pgfqpoint{2.116087in}{2.948419in}}% +\pgfpathlineto{\pgfqpoint{2.144589in}{2.995726in}}% +\pgfpathlineto{\pgfqpoint{2.176699in}{3.042067in}}% +\pgfpathlineto{\pgfqpoint{2.212362in}{3.087283in}}% +\pgfpathlineto{\pgfqpoint{2.251508in}{3.131220in}}% +\pgfpathlineto{\pgfqpoint{2.294058in}{3.173723in}}% +\pgfpathlineto{\pgfqpoint{2.339920in}{3.214641in}}% +\pgfpathlineto{\pgfqpoint{2.388990in}{3.253827in}}% +\pgfpathlineto{\pgfqpoint{2.441152in}{3.291137in}}% +\pgfpathlineto{\pgfqpoint{2.496278in}{3.326431in}}% +\pgfpathlineto{\pgfqpoint{2.554232in}{3.359575in}}% +\pgfpathlineto{\pgfqpoint{2.614865in}{3.390439in}}% +\pgfpathlineto{\pgfqpoint{2.678016in}{3.418901in}}% +\pgfpathlineto{\pgfqpoint{2.743517in}{3.444843in}}% +\pgfpathlineto{\pgfqpoint{2.811189in}{3.468155in}}% +\pgfpathlineto{\pgfqpoint{2.880844in}{3.488734in}}% +\pgfpathlineto{\pgfqpoint{2.952286in}{3.506484in}}% +\pgfpathlineto{\pgfqpoint{3.025310in}{3.521319in}}% +\pgfpathlineto{\pgfqpoint{3.099703in}{3.533160in}}% +\pgfpathlineto{\pgfqpoint{3.175247in}{3.541938in}}% +\pgfpathlineto{\pgfqpoint{3.251717in}{3.547591in}}% +\pgfpathlineto{\pgfqpoint{3.328881in}{3.550069in}}% +\pgfpathlineto{\pgfqpoint{3.406506in}{3.549331in}}% +\pgfpathlineto{\pgfqpoint{3.484350in}{3.545345in}}% +\pgfpathlineto{\pgfqpoint{3.562172in}{3.538091in}}% +\pgfpathlineto{\pgfqpoint{3.639725in}{3.527560in}}% +\pgfpathlineto{\pgfqpoint{3.716763in}{3.513750in}}% +\pgfpathlineto{\pgfqpoint{3.793038in}{3.496674in}}% +\pgfpathlineto{\pgfqpoint{3.868302in}{3.476354in}}% +\pgfpathlineto{\pgfqpoint{3.942306in}{3.452823in}}% +\pgfpathlineto{\pgfqpoint{4.014806in}{3.426125in}}% +\pgfpathlineto{\pgfqpoint{4.085559in}{3.396314in}}% +\pgfpathlineto{\pgfqpoint{4.154324in}{3.363458in}}% +\pgfpathlineto{\pgfqpoint{4.220865in}{3.327632in}}% +\pgfpathlineto{\pgfqpoint{4.284953in}{3.288923in}}% +\pgfpathlineto{\pgfqpoint{4.346362in}{3.247431in}}% +\pgfpathlineto{\pgfqpoint{4.404874in}{3.203261in}}% +\pgfpathlineto{\pgfqpoint{4.460278in}{3.156533in}}% +\pgfpathlineto{\pgfqpoint{4.512374in}{3.107374in}}% +\pgfpathlineto{\pgfqpoint{4.560967in}{3.055920in}}% +\pgfpathlineto{\pgfqpoint{4.605876in}{3.002319in}}% +\pgfpathlineto{\pgfqpoint{4.646927in}{2.946724in}}% +\pgfpathlineto{\pgfqpoint{4.683960in}{2.889298in}}% +\pgfpathlineto{\pgfqpoint{4.716827in}{2.830211in}}% +\pgfpathlineto{\pgfqpoint{4.745390in}{2.769642in}}% +\pgfpathlineto{\pgfqpoint{4.769528in}{2.707772in}}% +\pgfpathlineto{\pgfqpoint{4.789132in}{2.644794in}}% +\pgfpathlineto{\pgfqpoint{4.804108in}{2.580901in}}% +\pgfpathlineto{\pgfqpoint{4.814376in}{2.516295in}}% +\pgfpathlineto{\pgfqpoint{4.819873in}{2.451180in}}% +\pgfpathlineto{\pgfqpoint{4.820549in}{2.385763in}}% +\pgfpathlineto{\pgfqpoint{4.816375in}{2.320255in}}% +\pgfpathlineto{\pgfqpoint{4.807332in}{2.254868in}}% +\pgfpathlineto{\pgfqpoint{4.793424in}{2.189817in}}% +\pgfpathlineto{\pgfqpoint{4.774666in}{2.125315in}}% +\pgfpathlineto{\pgfqpoint{4.751094in}{2.061577in}}% +\pgfpathlineto{\pgfqpoint{4.722760in}{1.998816in}}% +\pgfpathlineto{\pgfqpoint{4.689731in}{1.937243in}}% +\pgfpathlineto{\pgfqpoint{4.652093in}{1.877067in}}% +\pgfpathlineto{\pgfqpoint{4.609947in}{1.818494in}}% +\pgfpathlineto{\pgfqpoint{4.563413in}{1.761725in}}% +\pgfpathlineto{\pgfqpoint{4.512624in}{1.706957in}}% +\pgfpathlineto{\pgfqpoint{4.457731in}{1.654381in}}% +\pgfpathlineto{\pgfqpoint{4.398900in}{1.604181in}}% +\pgfpathlineto{\pgfqpoint{4.336312in}{1.556535in}}% +\pgfpathlineto{\pgfqpoint{4.270162in}{1.511612in}}% +\pgfpathlineto{\pgfqpoint{4.200659in}{1.469575in}}% +\pgfpathlineto{\pgfqpoint{4.128027in}{1.430575in}}% +\pgfpathlineto{\pgfqpoint{4.052500in}{1.394754in}}% +\pgfpathlineto{\pgfqpoint{3.974326in}{1.362245in}}% +\pgfpathlineto{\pgfqpoint{3.893762in}{1.333167in}}% +\pgfpathlineto{\pgfqpoint{3.811078in}{1.307631in}}% +\pgfpathlineto{\pgfqpoint{3.726550in}{1.285733in}}% +\pgfpathlineto{\pgfqpoint{3.640464in}{1.267559in}}% +\pgfpathlineto{\pgfqpoint{3.553115in}{1.253180in}}% +\pgfpathlineto{\pgfqpoint{3.464801in}{1.242654in}}% +\pgfpathlineto{\pgfqpoint{3.375828in}{1.236027in}}% +\pgfpathlineto{\pgfqpoint{3.286504in}{1.233329in}}% +\pgfpathlineto{\pgfqpoint{3.197142in}{1.234577in}}% +\pgfpathlineto{\pgfqpoint{3.108056in}{1.239772in}}% +\pgfpathlineto{\pgfqpoint{3.019560in}{1.248903in}}% +\pgfpathlineto{\pgfqpoint{2.931969in}{1.261943in}}% +\pgfpathlineto{\pgfqpoint{2.845595in}{1.278850in}}% +\pgfpathlineto{\pgfqpoint{2.760749in}{1.299569in}}% +\pgfpathlineto{\pgfqpoint{2.677735in}{1.324028in}}% +\pgfpathlineto{\pgfqpoint{2.596855in}{1.352142in}}% +\pgfpathlineto{\pgfqpoint{2.518402in}{1.383813in}}% +\pgfpathlineto{\pgfqpoint{2.442663in}{1.418928in}}% +\pgfpathlineto{\pgfqpoint{2.369915in}{1.457359in}}% +\pgfpathlineto{\pgfqpoint{2.300427in}{1.498969in}}% +\pgfpathlineto{\pgfqpoint{2.234454in}{1.543603in}}% +\pgfpathlineto{\pgfqpoint{2.172241in}{1.591097in}}% +\pgfpathlineto{\pgfqpoint{2.114019in}{1.641275in}}% +\pgfpathlineto{\pgfqpoint{2.060005in}{1.693949in}}% +\pgfpathlineto{\pgfqpoint{2.010401in}{1.748922in}}% +\pgfpathlineto{\pgfqpoint{1.965393in}{1.805984in}}% +\pgfpathlineto{\pgfqpoint{1.925149in}{1.864920in}}% +\pgfpathlineto{\pgfqpoint{1.889821in}{1.925505in}}% +\pgfpathlineto{\pgfqpoint{1.859541in}{1.987504in}}% +\pgfpathlineto{\pgfqpoint{1.834423in}{2.050680in}}% +\pgfpathlineto{\pgfqpoint{1.814560in}{2.114787in}}% +\pgfpathlineto{\pgfqpoint{1.800025in}{2.179575in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{2.244791in}}% +\pgfpathlineto{\pgfqpoint{1.787131in}{2.310179in}}% +\pgfpathlineto{\pgfqpoint{1.788813in}{2.375480in}}% +\pgfpathlineto{\pgfqpoint{1.795906in}{2.440434in}}% +\pgfpathlineto{\pgfqpoint{1.808377in}{2.504784in}}% +\pgfpathlineto{\pgfqpoint{1.826170in}{2.568272in}}% +\pgfpathlineto{\pgfqpoint{1.849209in}{2.630643in}}% +\pgfpathlineto{\pgfqpoint{1.877396in}{2.691644in}}% +\pgfpathlineto{\pgfqpoint{1.910610in}{2.751028in}}% +\pgfpathlineto{\pgfqpoint{1.948711in}{2.808554in}}% +\pgfpathlineto{\pgfqpoint{1.991536in}{2.863985in}}% +\pgfpathlineto{\pgfqpoint{2.038905in}{2.917095in}}% +\pgfpathlineto{\pgfqpoint{2.090616in}{2.967663in}}% +\pgfpathlineto{\pgfqpoint{2.146448in}{3.015481in}}% +\pgfpathlineto{\pgfqpoint{2.206164in}{3.060348in}}% +\pgfpathlineto{\pgfqpoint{2.269508in}{3.102076in}}% +\pgfpathlineto{\pgfqpoint{2.336207in}{3.140490in}}% +\pgfpathlineto{\pgfqpoint{2.405975in}{3.175427in}}% +\pgfpathlineto{\pgfqpoint{2.478509in}{3.206739in}}% +\pgfpathlineto{\pgfqpoint{2.553495in}{3.234289in}}% +\pgfpathlineto{\pgfqpoint{2.630606in}{3.257961in}}% +\pgfpathlineto{\pgfqpoint{2.709504in}{3.277650in}}% +\pgfpathlineto{\pgfqpoint{2.789843in}{3.293269in}}% +\pgfpathlineto{\pgfqpoint{2.871268in}{3.304750in}}% +\pgfpathlineto{\pgfqpoint{2.953418in}{3.312039in}}% +\pgfpathlineto{\pgfqpoint{3.035925in}{3.315102in}}% +\pgfpathlineto{\pgfqpoint{3.118421in}{3.313922in}}% +\pgfpathlineto{\pgfqpoint{3.200533in}{3.308501in}}% +\pgfpathlineto{\pgfqpoint{3.281890in}{3.298859in}}% +\pgfpathlineto{\pgfqpoint{3.362119in}{3.285035in}}% +\pgfpathlineto{\pgfqpoint{3.440853in}{3.267085in}}% +\pgfpathlineto{\pgfqpoint{3.517728in}{3.245086in}}% +\pgfpathlineto{\pgfqpoint{3.592386in}{3.219130in}}% +\pgfpathlineto{\pgfqpoint{3.664475in}{3.189330in}}% +\pgfpathlineto{\pgfqpoint{3.733656in}{3.155815in}}% +\pgfpathlineto{\pgfqpoint{3.799598in}{3.118732in}}% +\pgfpathlineto{\pgfqpoint{3.861982in}{3.078243in}}% +\pgfpathlineto{\pgfqpoint{3.920503in}{3.034529in}}% +\pgfpathlineto{\pgfqpoint{3.974873in}{2.987784in}}% +\pgfpathlineto{\pgfqpoint{4.024819in}{2.938219in}}% +\pgfpathlineto{\pgfqpoint{4.070085in}{2.886057in}}% +\pgfpathlineto{\pgfqpoint{4.110436in}{2.831537in}}% +\pgfpathlineto{\pgfqpoint{4.145657in}{2.774906in}}% +\pgfpathlineto{\pgfqpoint{4.175554in}{2.716427in}}% +\pgfpathlineto{\pgfqpoint{4.199956in}{2.656371in}}% +\pgfpathlineto{\pgfqpoint{4.218715in}{2.595018in}}% +\pgfpathlineto{\pgfqpoint{4.231708in}{2.532656in}}% +\pgfpathlineto{\pgfqpoint{4.238838in}{2.469580in}}% +\pgfpathlineto{\pgfqpoint{4.240031in}{2.406091in}}% +\pgfpathlineto{\pgfqpoint{4.235243in}{2.342495in}}% +\pgfpathlineto{\pgfqpoint{4.224454in}{2.279100in}}% +\pgfpathlineto{\pgfqpoint{4.207674in}{2.216214in}}% +\pgfpathlineto{\pgfqpoint{4.184938in}{2.154148in}}% +\pgfpathlineto{\pgfqpoint{4.156309in}{2.093212in}}% +\pgfpathlineto{\pgfqpoint{4.121878in}{2.033710in}}% +\pgfpathlineto{\pgfqpoint{4.081764in}{1.975947in}}% +\pgfpathlineto{\pgfqpoint{4.036113in}{1.920219in}}% +\pgfpathlineto{\pgfqpoint{3.985097in}{1.866816in}}% +\pgfpathlineto{\pgfqpoint{3.928914in}{1.816022in}}% +\pgfpathlineto{\pgfqpoint{3.867788in}{1.768109in}}% +\pgfpathlineto{\pgfqpoint{3.801970in}{1.723340in}}% +\pgfpathlineto{\pgfqpoint{3.731731in}{1.681965in}}% +\pgfpathlineto{\pgfqpoint{3.657368in}{1.644222in}}% +\pgfpathlineto{\pgfqpoint{3.579199in}{1.610334in}}% +\pgfpathlineto{\pgfqpoint{3.497564in}{1.580507in}}% +\pgfpathlineto{\pgfqpoint{3.412819in}{1.554933in}}% +\pgfpathlineto{\pgfqpoint{3.325342in}{1.533783in}}% +\pgfpathlineto{\pgfqpoint{3.235524in}{1.517213in}}% +\pgfpathlineto{\pgfqpoint{3.143774in}{1.505356in}}% +\pgfpathlineto{\pgfqpoint{3.050511in}{1.498327in}}% +\pgfpathlineto{\pgfqpoint{2.956169in}{1.496219in}}% +\pgfpathlineto{\pgfqpoint{2.861189in}{1.499102in}}% +\pgfpathlineto{\pgfqpoint{2.766019in}{1.507026in}}% +\pgfpathlineto{\pgfqpoint{2.671115in}{1.520016in}}% +\pgfpathlineto{\pgfqpoint{2.576935in}{1.538076in}}% +\pgfpathlineto{\pgfqpoint{2.483940in}{1.561185in}}% +\pgfpathlineto{\pgfqpoint{2.392589in}{1.589299in}}% +\pgfpathlineto{\pgfqpoint{2.303340in}{1.622350in}}% +\pgfpathlineto{\pgfqpoint{2.216645in}{1.660247in}}% +\pgfpathlineto{\pgfqpoint{2.132949in}{1.702875in}}% +\pgfpathlineto{\pgfqpoint{2.052690in}{1.750096in}}% +\pgfpathlineto{\pgfqpoint{1.976293in}{1.801750in}}% +\pgfpathlineto{\pgfqpoint{1.904172in}{1.857653in}}% +\pgfpathlineto{\pgfqpoint{1.836723in}{1.917602in}}% +\pgfpathlineto{\pgfqpoint{1.774328in}{1.981370in}}% +\pgfpathlineto{\pgfqpoint{1.717348in}{2.048712in}}% +\pgfpathlineto{\pgfqpoint{1.666124in}{2.119363in}}% +\pgfpathlineto{\pgfqpoint{1.620974in}{2.193040in}}% +\pgfpathlineto{\pgfqpoint{1.582192in}{2.269442in}}% +\pgfpathlineto{\pgfqpoint{1.550045in}{2.348253in}}% +\pgfpathlineto{\pgfqpoint{1.524775in}{2.429141in}}% +\pgfpathlineto{\pgfqpoint{1.506591in}{2.511764in}}% +\pgfpathlineto{\pgfqpoint{1.495676in}{2.595763in}}% +\pgfpathlineto{\pgfqpoint{1.492180in}{2.680773in}}% +\pgfpathlineto{\pgfqpoint{1.496219in}{2.766418in}}% +\pgfpathlineto{\pgfqpoint{1.507879in}{2.852315in}}% +\pgfpathlineto{\pgfqpoint{1.527209in}{2.938076in}}% +\pgfpathlineto{\pgfqpoint{1.554225in}{3.023310in}}% +\pgfpathlineto{\pgfqpoint{1.588909in}{3.107621in}}% +\pgfpathlineto{\pgfqpoint{1.631204in}{3.190617in}}% +\pgfpathlineto{\pgfqpoint{1.681021in}{3.271903in}}% +\pgfpathlineto{\pgfqpoint{1.738235in}{3.351092in}}% +\pgfpathlineto{\pgfqpoint{1.802684in}{3.427799in}}% +\pgfpathlineto{\pgfqpoint{1.874172in}{3.501647in}}% +\pgfpathlineto{\pgfqpoint{1.952470in}{3.572269in}}% +\pgfpathlineto{\pgfqpoint{2.037313in}{3.639306in}}% +\pgfpathlineto{\pgfqpoint{2.128405in}{3.702414in}}% +\pgfpathlineto{\pgfqpoint{2.225418in}{3.761262in}}% +\pgfpathlineto{\pgfqpoint{2.327993in}{3.815536in}}% +\pgfpathlineto{\pgfqpoint{2.435740in}{3.864938in}}% +\pgfpathlineto{\pgfqpoint{2.548245in}{3.909190in}}% +\pgfpathlineto{\pgfqpoint{2.665065in}{3.948033in}}% +\pgfpathlineto{\pgfqpoint{2.785734in}{3.981232in}}% +\pgfpathlineto{\pgfqpoint{2.909762in}{4.008574in}}% +\pgfpathlineto{\pgfqpoint{3.036639in}{4.029871in}}% +\pgfpathlineto{\pgfqpoint{3.165839in}{4.044961in}}% +\pgfpathlineto{\pgfqpoint{3.296817in}{4.053706in}}% +\pgfpathlineto{\pgfqpoint{3.429016in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.561867in}{4.051761in}}% +\pgfpathlineto{\pgfqpoint{3.694792in}{4.040939in}}% +\pgfpathlineto{\pgfqpoint{3.827209in}{4.023511in}}% +\pgfpathlineto{\pgfqpoint{3.958530in}{3.999486in}}% +\pgfpathlineto{\pgfqpoint{4.088167in}{3.968902in}}% +\pgfpathlineto{\pgfqpoint{4.215534in}{3.931828in}}% +\pgfpathlineto{\pgfqpoint{4.340051in}{3.888362in}}% +\pgfpathlineto{\pgfqpoint{4.461144in}{3.838634in}}% +\pgfpathlineto{\pgfqpoint{4.578248in}{3.782801in}}% +\pgfpathlineto{\pgfqpoint{4.690815in}{3.721053in}}% +\pgfpathlineto{\pgfqpoint{4.798309in}{3.653606in}}% +\pgfpathlineto{\pgfqpoint{4.900213in}{3.580704in}}% +\pgfpathlineto{\pgfqpoint{4.996032in}{3.502620in}}% +\pgfpathlineto{\pgfqpoint{5.085292in}{3.419651in}}% +\pgfpathlineto{\pgfqpoint{5.167549in}{3.332121in}}% +\pgfpathlineto{\pgfqpoint{5.242383in}{3.240375in}}% +\pgfpathlineto{\pgfqpoint{5.309406in}{3.144784in}}% +\pgfpathlineto{\pgfqpoint{5.368262in}{3.045736in}}% +\pgfpathlineto{\pgfqpoint{5.418631in}{2.943641in}}% +\pgfpathlineto{\pgfqpoint{5.460227in}{2.838924in}}% +\pgfpathlineto{\pgfqpoint{5.492804in}{2.732027in}}% +\pgfpathlineto{\pgfqpoint{5.516154in}{2.623406in}}% +\pgfpathlineto{\pgfqpoint{5.530109in}{2.513527in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.402867in}}% +\pgfpathlineto{\pgfqpoint{5.529381in}{2.291908in}}% +\pgfpathlineto{\pgfqpoint{5.514576in}{2.181141in}}% +\pgfpathlineto{\pgfqpoint{5.490138in}{2.071056in}}% +\pgfpathlineto{\pgfqpoint{5.456115in}{1.962145in}}% +\pgfpathlineto{\pgfqpoint{5.412604in}{1.854898in}}% +\pgfpathlineto{\pgfqpoint{5.359742in}{1.749802in}}% +\pgfpathlineto{\pgfqpoint{5.297714in}{1.647336in}}% +\pgfpathlineto{\pgfqpoint{5.226748in}{1.547970in}}% +\pgfpathlineto{\pgfqpoint{5.147113in}{1.452165in}}% +\pgfpathlineto{\pgfqpoint{5.059123in}{1.360366in}}% +\pgfpathlineto{\pgfqpoint{4.963131in}{1.273003in}}% +\pgfpathlineto{\pgfqpoint{4.859530in}{1.190491in}}% +\pgfpathlineto{\pgfqpoint{4.748751in}{1.113220in}}% +\pgfpathlineto{\pgfqpoint{4.631262in}{1.041563in}}% +\pgfpathlineto{\pgfqpoint{4.507564in}{0.975865in}}% +\pgfpathlineto{\pgfqpoint{4.378193in}{0.916449in}}% +\pgfpathlineto{\pgfqpoint{4.243711in}{0.863607in}}% +\pgfpathlineto{\pgfqpoint{4.104710in}{0.817604in}}% +\pgfpathlineto{\pgfqpoint{3.961806in}{0.778674in}}% +\pgfpathlineto{\pgfqpoint{3.815636in}{0.747018in}}% +\pgfpathlineto{\pgfqpoint{3.666859in}{0.722806in}}% +\pgfpathlineto{\pgfqpoint{3.516147in}{0.706172in}}% +\pgfpathlineto{\pgfqpoint{3.364185in}{0.697216in}}% +\pgfpathlineto{\pgfqpoint{3.211670in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.059303in}{0.702552in}}% +\pgfpathlineto{\pgfqpoint{2.907790in}{0.716862in}}% +\pgfpathlineto{\pgfqpoint{2.757834in}{0.738883in}}% +\pgfpathlineto{\pgfqpoint{2.610136in}{0.768532in}}% +\pgfpathlineto{\pgfqpoint{2.465390in}{0.805687in}}% +\pgfpathlineto{\pgfqpoint{2.324277in}{0.850192in}}% +\pgfpathlineto{\pgfqpoint{2.187467in}{0.901852in}}% +\pgfpathlineto{\pgfqpoint{2.055610in}{0.960440in}}% +\pgfpathlineto{\pgfqpoint{1.929335in}{1.025692in}}% +\pgfpathlineto{\pgfqpoint{1.809250in}{1.097312in}}% +\pgfpathlineto{\pgfqpoint{1.695932in}{1.174971in}}% +\pgfpathlineto{\pgfqpoint{1.589930in}{1.258310in}}% +\pgfpathlineto{\pgfqpoint{1.491760in}{1.346940in}}% +\pgfpathlineto{\pgfqpoint{1.401900in}{1.440445in}}% +\pgfpathlineto{\pgfqpoint{1.320792in}{1.538385in}}% +\pgfpathlineto{\pgfqpoint{1.248836in}{1.640294in}}% +\pgfpathlineto{\pgfqpoint{1.186388in}{1.745686in}}% +\pgfpathlineto{\pgfqpoint{1.133760in}{1.854056in}}% +\pgfpathlineto{\pgfqpoint{1.091217in}{1.964882in}}% +\pgfpathlineto{\pgfqpoint{1.058974in}{2.077628in}}% +\pgfpathlineto{\pgfqpoint{1.037198in}{2.191746in}}% +\pgfpathlineto{\pgfqpoint{1.026004in}{2.306681in}}% +\pgfpathlineto{\pgfqpoint{1.025455in}{2.421870in}}% +\pgfpathlineto{\pgfqpoint{1.035559in}{2.536747in}}% +\pgfpathlineto{\pgfqpoint{1.056276in}{2.650746in}}% +\pgfpathlineto{\pgfqpoint{1.087509in}{2.763303in}}% +\pgfpathlineto{\pgfqpoint{1.129109in}{2.873860in}}% +\pgfpathlineto{\pgfqpoint{1.180876in}{2.981866in}}% +\pgfpathlineto{\pgfqpoint{1.242556in}{3.086782in}}% +\pgfpathlineto{\pgfqpoint{1.313846in}{3.188081in}}% +\pgfpathlineto{\pgfqpoint{1.394394in}{3.285254in}}% +\pgfpathlineto{\pgfqpoint{1.483797in}{3.377811in}}% +\pgfpathlineto{\pgfqpoint{1.581610in}{3.465285in}}% +\pgfpathlineto{\pgfqpoint{1.687341in}{3.547229in}}% +\pgfpathlineto{\pgfqpoint{1.800458in}{3.623228in}}% +\pgfpathlineto{\pgfqpoint{1.920388in}{3.692892in}}% +\pgfpathlineto{\pgfqpoint{2.046523in}{3.755865in}}% +\pgfpathlineto{\pgfqpoint{2.178221in}{3.811822in}}% +\pgfpathlineto{\pgfqpoint{2.314808in}{3.860473in}}% +\pgfpathlineto{\pgfqpoint{2.455585in}{3.901567in}}% +\pgfpathlineto{\pgfqpoint{2.599829in}{3.934889in}}% +\pgfpathlineto{\pgfqpoint{2.746795in}{3.960264in}}% +\pgfpathlineto{\pgfqpoint{2.895725in}{3.977557in}}% +\pgfpathlineto{\pgfqpoint{3.045845in}{3.986676in}}% +\pgfpathlineto{\pgfqpoint{3.196376in}{3.987571in}}% +\pgfpathlineto{\pgfqpoint{3.346531in}{3.980232in}}% +\pgfpathlineto{\pgfqpoint{3.495527in}{3.964695in}}% +\pgfpathlineto{\pgfqpoint{3.642582in}{3.941038in}}% +\pgfpathlineto{\pgfqpoint{3.786921in}{3.909381in}}% +\pgfpathlineto{\pgfqpoint{3.927784in}{3.869888in}}% +\pgfpathlineto{\pgfqpoint{4.064426in}{3.822762in}}% +\pgfpathlineto{\pgfqpoint{4.196121in}{3.768249in}}% +\pgfpathlineto{\pgfqpoint{4.322168in}{3.706635in}}% +\pgfpathlineto{\pgfqpoint{4.441894in}{3.638242in}}% +\pgfpathlineto{\pgfqpoint{4.554658in}{3.563431in}}% +\pgfpathlineto{\pgfqpoint{4.659854in}{3.482597in}}% +\pgfpathlineto{\pgfqpoint{4.756914in}{3.396170in}}% +\pgfpathlineto{\pgfqpoint{4.845312in}{3.304607in}}% +\pgfpathlineto{\pgfqpoint{4.924568in}{3.208399in}}% +\pgfpathlineto{\pgfqpoint{4.994249in}{3.108059in}}% +\pgfpathlineto{\pgfqpoint{5.053971in}{3.004126in}}% +\pgfpathlineto{\pgfqpoint{5.103404in}{2.897158in}}% +\pgfpathlineto{\pgfqpoint{5.142273in}{2.787733in}}% +\pgfpathlineto{\pgfqpoint{5.170358in}{2.676442in}}% +\pgfpathlineto{\pgfqpoint{5.187497in}{2.563889in}}% +\pgfpathlineto{\pgfqpoint{5.193588in}{2.450686in}}% +\pgfpathlineto{\pgfqpoint{5.188587in}{2.337451in}}% +\pgfpathlineto{\pgfqpoint{5.172513in}{2.224802in}}% +\pgfpathlineto{\pgfqpoint{5.145442in}{2.113357in}}% +\pgfpathlineto{\pgfqpoint{5.107513in}{2.003730in}}% +\pgfpathlineto{\pgfqpoint{5.058924in}{1.896525in}}% +\pgfpathlineto{\pgfqpoint{4.999933in}{1.792335in}}% +\pgfpathlineto{\pgfqpoint{4.930854in}{1.691738in}}% +\pgfpathlineto{\pgfqpoint{4.852060in}{1.595295in}}% +\pgfpathlineto{\pgfqpoint{4.763977in}{1.503544in}}% +\pgfpathlineto{\pgfqpoint{4.667083in}{1.417000in}}% +\pgfpathlineto{\pgfqpoint{4.561910in}{1.336149in}}% +\pgfpathlineto{\pgfqpoint{4.449033in}{1.261448in}}% +\pgfpathlineto{\pgfqpoint{4.329074in}{1.193322in}}% +\pgfpathlineto{\pgfqpoint{4.202697in}{1.132158in}}% +\pgfpathlineto{\pgfqpoint{4.070602in}{1.078307in}}% +\pgfpathlineto{\pgfqpoint{3.933525in}{1.032081in}}% +\pgfpathlineto{\pgfqpoint{3.792231in}{0.993747in}}% +\pgfpathlineto{\pgfqpoint{3.647512in}{0.963532in}}% +\pgfpathlineto{\pgfqpoint{3.500180in}{0.941616in}}% +\pgfpathlineto{\pgfqpoint{3.351067in}{0.928132in}}% +\pgfpathlineto{\pgfqpoint{3.201016in}{0.923167in}}% +\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% +\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/images/zeta_re_0.5_plot.pgf b/buch/papers/zeta/images/zeta_re_0.5_plot.pgf new file mode 100644 index 0000000..3ac7df8 --- /dev/null +++ b/buch/papers/zeta/images/zeta_re_0.5_plot.pgf @@ -0,0 +1,1206 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.497200in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.497200in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.521943in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.521943in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.546687in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.546687in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.571430in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.571430in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.596173in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.596173in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.894147in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=0.855567in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.374788in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=1.336208in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.855429in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.460105in, y=1.816849in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.336069in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=2.297489in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.816710in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=2.778130in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.297351in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=3.258771in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.777992in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=3.739411in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.404549in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.025455in}{2.336069in}}% +\pgfpathlineto{\pgfqpoint{1.038495in}{2.186217in}}% +\pgfpathlineto{\pgfqpoint{1.076639in}{2.042087in}}% +\pgfpathlineto{\pgfqpoint{1.137137in}{1.908708in}}% +\pgfpathlineto{\pgfqpoint{1.215937in}{1.789896in}}% +\pgfpathlineto{\pgfqpoint{1.308314in}{1.687993in}}% +\pgfpathlineto{\pgfqpoint{1.409481in}{1.603898in}}% +\pgfpathlineto{\pgfqpoint{1.515072in}{1.537295in}}% +\pgfpathlineto{\pgfqpoint{1.621432in}{1.486981in}}% +\pgfpathlineto{\pgfqpoint{1.725731in}{1.451216in}}% +\pgfpathlineto{\pgfqpoint{1.825942in}{1.428011in}}% +\pgfpathlineto{\pgfqpoint{1.920744in}{1.415352in}}% +\pgfpathlineto{\pgfqpoint{2.009382in}{1.411339in}}% +\pgfpathlineto{\pgfqpoint{2.091535in}{1.414268in}}% +\pgfpathlineto{\pgfqpoint{2.167190in}{1.422662in}}% +\pgfpathlineto{\pgfqpoint{2.236544in}{1.435276in}}% +\pgfpathlineto{\pgfqpoint{2.299923in}{1.451081in}}% +\pgfpathlineto{\pgfqpoint{2.357727in}{1.469237in}}% +\pgfpathlineto{\pgfqpoint{2.410389in}{1.489073in}}% +\pgfpathlineto{\pgfqpoint{2.458347in}{1.510052in}}% +\pgfpathlineto{\pgfqpoint{2.502030in}{1.531753in}}% +\pgfpathlineto{\pgfqpoint{2.541842in}{1.553849in}}% +\pgfpathlineto{\pgfqpoint{2.578159in}{1.576085in}}% +\pgfpathlineto{\pgfqpoint{2.611326in}{1.598269in}}% +\pgfpathlineto{\pgfqpoint{2.641659in}{1.620252in}}% +\pgfpathlineto{\pgfqpoint{2.694929in}{1.663218in}}% +\pgfpathlineto{\pgfqpoint{2.739912in}{1.704430in}}% +\pgfpathlineto{\pgfqpoint{2.778168in}{1.743637in}}% +\pgfpathlineto{\pgfqpoint{2.810942in}{1.780765in}}% +\pgfpathlineto{\pgfqpoint{2.839224in}{1.815845in}}% +\pgfpathlineto{\pgfqpoint{2.874923in}{1.864826in}}% +\pgfpathlineto{\pgfqpoint{2.904327in}{1.909812in}}% +\pgfpathlineto{\pgfqpoint{2.928933in}{1.951250in}}% +\pgfpathlineto{\pgfqpoint{2.956147in}{2.001721in}}% +\pgfpathlineto{\pgfqpoint{2.983709in}{2.058389in}}% +\pgfpathlineto{\pgfqpoint{3.010449in}{2.118876in}}% +\pgfpathlineto{\pgfqpoint{3.046181in}{2.206269in}}% +\pgfpathlineto{\pgfqpoint{3.091487in}{2.316676in}}% +\pgfpathlineto{\pgfqpoint{3.115316in}{2.368880in}}% +\pgfpathlineto{\pgfqpoint{3.137213in}{2.411802in}}% +\pgfpathlineto{\pgfqpoint{3.160720in}{2.452550in}}% +\pgfpathlineto{\pgfqpoint{3.182543in}{2.485902in}}% +\pgfpathlineto{\pgfqpoint{3.206220in}{2.517844in}}% +\pgfpathlineto{\pgfqpoint{3.232012in}{2.548337in}}% +\pgfpathlineto{\pgfqpoint{3.255293in}{2.572564in}}% +\pgfpathlineto{\pgfqpoint{3.280331in}{2.595610in}}% +\pgfpathlineto{\pgfqpoint{3.307232in}{2.617345in}}% +\pgfpathlineto{\pgfqpoint{3.336086in}{2.637605in}}% +\pgfpathlineto{\pgfqpoint{3.366959in}{2.656195in}}% +\pgfpathlineto{\pgfqpoint{3.399890in}{2.672893in}}% +\pgfpathlineto{\pgfqpoint{3.427726in}{2.684718in}}% +\pgfpathlineto{\pgfqpoint{3.456874in}{2.695029in}}% +\pgfpathlineto{\pgfqpoint{3.487307in}{2.703674in}}% +\pgfpathlineto{\pgfqpoint{3.518978in}{2.710490in}}% +\pgfpathlineto{\pgfqpoint{3.551819in}{2.715311in}}% +\pgfpathlineto{\pgfqpoint{3.585740in}{2.717962in}}% +\pgfpathlineto{\pgfqpoint{3.620624in}{2.718264in}}% +\pgfpathlineto{\pgfqpoint{3.656331in}{2.716038in}}% +\pgfpathlineto{\pgfqpoint{3.692689in}{2.711104in}}% +\pgfpathlineto{\pgfqpoint{3.729498in}{2.703288in}}% +\pgfpathlineto{\pgfqpoint{3.757261in}{2.695433in}}% +\pgfpathlineto{\pgfqpoint{3.785039in}{2.685796in}}% +\pgfpathlineto{\pgfqpoint{3.812709in}{2.674315in}}% +\pgfpathlineto{\pgfqpoint{3.840140in}{2.660933in}}% +\pgfpathlineto{\pgfqpoint{3.867192in}{2.645601in}}% +\pgfpathlineto{\pgfqpoint{3.893712in}{2.628278in}}% +\pgfpathlineto{\pgfqpoint{3.919537in}{2.608930in}}% +\pgfpathlineto{\pgfqpoint{3.944495in}{2.587536in}}% +\pgfpathlineto{\pgfqpoint{3.968405in}{2.564086in}}% +\pgfpathlineto{\pgfqpoint{3.991077in}{2.538582in}}% +\pgfpathlineto{\pgfqpoint{4.012311in}{2.511041in}}% +\pgfpathlineto{\pgfqpoint{4.031904in}{2.481497in}}% +\pgfpathlineto{\pgfqpoint{4.049645in}{2.449999in}}% +\pgfpathlineto{\pgfqpoint{4.065318in}{2.416614in}}% +\pgfpathlineto{\pgfqpoint{4.078707in}{2.381431in}}% +\pgfpathlineto{\pgfqpoint{4.089591in}{2.344557in}}% +\pgfpathlineto{\pgfqpoint{4.097755in}{2.306122in}}% +\pgfpathlineto{\pgfqpoint{4.102982in}{2.266278in}}% +\pgfpathlineto{\pgfqpoint{4.105064in}{2.225199in}}% +\pgfpathlineto{\pgfqpoint{4.104606in}{2.197224in}}% +\pgfpathlineto{\pgfqpoint{4.102602in}{2.168853in}}% +\pgfpathlineto{\pgfqpoint{4.099000in}{2.140155in}}% +\pgfpathlineto{\pgfqpoint{4.093747in}{2.111205in}}% +\pgfpathlineto{\pgfqpoint{4.086794in}{2.082081in}}% +\pgfpathlineto{\pgfqpoint{4.078098in}{2.052867in}}% +\pgfpathlineto{\pgfqpoint{4.067617in}{2.023651in}}% +\pgfpathlineto{\pgfqpoint{4.055316in}{1.994526in}}% +\pgfpathlineto{\pgfqpoint{4.041162in}{1.965588in}}% +\pgfpathlineto{\pgfqpoint{4.025130in}{1.936939in}}% +\pgfpathlineto{\pgfqpoint{4.007201in}{1.908684in}}% +\pgfpathlineto{\pgfqpoint{3.987360in}{1.880930in}}% +\pgfpathlineto{\pgfqpoint{3.965600in}{1.853790in}}% +\pgfpathlineto{\pgfqpoint{3.941922in}{1.827380in}}% +\pgfpathlineto{\pgfqpoint{3.916332in}{1.801817in}}% +\pgfpathlineto{\pgfqpoint{3.888846in}{1.777221in}}% +\pgfpathlineto{\pgfqpoint{3.859487in}{1.753715in}}% +\pgfpathlineto{\pgfqpoint{3.828289in}{1.731423in}}% +\pgfpathlineto{\pgfqpoint{3.795290in}{1.710468in}}% +\pgfpathlineto{\pgfqpoint{3.760543in}{1.690977in}}% +\pgfpathlineto{\pgfqpoint{3.724108in}{1.673073in}}% +\pgfpathlineto{\pgfqpoint{3.686052in}{1.656883in}}% +\pgfpathlineto{\pgfqpoint{3.646457in}{1.642528in}}% +\pgfpathlineto{\pgfqpoint{3.605412in}{1.630130in}}% +\pgfpathlineto{\pgfqpoint{3.563018in}{1.619807in}}% +\pgfpathlineto{\pgfqpoint{3.519383in}{1.611674in}}% +\pgfpathlineto{\pgfqpoint{3.474630in}{1.605842in}}% +\pgfpathlineto{\pgfqpoint{3.428888in}{1.602417in}}% +\pgfpathlineto{\pgfqpoint{3.382299in}{1.601500in}}% +\pgfpathlineto{\pgfqpoint{3.335015in}{1.603183in}}% +\pgfpathlineto{\pgfqpoint{3.287195in}{1.607554in}}% +\pgfpathlineto{\pgfqpoint{3.239010in}{1.614690in}}% +\pgfpathlineto{\pgfqpoint{3.190641in}{1.624662in}}% +\pgfpathlineto{\pgfqpoint{3.142274in}{1.637528in}}% +\pgfpathlineto{\pgfqpoint{3.094105in}{1.653339in}}% +\pgfpathlineto{\pgfqpoint{3.046340in}{1.672132in}}% +\pgfpathlineto{\pgfqpoint{2.999188in}{1.693933in}}% +\pgfpathlineto{\pgfqpoint{2.952866in}{1.718754in}}% +\pgfpathlineto{\pgfqpoint{2.907596in}{1.746596in}}% +\pgfpathlineto{\pgfqpoint{2.863604in}{1.777444in}}% +\pgfpathlineto{\pgfqpoint{2.821120in}{1.811267in}}% +\pgfpathlineto{\pgfqpoint{2.780377in}{1.848022in}}% +\pgfpathlineto{\pgfqpoint{2.741607in}{1.887648in}}% +\pgfpathlineto{\pgfqpoint{2.705043in}{1.930067in}}% +\pgfpathlineto{\pgfqpoint{2.670919in}{1.975186in}}% +\pgfpathlineto{\pgfqpoint{2.639462in}{2.022894in}}% +\pgfpathlineto{\pgfqpoint{2.610899in}{2.073064in}}% +\pgfpathlineto{\pgfqpoint{2.585449in}{2.125551in}}% +\pgfpathlineto{\pgfqpoint{2.563326in}{2.180192in}}% +\pgfpathlineto{\pgfqpoint{2.544735in}{2.236809in}}% +\pgfpathlineto{\pgfqpoint{2.529870in}{2.295206in}}% +\pgfpathlineto{\pgfqpoint{2.518915in}{2.355170in}}% +\pgfpathlineto{\pgfqpoint{2.512042in}{2.416472in}}% +\pgfpathlineto{\pgfqpoint{2.509405in}{2.478869in}}% +\pgfpathlineto{\pgfqpoint{2.511144in}{2.542101in}}% +\pgfpathlineto{\pgfqpoint{2.513695in}{2.573946in}}% +\pgfpathlineto{\pgfqpoint{2.517384in}{2.605896in}}% +\pgfpathlineto{\pgfqpoint{2.522223in}{2.637916in}}% +\pgfpathlineto{\pgfqpoint{2.528225in}{2.669968in}}% +\pgfpathlineto{\pgfqpoint{2.535399in}{2.702015in}}% +\pgfpathlineto{\pgfqpoint{2.543753in}{2.734019in}}% +\pgfpathlineto{\pgfqpoint{2.553294in}{2.765941in}}% +\pgfpathlineto{\pgfqpoint{2.564027in}{2.797742in}}% +\pgfpathlineto{\pgfqpoint{2.575957in}{2.829381in}}% +\pgfpathlineto{\pgfqpoint{2.589086in}{2.860819in}}% +\pgfpathlineto{\pgfqpoint{2.603415in}{2.892013in}}% +\pgfpathlineto{\pgfqpoint{2.618943in}{2.922924in}}% +\pgfpathlineto{\pgfqpoint{2.635668in}{2.953509in}}% +\pgfpathlineto{\pgfqpoint{2.653587in}{2.983727in}}% +\pgfpathlineto{\pgfqpoint{2.672693in}{3.013535in}}% +\pgfpathlineto{\pgfqpoint{2.692980in}{3.042891in}}% +\pgfpathlineto{\pgfqpoint{2.714437in}{3.071753in}}% +\pgfpathlineto{\pgfqpoint{2.737055in}{3.100078in}}% +\pgfpathlineto{\pgfqpoint{2.760822in}{3.127825in}}% +\pgfpathlineto{\pgfqpoint{2.785721in}{3.154950in}}% +\pgfpathlineto{\pgfqpoint{2.811738in}{3.181412in}}% +\pgfpathlineto{\pgfqpoint{2.838855in}{3.207169in}}% +\pgfpathlineto{\pgfqpoint{2.867052in}{3.232178in}}% +\pgfpathlineto{\pgfqpoint{2.896306in}{3.256399in}}% +\pgfpathlineto{\pgfqpoint{2.926596in}{3.279792in}}% +\pgfpathlineto{\pgfqpoint{2.957895in}{3.302315in}}% +\pgfpathlineto{\pgfqpoint{2.990177in}{3.323928in}}% +\pgfpathlineto{\pgfqpoint{3.023412in}{3.344593in}}% +\pgfpathlineto{\pgfqpoint{3.057571in}{3.364272in}}% +\pgfpathlineto{\pgfqpoint{3.092620in}{3.382926in}}% +\pgfpathlineto{\pgfqpoint{3.128525in}{3.400519in}}% +\pgfpathlineto{\pgfqpoint{3.165251in}{3.417015in}}% +\pgfpathlineto{\pgfqpoint{3.202759in}{3.432378in}}% +\pgfpathlineto{\pgfqpoint{3.241010in}{3.446577in}}% +\pgfpathlineto{\pgfqpoint{3.279964in}{3.459577in}}% +\pgfpathlineto{\pgfqpoint{3.319577in}{3.471347in}}% +\pgfpathlineto{\pgfqpoint{3.359805in}{3.481858in}}% +\pgfpathlineto{\pgfqpoint{3.400602in}{3.491080in}}% +\pgfpathlineto{\pgfqpoint{3.441920in}{3.498987in}}% +\pgfpathlineto{\pgfqpoint{3.483711in}{3.505553in}}% +\pgfpathlineto{\pgfqpoint{3.525925in}{3.510753in}}% +\pgfpathlineto{\pgfqpoint{3.568510in}{3.514565in}}% +\pgfpathlineto{\pgfqpoint{3.611412in}{3.516968in}}% +\pgfpathlineto{\pgfqpoint{3.654577in}{3.517944in}}% +\pgfpathlineto{\pgfqpoint{3.697951in}{3.517475in}}% +\pgfpathlineto{\pgfqpoint{3.741477in}{3.515545in}}% +\pgfpathlineto{\pgfqpoint{3.785096in}{3.512142in}}% +\pgfpathlineto{\pgfqpoint{3.828751in}{3.507255in}}% +\pgfpathlineto{\pgfqpoint{3.872382in}{3.500873in}}% +\pgfpathlineto{\pgfqpoint{3.915929in}{3.492991in}}% +\pgfpathlineto{\pgfqpoint{3.959331in}{3.483603in}}% +\pgfpathlineto{\pgfqpoint{4.002527in}{3.472706in}}% +\pgfpathlineto{\pgfqpoint{4.045454in}{3.460300in}}% +\pgfpathlineto{\pgfqpoint{4.088051in}{3.446387in}}% +\pgfpathlineto{\pgfqpoint{4.130253in}{3.430972in}}% +\pgfpathlineto{\pgfqpoint{4.171999in}{3.414060in}}% +\pgfpathlineto{\pgfqpoint{4.213225in}{3.395660in}}% +\pgfpathlineto{\pgfqpoint{4.253867in}{3.375785in}}% +\pgfpathlineto{\pgfqpoint{4.293863in}{3.354448in}}% +\pgfpathlineto{\pgfqpoint{4.333150in}{3.331664in}}% +\pgfpathlineto{\pgfqpoint{4.371664in}{3.307454in}}% +\pgfpathlineto{\pgfqpoint{4.409344in}{3.281838in}}% +\pgfpathlineto{\pgfqpoint{4.446129in}{3.254841in}}% +\pgfpathlineto{\pgfqpoint{4.481956in}{3.226487in}}% +\pgfpathlineto{\pgfqpoint{4.516765in}{3.196806in}}% +\pgfpathlineto{\pgfqpoint{4.550497in}{3.165829in}}% +\pgfpathlineto{\pgfqpoint{4.583094in}{3.133590in}}% +\pgfpathlineto{\pgfqpoint{4.614497in}{3.100124in}}% +\pgfpathlineto{\pgfqpoint{4.644652in}{3.065470in}}% +\pgfpathlineto{\pgfqpoint{4.673502in}{3.029670in}}% +\pgfpathlineto{\pgfqpoint{4.700994in}{2.992765in}}% +\pgfpathlineto{\pgfqpoint{4.727078in}{2.954802in}}% +\pgfpathlineto{\pgfqpoint{4.751701in}{2.915828in}}% +\pgfpathlineto{\pgfqpoint{4.774817in}{2.875894in}}% +\pgfpathlineto{\pgfqpoint{4.796377in}{2.835051in}}% +\pgfpathlineto{\pgfqpoint{4.816339in}{2.793353in}}% +\pgfpathlineto{\pgfqpoint{4.834660in}{2.750857in}}% +\pgfpathlineto{\pgfqpoint{4.851300in}{2.707620in}}% +\pgfpathlineto{\pgfqpoint{4.866220in}{2.663704in}}% +\pgfpathlineto{\pgfqpoint{4.879386in}{2.619169in}}% +\pgfpathlineto{\pgfqpoint{4.890764in}{2.574079in}}% +\pgfpathlineto{\pgfqpoint{4.900326in}{2.528500in}}% +\pgfpathlineto{\pgfqpoint{4.908043in}{2.482498in}}% +\pgfpathlineto{\pgfqpoint{4.913891in}{2.436141in}}% +\pgfpathlineto{\pgfqpoint{4.917848in}{2.389499in}}% +\pgfpathlineto{\pgfqpoint{4.919896in}{2.342642in}}% +\pgfpathlineto{\pgfqpoint{4.920018in}{2.295642in}}% +\pgfpathlineto{\pgfqpoint{4.918204in}{2.248572in}}% +\pgfpathlineto{\pgfqpoint{4.914443in}{2.201505in}}% +\pgfpathlineto{\pgfqpoint{4.908729in}{2.154516in}}% +\pgfpathlineto{\pgfqpoint{4.901061in}{2.107680in}}% +\pgfpathlineto{\pgfqpoint{4.891438in}{2.061071in}}% +\pgfpathlineto{\pgfqpoint{4.879865in}{2.014767in}}% +\pgfpathlineto{\pgfqpoint{4.866349in}{1.968842in}}% +\pgfpathlineto{\pgfqpoint{4.850903in}{1.923372in}}% +\pgfpathlineto{\pgfqpoint{4.833539in}{1.878435in}}% +\pgfpathlineto{\pgfqpoint{4.814277in}{1.834104in}}% +\pgfpathlineto{\pgfqpoint{4.793138in}{1.790456in}}% +\pgfpathlineto{\pgfqpoint{4.770148in}{1.747565in}}% +\pgfpathlineto{\pgfqpoint{4.745336in}{1.705506in}}% +\pgfpathlineto{\pgfqpoint{4.718733in}{1.664351in}}% +\pgfpathlineto{\pgfqpoint{4.690376in}{1.624173in}}% +\pgfpathlineto{\pgfqpoint{4.660304in}{1.585043in}}% +\pgfpathlineto{\pgfqpoint{4.628560in}{1.547031in}}% +\pgfpathlineto{\pgfqpoint{4.595190in}{1.510205in}}% +\pgfpathlineto{\pgfqpoint{4.560244in}{1.474631in}}% +\pgfpathlineto{\pgfqpoint{4.523775in}{1.440375in}}% +\pgfpathlineto{\pgfqpoint{4.485839in}{1.407500in}}% +\pgfpathlineto{\pgfqpoint{4.446495in}{1.376067in}}% +\pgfpathlineto{\pgfqpoint{4.405807in}{1.346135in}}% +\pgfpathlineto{\pgfqpoint{4.363840in}{1.317760in}}% +\pgfpathlineto{\pgfqpoint{4.320661in}{1.290996in}}% +\pgfpathlineto{\pgfqpoint{4.276342in}{1.265894in}}% +\pgfpathlineto{\pgfqpoint{4.230958in}{1.242504in}}% +\pgfpathlineto{\pgfqpoint{4.184585in}{1.220870in}}% +\pgfpathlineto{\pgfqpoint{4.137302in}{1.201036in}}% +\pgfpathlineto{\pgfqpoint{4.089189in}{1.183041in}}% +\pgfpathlineto{\pgfqpoint{4.040332in}{1.166921in}}% +\pgfpathlineto{\pgfqpoint{3.990814in}{1.152709in}}% +\pgfpathlineto{\pgfqpoint{3.940724in}{1.140435in}}% +\pgfpathlineto{\pgfqpoint{3.890151in}{1.130125in}}% +\pgfpathlineto{\pgfqpoint{3.839186in}{1.121800in}}% +\pgfpathlineto{\pgfqpoint{3.787920in}{1.115478in}}% +\pgfpathlineto{\pgfqpoint{3.736447in}{1.111176in}}% +\pgfpathlineto{\pgfqpoint{3.684861in}{1.108902in}}% +\pgfpathlineto{\pgfqpoint{3.633258in}{1.108664in}}% +\pgfpathlineto{\pgfqpoint{3.581732in}{1.110465in}}% +\pgfpathlineto{\pgfqpoint{3.530381in}{1.114302in}}% +\pgfpathlineto{\pgfqpoint{3.479301in}{1.120170in}}% +\pgfpathlineto{\pgfqpoint{3.428588in}{1.128060in}}% +\pgfpathlineto{\pgfqpoint{3.378339in}{1.137957in}}% +\pgfpathlineto{\pgfqpoint{3.328650in}{1.149844in}}% +\pgfpathlineto{\pgfqpoint{3.279615in}{1.163697in}}% +\pgfpathlineto{\pgfqpoint{3.231330in}{1.179491in}}% +\pgfpathlineto{\pgfqpoint{3.183888in}{1.197194in}}% +\pgfpathlineto{\pgfqpoint{3.137381in}{1.216772in}}% +\pgfpathlineto{\pgfqpoint{3.091900in}{1.238185in}}% +\pgfpathlineto{\pgfqpoint{3.047534in}{1.261391in}}% +\pgfpathlineto{\pgfqpoint{3.004371in}{1.286341in}}% +\pgfpathlineto{\pgfqpoint{2.962495in}{1.312986in}}% +\pgfpathlineto{\pgfqpoint{2.921989in}{1.341270in}}% +\pgfpathlineto{\pgfqpoint{2.882933in}{1.371133in}}% +\pgfpathlineto{\pgfqpoint{2.845406in}{1.402515in}}% +\pgfpathlineto{\pgfqpoint{2.809481in}{1.435348in}}% +\pgfpathlineto{\pgfqpoint{2.775231in}{1.469563in}}% +\pgfpathlineto{\pgfqpoint{2.742722in}{1.505086in}}% +\pgfpathlineto{\pgfqpoint{2.712020in}{1.541842in}}% +\pgfpathlineto{\pgfqpoint{2.683186in}{1.579752in}}% +\pgfpathlineto{\pgfqpoint{2.656277in}{1.618732in}}% +\pgfpathlineto{\pgfqpoint{2.631345in}{1.658699in}}% +\pgfpathlineto{\pgfqpoint{2.608440in}{1.699564in}}% +\pgfpathlineto{\pgfqpoint{2.587605in}{1.741238in}}% +\pgfpathlineto{\pgfqpoint{2.568881in}{1.783627in}}% +\pgfpathlineto{\pgfqpoint{2.552303in}{1.826639in}}% +\pgfpathlineto{\pgfqpoint{2.537901in}{1.870177in}}% +\pgfpathlineto{\pgfqpoint{2.525701in}{1.914142in}}% +\pgfpathlineto{\pgfqpoint{2.515723in}{1.958437in}}% +\pgfpathlineto{\pgfqpoint{2.507983in}{2.002961in}}% +\pgfpathlineto{\pgfqpoint{2.502491in}{2.047612in}}% +\pgfpathlineto{\pgfqpoint{2.499252in}{2.092289in}}% +\pgfpathlineto{\pgfqpoint{2.498266in}{2.136889in}}% +\pgfpathlineto{\pgfqpoint{2.499526in}{2.181310in}}% +\pgfpathlineto{\pgfqpoint{2.503023in}{2.225449in}}% +\pgfpathlineto{\pgfqpoint{2.508739in}{2.269204in}}% +\pgfpathlineto{\pgfqpoint{2.516653in}{2.312473in}}% +\pgfpathlineto{\pgfqpoint{2.526738in}{2.355155in}}% +\pgfpathlineto{\pgfqpoint{2.538959in}{2.397151in}}% +\pgfpathlineto{\pgfqpoint{2.553280in}{2.438361in}}% +\pgfpathlineto{\pgfqpoint{2.569657in}{2.478689in}}% +\pgfpathlineto{\pgfqpoint{2.588041in}{2.518040in}}% +\pgfpathlineto{\pgfqpoint{2.608379in}{2.556320in}}% +\pgfpathlineto{\pgfqpoint{2.630611in}{2.593438in}}% +\pgfpathlineto{\pgfqpoint{2.654673in}{2.629307in}}% +\pgfpathlineto{\pgfqpoint{2.680496in}{2.663841in}}% +\pgfpathlineto{\pgfqpoint{2.708008in}{2.696959in}}% +\pgfpathlineto{\pgfqpoint{2.737128in}{2.728580in}}% +\pgfpathlineto{\pgfqpoint{2.767776in}{2.758629in}}% +\pgfpathlineto{\pgfqpoint{2.799864in}{2.787036in}}% +\pgfpathlineto{\pgfqpoint{2.833301in}{2.813732in}}% +\pgfpathlineto{\pgfqpoint{2.867991in}{2.838654in}}% +\pgfpathlineto{\pgfqpoint{2.903838in}{2.861744in}}% +\pgfpathlineto{\pgfqpoint{2.940738in}{2.882946in}}% +\pgfpathlineto{\pgfqpoint{2.978586in}{2.902211in}}% +\pgfpathlineto{\pgfqpoint{3.017274in}{2.919494in}}% +\pgfpathlineto{\pgfqpoint{3.056692in}{2.934757in}}% +\pgfpathlineto{\pgfqpoint{3.096726in}{2.947965in}}% +\pgfpathlineto{\pgfqpoint{3.137261in}{2.959089in}}% +\pgfpathlineto{\pgfqpoint{3.178179in}{2.968106in}}% +\pgfpathlineto{\pgfqpoint{3.219362in}{2.974999in}}% +\pgfpathlineto{\pgfqpoint{3.260689in}{2.979756in}}% +\pgfpathlineto{\pgfqpoint{3.302041in}{2.982370in}}% +\pgfpathlineto{\pgfqpoint{3.343294in}{2.982843in}}% +\pgfpathlineto{\pgfqpoint{3.384328in}{2.981180in}}% +\pgfpathlineto{\pgfqpoint{3.425020in}{2.977392in}}% +\pgfpathlineto{\pgfqpoint{3.465250in}{2.971499in}}% +\pgfpathlineto{\pgfqpoint{3.504896in}{2.963524in}}% +\pgfpathlineto{\pgfqpoint{3.543838in}{2.953497in}}% +\pgfpathlineto{\pgfqpoint{3.581960in}{2.941455in}}% +\pgfpathlineto{\pgfqpoint{3.619143in}{2.927439in}}% +\pgfpathlineto{\pgfqpoint{3.655274in}{2.911498in}}% +\pgfpathlineto{\pgfqpoint{3.690241in}{2.893686in}}% +\pgfpathlineto{\pgfqpoint{3.723935in}{2.874061in}}% +\pgfpathlineto{\pgfqpoint{3.756249in}{2.852690in}}% +\pgfpathlineto{\pgfqpoint{3.787081in}{2.829642in}}% +\pgfpathlineto{\pgfqpoint{3.816332in}{2.804995in}}% +\pgfpathlineto{\pgfqpoint{3.843907in}{2.778828in}}% +\pgfpathlineto{\pgfqpoint{3.869715in}{2.751229in}}% +\pgfpathlineto{\pgfqpoint{3.893672in}{2.722287in}}% +\pgfpathlineto{\pgfqpoint{3.915696in}{2.692100in}}% +\pgfpathlineto{\pgfqpoint{3.935712in}{2.660766in}}% +\pgfpathlineto{\pgfqpoint{3.953649in}{2.628389in}}% +\pgfpathlineto{\pgfqpoint{3.969443in}{2.595078in}}% +\pgfpathlineto{\pgfqpoint{3.983037in}{2.560944in}}% +\pgfpathlineto{\pgfqpoint{3.994379in}{2.526102in}}% +\pgfpathlineto{\pgfqpoint{4.003422in}{2.490669in}}% +\pgfpathlineto{\pgfqpoint{4.010128in}{2.454766in}}% +\pgfpathlineto{\pgfqpoint{4.014466in}{2.418515in}}% +\pgfpathlineto{\pgfqpoint{4.016410in}{2.382041in}}% +\pgfpathlineto{\pgfqpoint{4.015943in}{2.345471in}}% +\pgfpathlineto{\pgfqpoint{4.013054in}{2.308932in}}% +\pgfpathlineto{\pgfqpoint{4.007740in}{2.272553in}}% +\pgfpathlineto{\pgfqpoint{4.000006in}{2.236463in}}% +\pgfpathlineto{\pgfqpoint{3.989864in}{2.200792in}}% +\pgfpathlineto{\pgfqpoint{3.977333in}{2.165669in}}% +\pgfpathlineto{\pgfqpoint{3.962440in}{2.131222in}}% +\pgfpathlineto{\pgfqpoint{3.945221in}{2.097580in}}% +\pgfpathlineto{\pgfqpoint{3.925717in}{2.064869in}}% +\pgfpathlineto{\pgfqpoint{3.903980in}{2.033214in}}% +\pgfpathlineto{\pgfqpoint{3.880065in}{2.002736in}}% +\pgfpathlineto{\pgfqpoint{3.854039in}{1.973556in}}% +\pgfpathlineto{\pgfqpoint{3.825973in}{1.945792in}}% +\pgfpathlineto{\pgfqpoint{3.795947in}{1.919556in}}% +\pgfpathlineto{\pgfqpoint{3.764046in}{1.894959in}}% +\pgfpathlineto{\pgfqpoint{3.730365in}{1.872107in}}% +\pgfpathlineto{\pgfqpoint{3.695002in}{1.851102in}}% +\pgfpathlineto{\pgfqpoint{3.658064in}{1.832041in}}% +\pgfpathlineto{\pgfqpoint{3.619663in}{1.815015in}}% +\pgfpathlineto{\pgfqpoint{3.579917in}{1.800110in}}% +\pgfpathlineto{\pgfqpoint{3.538949in}{1.787407in}}% +\pgfpathlineto{\pgfqpoint{3.496889in}{1.776981in}}% +\pgfpathlineto{\pgfqpoint{3.453869in}{1.768899in}}% +\pgfpathlineto{\pgfqpoint{3.410029in}{1.763223in}}% +\pgfpathlineto{\pgfqpoint{3.365510in}{1.760007in}}% +\pgfpathlineto{\pgfqpoint{3.320459in}{1.759298in}}% +\pgfpathlineto{\pgfqpoint{3.275026in}{1.761136in}}% +\pgfpathlineto{\pgfqpoint{3.229363in}{1.765553in}}% +\pgfpathlineto{\pgfqpoint{3.183624in}{1.772574in}}% +\pgfpathlineto{\pgfqpoint{3.137969in}{1.782215in}}% +\pgfpathlineto{\pgfqpoint{3.092554in}{1.794484in}}% +\pgfpathlineto{\pgfqpoint{3.047540in}{1.809382in}}% +\pgfpathlineto{\pgfqpoint{3.003088in}{1.826899in}}% +\pgfpathlineto{\pgfqpoint{2.959359in}{1.847019in}}% +\pgfpathlineto{\pgfqpoint{2.916512in}{1.869717in}}% +\pgfpathlineto{\pgfqpoint{2.874709in}{1.894960in}}% +\pgfpathlineto{\pgfqpoint{2.834107in}{1.922705in}}% +\pgfpathlineto{\pgfqpoint{2.794862in}{1.952902in}}% +\pgfpathlineto{\pgfqpoint{2.757130in}{1.985491in}}% +\pgfpathlineto{\pgfqpoint{2.721061in}{2.020406in}}% +\pgfpathlineto{\pgfqpoint{2.686804in}{2.057571in}}% +\pgfpathlineto{\pgfqpoint{2.654502in}{2.096903in}}% +\pgfpathlineto{\pgfqpoint{2.624296in}{2.138310in}}% +\pgfpathlineto{\pgfqpoint{2.596321in}{2.181693in}}% +\pgfpathlineto{\pgfqpoint{2.570707in}{2.226946in}}% +\pgfpathlineto{\pgfqpoint{2.547578in}{2.273955in}}% +\pgfpathlineto{\pgfqpoint{2.527051in}{2.322600in}}% +\pgfpathlineto{\pgfqpoint{2.509238in}{2.372752in}}% +\pgfpathlineto{\pgfqpoint{2.494244in}{2.424279in}}% +\pgfpathlineto{\pgfqpoint{2.482164in}{2.477041in}}% +\pgfpathlineto{\pgfqpoint{2.473088in}{2.530891in}}% +\pgfpathlineto{\pgfqpoint{2.467095in}{2.585681in}}% +\pgfpathlineto{\pgfqpoint{2.464259in}{2.641254in}}% +\pgfpathlineto{\pgfqpoint{2.464643in}{2.697450in}}% +\pgfpathlineto{\pgfqpoint{2.468299in}{2.754105in}}% +\pgfpathlineto{\pgfqpoint{2.475273in}{2.811054in}}% +\pgfpathlineto{\pgfqpoint{2.485599in}{2.868124in}}% +\pgfpathlineto{\pgfqpoint{2.499302in}{2.925143in}}% +\pgfpathlineto{\pgfqpoint{2.516396in}{2.981936in}}% +\pgfpathlineto{\pgfqpoint{2.536886in}{3.038328in}}% +\pgfpathlineto{\pgfqpoint{2.560766in}{3.094141in}}% +\pgfpathlineto{\pgfqpoint{2.588019in}{3.149196in}}% +\pgfpathlineto{\pgfqpoint{2.618617in}{3.203318in}}% +\pgfpathlineto{\pgfqpoint{2.652524in}{3.256328in}}% +\pgfpathlineto{\pgfqpoint{2.689689in}{3.308052in}}% +\pgfpathlineto{\pgfqpoint{2.730055in}{3.358316in}}% +\pgfpathlineto{\pgfqpoint{2.773552in}{3.406949in}}% +\pgfpathlineto{\pgfqpoint{2.820099in}{3.453781in}}% +\pgfpathlineto{\pgfqpoint{2.869607in}{3.498650in}}% +\pgfpathlineto{\pgfqpoint{2.921974in}{3.541393in}}% +\pgfpathlineto{\pgfqpoint{2.977092in}{3.581855in}}% +\pgfpathlineto{\pgfqpoint{3.034839in}{3.619886in}}% +\pgfpathlineto{\pgfqpoint{3.095086in}{3.655339in}}% +\pgfpathlineto{\pgfqpoint{3.157696in}{3.688077in}}% +\pgfpathlineto{\pgfqpoint{3.222520in}{3.717967in}}% +\pgfpathlineto{\pgfqpoint{3.289404in}{3.744884in}}% +\pgfpathlineto{\pgfqpoint{3.358184in}{3.768710in}}% +\pgfpathlineto{\pgfqpoint{3.428690in}{3.789338in}}% +\pgfpathlineto{\pgfqpoint{3.500743in}{3.806665in}}% +\pgfpathlineto{\pgfqpoint{3.574158in}{3.820601in}}% +\pgfpathlineto{\pgfqpoint{3.648746in}{3.831063in}}% +\pgfpathlineto{\pgfqpoint{3.724311in}{3.837978in}}% +\pgfpathlineto{\pgfqpoint{3.800650in}{3.841285in}}% +\pgfpathlineto{\pgfqpoint{3.877560in}{3.840930in}}% +\pgfpathlineto{\pgfqpoint{3.954832in}{3.836872in}}% +\pgfpathlineto{\pgfqpoint{4.032252in}{3.829080in}}% +\pgfpathlineto{\pgfqpoint{4.109607in}{3.817534in}}% +\pgfpathlineto{\pgfqpoint{4.186681in}{3.802225in}}% +\pgfpathlineto{\pgfqpoint{4.263255in}{3.783156in}}% +\pgfpathlineto{\pgfqpoint{4.339113in}{3.760341in}}% +\pgfpathlineto{\pgfqpoint{4.414036in}{3.733806in}}% +\pgfpathlineto{\pgfqpoint{4.487809in}{3.703586in}}% +\pgfpathlineto{\pgfqpoint{4.560215in}{3.669730in}}% +\pgfpathlineto{\pgfqpoint{4.631043in}{3.632298in}}% +\pgfpathlineto{\pgfqpoint{4.700082in}{3.591361in}}% +\pgfpathlineto{\pgfqpoint{4.767128in}{3.547001in}}% +\pgfpathlineto{\pgfqpoint{4.831979in}{3.499311in}}% +\pgfpathlineto{\pgfqpoint{4.894438in}{3.448394in}}% +\pgfpathlineto{\pgfqpoint{4.954316in}{3.394365in}}% +\pgfpathlineto{\pgfqpoint{5.011427in}{3.337349in}}% +\pgfpathlineto{\pgfqpoint{5.065596in}{3.277480in}}% +\pgfpathlineto{\pgfqpoint{5.116654in}{3.214903in}}% +\pgfpathlineto{\pgfqpoint{5.164438in}{3.149769in}}% +\pgfpathlineto{\pgfqpoint{5.208798in}{3.082242in}}% +\pgfpathlineto{\pgfqpoint{5.249592in}{3.012491in}}% +\pgfpathlineto{\pgfqpoint{5.286686in}{2.940695in}}% +\pgfpathlineto{\pgfqpoint{5.319958in}{2.867038in}}% +\pgfpathlineto{\pgfqpoint{5.349298in}{2.791713in}}% +\pgfpathlineto{\pgfqpoint{5.374607in}{2.714917in}}% +\pgfpathlineto{\pgfqpoint{5.395795in}{2.636854in}}% +\pgfpathlineto{\pgfqpoint{5.412789in}{2.557733in}}% +\pgfpathlineto{\pgfqpoint{5.425524in}{2.477766in}}% +\pgfpathlineto{\pgfqpoint{5.433949in}{2.397168in}}% +\pgfpathlineto{\pgfqpoint{5.438029in}{2.316160in}}% +\pgfpathlineto{\pgfqpoint{5.437738in}{2.234963in}}% +\pgfpathlineto{\pgfqpoint{5.433065in}{2.153798in}}% +\pgfpathlineto{\pgfqpoint{5.424014in}{2.072889in}}% +\pgfpathlineto{\pgfqpoint{5.410600in}{1.992460in}}% +\pgfpathlineto{\pgfqpoint{5.392854in}{1.912733in}}% +\pgfpathlineto{\pgfqpoint{5.370817in}{1.833929in}}% +\pgfpathlineto{\pgfqpoint{5.344548in}{1.756266in}}% +\pgfpathlineto{\pgfqpoint{5.314115in}{1.679961in}}% +\pgfpathlineto{\pgfqpoint{5.279603in}{1.605225in}}% +\pgfpathlineto{\pgfqpoint{5.241106in}{1.532266in}}% +\pgfpathlineto{\pgfqpoint{5.198735in}{1.461287in}}% +\pgfpathlineto{\pgfqpoint{5.152609in}{1.392483in}}% +\pgfpathlineto{\pgfqpoint{5.102862in}{1.326044in}}% +\pgfpathlineto{\pgfqpoint{5.049639in}{1.262153in}}% +\pgfpathlineto{\pgfqpoint{4.993096in}{1.200985in}}% +\pgfpathlineto{\pgfqpoint{4.933398in}{1.142706in}}% +\pgfpathlineto{\pgfqpoint{4.870722in}{1.087473in}}% +\pgfpathlineto{\pgfqpoint{4.805255in}{1.035433in}}% +\pgfpathlineto{\pgfqpoint{4.737192in}{0.986724in}}% +\pgfpathlineto{\pgfqpoint{4.666735in}{0.941471in}}% +\pgfpathlineto{\pgfqpoint{4.594097in}{0.899789in}}% +\pgfpathlineto{\pgfqpoint{4.519493in}{0.861784in}}% +\pgfpathlineto{\pgfqpoint{4.443150in}{0.827545in}}% +\pgfpathlineto{\pgfqpoint{4.365296in}{0.797151in}}% +\pgfpathlineto{\pgfqpoint{4.286165in}{0.770670in}}% +\pgfpathlineto{\pgfqpoint{4.205996in}{0.748155in}}% +\pgfpathlineto{\pgfqpoint{4.125028in}{0.729645in}}% +\pgfpathlineto{\pgfqpoint{4.043506in}{0.715168in}}% +\pgfpathlineto{\pgfqpoint{3.961673in}{0.704737in}}% +\pgfpathlineto{\pgfqpoint{3.879773in}{0.698353in}}% +\pgfpathlineto{\pgfqpoint{3.798052in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.716752in}{0.697652in}}% +\pgfpathlineto{\pgfqpoint{3.636113in}{0.703269in}}% +\pgfpathlineto{\pgfqpoint{3.556373in}{0.712796in}}% +\pgfpathlineto{\pgfqpoint{3.477767in}{0.726165in}}% +\pgfpathlineto{\pgfqpoint{3.400521in}{0.743298in}}% +\pgfpathlineto{\pgfqpoint{3.324860in}{0.764100in}}% +\pgfpathlineto{\pgfqpoint{3.251001in}{0.788467in}}% +\pgfpathlineto{\pgfqpoint{3.179152in}{0.816281in}}% +\pgfpathlineto{\pgfqpoint{3.109514in}{0.847414in}}% +\pgfpathlineto{\pgfqpoint{3.042281in}{0.881727in}}% +\pgfpathlineto{\pgfqpoint{2.977635in}{0.919069in}}% +\pgfpathlineto{\pgfqpoint{2.915749in}{0.959279in}}% +\pgfpathlineto{\pgfqpoint{2.856784in}{1.002188in}}% +\pgfpathlineto{\pgfqpoint{2.800892in}{1.047617in}}% +\pgfpathlineto{\pgfqpoint{2.748209in}{1.095381in}}% +\pgfpathlineto{\pgfqpoint{2.698862in}{1.145285in}}% +\pgfpathlineto{\pgfqpoint{2.652964in}{1.197128in}}% +\pgfpathlineto{\pgfqpoint{2.610612in}{1.250704in}}% +\pgfpathlineto{\pgfqpoint{2.571893in}{1.305803in}}% +\pgfpathlineto{\pgfqpoint{2.536877in}{1.362207in}}% +\pgfpathlineto{\pgfqpoint{2.505621in}{1.419697in}}% +\pgfpathlineto{\pgfqpoint{2.478166in}{1.478053in}}% +\pgfpathlineto{\pgfqpoint{2.454539in}{1.537050in}}% +\pgfpathlineto{\pgfqpoint{2.434751in}{1.596465in}}% +\pgfpathlineto{\pgfqpoint{2.418799in}{1.656073in}}% +\pgfpathlineto{\pgfqpoint{2.406665in}{1.715651in}}% +\pgfpathlineto{\pgfqpoint{2.398316in}{1.774978in}}% +\pgfpathlineto{\pgfqpoint{2.393703in}{1.833835in}}% +\pgfpathlineto{\pgfqpoint{2.392763in}{1.892007in}}% +\pgfpathlineto{\pgfqpoint{2.395420in}{1.949285in}}% +\pgfpathlineto{\pgfqpoint{2.401583in}{2.005462in}}% +\pgfpathlineto{\pgfqpoint{2.411146in}{2.060340in}}% +\pgfpathlineto{\pgfqpoint{2.423991in}{2.113728in}}% +\pgfpathlineto{\pgfqpoint{2.439987in}{2.165441in}}% +\pgfpathlineto{\pgfqpoint{2.458992in}{2.215303in}}% +\pgfpathlineto{\pgfqpoint{2.480851in}{2.263150in}}% +\pgfpathlineto{\pgfqpoint{2.505399in}{2.308824in}}% +\pgfpathlineto{\pgfqpoint{2.532458in}{2.352181in}}% +\pgfpathlineto{\pgfqpoint{2.561845in}{2.393086in}}% +\pgfpathlineto{\pgfqpoint{2.593364in}{2.431418in}}% +\pgfpathlineto{\pgfqpoint{2.626814in}{2.467065in}}% +\pgfpathlineto{\pgfqpoint{2.661985in}{2.499931in}}% +\pgfpathlineto{\pgfqpoint{2.698663in}{2.529933in}}% +\pgfpathlineto{\pgfqpoint{2.736627in}{2.557001in}}% +\pgfpathlineto{\pgfqpoint{2.775652in}{2.581077in}}% +\pgfpathlineto{\pgfqpoint{2.815510in}{2.602122in}}% +\pgfpathlineto{\pgfqpoint{2.855971in}{2.620106in}}% +\pgfpathlineto{\pgfqpoint{2.896804in}{2.635018in}}% +\pgfpathlineto{\pgfqpoint{2.937775in}{2.646859in}}% +\pgfpathlineto{\pgfqpoint{2.978655in}{2.655645in}}% +\pgfpathlineto{\pgfqpoint{3.019214in}{2.661408in}}% +\pgfpathlineto{\pgfqpoint{3.059226in}{2.664193in}}% +\pgfpathlineto{\pgfqpoint{3.098467in}{2.664061in}}% +\pgfpathlineto{\pgfqpoint{3.136721in}{2.661084in}}% +\pgfpathlineto{\pgfqpoint{3.173775in}{2.655351in}}% +\pgfpathlineto{\pgfqpoint{3.209425in}{2.646964in}}% +\pgfpathlineto{\pgfqpoint{3.243473in}{2.636035in}}% +\pgfpathlineto{\pgfqpoint{3.275730in}{2.622692in}}% +\pgfpathlineto{\pgfqpoint{3.306019in}{2.607073in}}% +\pgfpathlineto{\pgfqpoint{3.334170in}{2.589328in}}% +\pgfpathlineto{\pgfqpoint{3.360027in}{2.569619in}}% +\pgfpathlineto{\pgfqpoint{3.383444in}{2.548114in}}% +\pgfpathlineto{\pgfqpoint{3.404289in}{2.524995in}}% +\pgfpathlineto{\pgfqpoint{3.422443in}{2.500450in}}% +\pgfpathlineto{\pgfqpoint{3.437801in}{2.474674in}}% +\pgfpathlineto{\pgfqpoint{3.450275in}{2.447871in}}% +\pgfpathlineto{\pgfqpoint{3.459787in}{2.420248in}}% +\pgfpathlineto{\pgfqpoint{3.466279in}{2.392019in}}% +\pgfpathlineto{\pgfqpoint{3.469707in}{2.363402in}}% +\pgfpathlineto{\pgfqpoint{3.470045in}{2.334615in}}% +\pgfpathlineto{\pgfqpoint{3.467280in}{2.305882in}}% +\pgfpathlineto{\pgfqpoint{3.461418in}{2.277424in}}% +\pgfpathlineto{\pgfqpoint{3.452483in}{2.249465in}}% +\pgfpathlineto{\pgfqpoint{3.440512in}{2.222224in}}% +\pgfpathlineto{\pgfqpoint{3.425561in}{2.195922in}}% +\pgfpathlineto{\pgfqpoint{3.407702in}{2.170773in}}% +\pgfpathlineto{\pgfqpoint{3.387023in}{2.146989in}}% +\pgfpathlineto{\pgfqpoint{3.363629in}{2.124774in}}% +\pgfpathlineto{\pgfqpoint{3.337639in}{2.104328in}}% +\pgfpathlineto{\pgfqpoint{3.309187in}{2.085841in}}% +\pgfpathlineto{\pgfqpoint{3.278423in}{2.069496in}}% +\pgfpathlineto{\pgfqpoint{3.245511in}{2.055467in}}% +\pgfpathlineto{\pgfqpoint{3.210626in}{2.043917in}}% +\pgfpathlineto{\pgfqpoint{3.173959in}{2.034997in}}% +\pgfpathlineto{\pgfqpoint{3.135709in}{2.028847in}}% +\pgfpathlineto{\pgfqpoint{3.096089in}{2.025594in}}% +\pgfpathlineto{\pgfqpoint{3.055322in}{2.025350in}}% +\pgfpathlineto{\pgfqpoint{3.013638in}{2.028215in}}% +\pgfpathlineto{\pgfqpoint{2.971276in}{2.034272in}}% +\pgfpathlineto{\pgfqpoint{2.928482in}{2.043591in}}% +\pgfpathlineto{\pgfqpoint{2.885510in}{2.056224in}}% +\pgfpathlineto{\pgfqpoint{2.842614in}{2.072207in}}% +\pgfpathlineto{\pgfqpoint{2.800058in}{2.091560in}}% +\pgfpathlineto{\pgfqpoint{2.758102in}{2.114287in}}% +\pgfpathlineto{\pgfqpoint{2.717011in}{2.140372in}}% +\pgfpathlineto{\pgfqpoint{2.677049in}{2.169784in}}% +\pgfpathlineto{\pgfqpoint{2.638479in}{2.202475in}}% +\pgfpathlineto{\pgfqpoint{2.601561in}{2.238378in}}% +\pgfpathlineto{\pgfqpoint{2.566552in}{2.277410in}}% +\pgfpathlineto{\pgfqpoint{2.533702in}{2.319471in}}% +\pgfpathlineto{\pgfqpoint{2.503257in}{2.364443in}}% +\pgfpathlineto{\pgfqpoint{2.475454in}{2.412194in}}% +\pgfpathlineto{\pgfqpoint{2.450521in}{2.462575in}}% +\pgfpathlineto{\pgfqpoint{2.428678in}{2.515421in}}% +\pgfpathlineto{\pgfqpoint{2.410132in}{2.570554in}}% +\pgfpathlineto{\pgfqpoint{2.395078in}{2.627778in}}% +\pgfpathlineto{\pgfqpoint{2.383699in}{2.686889in}}% +\pgfpathlineto{\pgfqpoint{2.376163in}{2.747667in}}% +\pgfpathlineto{\pgfqpoint{2.372623in}{2.809880in}}% +\pgfpathlineto{\pgfqpoint{2.373215in}{2.873286in}}% +\pgfpathlineto{\pgfqpoint{2.378060in}{2.937635in}}% +\pgfpathlineto{\pgfqpoint{2.387259in}{3.002666in}}% +\pgfpathlineto{\pgfqpoint{2.400897in}{3.068110in}}% +\pgfpathlineto{\pgfqpoint{2.419038in}{3.133693in}}% +\pgfpathlineto{\pgfqpoint{2.441727in}{3.199136in}}% +\pgfpathlineto{\pgfqpoint{2.468992in}{3.264153in}}% +\pgfpathlineto{\pgfqpoint{2.500835in}{3.328459in}}% +\pgfpathlineto{\pgfqpoint{2.537243in}{3.391764in}}% +\pgfpathlineto{\pgfqpoint{2.578178in}{3.453781in}}% +\pgfpathlineto{\pgfqpoint{2.623585in}{3.514220in}}% +\pgfpathlineto{\pgfqpoint{2.673385in}{3.572797in}}% +\pgfpathlineto{\pgfqpoint{2.727480in}{3.629229in}}% +\pgfpathlineto{\pgfqpoint{2.785751in}{3.683241in}}% +\pgfpathlineto{\pgfqpoint{2.848059in}{3.734560in}}% +\pgfpathlineto{\pgfqpoint{2.914244in}{3.782926in}}% +\pgfpathlineto{\pgfqpoint{2.984130in}{3.828083in}}% +\pgfpathlineto{\pgfqpoint{3.057517in}{3.869787in}}% +\pgfpathlineto{\pgfqpoint{3.134192in}{3.907806in}}% +\pgfpathlineto{\pgfqpoint{3.213922in}{3.941920in}}% +\pgfpathlineto{\pgfqpoint{3.296458in}{3.971922in}}% +\pgfpathlineto{\pgfqpoint{3.381535in}{3.997621in}}% +\pgfpathlineto{\pgfqpoint{3.468875in}{4.018840in}}% +\pgfpathlineto{\pgfqpoint{3.558186in}{4.035420in}}% +\pgfpathlineto{\pgfqpoint{3.649161in}{4.047219in}}% +\pgfpathlineto{\pgfqpoint{3.741487in}{4.054114in}}% +\pgfpathlineto{\pgfqpoint{3.834837in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.928877in}{4.052793in}}% +\pgfpathlineto{\pgfqpoint{4.023266in}{4.044429in}}% +\pgfpathlineto{\pgfqpoint{4.117659in}{4.030865in}}% +\pgfpathlineto{\pgfqpoint{4.211703in}{4.012079in}}% +\pgfpathlineto{\pgfqpoint{4.305047in}{3.988070in}}% +\pgfpathlineto{\pgfqpoint{4.397335in}{3.958861in}}% +\pgfpathlineto{\pgfqpoint{4.488215in}{3.924494in}}% +\pgfpathlineto{\pgfqpoint{4.577333in}{3.885034in}}% +\pgfpathlineto{\pgfqpoint{4.664343in}{3.840570in}}% +\pgfpathlineto{\pgfqpoint{4.748902in}{3.791209in}}% +\pgfpathlineto{\pgfqpoint{4.830673in}{3.737083in}}% +\pgfpathlineto{\pgfqpoint{4.909329in}{3.678343in}}% +\pgfpathlineto{\pgfqpoint{4.984553in}{3.615160in}}% +\pgfpathlineto{\pgfqpoint{5.056037in}{3.547726in}}% +\pgfpathlineto{\pgfqpoint{5.123488in}{3.476252in}}% +\pgfpathlineto{\pgfqpoint{5.186627in}{3.400968in}}% +\pgfpathlineto{\pgfqpoint{5.245190in}{3.322121in}}% +\pgfpathlineto{\pgfqpoint{5.298929in}{3.239975in}}% +\pgfpathlineto{\pgfqpoint{5.347616in}{3.154810in}}% +\pgfpathlineto{\pgfqpoint{5.391041in}{3.066919in}}% +\pgfpathlineto{\pgfqpoint{5.429014in}{2.976610in}}% +\pgfpathlineto{\pgfqpoint{5.461368in}{2.884202in}}% +\pgfpathlineto{\pgfqpoint{5.487956in}{2.790027in}}% +\pgfpathlineto{\pgfqpoint{5.508654in}{2.694423in}}% +\pgfpathlineto{\pgfqpoint{5.523365in}{2.597738in}}% +\pgfpathlineto{\pgfqpoint{5.532012in}{2.500326in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.402546in}}% +\pgfpathlineto{\pgfqpoint{5.530940in}{2.304762in}}% +\pgfpathlineto{\pgfqpoint{5.521195in}{2.207336in}}% +\pgfpathlineto{\pgfqpoint{5.505338in}{2.110633in}}% +\pgfpathlineto{\pgfqpoint{5.483419in}{2.015017in}}% +\pgfpathlineto{\pgfqpoint{5.455515in}{1.920848in}}% +\pgfpathlineto{\pgfqpoint{5.421729in}{1.828479in}}% +\pgfpathlineto{\pgfqpoint{5.382188in}{1.738262in}}% +\pgfpathlineto{\pgfqpoint{5.337044in}{1.650536in}}% +\pgfpathlineto{\pgfqpoint{5.286472in}{1.565633in}}% +\pgfpathlineto{\pgfqpoint{5.230672in}{1.483875in}}% +\pgfpathlineto{\pgfqpoint{5.169866in}{1.405568in}}% +\pgfpathlineto{\pgfqpoint{5.104298in}{1.331009in}}% +\pgfpathlineto{\pgfqpoint{5.034231in}{1.260475in}}% +\pgfpathlineto{\pgfqpoint{4.959950in}{1.194230in}}% +\pgfpathlineto{\pgfqpoint{4.881756in}{1.132518in}}% +\pgfpathlineto{\pgfqpoint{4.799970in}{1.075565in}}% +\pgfpathlineto{\pgfqpoint{4.714926in}{1.023576in}}% +\pgfpathlineto{\pgfqpoint{4.626974in}{0.976736in}}% +\pgfpathlineto{\pgfqpoint{4.536476in}{0.935207in}}% +\pgfpathlineto{\pgfqpoint{4.443805in}{0.899128in}}% +\pgfpathlineto{\pgfqpoint{4.349345in}{0.868616in}}% +\pgfpathlineto{\pgfqpoint{4.253485in}{0.843763in}}% +\pgfpathlineto{\pgfqpoint{4.156624in}{0.824635in}}% +\pgfpathlineto{\pgfqpoint{4.059160in}{0.811275in}}% +\pgfpathlineto{\pgfqpoint{3.961499in}{0.803700in}}% +\pgfpathlineto{\pgfqpoint{3.864044in}{0.801901in}}% +\pgfpathlineto{\pgfqpoint{3.767197in}{0.805844in}}% +\pgfpathlineto{\pgfqpoint{3.671359in}{0.815469in}}% +\pgfpathlineto{\pgfqpoint{3.576922in}{0.830693in}}% +\pgfpathlineto{\pgfqpoint{3.484276in}{0.851405in}}% +\pgfpathlineto{\pgfqpoint{3.393799in}{0.877472in}}% +\pgfpathlineto{\pgfqpoint{3.305860in}{0.908737in}}% +\pgfpathlineto{\pgfqpoint{3.220815in}{0.945018in}}% +\pgfpathlineto{\pgfqpoint{3.139007in}{0.986114in}}% +\pgfpathlineto{\pgfqpoint{3.060763in}{1.031799in}}% +\pgfpathlineto{\pgfqpoint{2.986393in}{1.081830in}}% +\pgfpathlineto{\pgfqpoint{2.916188in}{1.135941in}}% +\pgfpathlineto{\pgfqpoint{2.850420in}{1.193853in}}% +\pgfpathlineto{\pgfqpoint{2.789341in}{1.255266in}}% +\pgfpathlineto{\pgfqpoint{2.733177in}{1.319866in}}% +\pgfpathlineto{\pgfqpoint{2.682134in}{1.387325in}}% +\pgfpathlineto{\pgfqpoint{2.636391in}{1.457305in}}% +\pgfpathlineto{\pgfqpoint{2.596104in}{1.529454in}}% +\pgfpathlineto{\pgfqpoint{2.561400in}{1.603413in}}% +\pgfpathlineto{\pgfqpoint{2.532382in}{1.678814in}}% +\pgfpathlineto{\pgfqpoint{2.509124in}{1.755287in}}% +\pgfpathlineto{\pgfqpoint{2.491673in}{1.832455in}}% +\pgfpathlineto{\pgfqpoint{2.480048in}{1.909940in}}% +\pgfpathlineto{\pgfqpoint{2.474240in}{1.987363in}}% +\pgfpathlineto{\pgfqpoint{2.474212in}{2.064350in}}% +\pgfpathlineto{\pgfqpoint{2.479899in}{2.140527in}}% +\pgfpathlineto{\pgfqpoint{2.491211in}{2.215528in}}% +\pgfpathlineto{\pgfqpoint{2.508027in}{2.288991in}}% +\pgfpathlineto{\pgfqpoint{2.530202in}{2.360567in}}% +\pgfpathlineto{\pgfqpoint{2.557565in}{2.429916in}}% +\pgfpathlineto{\pgfqpoint{2.589920in}{2.496709in}}% +\pgfpathlineto{\pgfqpoint{2.627048in}{2.560632in}}% +\pgfpathlineto{\pgfqpoint{2.668706in}{2.621388in}}% +\pgfpathlineto{\pgfqpoint{2.714631in}{2.678695in}}% +\pgfpathlineto{\pgfqpoint{2.764538in}{2.732290in}}% +\pgfpathlineto{\pgfqpoint{2.818124in}{2.781930in}}% +\pgfpathlineto{\pgfqpoint{2.875070in}{2.827394in}}% +\pgfpathlineto{\pgfqpoint{2.935040in}{2.868480in}}% +\pgfpathlineto{\pgfqpoint{2.997684in}{2.905013in}}% +\pgfpathlineto{\pgfqpoint{3.062640in}{2.936838in}}% +\pgfpathlineto{\pgfqpoint{3.129538in}{2.963828in}}% +\pgfpathlineto{\pgfqpoint{3.197996in}{2.985878in}}% +\pgfpathlineto{\pgfqpoint{3.267628in}{3.002913in}}% +\pgfpathlineto{\pgfqpoint{3.338042in}{3.014880in}}% +\pgfpathlineto{\pgfqpoint{3.408846in}{3.021754in}}% +\pgfpathlineto{\pgfqpoint{3.479646in}{3.023538in}}% +\pgfpathlineto{\pgfqpoint{3.550049in}{3.020260in}}% +\pgfpathlineto{\pgfqpoint{3.619666in}{3.011973in}}% +\pgfpathlineto{\pgfqpoint{3.688115in}{2.998759in}}% +\pgfpathlineto{\pgfqpoint{3.755020in}{2.980724in}}% +\pgfpathlineto{\pgfqpoint{3.820015in}{2.957998in}}% +\pgfpathlineto{\pgfqpoint{3.882747in}{2.930736in}}% +\pgfpathlineto{\pgfqpoint{3.942875in}{2.899118in}}% +\pgfpathlineto{\pgfqpoint{4.000071in}{2.863344in}}% +\pgfpathlineto{\pgfqpoint{4.054029in}{2.823637in}}% +\pgfpathlineto{\pgfqpoint{4.104457in}{2.780240in}}% +\pgfpathlineto{\pgfqpoint{4.151084in}{2.733412in}}% +\pgfpathlineto{\pgfqpoint{4.193661in}{2.683435in}}% +\pgfpathlineto{\pgfqpoint{4.231962in}{2.630602in}}% +\pgfpathlineto{\pgfqpoint{4.265784in}{2.575223in}}% +\pgfpathlineto{\pgfqpoint{4.294948in}{2.517619in}}% +\pgfpathlineto{\pgfqpoint{4.319303in}{2.458123in}}% +\pgfpathlineto{\pgfqpoint{4.338723in}{2.397077in}}% +\pgfpathlineto{\pgfqpoint{4.353109in}{2.334831in}}% +\pgfpathlineto{\pgfqpoint{4.362392in}{2.271738in}}% +\pgfpathlineto{\pgfqpoint{4.366528in}{2.208157in}}% +\pgfpathlineto{\pgfqpoint{4.365503in}{2.144448in}}% +\pgfpathlineto{\pgfqpoint{4.359332in}{2.080969in}}% +\pgfpathlineto{\pgfqpoint{4.348056in}{2.018078in}}% +\pgfpathlineto{\pgfqpoint{4.331745in}{1.956126in}}% +\pgfpathlineto{\pgfqpoint{4.310498in}{1.895459in}}% +\pgfpathlineto{\pgfqpoint{4.284439in}{1.836416in}}% +\pgfpathlineto{\pgfqpoint{4.253718in}{1.779324in}}% +\pgfpathlineto{\pgfqpoint{4.218513in}{1.724500in}}% +\pgfpathlineto{\pgfqpoint{4.179023in}{1.672245in}}% +\pgfpathlineto{\pgfqpoint{4.135473in}{1.622847in}}% +\pgfpathlineto{\pgfqpoint{4.088107in}{1.576577in}}% +\pgfpathlineto{\pgfqpoint{4.037193in}{1.533686in}}% +\pgfpathlineto{\pgfqpoint{3.983016in}{1.494407in}}% +\pgfpathlineto{\pgfqpoint{3.925877in}{1.458951in}}% +\pgfpathlineto{\pgfqpoint{3.866097in}{1.427508in}}% +\pgfpathlineto{\pgfqpoint{3.804007in}{1.400243in}}% +\pgfpathlineto{\pgfqpoint{3.739950in}{1.377299in}}% +\pgfpathlineto{\pgfqpoint{3.674282in}{1.358792in}}% +\pgfpathlineto{\pgfqpoint{3.607365in}{1.344815in}}% +\pgfpathlineto{\pgfqpoint{3.539567in}{1.335433in}}% +\pgfpathlineto{\pgfqpoint{3.471260in}{1.330684in}}% +\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% +\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/images/zeta_re_0_plot.pgf b/buch/papers/zeta/images/zeta_re_0_plot.pgf new file mode 100644 index 0000000..29a844e --- /dev/null +++ b/buch/papers/zeta/images/zeta_re_0_plot.pgf @@ -0,0 +1,1242 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.479870in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.479870in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.174916in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.174916in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.869963in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.869963in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.565009in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.565009in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.260056in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.260056in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.955103in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.955103in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {4}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.650149in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.650149in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{0.897985in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=0.859405in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.384529in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.345949in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{1.871074in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.551927in, y=1.832493in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.357618in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.319038in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{2.844162in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=2.805582in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.330706in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=3.292126in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.800000in}{3.817250in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.643749in, y=3.778670in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.496371in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.827393in}{2.357618in}}% +\pgfpathlineto{\pgfqpoint{1.828507in}{2.339765in}}% +\pgfpathlineto{\pgfqpoint{1.831827in}{2.322097in}}% +\pgfpathlineto{\pgfqpoint{1.837291in}{2.304795in}}% +\pgfpathlineto{\pgfqpoint{1.844799in}{2.288026in}}% +\pgfpathlineto{\pgfqpoint{1.854214in}{2.271943in}}% +\pgfpathlineto{\pgfqpoint{1.865375in}{2.256678in}}% +\pgfpathlineto{\pgfqpoint{1.878097in}{2.242341in}}% +\pgfpathlineto{\pgfqpoint{1.892182in}{2.229019in}}% +\pgfpathlineto{\pgfqpoint{1.907424in}{2.216774in}}% +\pgfpathlineto{\pgfqpoint{1.923617in}{2.205644in}}% +\pgfpathlineto{\pgfqpoint{1.940559in}{2.195648in}}% +\pgfpathlineto{\pgfqpoint{1.958058in}{2.186782in}}% +\pgfpathlineto{\pgfqpoint{1.994025in}{2.172353in}}% +\pgfpathlineto{\pgfqpoint{2.030278in}{2.162054in}}% +\pgfpathlineto{\pgfqpoint{2.065858in}{2.155446in}}% +\pgfpathlineto{\pgfqpoint{2.100079in}{2.152026in}}% +\pgfpathlineto{\pgfqpoint{2.132493in}{2.151287in}}% +\pgfpathlineto{\pgfqpoint{2.162845in}{2.152748in}}% +\pgfpathlineto{\pgfqpoint{2.191028in}{2.155979in}}% +\pgfpathlineto{\pgfqpoint{2.217038in}{2.160607in}}% +\pgfpathlineto{\pgfqpoint{2.252138in}{2.169498in}}% +\pgfpathlineto{\pgfqpoint{2.282908in}{2.180004in}}% +\pgfpathlineto{\pgfqpoint{2.309834in}{2.191516in}}% +\pgfpathlineto{\pgfqpoint{2.333422in}{2.203603in}}% +\pgfpathlineto{\pgfqpoint{2.360491in}{2.220114in}}% +\pgfpathlineto{\pgfqpoint{2.383456in}{2.236679in}}% +\pgfpathlineto{\pgfqpoint{2.407642in}{2.257082in}}% +\pgfpathlineto{\pgfqpoint{2.431700in}{2.280833in}}% +\pgfpathlineto{\pgfqpoint{2.454993in}{2.307400in}}% +\pgfpathlineto{\pgfqpoint{2.480238in}{2.339873in}}% +\pgfpathlineto{\pgfqpoint{2.554623in}{2.438671in}}% +\pgfpathlineto{\pgfqpoint{2.576803in}{2.463336in}}% +\pgfpathlineto{\pgfqpoint{2.601466in}{2.487332in}}% +\pgfpathlineto{\pgfqpoint{2.625599in}{2.507664in}}% +\pgfpathlineto{\pgfqpoint{2.652540in}{2.527196in}}% +\pgfpathlineto{\pgfqpoint{2.678147in}{2.543114in}}% +\pgfpathlineto{\pgfqpoint{2.706290in}{2.558061in}}% +\pgfpathlineto{\pgfqpoint{2.737139in}{2.571792in}}% +\pgfpathlineto{\pgfqpoint{2.770816in}{2.584016in}}% +\pgfpathlineto{\pgfqpoint{2.801091in}{2.592812in}}% +\pgfpathlineto{\pgfqpoint{2.833379in}{2.600113in}}% +\pgfpathlineto{\pgfqpoint{2.867640in}{2.605685in}}% +\pgfpathlineto{\pgfqpoint{2.903786in}{2.609274in}}% +\pgfpathlineto{\pgfqpoint{2.941676in}{2.610615in}}% +\pgfpathlineto{\pgfqpoint{2.981105in}{2.609433in}}% +\pgfpathlineto{\pgfqpoint{3.013576in}{2.606481in}}% +\pgfpathlineto{\pgfqpoint{3.046687in}{2.601592in}}% +\pgfpathlineto{\pgfqpoint{3.080230in}{2.594625in}}% +\pgfpathlineto{\pgfqpoint{3.113964in}{2.585449in}}% +\pgfpathlineto{\pgfqpoint{3.147615in}{2.573938in}}% +\pgfpathlineto{\pgfqpoint{3.180869in}{2.559983in}}% +\pgfpathlineto{\pgfqpoint{3.213377in}{2.543487in}}% +\pgfpathlineto{\pgfqpoint{3.244756in}{2.524379in}}% +\pgfpathlineto{\pgfqpoint{3.267298in}{2.508303in}}% +\pgfpathlineto{\pgfqpoint{3.288781in}{2.490719in}}% +\pgfpathlineto{\pgfqpoint{3.309005in}{2.471629in}}% +\pgfpathlineto{\pgfqpoint{3.327765in}{2.451046in}}% +\pgfpathlineto{\pgfqpoint{3.344844in}{2.428993in}}% +\pgfpathlineto{\pgfqpoint{3.360023in}{2.405512in}}% +\pgfpathlineto{\pgfqpoint{3.373075in}{2.380654in}}% +\pgfpathlineto{\pgfqpoint{3.383772in}{2.354491in}}% +\pgfpathlineto{\pgfqpoint{3.391884in}{2.327109in}}% +\pgfpathlineto{\pgfqpoint{3.397184in}{2.298612in}}% +\pgfpathlineto{\pgfqpoint{3.399446in}{2.269122in}}% +\pgfpathlineto{\pgfqpoint{3.399158in}{2.248981in}}% +\pgfpathlineto{\pgfqpoint{3.397360in}{2.228507in}}% +\pgfpathlineto{\pgfqpoint{3.393993in}{2.207752in}}% +\pgfpathlineto{\pgfqpoint{3.388998in}{2.186770in}}% +\pgfpathlineto{\pgfqpoint{3.382321in}{2.165620in}}% +\pgfpathlineto{\pgfqpoint{3.373911in}{2.144364in}}% +\pgfpathlineto{\pgfqpoint{3.363720in}{2.123067in}}% +\pgfpathlineto{\pgfqpoint{3.351707in}{2.101800in}}% +\pgfpathlineto{\pgfqpoint{3.337834in}{2.080635in}}% +\pgfpathlineto{\pgfqpoint{3.322068in}{2.059650in}}% +\pgfpathlineto{\pgfqpoint{3.304383in}{2.038925in}}% +\pgfpathlineto{\pgfqpoint{3.284760in}{2.018544in}}% +\pgfpathlineto{\pgfqpoint{3.263185in}{1.998593in}}% +\pgfpathlineto{\pgfqpoint{3.239652in}{1.979161in}}% +\pgfpathlineto{\pgfqpoint{3.214165in}{1.960341in}}% +\pgfpathlineto{\pgfqpoint{3.186732in}{1.942226in}}% +\pgfpathlineto{\pgfqpoint{3.157375in}{1.924912in}}% +\pgfpathlineto{\pgfqpoint{3.126120in}{1.908497in}}% +\pgfpathlineto{\pgfqpoint{3.093007in}{1.893079in}}% +\pgfpathlineto{\pgfqpoint{3.058082in}{1.878758in}}% +\pgfpathlineto{\pgfqpoint{3.021405in}{1.865633in}}% +\pgfpathlineto{\pgfqpoint{2.983044in}{1.853803in}}% +\pgfpathlineto{\pgfqpoint{2.943079in}{1.843368in}}% +\pgfpathlineto{\pgfqpoint{2.901600in}{1.834424in}}% +\pgfpathlineto{\pgfqpoint{2.858711in}{1.827067in}}% +\pgfpathlineto{\pgfqpoint{2.814524in}{1.821391in}}% +\pgfpathlineto{\pgfqpoint{2.769163in}{1.817484in}}% +\pgfpathlineto{\pgfqpoint{2.722767in}{1.815434in}}% +\pgfpathlineto{\pgfqpoint{2.675481in}{1.815322in}}% +\pgfpathlineto{\pgfqpoint{2.627465in}{1.817226in}}% +\pgfpathlineto{\pgfqpoint{2.578889in}{1.821215in}}% +\pgfpathlineto{\pgfqpoint{2.529934in}{1.827356in}}% +\pgfpathlineto{\pgfqpoint{2.480789in}{1.835705in}}% +\pgfpathlineto{\pgfqpoint{2.431657in}{1.846313in}}% +\pgfpathlineto{\pgfqpoint{2.382746in}{1.859221in}}% +\pgfpathlineto{\pgfqpoint{2.334276in}{1.874461in}}% +\pgfpathlineto{\pgfqpoint{2.286473in}{1.892055in}}% +\pgfpathlineto{\pgfqpoint{2.239571in}{1.912016in}}% +\pgfpathlineto{\pgfqpoint{2.193808in}{1.934343in}}% +\pgfpathlineto{\pgfqpoint{2.149432in}{1.959027in}}% +\pgfpathlineto{\pgfqpoint{2.106689in}{1.986044in}}% +\pgfpathlineto{\pgfqpoint{2.065833in}{2.015358in}}% +\pgfpathlineto{\pgfqpoint{2.027116in}{2.046921in}}% +\pgfpathlineto{\pgfqpoint{1.990793in}{2.080669in}}% +\pgfpathlineto{\pgfqpoint{1.957116in}{2.116527in}}% +\pgfpathlineto{\pgfqpoint{1.926335in}{2.154403in}}% +\pgfpathlineto{\pgfqpoint{1.898696in}{2.194193in}}% +\pgfpathlineto{\pgfqpoint{1.874438in}{2.235778in}}% +\pgfpathlineto{\pgfqpoint{1.853794in}{2.279024in}}% +\pgfpathlineto{\pgfqpoint{1.836986in}{2.323782in}}% +\pgfpathlineto{\pgfqpoint{1.824226in}{2.369891in}}% +\pgfpathlineto{\pgfqpoint{1.819427in}{2.393397in}}% +\pgfpathlineto{\pgfqpoint{1.815713in}{2.417174in}}% +\pgfpathlineto{\pgfqpoint{1.813108in}{2.441197in}}% +\pgfpathlineto{\pgfqpoint{1.811632in}{2.465441in}}% +\pgfpathlineto{\pgfqpoint{1.811306in}{2.489881in}}% +\pgfpathlineto{\pgfqpoint{1.812150in}{2.514490in}}% +\pgfpathlineto{\pgfqpoint{1.814181in}{2.539240in}}% +\pgfpathlineto{\pgfqpoint{1.817417in}{2.564105in}}% +\pgfpathlineto{\pgfqpoint{1.821872in}{2.589054in}}% +\pgfpathlineto{\pgfqpoint{1.827562in}{2.614059in}}% +\pgfpathlineto{\pgfqpoint{1.834499in}{2.639089in}}% +\pgfpathlineto{\pgfqpoint{1.842694in}{2.664115in}}% +\pgfpathlineto{\pgfqpoint{1.852157in}{2.689104in}}% +\pgfpathlineto{\pgfqpoint{1.862896in}{2.714025in}}% +\pgfpathlineto{\pgfqpoint{1.874918in}{2.738845in}}% +\pgfpathlineto{\pgfqpoint{1.888229in}{2.763532in}}% +\pgfpathlineto{\pgfqpoint{1.902831in}{2.788052in}}% +\pgfpathlineto{\pgfqpoint{1.918725in}{2.812372in}}% +\pgfpathlineto{\pgfqpoint{1.935912in}{2.836457in}}% +\pgfpathlineto{\pgfqpoint{1.954390in}{2.860274in}}% +\pgfpathlineto{\pgfqpoint{1.974155in}{2.883788in}}% +\pgfpathlineto{\pgfqpoint{1.995200in}{2.906963in}}% +\pgfpathlineto{\pgfqpoint{2.017519in}{2.929766in}}% +\pgfpathlineto{\pgfqpoint{2.041101in}{2.952161in}}% +\pgfpathlineto{\pgfqpoint{2.065934in}{2.974112in}}% +\pgfpathlineto{\pgfqpoint{2.092006in}{2.995585in}}% +\pgfpathlineto{\pgfqpoint{2.119301in}{3.016544in}}% +\pgfpathlineto{\pgfqpoint{2.147800in}{3.036954in}}% +\pgfpathlineto{\pgfqpoint{2.177483in}{3.056782in}}% +\pgfpathlineto{\pgfqpoint{2.208330in}{3.075991in}}% +\pgfpathlineto{\pgfqpoint{2.240316in}{3.094548in}}% +\pgfpathlineto{\pgfqpoint{2.273414in}{3.112418in}}% +\pgfpathlineto{\pgfqpoint{2.307598in}{3.129569in}}% +\pgfpathlineto{\pgfqpoint{2.342836in}{3.145966in}}% +\pgfpathlineto{\pgfqpoint{2.379096in}{3.161577in}}% +\pgfpathlineto{\pgfqpoint{2.416343in}{3.176371in}}% +\pgfpathlineto{\pgfqpoint{2.454543in}{3.190315in}}% +\pgfpathlineto{\pgfqpoint{2.493654in}{3.203380in}}% +\pgfpathlineto{\pgfqpoint{2.533638in}{3.215535in}}% +\pgfpathlineto{\pgfqpoint{2.574452in}{3.226751in}}% +\pgfpathlineto{\pgfqpoint{2.616051in}{3.237000in}}% +\pgfpathlineto{\pgfqpoint{2.658389in}{3.246256in}}% +\pgfpathlineto{\pgfqpoint{2.701417in}{3.254491in}}% +\pgfpathlineto{\pgfqpoint{2.745085in}{3.261682in}}% +\pgfpathlineto{\pgfqpoint{2.789341in}{3.267804in}}% +\pgfpathlineto{\pgfqpoint{2.834132in}{3.272834in}}% +\pgfpathlineto{\pgfqpoint{2.879401in}{3.276752in}}% +\pgfpathlineto{\pgfqpoint{2.925092in}{3.279537in}}% +\pgfpathlineto{\pgfqpoint{2.971147in}{3.281172in}}% +\pgfpathlineto{\pgfqpoint{3.017504in}{3.281638in}}% +\pgfpathlineto{\pgfqpoint{3.064102in}{3.280921in}}% +\pgfpathlineto{\pgfqpoint{3.110879in}{3.279007in}}% +\pgfpathlineto{\pgfqpoint{3.157769in}{3.275883in}}% +\pgfpathlineto{\pgfqpoint{3.204707in}{3.271539in}}% +\pgfpathlineto{\pgfqpoint{3.251627in}{3.265966in}}% +\pgfpathlineto{\pgfqpoint{3.298462in}{3.259157in}}% +\pgfpathlineto{\pgfqpoint{3.345141in}{3.251108in}}% +\pgfpathlineto{\pgfqpoint{3.391597in}{3.241814in}}% +\pgfpathlineto{\pgfqpoint{3.437759in}{3.231274in}}% +\pgfpathlineto{\pgfqpoint{3.483556in}{3.219490in}}% +\pgfpathlineto{\pgfqpoint{3.528917in}{3.206463in}}% +\pgfpathlineto{\pgfqpoint{3.573771in}{3.192199in}}% +\pgfpathlineto{\pgfqpoint{3.618045in}{3.176703in}}% +\pgfpathlineto{\pgfqpoint{3.661668in}{3.159986in}}% +\pgfpathlineto{\pgfqpoint{3.704568in}{3.142058in}}% +\pgfpathlineto{\pgfqpoint{3.746673in}{3.122931in}}% +\pgfpathlineto{\pgfqpoint{3.787911in}{3.102622in}}% +\pgfpathlineto{\pgfqpoint{3.828211in}{3.081147in}}% +\pgfpathlineto{\pgfqpoint{3.867502in}{3.058526in}}% +\pgfpathlineto{\pgfqpoint{3.905714in}{3.034781in}}% +\pgfpathlineto{\pgfqpoint{3.942778in}{3.009935in}}% +\pgfpathlineto{\pgfqpoint{3.978626in}{2.984015in}}% +\pgfpathlineto{\pgfqpoint{4.013190in}{2.957049in}}% +\pgfpathlineto{\pgfqpoint{4.046403in}{2.929067in}}% +\pgfpathlineto{\pgfqpoint{4.078202in}{2.900102in}}% +\pgfpathlineto{\pgfqpoint{4.108522in}{2.870189in}}% +\pgfpathlineto{\pgfqpoint{4.137302in}{2.839363in}}% +\pgfpathlineto{\pgfqpoint{4.164483in}{2.807663in}}% +\pgfpathlineto{\pgfqpoint{4.190005in}{2.775131in}}% +\pgfpathlineto{\pgfqpoint{4.213814in}{2.741809in}}% +\pgfpathlineto{\pgfqpoint{4.235854in}{2.707741in}}% +\pgfpathlineto{\pgfqpoint{4.256076in}{2.672975in}}% +\pgfpathlineto{\pgfqpoint{4.274429in}{2.637557in}}% +\pgfpathlineto{\pgfqpoint{4.290867in}{2.601539in}}% +\pgfpathlineto{\pgfqpoint{4.305347in}{2.564972in}}% +\pgfpathlineto{\pgfqpoint{4.317828in}{2.527909in}}% +\pgfpathlineto{\pgfqpoint{4.328270in}{2.490405in}}% +\pgfpathlineto{\pgfqpoint{4.336641in}{2.452517in}}% +\pgfpathlineto{\pgfqpoint{4.342908in}{2.414303in}}% +\pgfpathlineto{\pgfqpoint{4.347042in}{2.375821in}}% +\pgfpathlineto{\pgfqpoint{4.349019in}{2.337131in}}% +\pgfpathlineto{\pgfqpoint{4.348818in}{2.298295in}}% +\pgfpathlineto{\pgfqpoint{4.346420in}{2.259376in}}% +\pgfpathlineto{\pgfqpoint{4.341812in}{2.220437in}}% +\pgfpathlineto{\pgfqpoint{4.334983in}{2.181541in}}% +\pgfpathlineto{\pgfqpoint{4.325927in}{2.142754in}}% +\pgfpathlineto{\pgfqpoint{4.314641in}{2.104141in}}% +\pgfpathlineto{\pgfqpoint{4.301128in}{2.065767in}}% +\pgfpathlineto{\pgfqpoint{4.285392in}{2.027699in}}% +\pgfpathlineto{\pgfqpoint{4.267443in}{1.990004in}}% +\pgfpathlineto{\pgfqpoint{4.247296in}{1.952747in}}% +\pgfpathlineto{\pgfqpoint{4.224969in}{1.915996in}}% +\pgfpathlineto{\pgfqpoint{4.200483in}{1.879815in}}% +\pgfpathlineto{\pgfqpoint{4.173866in}{1.844272in}}% +\pgfpathlineto{\pgfqpoint{4.145149in}{1.809431in}}% +\pgfpathlineto{\pgfqpoint{4.114366in}{1.775358in}}% +\pgfpathlineto{\pgfqpoint{4.081557in}{1.742116in}}% +\pgfpathlineto{\pgfqpoint{4.046766in}{1.709769in}}% +\pgfpathlineto{\pgfqpoint{4.010041in}{1.678379in}}% +\pgfpathlineto{\pgfqpoint{3.971434in}{1.648007in}}% +\pgfpathlineto{\pgfqpoint{3.931001in}{1.618713in}}% +\pgfpathlineto{\pgfqpoint{3.888802in}{1.590556in}}% +\pgfpathlineto{\pgfqpoint{3.844901in}{1.563591in}}% +\pgfpathlineto{\pgfqpoint{3.799368in}{1.537874in}}% +\pgfpathlineto{\pgfqpoint{3.752273in}{1.513459in}}% +\pgfpathlineto{\pgfqpoint{3.703694in}{1.490397in}}% +\pgfpathlineto{\pgfqpoint{3.653709in}{1.468736in}}% +\pgfpathlineto{\pgfqpoint{3.602401in}{1.448524in}}% +\pgfpathlineto{\pgfqpoint{3.549857in}{1.429805in}}% +\pgfpathlineto{\pgfqpoint{3.496168in}{1.412621in}}% +\pgfpathlineto{\pgfqpoint{3.441424in}{1.397011in}}% +\pgfpathlineto{\pgfqpoint{3.385724in}{1.383012in}}% +\pgfpathlineto{\pgfqpoint{3.329165in}{1.370659in}}% +\pgfpathlineto{\pgfqpoint{3.271849in}{1.359980in}}% +\pgfpathlineto{\pgfqpoint{3.213879in}{1.351005in}}% +\pgfpathlineto{\pgfqpoint{3.155363in}{1.343758in}}% +\pgfpathlineto{\pgfqpoint{3.096407in}{1.338259in}}% +\pgfpathlineto{\pgfqpoint{3.037123in}{1.334527in}}% +\pgfpathlineto{\pgfqpoint{2.977621in}{1.332576in}}% +\pgfpathlineto{\pgfqpoint{2.918016in}{1.332418in}}% +\pgfpathlineto{\pgfqpoint{2.858422in}{1.334058in}}% +\pgfpathlineto{\pgfqpoint{2.798954in}{1.337501in}}% +\pgfpathlineto{\pgfqpoint{2.739729in}{1.342747in}}% +\pgfpathlineto{\pgfqpoint{2.680862in}{1.349792in}}% +\pgfpathlineto{\pgfqpoint{2.622472in}{1.358628in}}% +\pgfpathlineto{\pgfqpoint{2.564675in}{1.369244in}}% +\pgfpathlineto{\pgfqpoint{2.507587in}{1.381624in}}% +\pgfpathlineto{\pgfqpoint{2.451326in}{1.395748in}}% +\pgfpathlineto{\pgfqpoint{2.396006in}{1.411595in}}% +\pgfpathlineto{\pgfqpoint{2.341741in}{1.429137in}}% +\pgfpathlineto{\pgfqpoint{2.288645in}{1.448342in}}% +\pgfpathlineto{\pgfqpoint{2.236829in}{1.469176in}}% +\pgfpathlineto{\pgfqpoint{2.186402in}{1.491601in}}% +\pgfpathlineto{\pgfqpoint{2.137472in}{1.515575in}}% +\pgfpathlineto{\pgfqpoint{2.090143in}{1.541050in}}% +\pgfpathlineto{\pgfqpoint{2.044518in}{1.567978in}}% +\pgfpathlineto{\pgfqpoint{2.000696in}{1.596306in}}% +\pgfpathlineto{\pgfqpoint{1.958773in}{1.625976in}}% +\pgfpathlineto{\pgfqpoint{1.918841in}{1.656927in}}% +\pgfpathlineto{\pgfqpoint{1.880989in}{1.689098in}}% +\pgfpathlineto{\pgfqpoint{1.845302in}{1.722420in}}% +\pgfpathlineto{\pgfqpoint{1.811860in}{1.756824in}}% +\pgfpathlineto{\pgfqpoint{1.780740in}{1.792237in}}% +\pgfpathlineto{\pgfqpoint{1.752012in}{1.828584in}}% +\pgfpathlineto{\pgfqpoint{1.725742in}{1.865785in}}% +\pgfpathlineto{\pgfqpoint{1.701993in}{1.903760in}}% +\pgfpathlineto{\pgfqpoint{1.680819in}{1.942426in}}% +\pgfpathlineto{\pgfqpoint{1.662272in}{1.981697in}}% +\pgfpathlineto{\pgfqpoint{1.646394in}{2.021486in}}% +\pgfpathlineto{\pgfqpoint{1.633225in}{2.061703in}}% +\pgfpathlineto{\pgfqpoint{1.622798in}{2.102257in}}% +\pgfpathlineto{\pgfqpoint{1.615137in}{2.143056in}}% +\pgfpathlineto{\pgfqpoint{1.610264in}{2.184006in}}% +\pgfpathlineto{\pgfqpoint{1.608191in}{2.225013in}}% +\pgfpathlineto{\pgfqpoint{1.608925in}{2.265980in}}% +\pgfpathlineto{\pgfqpoint{1.612465in}{2.306813in}}% +\pgfpathlineto{\pgfqpoint{1.618806in}{2.347414in}}% +\pgfpathlineto{\pgfqpoint{1.627933in}{2.387686in}}% +\pgfpathlineto{\pgfqpoint{1.639826in}{2.427535in}}% +\pgfpathlineto{\pgfqpoint{1.654457in}{2.466863in}}% +\pgfpathlineto{\pgfqpoint{1.671793in}{2.505576in}}% +\pgfpathlineto{\pgfqpoint{1.691790in}{2.543578in}}% +\pgfpathlineto{\pgfqpoint{1.714402in}{2.580777in}}% +\pgfpathlineto{\pgfqpoint{1.739574in}{2.617080in}}% +\pgfpathlineto{\pgfqpoint{1.767242in}{2.652397in}}% +\pgfpathlineto{\pgfqpoint{1.797340in}{2.686641in}}% +\pgfpathlineto{\pgfqpoint{1.829791in}{2.719723in}}% +\pgfpathlineto{\pgfqpoint{1.864515in}{2.751560in}}% +\pgfpathlineto{\pgfqpoint{1.901422in}{2.782072in}}% +\pgfpathlineto{\pgfqpoint{1.940419in}{2.811178in}}% +\pgfpathlineto{\pgfqpoint{1.981406in}{2.838804in}}% +\pgfpathlineto{\pgfqpoint{2.024277in}{2.864878in}}% +\pgfpathlineto{\pgfqpoint{2.068919in}{2.889331in}}% +\pgfpathlineto{\pgfqpoint{2.115216in}{2.912097in}}% +\pgfpathlineto{\pgfqpoint{2.163046in}{2.933117in}}% +\pgfpathlineto{\pgfqpoint{2.212282in}{2.952333in}}% +\pgfpathlineto{\pgfqpoint{2.262792in}{2.969693in}}% +\pgfpathlineto{\pgfqpoint{2.314440in}{2.985149in}}% +\pgfpathlineto{\pgfqpoint{2.367086in}{2.998658in}}% +\pgfpathlineto{\pgfqpoint{2.420586in}{3.010182in}}% +\pgfpathlineto{\pgfqpoint{2.474794in}{3.019687in}}% +\pgfpathlineto{\pgfqpoint{2.529560in}{3.027146in}}% +\pgfpathlineto{\pgfqpoint{2.584732in}{3.032537in}}% +\pgfpathlineto{\pgfqpoint{2.640154in}{3.035842in}}% +\pgfpathlineto{\pgfqpoint{2.695671in}{3.037049in}}% +\pgfpathlineto{\pgfqpoint{2.751124in}{3.036154in}}% +\pgfpathlineto{\pgfqpoint{2.806355in}{3.033155in}}% +\pgfpathlineto{\pgfqpoint{2.861204in}{3.028058in}}% +\pgfpathlineto{\pgfqpoint{2.915513in}{3.020876in}}% +\pgfpathlineto{\pgfqpoint{2.969121in}{3.011625in}}% +\pgfpathlineto{\pgfqpoint{3.021870in}{3.000329in}}% +\pgfpathlineto{\pgfqpoint{3.073603in}{2.987017in}}% +\pgfpathlineto{\pgfqpoint{3.124165in}{2.971724in}}% +\pgfpathlineto{\pgfqpoint{3.173402in}{2.954492in}}% +\pgfpathlineto{\pgfqpoint{3.221162in}{2.935367in}}% +\pgfpathlineto{\pgfqpoint{3.267299in}{2.914403in}}% +\pgfpathlineto{\pgfqpoint{3.311668in}{2.891656in}}% +\pgfpathlineto{\pgfqpoint{3.354128in}{2.867193in}}% +\pgfpathlineto{\pgfqpoint{3.394543in}{2.841081in}}% +\pgfpathlineto{\pgfqpoint{3.432781in}{2.813395in}}% +\pgfpathlineto{\pgfqpoint{3.468716in}{2.784216in}}% +\pgfpathlineto{\pgfqpoint{3.502229in}{2.753628in}}% +\pgfpathlineto{\pgfqpoint{3.533203in}{2.721721in}}% +\pgfpathlineto{\pgfqpoint{3.561531in}{2.688590in}}% +\pgfpathlineto{\pgfqpoint{3.587113in}{2.654333in}}% +\pgfpathlineto{\pgfqpoint{3.609852in}{2.619053in}}% +\pgfpathlineto{\pgfqpoint{3.629664in}{2.582858in}}% +\pgfpathlineto{\pgfqpoint{3.646470in}{2.545857in}}% +\pgfpathlineto{\pgfqpoint{3.660198in}{2.508165in}}% +\pgfpathlineto{\pgfqpoint{3.670787in}{2.469898in}}% +\pgfpathlineto{\pgfqpoint{3.678185in}{2.431177in}}% +\pgfpathlineto{\pgfqpoint{3.682346in}{2.392123in}}% +\pgfpathlineto{\pgfqpoint{3.683236in}{2.352862in}}% +\pgfpathlineto{\pgfqpoint{3.680829in}{2.313520in}}% +\pgfpathlineto{\pgfqpoint{3.675111in}{2.274224in}}% +\pgfpathlineto{\pgfqpoint{3.666074in}{2.235103in}}% +\pgfpathlineto{\pgfqpoint{3.653724in}{2.196287in}}% +\pgfpathlineto{\pgfqpoint{3.638074in}{2.157906in}}% +\pgfpathlineto{\pgfqpoint{3.619149in}{2.120089in}}% +\pgfpathlineto{\pgfqpoint{3.596984in}{2.082966in}}% +\pgfpathlineto{\pgfqpoint{3.571623in}{2.046667in}}% +\pgfpathlineto{\pgfqpoint{3.543121in}{2.011318in}}% +\pgfpathlineto{\pgfqpoint{3.511545in}{1.977045in}}% +\pgfpathlineto{\pgfqpoint{3.476968in}{1.943972in}}% +\pgfpathlineto{\pgfqpoint{3.439477in}{1.912222in}}% +\pgfpathlineto{\pgfqpoint{3.399166in}{1.881913in}}% +\pgfpathlineto{\pgfqpoint{3.356141in}{1.853160in}}% +\pgfpathlineto{\pgfqpoint{3.310516in}{1.826076in}}% +\pgfpathlineto{\pgfqpoint{3.262415in}{1.800768in}}% +\pgfpathlineto{\pgfqpoint{3.211971in}{1.777342in}}% +\pgfpathlineto{\pgfqpoint{3.159325in}{1.755896in}}% +\pgfpathlineto{\pgfqpoint{3.104626in}{1.736524in}}% +\pgfpathlineto{\pgfqpoint{3.048034in}{1.719316in}}% +\pgfpathlineto{\pgfqpoint{2.989713in}{1.704354in}}% +\pgfpathlineto{\pgfqpoint{2.929837in}{1.691716in}}% +\pgfpathlineto{\pgfqpoint{2.868585in}{1.681472in}}% +\pgfpathlineto{\pgfqpoint{2.806143in}{1.673687in}}% +\pgfpathlineto{\pgfqpoint{2.742703in}{1.668418in}}% +\pgfpathlineto{\pgfqpoint{2.678463in}{1.665715in}}% +\pgfpathlineto{\pgfqpoint{2.613625in}{1.665620in}}% +\pgfpathlineto{\pgfqpoint{2.548395in}{1.668169in}}% +\pgfpathlineto{\pgfqpoint{2.482983in}{1.673389in}}% +\pgfpathlineto{\pgfqpoint{2.417602in}{1.681299in}}% +\pgfpathlineto{\pgfqpoint{2.352468in}{1.691910in}}% +\pgfpathlineto{\pgfqpoint{2.287799in}{1.705224in}}% +\pgfpathlineto{\pgfqpoint{2.223813in}{1.721237in}}% +\pgfpathlineto{\pgfqpoint{2.160728in}{1.739934in}}% +\pgfpathlineto{\pgfqpoint{2.098765in}{1.761291in}}% +\pgfpathlineto{\pgfqpoint{2.038142in}{1.785278in}}% +\pgfpathlineto{\pgfqpoint{1.979074in}{1.811854in}}% +\pgfpathlineto{\pgfqpoint{1.921776in}{1.840972in}}% +\pgfpathlineto{\pgfqpoint{1.866461in}{1.872573in}}% +\pgfpathlineto{\pgfqpoint{1.813335in}{1.906592in}}% +\pgfpathlineto{\pgfqpoint{1.762602in}{1.942954in}}% +\pgfpathlineto{\pgfqpoint{1.714462in}{1.981579in}}% +\pgfpathlineto{\pgfqpoint{1.669106in}{2.022374in}}% +\pgfpathlineto{\pgfqpoint{1.626723in}{2.065243in}}% +\pgfpathlineto{\pgfqpoint{1.587490in}{2.110078in}}% +\pgfpathlineto{\pgfqpoint{1.551580in}{2.156766in}}% +\pgfpathlineto{\pgfqpoint{1.519158in}{2.205188in}}% +\pgfpathlineto{\pgfqpoint{1.490377in}{2.255214in}}% +\pgfpathlineto{\pgfqpoint{1.465384in}{2.306710in}}% +\pgfpathlineto{\pgfqpoint{1.444312in}{2.359537in}}% +\pgfpathlineto{\pgfqpoint{1.427288in}{2.413548in}}% +\pgfpathlineto{\pgfqpoint{1.414425in}{2.468591in}}% +\pgfpathlineto{\pgfqpoint{1.405824in}{2.524508in}}% +\pgfpathlineto{\pgfqpoint{1.401576in}{2.581139in}}% +\pgfpathlineto{\pgfqpoint{1.401758in}{2.638318in}}% +\pgfpathlineto{\pgfqpoint{1.406433in}{2.695874in}}% +\pgfpathlineto{\pgfqpoint{1.415655in}{2.753636in}}% +\pgfpathlineto{\pgfqpoint{1.429459in}{2.811427in}}% +\pgfpathlineto{\pgfqpoint{1.447871in}{2.869070in}}% +\pgfpathlineto{\pgfqpoint{1.470898in}{2.926386in}}% +\pgfpathlineto{\pgfqpoint{1.498538in}{2.983193in}}% +\pgfpathlineto{\pgfqpoint{1.530771in}{3.039312in}}% +\pgfpathlineto{\pgfqpoint{1.567563in}{3.094560in}}% +\pgfpathlineto{\pgfqpoint{1.608866in}{3.148757in}}% +\pgfpathlineto{\pgfqpoint{1.654617in}{3.201724in}}% +\pgfpathlineto{\pgfqpoint{1.704739in}{3.253284in}}% +\pgfpathlineto{\pgfqpoint{1.759139in}{3.303261in}}% +\pgfpathlineto{\pgfqpoint{1.817712in}{3.351482in}}% +\pgfpathlineto{\pgfqpoint{1.880337in}{3.397779in}}% +\pgfpathlineto{\pgfqpoint{1.946878in}{3.441987in}}% +\pgfpathlineto{\pgfqpoint{2.017189in}{3.483947in}}% +\pgfpathlineto{\pgfqpoint{2.091106in}{3.523502in}}% +\pgfpathlineto{\pgfqpoint{2.168456in}{3.560505in}}% +\pgfpathlineto{\pgfqpoint{2.249051in}{3.594812in}}% +\pgfpathlineto{\pgfqpoint{2.332692in}{3.626287in}}% +\pgfpathlineto{\pgfqpoint{2.419167in}{3.654802in}}% +\pgfpathlineto{\pgfqpoint{2.508254in}{3.680236in}}% +\pgfpathlineto{\pgfqpoint{2.599721in}{3.702477in}}% +\pgfpathlineto{\pgfqpoint{2.693325in}{3.721420in}}% +\pgfpathlineto{\pgfqpoint{2.788815in}{3.736972in}}% +\pgfpathlineto{\pgfqpoint{2.885929in}{3.749048in}}% +\pgfpathlineto{\pgfqpoint{2.984401in}{3.757573in}}% +\pgfpathlineto{\pgfqpoint{3.083956in}{3.762482in}}% +\pgfpathlineto{\pgfqpoint{3.184313in}{3.763721in}}% +\pgfpathlineto{\pgfqpoint{3.285185in}{3.761247in}}% +\pgfpathlineto{\pgfqpoint{3.386283in}{3.755030in}}% +\pgfpathlineto{\pgfqpoint{3.487312in}{3.745047in}}% +\pgfpathlineto{\pgfqpoint{3.587975in}{3.731291in}}% +\pgfpathlineto{\pgfqpoint{3.687976in}{3.713763in}}% +\pgfpathlineto{\pgfqpoint{3.787015in}{3.692479in}}% +\pgfpathlineto{\pgfqpoint{3.884793in}{3.667466in}}% +\pgfpathlineto{\pgfqpoint{3.981014in}{3.638761in}}% +\pgfpathlineto{\pgfqpoint{4.075383in}{3.606416in}}% +\pgfpathlineto{\pgfqpoint{4.167608in}{3.570491in}}% +\pgfpathlineto{\pgfqpoint{4.257402in}{3.531061in}}% +\pgfpathlineto{\pgfqpoint{4.344483in}{3.488212in}}% +\pgfpathlineto{\pgfqpoint{4.428575in}{3.442040in}}% +\pgfpathlineto{\pgfqpoint{4.509409in}{3.392654in}}% +\pgfpathlineto{\pgfqpoint{4.586726in}{3.340173in}}% +\pgfpathlineto{\pgfqpoint{4.660274in}{3.284726in}}% +\pgfpathlineto{\pgfqpoint{4.729811in}{3.226454in}}% +\pgfpathlineto{\pgfqpoint{4.795106in}{3.165506in}}% +\pgfpathlineto{\pgfqpoint{4.855942in}{3.102043in}}% +\pgfpathlineto{\pgfqpoint{4.912111in}{3.036232in}}% +\pgfpathlineto{\pgfqpoint{4.963422in}{2.968251in}}% +\pgfpathlineto{\pgfqpoint{5.009694in}{2.898286in}}% +\pgfpathlineto{\pgfqpoint{5.050764in}{2.826529in}}% +\pgfpathlineto{\pgfqpoint{5.086484in}{2.753180in}}% +\pgfpathlineto{\pgfqpoint{5.116721in}{2.678445in}}% +\pgfpathlineto{\pgfqpoint{5.141359in}{2.602536in}}% +\pgfpathlineto{\pgfqpoint{5.160300in}{2.525669in}}% +\pgfpathlineto{\pgfqpoint{5.173463in}{2.448067in}}% +\pgfpathlineto{\pgfqpoint{5.180785in}{2.369952in}}% +\pgfpathlineto{\pgfqpoint{5.182222in}{2.291554in}}% +\pgfpathlineto{\pgfqpoint{5.177748in}{2.213101in}}% +\pgfpathlineto{\pgfqpoint{5.167356in}{2.134824in}}% +\pgfpathlineto{\pgfqpoint{5.151058in}{2.056956in}}% +\pgfpathlineto{\pgfqpoint{5.128885in}{1.979727in}}% +\pgfpathlineto{\pgfqpoint{5.100889in}{1.903368in}}% +\pgfpathlineto{\pgfqpoint{5.067139in}{1.828106in}}% +\pgfpathlineto{\pgfqpoint{5.027723in}{1.754170in}}% +\pgfpathlineto{\pgfqpoint{4.982750in}{1.681779in}}% +\pgfpathlineto{\pgfqpoint{4.932344in}{1.611154in}}% +\pgfpathlineto{\pgfqpoint{4.876652in}{1.542506in}}% +\pgfpathlineto{\pgfqpoint{4.815834in}{1.476045in}}% +\pgfpathlineto{\pgfqpoint{4.750070in}{1.411970in}}% +\pgfpathlineto{\pgfqpoint{4.679558in}{1.350476in}}% +\pgfpathlineto{\pgfqpoint{4.604510in}{1.291749in}}% +\pgfpathlineto{\pgfqpoint{4.525155in}{1.235965in}}% +\pgfpathlineto{\pgfqpoint{4.441736in}{1.183293in}}% +\pgfpathlineto{\pgfqpoint{4.354511in}{1.133891in}}% +\pgfpathlineto{\pgfqpoint{4.263751in}{1.087905in}}% +\pgfpathlineto{\pgfqpoint{4.169739in}{1.045473in}}% +\pgfpathlineto{\pgfqpoint{4.072771in}{1.006718in}}% +\pgfpathlineto{\pgfqpoint{3.973152in}{0.971752in}}% +\pgfpathlineto{\pgfqpoint{3.871197in}{0.940676in}}% +\pgfpathlineto{\pgfqpoint{3.767229in}{0.913575in}}% +\pgfpathlineto{\pgfqpoint{3.661580in}{0.890524in}}% +\pgfpathlineto{\pgfqpoint{3.554585in}{0.871580in}}% +\pgfpathlineto{\pgfqpoint{3.446588in}{0.856789in}}% +\pgfpathlineto{\pgfqpoint{3.337933in}{0.846182in}}% +\pgfpathlineto{\pgfqpoint{3.228969in}{0.839775in}}% +\pgfpathlineto{\pgfqpoint{3.120045in}{0.837570in}}% +\pgfpathlineto{\pgfqpoint{3.011510in}{0.839554in}}% +\pgfpathlineto{\pgfqpoint{2.903711in}{0.845700in}}% +\pgfpathlineto{\pgfqpoint{2.796996in}{0.855965in}}% +\pgfpathlineto{\pgfqpoint{2.691704in}{0.870292in}}% +\pgfpathlineto{\pgfqpoint{2.588172in}{0.888611in}}% +\pgfpathlineto{\pgfqpoint{2.486731in}{0.910835in}}% +\pgfpathlineto{\pgfqpoint{2.387702in}{0.936865in}}% +\pgfpathlineto{\pgfqpoint{2.291399in}{0.966589in}}% +\pgfpathlineto{\pgfqpoint{2.198124in}{0.999880in}}% +\pgfpathlineto{\pgfqpoint{2.108170in}{1.036599in}}% +\pgfpathlineto{\pgfqpoint{2.021817in}{1.076595in}}% +\pgfpathlineto{\pgfqpoint{1.939329in}{1.119704in}}% +\pgfpathlineto{\pgfqpoint{1.860959in}{1.165753in}}% +\pgfpathlineto{\pgfqpoint{1.786942in}{1.214556in}}% +\pgfpathlineto{\pgfqpoint{1.717497in}{1.265917in}}% +\pgfpathlineto{\pgfqpoint{1.652825in}{1.319634in}}% +\pgfpathlineto{\pgfqpoint{1.593111in}{1.375492in}}% +\pgfpathlineto{\pgfqpoint{1.538518in}{1.433273in}}% +\pgfpathlineto{\pgfqpoint{1.489191in}{1.492748in}}% +\pgfpathlineto{\pgfqpoint{1.445255in}{1.553685in}}% +\pgfpathlineto{\pgfqpoint{1.406811in}{1.615845in}}% +\pgfpathlineto{\pgfqpoint{1.373942in}{1.678985in}}% +\pgfpathlineto{\pgfqpoint{1.346708in}{1.742861in}}% +\pgfpathlineto{\pgfqpoint{1.325146in}{1.807224in}}% +\pgfpathlineto{\pgfqpoint{1.309273in}{1.871824in}}% +\pgfpathlineto{\pgfqpoint{1.299080in}{1.936413in}}% +\pgfpathlineto{\pgfqpoint{1.294539in}{2.000742in}}% +\pgfpathlineto{\pgfqpoint{1.295597in}{2.064562in}}% +\pgfpathlineto{\pgfqpoint{1.302181in}{2.127631in}}% +\pgfpathlineto{\pgfqpoint{1.314193in}{2.189706in}}% +\pgfpathlineto{\pgfqpoint{1.331516in}{2.250553in}}% +\pgfpathlineto{\pgfqpoint{1.354010in}{2.309939in}}% +\pgfpathlineto{\pgfqpoint{1.381515in}{2.367643in}}% +\pgfpathlineto{\pgfqpoint{1.413849in}{2.423446in}}% +\pgfpathlineto{\pgfqpoint{1.450813in}{2.477142in}}% +\pgfpathlineto{\pgfqpoint{1.492188in}{2.528532in}}% +\pgfpathlineto{\pgfqpoint{1.537736in}{2.577427in}}% +\pgfpathlineto{\pgfqpoint{1.587204in}{2.623650in}}% +\pgfpathlineto{\pgfqpoint{1.640320in}{2.667036in}}% +\pgfpathlineto{\pgfqpoint{1.696801in}{2.707432in}}% +\pgfpathlineto{\pgfqpoint{1.756347in}{2.744698in}}% +\pgfpathlineto{\pgfqpoint{1.818645in}{2.778709in}}% +\pgfpathlineto{\pgfqpoint{1.883375in}{2.809351in}}% +\pgfpathlineto{\pgfqpoint{1.950201in}{2.836530in}}% +\pgfpathlineto{\pgfqpoint{2.018783in}{2.860164in}}% +\pgfpathlineto{\pgfqpoint{2.088772in}{2.880188in}}% +\pgfpathlineto{\pgfqpoint{2.159813in}{2.896553in}}% +\pgfpathlineto{\pgfqpoint{2.231548in}{2.909226in}}% +\pgfpathlineto{\pgfqpoint{2.303615in}{2.918191in}}% +\pgfpathlineto{\pgfqpoint{2.375650in}{2.923449in}}% +\pgfpathlineto{\pgfqpoint{2.447293in}{2.925018in}}% +\pgfpathlineto{\pgfqpoint{2.518182in}{2.922932in}}% +\pgfpathlineto{\pgfqpoint{2.587962in}{2.917243in}}% +\pgfpathlineto{\pgfqpoint{2.656280in}{2.908019in}}% +\pgfpathlineto{\pgfqpoint{2.722791in}{2.895345in}}% +\pgfpathlineto{\pgfqpoint{2.787160in}{2.879320in}}% +\pgfpathlineto{\pgfqpoint{2.849060in}{2.860061in}}% +\pgfpathlineto{\pgfqpoint{2.908175in}{2.837700in}}% +\pgfpathlineto{\pgfqpoint{2.964202in}{2.812384in}}% +\pgfpathlineto{\pgfqpoint{3.016854in}{2.784273in}}% +\pgfpathlineto{\pgfqpoint{3.065857in}{2.753541in}}% +\pgfpathlineto{\pgfqpoint{3.110956in}{2.720376in}}% +\pgfpathlineto{\pgfqpoint{3.151913in}{2.684977in}}% +\pgfpathlineto{\pgfqpoint{3.188509in}{2.647555in}}% +\pgfpathlineto{\pgfqpoint{3.220546in}{2.608331in}}% +\pgfpathlineto{\pgfqpoint{3.247848in}{2.567535in}}% +\pgfpathlineto{\pgfqpoint{3.270260in}{2.525407in}}% +\pgfpathlineto{\pgfqpoint{3.287651in}{2.482194in}}% +\pgfpathlineto{\pgfqpoint{3.299914in}{2.438148in}}% +\pgfpathlineto{\pgfqpoint{3.306966in}{2.393527in}}% +\pgfpathlineto{\pgfqpoint{3.308750in}{2.348595in}}% +\pgfpathlineto{\pgfqpoint{3.305234in}{2.303616in}}% +\pgfpathlineto{\pgfqpoint{3.296412in}{2.258858in}}% +\pgfpathlineto{\pgfqpoint{3.282304in}{2.214588in}}% +\pgfpathlineto{\pgfqpoint{3.262956in}{2.171075in}}% +\pgfpathlineto{\pgfqpoint{3.238442in}{2.128582in}}% +\pgfpathlineto{\pgfqpoint{3.208860in}{2.087372in}}% +\pgfpathlineto{\pgfqpoint{3.174335in}{2.047704in}}% +\pgfpathlineto{\pgfqpoint{3.135016in}{2.009829in}}% +\pgfpathlineto{\pgfqpoint{3.091079in}{1.973992in}}% +\pgfpathlineto{\pgfqpoint{3.042724in}{1.940431in}}% +\pgfpathlineto{\pgfqpoint{2.990172in}{1.909375in}}% +\pgfpathlineto{\pgfqpoint{2.933672in}{1.881042in}}% +\pgfpathlineto{\pgfqpoint{2.873489in}{1.855637in}}% +\pgfpathlineto{\pgfqpoint{2.809913in}{1.833356in}}% +\pgfpathlineto{\pgfqpoint{2.743253in}{1.814379in}}% +\pgfpathlineto{\pgfqpoint{2.673836in}{1.798872in}}% +\pgfpathlineto{\pgfqpoint{2.602005in}{1.786987in}}% +\pgfpathlineto{\pgfqpoint{2.528120in}{1.778858in}}% +\pgfpathlineto{\pgfqpoint{2.452556in}{1.774604in}}% +\pgfpathlineto{\pgfqpoint{2.375698in}{1.774324in}}% +\pgfpathlineto{\pgfqpoint{2.297944in}{1.778100in}}% +\pgfpathlineto{\pgfqpoint{2.219701in}{1.785996in}}% +\pgfpathlineto{\pgfqpoint{2.141383in}{1.798056in}}% +\pgfpathlineto{\pgfqpoint{2.063408in}{1.814303in}}% +\pgfpathlineto{\pgfqpoint{1.986201in}{1.834741in}}% +\pgfpathlineto{\pgfqpoint{1.910185in}{1.859354in}}% +\pgfpathlineto{\pgfqpoint{1.835785in}{1.888106in}}% +\pgfpathlineto{\pgfqpoint{1.763423in}{1.920939in}}% +\pgfpathlineto{\pgfqpoint{1.693517in}{1.957776in}}% +\pgfpathlineto{\pgfqpoint{1.626479in}{1.998518in}}% +\pgfpathlineto{\pgfqpoint{1.562713in}{2.043049in}}% +\pgfpathlineto{\pgfqpoint{1.502612in}{2.091230in}}% +\pgfpathlineto{\pgfqpoint{1.446558in}{2.142906in}}% +\pgfpathlineto{\pgfqpoint{1.394917in}{2.197899in}}% +\pgfpathlineto{\pgfqpoint{1.348042in}{2.256018in}}% +\pgfpathlineto{\pgfqpoint{1.306267in}{2.317050in}}% +\pgfpathlineto{\pgfqpoint{1.269906in}{2.380768in}}% +\pgfpathlineto{\pgfqpoint{1.239253in}{2.446928in}}% +\pgfpathlineto{\pgfqpoint{1.214580in}{2.515272in}}% +\pgfpathlineto{\pgfqpoint{1.196132in}{2.585529in}}% +\pgfpathlineto{\pgfqpoint{1.184133in}{2.657412in}}% +\pgfpathlineto{\pgfqpoint{1.178776in}{2.730626in}}% +\pgfpathlineto{\pgfqpoint{1.180228in}{2.804864in}}% +\pgfpathlineto{\pgfqpoint{1.188627in}{2.879810in}}% +\pgfpathlineto{\pgfqpoint{1.204081in}{2.955141in}}% +\pgfpathlineto{\pgfqpoint{1.226666in}{3.030528in}}% +\pgfpathlineto{\pgfqpoint{1.256428in}{3.105635in}}% +\pgfpathlineto{\pgfqpoint{1.293380in}{3.180124in}}% +\pgfpathlineto{\pgfqpoint{1.337503in}{3.253658in}}% +\pgfpathlineto{\pgfqpoint{1.388744in}{3.325894in}}% +\pgfpathlineto{\pgfqpoint{1.447019in}{3.396495in}}% +\pgfpathlineto{\pgfqpoint{1.512210in}{3.465126in}}% +\pgfpathlineto{\pgfqpoint{1.584166in}{3.531453in}}% +\pgfpathlineto{\pgfqpoint{1.662704in}{3.595153in}}% +\pgfpathlineto{\pgfqpoint{1.747610in}{3.655906in}}% +\pgfpathlineto{\pgfqpoint{1.838637in}{3.713404in}}% +\pgfpathlineto{\pgfqpoint{1.935508in}{3.767349in}}% +\pgfpathlineto{\pgfqpoint{2.037919in}{3.817453in}}% +\pgfpathlineto{\pgfqpoint{2.145534in}{3.863445in}}% +\pgfpathlineto{\pgfqpoint{2.257991in}{3.905064in}}% +\pgfpathlineto{\pgfqpoint{2.374904in}{3.942071in}}% +\pgfpathlineto{\pgfqpoint{2.495859in}{3.974238in}}% +\pgfpathlineto{\pgfqpoint{2.620422in}{4.001362in}}% +\pgfpathlineto{\pgfqpoint{2.748138in}{4.023254in}}% +\pgfpathlineto{\pgfqpoint{2.878531in}{4.039750in}}% +\pgfpathlineto{\pgfqpoint{3.011109in}{4.050706in}}% +\pgfpathlineto{\pgfqpoint{3.145365in}{4.056000in}}% +\pgfpathlineto{\pgfqpoint{3.280778in}{4.055535in}}% +\pgfpathlineto{\pgfqpoint{3.416817in}{4.049236in}}% +\pgfpathlineto{\pgfqpoint{3.552942in}{4.037055in}}% +\pgfpathlineto{\pgfqpoint{3.688607in}{4.018967in}}% +\pgfpathlineto{\pgfqpoint{3.823262in}{3.994974in}}% +\pgfpathlineto{\pgfqpoint{3.956358in}{3.965102in}}% +\pgfpathlineto{\pgfqpoint{4.087344in}{3.929405in}}% +\pgfpathlineto{\pgfqpoint{4.215673in}{3.887962in}}% +\pgfpathlineto{\pgfqpoint{4.340807in}{3.840876in}}% +\pgfpathlineto{\pgfqpoint{4.462213in}{3.788277in}}% +\pgfpathlineto{\pgfqpoint{4.579373in}{3.730321in}}% +\pgfpathlineto{\pgfqpoint{4.691779in}{3.667186in}}% +\pgfpathlineto{\pgfqpoint{4.798942in}{3.599076in}}% +\pgfpathlineto{\pgfqpoint{4.900389in}{3.526218in}}% +\pgfpathlineto{\pgfqpoint{4.995669in}{3.448862in}}% +\pgfpathlineto{\pgfqpoint{5.084354in}{3.367277in}}% +\pgfpathlineto{\pgfqpoint{5.166040in}{3.281756in}}% +\pgfpathlineto{\pgfqpoint{5.240352in}{3.192609in}}% +\pgfpathlineto{\pgfqpoint{5.306942in}{3.100165in}}% +\pgfpathlineto{\pgfqpoint{5.365493in}{3.004769in}}% +\pgfpathlineto{\pgfqpoint{5.415722in}{2.906782in}}% +\pgfpathlineto{\pgfqpoint{5.457379in}{2.806579in}}% +\pgfpathlineto{\pgfqpoint{5.490248in}{2.704547in}}% +\pgfpathlineto{\pgfqpoint{5.514153in}{2.601084in}}% +\pgfpathlineto{\pgfqpoint{5.528953in}{2.496594in}}% +\pgfpathlineto{\pgfqpoint{5.534545in}{2.391493in}}% +\pgfpathlineto{\pgfqpoint{5.530870in}{2.286198in}}% +\pgfpathlineto{\pgfqpoint{5.517903in}{2.181131in}}% +\pgfpathlineto{\pgfqpoint{5.495663in}{2.076715in}}% +\pgfpathlineto{\pgfqpoint{5.464209in}{1.973373in}}% +\pgfpathlineto{\pgfqpoint{5.423640in}{1.871526in}}% +\pgfpathlineto{\pgfqpoint{5.374095in}{1.771589in}}% +\pgfpathlineto{\pgfqpoint{5.315755in}{1.673972in}}% +\pgfpathlineto{\pgfqpoint{5.248837in}{1.579077in}}% +\pgfpathlineto{\pgfqpoint{5.173599in}{1.487296in}}% +\pgfpathlineto{\pgfqpoint{5.090337in}{1.399006in}}% +\pgfpathlineto{\pgfqpoint{4.999382in}{1.314576in}}% +\pgfpathlineto{\pgfqpoint{4.901101in}{1.234353in}}% +\pgfpathlineto{\pgfqpoint{4.795895in}{1.158673in}}% +\pgfpathlineto{\pgfqpoint{4.684196in}{1.087847in}}% +\pgfpathlineto{\pgfqpoint{4.566469in}{1.022172in}}% +\pgfpathlineto{\pgfqpoint{4.443204in}{0.961917in}}% +\pgfpathlineto{\pgfqpoint{4.314919in}{0.907332in}}% +\pgfpathlineto{\pgfqpoint{4.182156in}{0.858640in}}% +\pgfpathlineto{\pgfqpoint{4.045477in}{0.816040in}}% +\pgfpathlineto{\pgfqpoint{3.905465in}{0.779704in}}% +\pgfpathlineto{\pgfqpoint{3.762718in}{0.749775in}}% +\pgfpathlineto{\pgfqpoint{3.617848in}{0.726369in}}% +\pgfpathlineto{\pgfqpoint{3.471479in}{0.709571in}}% +\pgfpathlineto{\pgfqpoint{3.324242in}{0.699440in}}% +\pgfpathlineto{\pgfqpoint{3.176772in}{0.696000in}}% +\pgfpathlineto{\pgfqpoint{3.029708in}{0.699249in}}% +\pgfpathlineto{\pgfqpoint{2.883687in}{0.709151in}}% +\pgfpathlineto{\pgfqpoint{2.739343in}{0.725643in}}% +\pgfpathlineto{\pgfqpoint{2.597303in}{0.748629in}}% +\pgfpathlineto{\pgfqpoint{2.458183in}{0.777984in}}% +\pgfpathlineto{\pgfqpoint{2.322587in}{0.813555in}}% +\pgfpathlineto{\pgfqpoint{2.191105in}{0.855158in}}% +\pgfpathlineto{\pgfqpoint{2.064305in}{0.902583in}}% +\pgfpathlineto{\pgfqpoint{1.942735in}{0.955590in}}% +\pgfpathlineto{\pgfqpoint{1.826920in}{1.013917in}}% +\pgfpathlineto{\pgfqpoint{1.717358in}{1.077273in}}% +\pgfpathlineto{\pgfqpoint{1.614517in}{1.145346in}}% +\pgfpathlineto{\pgfqpoint{1.518835in}{1.217801in}}% +\pgfpathlineto{\pgfqpoint{1.430713in}{1.294283in}}% +\pgfpathlineto{\pgfqpoint{1.350521in}{1.374417in}}% +\pgfpathlineto{\pgfqpoint{1.278588in}{1.457812in}}% +\pgfpathlineto{\pgfqpoint{1.215205in}{1.544060in}}% +\pgfpathlineto{\pgfqpoint{1.160622in}{1.632741in}}% +\pgfpathlineto{\pgfqpoint{1.115048in}{1.723423in}}% +\pgfpathlineto{\pgfqpoint{1.078645in}{1.815664in}}% +\pgfpathlineto{\pgfqpoint{1.051536in}{1.909017in}}% +\pgfpathlineto{\pgfqpoint{1.033796in}{2.003028in}}% +\pgfpathlineto{\pgfqpoint{1.025455in}{2.097239in}}% +\pgfpathlineto{\pgfqpoint{1.026497in}{2.191195in}}% +\pgfpathlineto{\pgfqpoint{1.036862in}{2.284441in}}% +\pgfpathlineto{\pgfqpoint{1.056444in}{2.376523in}}% +\pgfpathlineto{\pgfqpoint{1.085090in}{2.466998in}}% +\pgfpathlineto{\pgfqpoint{1.122607in}{2.555429in}}% +\pgfpathlineto{\pgfqpoint{1.168753in}{2.641389in}}% +\pgfpathlineto{\pgfqpoint{1.223249in}{2.724464in}}% +\pgfpathlineto{\pgfqpoint{1.285772in}{2.804255in}}% +\pgfpathlineto{\pgfqpoint{1.355959in}{2.880381in}}% +\pgfpathlineto{\pgfqpoint{1.433412in}{2.952479in}}% +\pgfpathlineto{\pgfqpoint{1.517694in}{3.020205in}}% +\pgfpathlineto{\pgfqpoint{1.608337in}{3.083239in}}% +\pgfpathlineto{\pgfqpoint{1.704840in}{3.141285in}}% +\pgfpathlineto{\pgfqpoint{1.806675in}{3.194072in}}% +\pgfpathlineto{\pgfqpoint{1.913286in}{3.241357in}}% +\pgfpathlineto{\pgfqpoint{2.024094in}{3.282924in}}% +\pgfpathlineto{\pgfqpoint{2.138499in}{3.318587in}}% +\pgfpathlineto{\pgfqpoint{2.255885in}{3.348190in}}% +\pgfpathlineto{\pgfqpoint{2.375622in}{3.371609in}}% +\pgfpathlineto{\pgfqpoint{2.497065in}{3.388752in}}% +\pgfpathlineto{\pgfqpoint{2.619567in}{3.399557in}}% +\pgfpathlineto{\pgfqpoint{2.742471in}{3.403999in}}% +\pgfpathlineto{\pgfqpoint{2.865123in}{3.402082in}}% +\pgfpathlineto{\pgfqpoint{2.986868in}{3.393845in}}% +\pgfpathlineto{\pgfqpoint{3.107060in}{3.379359in}}% +\pgfpathlineto{\pgfqpoint{3.225059in}{3.358729in}}% +\pgfpathlineto{\pgfqpoint{3.340240in}{3.332090in}}% +\pgfpathlineto{\pgfqpoint{3.451992in}{3.299610in}}% +\pgfpathlineto{\pgfqpoint{3.559723in}{3.261486in}}% +\pgfpathlineto{\pgfqpoint{3.662865in}{3.217945in}}% +\pgfpathlineto{\pgfqpoint{3.760871in}{3.169242in}}% +\pgfpathlineto{\pgfqpoint{3.853226in}{3.115660in}}% +\pgfpathlineto{\pgfqpoint{3.939445in}{3.057508in}}% +\pgfpathlineto{\pgfqpoint{4.019074in}{2.995115in}}% +\pgfpathlineto{\pgfqpoint{4.091697in}{2.928837in}}% +\pgfpathlineto{\pgfqpoint{4.156936in}{2.859048in}}% +\pgfpathlineto{\pgfqpoint{4.214451in}{2.786140in}}% +\pgfpathlineto{\pgfqpoint{4.263947in}{2.710521in}}% +\pgfpathlineto{\pgfqpoint{4.305170in}{2.632616in}}% +\pgfpathlineto{\pgfqpoint{4.337913in}{2.552858in}}% +\pgfpathlineto{\pgfqpoint{4.362013in}{2.471691in}}% +\pgfpathlineto{\pgfqpoint{4.377356in}{2.389567in}}% +\pgfpathlineto{\pgfqpoint{4.383875in}{2.306941in}}% +\pgfpathlineto{\pgfqpoint{4.381551in}{2.224272in}}% +\pgfpathlineto{\pgfqpoint{4.370413in}{2.142017in}}% +\pgfpathlineto{\pgfqpoint{4.350540in}{2.060631in}}% +\pgfpathlineto{\pgfqpoint{4.322056in}{1.980563in}}% +\pgfpathlineto{\pgfqpoint{4.285135in}{1.902256in}}% +\pgfpathlineto{\pgfqpoint{4.239995in}{1.826140in}}% +\pgfpathlineto{\pgfqpoint{4.186900in}{1.752635in}}% +\pgfpathlineto{\pgfqpoint{4.126159in}{1.682145in}}% +\pgfpathlineto{\pgfqpoint{4.058121in}{1.615056in}}% +\pgfpathlineto{\pgfqpoint{3.983177in}{1.551736in}}% +\pgfpathlineto{\pgfqpoint{3.901754in}{1.492532in}}% +\pgfpathlineto{\pgfqpoint{3.814316in}{1.437766in}}% +\pgfpathlineto{\pgfqpoint{3.721361in}{1.387736in}}% +\pgfpathlineto{\pgfqpoint{3.623415in}{1.342711in}}% +\pgfpathlineto{\pgfqpoint{3.521035in}{1.302936in}}% +\pgfpathlineto{\pgfqpoint{3.414799in}{1.268621in}}% +\pgfpathlineto{\pgfqpoint{3.305307in}{1.239949in}}% +\pgfpathlineto{\pgfqpoint{3.193179in}{1.217069in}}% +\pgfpathlineto{\pgfqpoint{3.079047in}{1.200096in}}% +\pgfpathlineto{\pgfqpoint{2.963554in}{1.189114in}}% +\pgfpathlineto{\pgfqpoint{2.847352in}{1.184170in}}% +\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% +\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/main.tex b/buch/papers/zeta/main.tex index caddace..de297a0 100644 --- a/buch/papers/zeta/main.tex +++ b/buch/papers/zeta/main.tex @@ -8,12 +8,12 @@ \begin{refsection} \chapterauthor{Raphael Unterer} -%TODO Einleitung \input{papers/zeta/einleitung.tex} \input{papers/zeta/euler_product.tex} \input{papers/zeta/zeta_gamma.tex} \input{papers/zeta/analytic_continuation.tex} +\input{papers/zeta/fazit} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/zeta/presentation/presentation.tex b/buch/papers/zeta/presentation/presentation.tex index e106089..53fd305 100644 --- a/buch/papers/zeta/presentation/presentation.tex +++ b/buch/papers/zeta/presentation/presentation.tex @@ -129,7 +129,7 @@ \begin{frame} \frametitle{Summe aller Natürlichen Zahlen} \begin{center} - \includegraphics[width=0.7\textwidth]{youtube_screenshot.png} + \includegraphics[width=0.7\textwidth]{../images/youtube_screenshot.png} \end{center} \end{frame} \begin{frame} @@ -168,7 +168,7 @@ \begin{frame} \frametitle{Plan für die Analytische Fortsetzung von $\zeta(s)$} \begin{center} - \input{../continuation_overview.tikz.tex} + \input{../images/continuation_overview.tikz.tex} \end{center} \end{frame} \begin{frame} @@ -331,7 +331,7 @@ \begin{frame} \frametitle{Primzahlfunktion} \begin{center} - \scalebox{0.5}{\input{../primzahlfunktion.pgf}} + \scalebox{0.5}{\input{../images/primzahlfunktion.pgf}} \end{center} \end{frame} @@ -348,19 +348,19 @@ \begin{frame} \frametitle{Konstanter Realteil $\Re(s)=-1$ und $\Im(s)=0\ldots40$} \begin{center} - \scalebox{0.6}{\input{../zeta_re_-1_plot.pgf}} + \scalebox{0.6}{\input{../images/zeta_re_-1_plot.pgf}} \end{center} \end{frame} \begin{frame} \frametitle{Konstanter Realteil $\Re(s)=0$ und $\Im(s)=0\ldots40$} \begin{center} - \scalebox{0.6}{\input{../zeta_re_0_plot.pgf}} + \scalebox{0.6}{\input{../images/zeta_re_0_plot.pgf}} \end{center} \end{frame} \begin{frame} \frametitle{Konstanter Realteil $\Re(s)=0.5$ und $\Im(s)=0\ldots40$} \begin{center} - \scalebox{0.6}{\input{../zeta_re_0.5_plot.pgf}} + \scalebox{0.6}{\input{../images/zeta_re_0.5_plot.pgf}} \end{center} \end{frame} diff --git a/buch/papers/zeta/presentation/youtube_screenshot.png b/buch/papers/zeta/presentation/youtube_screenshot.png deleted file mode 100644 index 434041b..0000000 Binary files a/buch/papers/zeta/presentation/youtube_screenshot.png and /dev/null differ diff --git a/buch/papers/zeta/primzahlfunktion.pgf b/buch/papers/zeta/primzahlfunktion.pgf deleted file mode 100644 index 7d4f4fc..0000000 --- a/buch/papers/zeta/primzahlfunktion.pgf +++ /dev/null @@ -1,505 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% and, on pdftex -%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} -%% -%% or, on luatex and xetex -%% \usepackage{unicode-math} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.025455in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.025455in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.776970in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.776970in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.528485in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.528485in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.280000in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.280000in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.031515in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.031515in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.783030in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.783030in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.534545in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.534545in,y=0.430778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{0.696000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.633333in, y=0.647775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.368000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.633333in, y=1.319775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.040000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.633333in, y=1.991775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.712000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.633333in, y=2.663775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.384000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.633333in, y=3.335775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{4.056000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.563888in, y=4.007775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.025455in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{1.175758in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{1.326061in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{1.326061in}{1.032000in}}% -\pgfpathlineto{\pgfqpoint{1.476364in}{1.032000in}}% -\pgfpathlineto{\pgfqpoint{1.476364in}{1.368000in}}% -\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% -\pgfpathlineto{\pgfqpoint{1.626667in}{1.368000in}}% -\pgfpathlineto{\pgfqpoint{1.776970in}{1.368000in}}% -\pgfpathlineto{\pgfqpoint{1.776970in}{1.704000in}}% -\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% -\pgfpathlineto{\pgfqpoint{1.927273in}{1.704000in}}% -\pgfpathlineto{\pgfqpoint{2.077576in}{1.704000in}}% -\pgfpathlineto{\pgfqpoint{2.077576in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.227879in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.378182in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.528485in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.678788in}{2.040000in}}% -\pgfpathlineto{\pgfqpoint{2.678788in}{2.376000in}}% -\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% -\pgfpathlineto{\pgfqpoint{2.829091in}{2.376000in}}% -\pgfpathlineto{\pgfqpoint{2.979394in}{2.376000in}}% -\pgfpathlineto{\pgfqpoint{2.979394in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.129697in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.280000in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.430303in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.580606in}{2.712000in}}% -\pgfpathlineto{\pgfqpoint{3.580606in}{3.048000in}}% -\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% -\pgfpathlineto{\pgfqpoint{3.730909in}{3.048000in}}% -\pgfpathlineto{\pgfqpoint{3.881212in}{3.048000in}}% -\pgfpathlineto{\pgfqpoint{3.881212in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.031515in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.181818in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.332121in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.482424in}{3.384000in}}% -\pgfpathlineto{\pgfqpoint{4.482424in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.632727in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.783030in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{4.933333in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.083636in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.233939in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.384242in}{3.720000in}}% -\pgfpathlineto{\pgfqpoint{5.384242in}{4.056000in}}% -\pgfpathlineto{\pgfqpoint{5.534545in}{4.056000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/zeta/references.bib b/buch/papers/zeta/references.bib index a4f2521..e8d6b22 100644 --- a/buch/papers/zeta/references.bib +++ b/buch/papers/zeta/references.bib @@ -4,32 +4,43 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{zeta:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@online{zeta:online:millennium, + title = {The Millennium Prize Problems}, + url = {https://www.claymath.org/millennium-problems/millennium-prize-problems}, + year = {2022}, + month = {8}, + day = {4} } -@book{zeta:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} +@online{zeta:online:wiki_en, + title = {Riemann zeta function}, + url = {https://en.wikipedia.org/wiki/Riemann_zeta_function}, + year = {2022}, + month = {8}, + day = {7} +} +@online{zeta:online:wiki_de, + title = {Riemannsche Zeta-Funktion}, + url = {https://de.wikipedia.org/wiki/Riemannsche_Zeta-Funktion}, + year = {2022}, + month = {8}, + day = {7} } -@article{zeta:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} +@online{zeta:online:poisson, + title = {Deriving the Poisson Summation Formula}, + url = {https://www.youtube.com/watch?v=4Bex-4BFYWo}, + author = {Physics and Math Lectures}, + year = {2022}, + month = {8}, + day = {7} } +@online{zeta:online:mryoumath, + title = {Riemann Zeta Function Playlist}, + url = {https://www.youtube.com/playlist?list=PL32446FDD4DA932C9}, + author = {MrYouMath}, + year = {2022}, + month = {8}, + day = {7} +} diff --git a/buch/papers/zeta/zeta_color_plot-img0.png b/buch/papers/zeta/zeta_color_plot-img0.png new file mode 100644 index 0000000..b8c7298 Binary files /dev/null and b/buch/papers/zeta/zeta_color_plot-img0.png differ diff --git a/buch/papers/zeta/zeta_color_plot.pgf b/buch/papers/zeta/zeta_color_plot.pgf new file mode 100644 index 0000000..0fd7cb8 --- /dev/null +++ b/buch/papers/zeta/zeta_color_plot.pgf @@ -0,0 +1,402 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{2.588156in}{0.528000in}}{\pgfqpoint{1.383688in}{3.696000in}}% +\pgfusepath{clip}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgftext[left,bottom]{\includegraphics[interpolate=true,width=1.390000in,height=3.700000in]{zeta_color_plot-img0.png}}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.588156in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.050619in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.050619in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.513081in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.513081in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.528000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=0.489420in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-20}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{0.990462in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=0.951882in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{1.452925in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.281054in, y=1.414345in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{1.915387in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.340083in, y=1.876807in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{2.377850in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.431905in, y=2.339270in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{2.840312in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.431905in, y=2.801732in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{3.302775in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.372877in, y=3.264194in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.588156in}{3.765237in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.372877in, y=3.726657in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.225499in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{0.528000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{0.528000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.588156in}{4.224000in}}% +\pgfpathlineto{\pgfqpoint{3.971844in}{4.224000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/zeta_re_-1_plot.pgf b/buch/papers/zeta/zeta_re_-1_plot.pgf deleted file mode 100644 index dd15ba1..0000000 --- a/buch/papers/zeta/zeta_re_-1_plot.pgf +++ /dev/null @@ -1,1147 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% and, on pdftex -%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} -%% -%% or, on luatex and xetex -%% \usepackage{unicode-math} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.991229in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.991229in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.678290in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.678290in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.365352in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.365352in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.052413in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.052413in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.739474in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.739474in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.426535in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.426535in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.113597in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.113597in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{0.894551in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.492898in, y=0.855970in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-15}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.413962in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.492898in, y=1.375381in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-10}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.933373in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=1.894793in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.452784in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=2.414204in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.972195in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=2.933615in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.491606in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.584721in, y=3.453026in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {10}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{4.011017in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.584721in, y=3.972437in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {15}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.437343in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.040962in}{2.452784in}}% -\pgfpathlineto{\pgfqpoint{3.041938in}{2.448750in}}% -\pgfpathlineto{\pgfqpoint{3.045317in}{2.444722in}}% -\pgfpathlineto{\pgfqpoint{3.050454in}{2.441969in}}% -\pgfpathlineto{\pgfqpoint{3.057405in}{2.440667in}}% -\pgfpathlineto{\pgfqpoint{3.065376in}{2.441381in}}% -\pgfpathlineto{\pgfqpoint{3.073437in}{2.444270in}}% -\pgfpathlineto{\pgfqpoint{3.081535in}{2.449680in}}% -\pgfpathlineto{\pgfqpoint{3.089116in}{2.457647in}}% -\pgfpathlineto{\pgfqpoint{3.097729in}{2.470306in}}% -\pgfpathlineto{\pgfqpoint{3.114507in}{2.495497in}}% -\pgfpathlineto{\pgfqpoint{3.125627in}{2.507753in}}% -\pgfpathlineto{\pgfqpoint{3.138397in}{2.518430in}}% -\pgfpathlineto{\pgfqpoint{3.151970in}{2.527030in}}% -\pgfpathlineto{\pgfqpoint{3.168683in}{2.534840in}}% -\pgfpathlineto{\pgfqpoint{3.186692in}{2.540643in}}% -\pgfpathlineto{\pgfqpoint{3.205162in}{2.544313in}}% -\pgfpathlineto{\pgfqpoint{3.225905in}{2.546053in}}% -\pgfpathlineto{\pgfqpoint{3.245759in}{2.545542in}}% -\pgfpathlineto{\pgfqpoint{3.266931in}{2.542705in}}% -\pgfpathlineto{\pgfqpoint{3.285821in}{2.538106in}}% -\pgfpathlineto{\pgfqpoint{3.305032in}{2.531237in}}% -\pgfpathlineto{\pgfqpoint{3.324119in}{2.521868in}}% -\pgfpathlineto{\pgfqpoint{3.339543in}{2.512008in}}% -\pgfpathlineto{\pgfqpoint{3.354141in}{2.500194in}}% -\pgfpathlineto{\pgfqpoint{3.367504in}{2.486377in}}% -\pgfpathlineto{\pgfqpoint{3.379178in}{2.470553in}}% -\pgfpathlineto{\pgfqpoint{3.386976in}{2.456480in}}% -\pgfpathlineto{\pgfqpoint{3.393121in}{2.441206in}}% -\pgfpathlineto{\pgfqpoint{3.397343in}{2.424812in}}% -\pgfpathlineto{\pgfqpoint{3.399372in}{2.407409in}}% -\pgfpathlineto{\pgfqpoint{3.398939in}{2.389140in}}% -\pgfpathlineto{\pgfqpoint{3.395783in}{2.370184in}}% -\pgfpathlineto{\pgfqpoint{3.389660in}{2.350755in}}% -\pgfpathlineto{\pgfqpoint{3.382987in}{2.336022in}}% -\pgfpathlineto{\pgfqpoint{3.374437in}{2.321281in}}% -\pgfpathlineto{\pgfqpoint{3.363942in}{2.306663in}}% -\pgfpathlineto{\pgfqpoint{3.351444in}{2.292307in}}% -\pgfpathlineto{\pgfqpoint{3.336903in}{2.278365in}}% -\pgfpathlineto{\pgfqpoint{3.320298in}{2.264997in}}% -\pgfpathlineto{\pgfqpoint{3.301627in}{2.252371in}}% -\pgfpathlineto{\pgfqpoint{3.280910in}{2.240662in}}% -\pgfpathlineto{\pgfqpoint{3.258195in}{2.230050in}}% -\pgfpathlineto{\pgfqpoint{3.233551in}{2.220720in}}% -\pgfpathlineto{\pgfqpoint{3.207080in}{2.212858in}}% -\pgfpathlineto{\pgfqpoint{3.178909in}{2.206648in}}% -\pgfpathlineto{\pgfqpoint{3.149199in}{2.202272in}}% -\pgfpathlineto{\pgfqpoint{3.118141in}{2.199908in}}% -\pgfpathlineto{\pgfqpoint{3.085957in}{2.199722in}}% -\pgfpathlineto{\pgfqpoint{3.052902in}{2.201870in}}% -\pgfpathlineto{\pgfqpoint{3.019262in}{2.206494in}}% -\pgfpathlineto{\pgfqpoint{2.985354in}{2.213717in}}% -\pgfpathlineto{\pgfqpoint{2.951523in}{2.223640in}}% -\pgfpathlineto{\pgfqpoint{2.918141in}{2.236339in}}% -\pgfpathlineto{\pgfqpoint{2.885606in}{2.251864in}}% -\pgfpathlineto{\pgfqpoint{2.854333in}{2.270230in}}% -\pgfpathlineto{\pgfqpoint{2.834400in}{2.284047in}}% -\pgfpathlineto{\pgfqpoint{2.815354in}{2.299106in}}% -\pgfpathlineto{\pgfqpoint{2.797326in}{2.315386in}}% -\pgfpathlineto{\pgfqpoint{2.780453in}{2.332856in}}% -\pgfpathlineto{\pgfqpoint{2.764868in}{2.351479in}}% -\pgfpathlineto{\pgfqpoint{2.750706in}{2.371209in}}% -\pgfpathlineto{\pgfqpoint{2.738100in}{2.391989in}}% -\pgfpathlineto{\pgfqpoint{2.727179in}{2.413757in}}% -\pgfpathlineto{\pgfqpoint{2.718070in}{2.436440in}}% -\pgfpathlineto{\pgfqpoint{2.710895in}{2.459955in}}% -\pgfpathlineto{\pgfqpoint{2.705771in}{2.484213in}}% -\pgfpathlineto{\pgfqpoint{2.702808in}{2.509115in}}% -\pgfpathlineto{\pgfqpoint{2.702110in}{2.534554in}}% -\pgfpathlineto{\pgfqpoint{2.703768in}{2.560412in}}% -\pgfpathlineto{\pgfqpoint{2.707869in}{2.586567in}}% -\pgfpathlineto{\pgfqpoint{2.714485in}{2.612888in}}% -\pgfpathlineto{\pgfqpoint{2.723676in}{2.639235in}}% -\pgfpathlineto{\pgfqpoint{2.735493in}{2.665465in}}% -\pgfpathlineto{\pgfqpoint{2.749969in}{2.691426in}}% -\pgfpathlineto{\pgfqpoint{2.767124in}{2.716962in}}% -\pgfpathlineto{\pgfqpoint{2.786961in}{2.741914in}}% -\pgfpathlineto{\pgfqpoint{2.809467in}{2.766119in}}% -\pgfpathlineto{\pgfqpoint{2.834613in}{2.789409in}}% -\pgfpathlineto{\pgfqpoint{2.862350in}{2.811617in}}% -\pgfpathlineto{\pgfqpoint{2.892611in}{2.832576in}}% -\pgfpathlineto{\pgfqpoint{2.925310in}{2.852119in}}% -\pgfpathlineto{\pgfqpoint{2.960342in}{2.870079in}}% -\pgfpathlineto{\pgfqpoint{2.997581in}{2.886297in}}% -\pgfpathlineto{\pgfqpoint{3.036884in}{2.900613in}}% -\pgfpathlineto{\pgfqpoint{3.078086in}{2.912878in}}% -\pgfpathlineto{\pgfqpoint{3.121003in}{2.922947in}}% -\pgfpathlineto{\pgfqpoint{3.165433in}{2.930685in}}% -\pgfpathlineto{\pgfqpoint{3.211156in}{2.935966in}}% -\pgfpathlineto{\pgfqpoint{3.257933in}{2.938677in}}% -\pgfpathlineto{\pgfqpoint{3.305510in}{2.938717in}}% -\pgfpathlineto{\pgfqpoint{3.353615in}{2.935999in}}% -\pgfpathlineto{\pgfqpoint{3.401964in}{2.930452in}}% -\pgfpathlineto{\pgfqpoint{3.450259in}{2.922022in}}% -\pgfpathlineto{\pgfqpoint{3.498193in}{2.910671in}}% -\pgfpathlineto{\pgfqpoint{3.545447in}{2.896383in}}% -\pgfpathlineto{\pgfqpoint{3.591697in}{2.879159in}}% -\pgfpathlineto{\pgfqpoint{3.636612in}{2.859023in}}% -\pgfpathlineto{\pgfqpoint{3.679858in}{2.836019in}}% -\pgfpathlineto{\pgfqpoint{3.721104in}{2.810214in}}% -\pgfpathlineto{\pgfqpoint{3.760018in}{2.781697in}}% -\pgfpathlineto{\pgfqpoint{3.796273in}{2.750581in}}% -\pgfpathlineto{\pgfqpoint{3.829552in}{2.717000in}}% -\pgfpathlineto{\pgfqpoint{3.859546in}{2.681113in}}% -\pgfpathlineto{\pgfqpoint{3.885961in}{2.643100in}}% -\pgfpathlineto{\pgfqpoint{3.908518in}{2.603163in}}% -\pgfpathlineto{\pgfqpoint{3.918269in}{2.582542in}}% -\pgfpathlineto{\pgfqpoint{3.926959in}{2.561527in}}% -\pgfpathlineto{\pgfqpoint{3.934561in}{2.540147in}}% -\pgfpathlineto{\pgfqpoint{3.941047in}{2.518435in}}% -\pgfpathlineto{\pgfqpoint{3.946391in}{2.496425in}}% -\pgfpathlineto{\pgfqpoint{3.950569in}{2.474152in}}% -\pgfpathlineto{\pgfqpoint{3.953560in}{2.451651in}}% -\pgfpathlineto{\pgfqpoint{3.955342in}{2.428959in}}% -\pgfpathlineto{\pgfqpoint{3.955898in}{2.406114in}}% -\pgfpathlineto{\pgfqpoint{3.955211in}{2.383153in}}% -\pgfpathlineto{\pgfqpoint{3.953267in}{2.360118in}}% -\pgfpathlineto{\pgfqpoint{3.950054in}{2.337048in}}% -\pgfpathlineto{\pgfqpoint{3.945564in}{2.313984in}}% -\pgfpathlineto{\pgfqpoint{3.939787in}{2.290967in}}% -\pgfpathlineto{\pgfqpoint{3.932719in}{2.268040in}}% -\pgfpathlineto{\pgfqpoint{3.924359in}{2.245245in}}% -\pgfpathlineto{\pgfqpoint{3.914705in}{2.222626in}}% -\pgfpathlineto{\pgfqpoint{3.903761in}{2.200226in}}% -\pgfpathlineto{\pgfqpoint{3.891530in}{2.178089in}}% -\pgfpathlineto{\pgfqpoint{3.878022in}{2.156258in}}% -\pgfpathlineto{\pgfqpoint{3.863247in}{2.134777in}}% -\pgfpathlineto{\pgfqpoint{3.847217in}{2.113690in}}% -\pgfpathlineto{\pgfqpoint{3.829948in}{2.093041in}}% -\pgfpathlineto{\pgfqpoint{3.811460in}{2.072874in}}% -\pgfpathlineto{\pgfqpoint{3.791772in}{2.053231in}}% -\pgfpathlineto{\pgfqpoint{3.770909in}{2.034155in}}% -\pgfpathlineto{\pgfqpoint{3.748899in}{2.015689in}}% -\pgfpathlineto{\pgfqpoint{3.725769in}{1.997875in}}% -\pgfpathlineto{\pgfqpoint{3.701553in}{1.980752in}}% -\pgfpathlineto{\pgfqpoint{3.676285in}{1.964362in}}% -\pgfpathlineto{\pgfqpoint{3.650003in}{1.948744in}}% -\pgfpathlineto{\pgfqpoint{3.622746in}{1.933936in}}% -\pgfpathlineto{\pgfqpoint{3.594559in}{1.919975in}}% -\pgfpathlineto{\pgfqpoint{3.565485in}{1.906896in}}% -\pgfpathlineto{\pgfqpoint{3.535574in}{1.894735in}}% -\pgfpathlineto{\pgfqpoint{3.504874in}{1.883525in}}% -\pgfpathlineto{\pgfqpoint{3.473440in}{1.873296in}}% -\pgfpathlineto{\pgfqpoint{3.441325in}{1.864080in}}% -\pgfpathlineto{\pgfqpoint{3.408587in}{1.855904in}}% -\pgfpathlineto{\pgfqpoint{3.375285in}{1.848795in}}% -\pgfpathlineto{\pgfqpoint{3.341480in}{1.842778in}}% -\pgfpathlineto{\pgfqpoint{3.307236in}{1.837874in}}% -\pgfpathlineto{\pgfqpoint{3.272618in}{1.834105in}}% -\pgfpathlineto{\pgfqpoint{3.237692in}{1.831489in}}% -\pgfpathlineto{\pgfqpoint{3.202526in}{1.830042in}}% -\pgfpathlineto{\pgfqpoint{3.167192in}{1.829777in}}% -\pgfpathlineto{\pgfqpoint{3.131758in}{1.830707in}}% -\pgfpathlineto{\pgfqpoint{3.096299in}{1.832839in}}% -\pgfpathlineto{\pgfqpoint{3.060886in}{1.836182in}}% -\pgfpathlineto{\pgfqpoint{3.025595in}{1.840737in}}% -\pgfpathlineto{\pgfqpoint{2.990500in}{1.846507in}}% -\pgfpathlineto{\pgfqpoint{2.955677in}{1.853491in}}% -\pgfpathlineto{\pgfqpoint{2.921200in}{1.861684in}}% -\pgfpathlineto{\pgfqpoint{2.887148in}{1.871078in}}% -\pgfpathlineto{\pgfqpoint{2.853595in}{1.881666in}}% -\pgfpathlineto{\pgfqpoint{2.820618in}{1.893433in}}% -\pgfpathlineto{\pgfqpoint{2.788292in}{1.906365in}}% -\pgfpathlineto{\pgfqpoint{2.756692in}{1.920444in}}% -\pgfpathlineto{\pgfqpoint{2.725894in}{1.935648in}}% -\pgfpathlineto{\pgfqpoint{2.695970in}{1.951954in}}% -\pgfpathlineto{\pgfqpoint{2.666994in}{1.969335in}}% -\pgfpathlineto{\pgfqpoint{2.639036in}{1.987763in}}% -\pgfpathlineto{\pgfqpoint{2.612167in}{2.007203in}}% -\pgfpathlineto{\pgfqpoint{2.586455in}{2.027622in}}% -\pgfpathlineto{\pgfqpoint{2.561965in}{2.048983in}}% -\pgfpathlineto{\pgfqpoint{2.538764in}{2.071243in}}% -\pgfpathlineto{\pgfqpoint{2.516912in}{2.094362in}}% -\pgfpathlineto{\pgfqpoint{2.496471in}{2.118292in}}% -\pgfpathlineto{\pgfqpoint{2.477496in}{2.142986in}}% -\pgfpathlineto{\pgfqpoint{2.460043in}{2.168395in}}% -\pgfpathlineto{\pgfqpoint{2.444163in}{2.194464in}}% -\pgfpathlineto{\pgfqpoint{2.429904in}{2.221139in}}% -\pgfpathlineto{\pgfqpoint{2.417313in}{2.248363in}}% -\pgfpathlineto{\pgfqpoint{2.406430in}{2.276078in}}% -\pgfpathlineto{\pgfqpoint{2.397293in}{2.304221in}}% -\pgfpathlineto{\pgfqpoint{2.389938in}{2.332730in}}% -\pgfpathlineto{\pgfqpoint{2.384395in}{2.361542in}}% -\pgfpathlineto{\pgfqpoint{2.380689in}{2.390589in}}% -\pgfpathlineto{\pgfqpoint{2.378844in}{2.419805in}}% -\pgfpathlineto{\pgfqpoint{2.378877in}{2.449121in}}% -\pgfpathlineto{\pgfqpoint{2.380802in}{2.478467in}}% -\pgfpathlineto{\pgfqpoint{2.384628in}{2.507774in}}% -\pgfpathlineto{\pgfqpoint{2.390359in}{2.536969in}}% -\pgfpathlineto{\pgfqpoint{2.397996in}{2.565982in}}% -\pgfpathlineto{\pgfqpoint{2.407533in}{2.594739in}}% -\pgfpathlineto{\pgfqpoint{2.418960in}{2.623168in}}% -\pgfpathlineto{\pgfqpoint{2.432264in}{2.651198in}}% -\pgfpathlineto{\pgfqpoint{2.447423in}{2.678755in}}% -\pgfpathlineto{\pgfqpoint{2.464415in}{2.705767in}}% -\pgfpathlineto{\pgfqpoint{2.483209in}{2.732163in}}% -\pgfpathlineto{\pgfqpoint{2.503771in}{2.757873in}}% -\pgfpathlineto{\pgfqpoint{2.526062in}{2.782826in}}% -\pgfpathlineto{\pgfqpoint{2.550037in}{2.806954in}}% -\pgfpathlineto{\pgfqpoint{2.575648in}{2.830189in}}% -\pgfpathlineto{\pgfqpoint{2.602841in}{2.852466in}}% -\pgfpathlineto{\pgfqpoint{2.631556in}{2.873720in}}% -\pgfpathlineto{\pgfqpoint{2.661731in}{2.893889in}}% -\pgfpathlineto{\pgfqpoint{2.693298in}{2.912913in}}% -\pgfpathlineto{\pgfqpoint{2.726185in}{2.930734in}}% -\pgfpathlineto{\pgfqpoint{2.760315in}{2.947296in}}% -\pgfpathlineto{\pgfqpoint{2.795607in}{2.962548in}}% -\pgfpathlineto{\pgfqpoint{2.831976in}{2.976438in}}% -\pgfpathlineto{\pgfqpoint{2.869335in}{2.988921in}}% -\pgfpathlineto{\pgfqpoint{2.907589in}{2.999952in}}% -\pgfpathlineto{\pgfqpoint{2.946645in}{3.009492in}}% -\pgfpathlineto{\pgfqpoint{2.986401in}{3.017503in}}% -\pgfpathlineto{\pgfqpoint{3.026758in}{3.023952in}}% -\pgfpathlineto{\pgfqpoint{3.067608in}{3.028811in}}% -\pgfpathlineto{\pgfqpoint{3.108845in}{3.032054in}}% -\pgfpathlineto{\pgfqpoint{3.150359in}{3.033659in}}% -\pgfpathlineto{\pgfqpoint{3.192038in}{3.033610in}}% -\pgfpathlineto{\pgfqpoint{3.233769in}{3.031894in}}% -\pgfpathlineto{\pgfqpoint{3.275435in}{3.028503in}}% -\pgfpathlineto{\pgfqpoint{3.316920in}{3.023433in}}% -\pgfpathlineto{\pgfqpoint{3.358108in}{3.016685in}}% -\pgfpathlineto{\pgfqpoint{3.398880in}{3.008265in}}% -\pgfpathlineto{\pgfqpoint{3.439119in}{2.998182in}}% -\pgfpathlineto{\pgfqpoint{3.478706in}{2.986452in}}% -\pgfpathlineto{\pgfqpoint{3.517523in}{2.973095in}}% -\pgfpathlineto{\pgfqpoint{3.555454in}{2.958135in}}% -\pgfpathlineto{\pgfqpoint{3.592382in}{2.941601in}}% -\pgfpathlineto{\pgfqpoint{3.628194in}{2.923528in}}% -\pgfpathlineto{\pgfqpoint{3.662777in}{2.903955in}}% -\pgfpathlineto{\pgfqpoint{3.696020in}{2.882924in}}% -\pgfpathlineto{\pgfqpoint{3.727816in}{2.860485in}}% -\pgfpathlineto{\pgfqpoint{3.758058in}{2.836691in}}% -\pgfpathlineto{\pgfqpoint{3.786646in}{2.811598in}}% -\pgfpathlineto{\pgfqpoint{3.813480in}{2.785269in}}% -\pgfpathlineto{\pgfqpoint{3.838466in}{2.757769in}}% -\pgfpathlineto{\pgfqpoint{3.861512in}{2.729170in}}% -\pgfpathlineto{\pgfqpoint{3.882535in}{2.699545in}}% -\pgfpathlineto{\pgfqpoint{3.901450in}{2.668973in}}% -\pgfpathlineto{\pgfqpoint{3.918184in}{2.637535in}}% -\pgfpathlineto{\pgfqpoint{3.932664in}{2.605317in}}% -\pgfpathlineto{\pgfqpoint{3.944827in}{2.572409in}}% -\pgfpathlineto{\pgfqpoint{3.954611in}{2.538901in}}% -\pgfpathlineto{\pgfqpoint{3.961966in}{2.504888in}}% -\pgfpathlineto{\pgfqpoint{3.966844in}{2.470469in}}% -\pgfpathlineto{\pgfqpoint{3.969206in}{2.435743in}}% -\pgfpathlineto{\pgfqpoint{3.969019in}{2.400812in}}% -\pgfpathlineto{\pgfqpoint{3.966257in}{2.365780in}}% -\pgfpathlineto{\pgfqpoint{3.960902in}{2.330753in}}% -\pgfpathlineto{\pgfqpoint{3.952942in}{2.295838in}}% -\pgfpathlineto{\pgfqpoint{3.942376in}{2.261141in}}% -\pgfpathlineto{\pgfqpoint{3.929207in}{2.226773in}}% -\pgfpathlineto{\pgfqpoint{3.913447in}{2.192842in}}% -\pgfpathlineto{\pgfqpoint{3.895116in}{2.159457in}}% -\pgfpathlineto{\pgfqpoint{3.874244in}{2.126727in}}% -\pgfpathlineto{\pgfqpoint{3.850865in}{2.094761in}}% -\pgfpathlineto{\pgfqpoint{3.825024in}{2.063665in}}% -\pgfpathlineto{\pgfqpoint{3.796774in}{2.033546in}}% -\pgfpathlineto{\pgfqpoint{3.766173in}{2.004508in}}% -\pgfpathlineto{\pgfqpoint{3.733291in}{1.976655in}}% -\pgfpathlineto{\pgfqpoint{3.698203in}{1.950085in}}% -\pgfpathlineto{\pgfqpoint{3.660992in}{1.924898in}}% -\pgfpathlineto{\pgfqpoint{3.621749in}{1.901188in}}% -\pgfpathlineto{\pgfqpoint{3.580573in}{1.879046in}}% -\pgfpathlineto{\pgfqpoint{3.537569in}{1.858560in}}% -\pgfpathlineto{\pgfqpoint{3.492849in}{1.839815in}}% -\pgfpathlineto{\pgfqpoint{3.446534in}{1.822891in}}% -\pgfpathlineto{\pgfqpoint{3.398748in}{1.807862in}}% -\pgfpathlineto{\pgfqpoint{3.349623in}{1.794799in}}% -\pgfpathlineto{\pgfqpoint{3.299297in}{1.783767in}}% -\pgfpathlineto{\pgfqpoint{3.247913in}{1.774827in}}% -\pgfpathlineto{\pgfqpoint{3.195620in}{1.768033in}}% -\pgfpathlineto{\pgfqpoint{3.142569in}{1.763432in}}% -\pgfpathlineto{\pgfqpoint{3.088920in}{1.761068in}}% -\pgfpathlineto{\pgfqpoint{3.034833in}{1.760975in}}% -\pgfpathlineto{\pgfqpoint{2.980472in}{1.763184in}}% -\pgfpathlineto{\pgfqpoint{2.926006in}{1.767717in}}% -\pgfpathlineto{\pgfqpoint{2.871606in}{1.774590in}}% -\pgfpathlineto{\pgfqpoint{2.817442in}{1.783810in}}% -\pgfpathlineto{\pgfqpoint{2.763691in}{1.795380in}}% -\pgfpathlineto{\pgfqpoint{2.710525in}{1.809294in}}% -\pgfpathlineto{\pgfqpoint{2.658121in}{1.825537in}}% -\pgfpathlineto{\pgfqpoint{2.606654in}{1.844090in}}% -\pgfpathlineto{\pgfqpoint{2.556299in}{1.864924in}}% -\pgfpathlineto{\pgfqpoint{2.507230in}{1.888003in}}% -\pgfpathlineto{\pgfqpoint{2.459617in}{1.913284in}}% -\pgfpathlineto{\pgfqpoint{2.413632in}{1.940716in}}% -\pgfpathlineto{\pgfqpoint{2.369440in}{1.970241in}}% -\pgfpathlineto{\pgfqpoint{2.327204in}{2.001793in}}% -\pgfpathlineto{\pgfqpoint{2.287084in}{2.035300in}}% -\pgfpathlineto{\pgfqpoint{2.249234in}{2.070681in}}% -\pgfpathlineto{\pgfqpoint{2.213803in}{2.107850in}}% -\pgfpathlineto{\pgfqpoint{2.180937in}{2.146713in}}% -\pgfpathlineto{\pgfqpoint{2.150771in}{2.187170in}}% -\pgfpathlineto{\pgfqpoint{2.123437in}{2.229114in}}% -\pgfpathlineto{\pgfqpoint{2.099058in}{2.272432in}}% -\pgfpathlineto{\pgfqpoint{2.077750in}{2.317007in}}% -\pgfpathlineto{\pgfqpoint{2.059621in}{2.362714in}}% -\pgfpathlineto{\pgfqpoint{2.044770in}{2.409424in}}% -\pgfpathlineto{\pgfqpoint{2.033285in}{2.457003in}}% -\pgfpathlineto{\pgfqpoint{2.025248in}{2.505313in}}% -\pgfpathlineto{\pgfqpoint{2.020728in}{2.554210in}}% -\pgfpathlineto{\pgfqpoint{2.019786in}{2.603548in}}% -\pgfpathlineto{\pgfqpoint{2.022471in}{2.653179in}}% -\pgfpathlineto{\pgfqpoint{2.028820in}{2.702949in}}% -\pgfpathlineto{\pgfqpoint{2.038862in}{2.752704in}}% -\pgfpathlineto{\pgfqpoint{2.052611in}{2.802287in}}% -\pgfpathlineto{\pgfqpoint{2.070073in}{2.851540in}}% -\pgfpathlineto{\pgfqpoint{2.091238in}{2.900304in}}% -\pgfpathlineto{\pgfqpoint{2.116087in}{2.948419in}}% -\pgfpathlineto{\pgfqpoint{2.144589in}{2.995726in}}% -\pgfpathlineto{\pgfqpoint{2.176699in}{3.042067in}}% -\pgfpathlineto{\pgfqpoint{2.212362in}{3.087283in}}% -\pgfpathlineto{\pgfqpoint{2.251508in}{3.131220in}}% -\pgfpathlineto{\pgfqpoint{2.294058in}{3.173723in}}% -\pgfpathlineto{\pgfqpoint{2.339920in}{3.214641in}}% -\pgfpathlineto{\pgfqpoint{2.388990in}{3.253827in}}% -\pgfpathlineto{\pgfqpoint{2.441152in}{3.291137in}}% -\pgfpathlineto{\pgfqpoint{2.496278in}{3.326431in}}% -\pgfpathlineto{\pgfqpoint{2.554232in}{3.359575in}}% -\pgfpathlineto{\pgfqpoint{2.614865in}{3.390439in}}% -\pgfpathlineto{\pgfqpoint{2.678016in}{3.418901in}}% -\pgfpathlineto{\pgfqpoint{2.743517in}{3.444843in}}% -\pgfpathlineto{\pgfqpoint{2.811189in}{3.468155in}}% -\pgfpathlineto{\pgfqpoint{2.880844in}{3.488734in}}% -\pgfpathlineto{\pgfqpoint{2.952286in}{3.506484in}}% -\pgfpathlineto{\pgfqpoint{3.025310in}{3.521319in}}% -\pgfpathlineto{\pgfqpoint{3.099703in}{3.533160in}}% -\pgfpathlineto{\pgfqpoint{3.175247in}{3.541938in}}% -\pgfpathlineto{\pgfqpoint{3.251717in}{3.547591in}}% -\pgfpathlineto{\pgfqpoint{3.328881in}{3.550069in}}% -\pgfpathlineto{\pgfqpoint{3.406506in}{3.549331in}}% -\pgfpathlineto{\pgfqpoint{3.484350in}{3.545345in}}% -\pgfpathlineto{\pgfqpoint{3.562172in}{3.538091in}}% -\pgfpathlineto{\pgfqpoint{3.639725in}{3.527560in}}% -\pgfpathlineto{\pgfqpoint{3.716763in}{3.513750in}}% -\pgfpathlineto{\pgfqpoint{3.793038in}{3.496674in}}% -\pgfpathlineto{\pgfqpoint{3.868302in}{3.476354in}}% -\pgfpathlineto{\pgfqpoint{3.942306in}{3.452823in}}% -\pgfpathlineto{\pgfqpoint{4.014806in}{3.426125in}}% -\pgfpathlineto{\pgfqpoint{4.085559in}{3.396314in}}% -\pgfpathlineto{\pgfqpoint{4.154324in}{3.363458in}}% -\pgfpathlineto{\pgfqpoint{4.220865in}{3.327632in}}% -\pgfpathlineto{\pgfqpoint{4.284953in}{3.288923in}}% -\pgfpathlineto{\pgfqpoint{4.346362in}{3.247431in}}% -\pgfpathlineto{\pgfqpoint{4.404874in}{3.203261in}}% -\pgfpathlineto{\pgfqpoint{4.460278in}{3.156533in}}% -\pgfpathlineto{\pgfqpoint{4.512374in}{3.107374in}}% -\pgfpathlineto{\pgfqpoint{4.560967in}{3.055920in}}% -\pgfpathlineto{\pgfqpoint{4.605876in}{3.002319in}}% -\pgfpathlineto{\pgfqpoint{4.646927in}{2.946724in}}% -\pgfpathlineto{\pgfqpoint{4.683960in}{2.889298in}}% -\pgfpathlineto{\pgfqpoint{4.716827in}{2.830211in}}% -\pgfpathlineto{\pgfqpoint{4.745390in}{2.769642in}}% -\pgfpathlineto{\pgfqpoint{4.769528in}{2.707772in}}% -\pgfpathlineto{\pgfqpoint{4.789132in}{2.644794in}}% -\pgfpathlineto{\pgfqpoint{4.804108in}{2.580901in}}% -\pgfpathlineto{\pgfqpoint{4.814376in}{2.516295in}}% -\pgfpathlineto{\pgfqpoint{4.819873in}{2.451180in}}% -\pgfpathlineto{\pgfqpoint{4.820549in}{2.385763in}}% -\pgfpathlineto{\pgfqpoint{4.816375in}{2.320255in}}% -\pgfpathlineto{\pgfqpoint{4.807332in}{2.254868in}}% -\pgfpathlineto{\pgfqpoint{4.793424in}{2.189817in}}% -\pgfpathlineto{\pgfqpoint{4.774666in}{2.125315in}}% -\pgfpathlineto{\pgfqpoint{4.751094in}{2.061577in}}% -\pgfpathlineto{\pgfqpoint{4.722760in}{1.998816in}}% -\pgfpathlineto{\pgfqpoint{4.689731in}{1.937243in}}% -\pgfpathlineto{\pgfqpoint{4.652093in}{1.877067in}}% -\pgfpathlineto{\pgfqpoint{4.609947in}{1.818494in}}% -\pgfpathlineto{\pgfqpoint{4.563413in}{1.761725in}}% -\pgfpathlineto{\pgfqpoint{4.512624in}{1.706957in}}% -\pgfpathlineto{\pgfqpoint{4.457731in}{1.654381in}}% -\pgfpathlineto{\pgfqpoint{4.398900in}{1.604181in}}% -\pgfpathlineto{\pgfqpoint{4.336312in}{1.556535in}}% -\pgfpathlineto{\pgfqpoint{4.270162in}{1.511612in}}% -\pgfpathlineto{\pgfqpoint{4.200659in}{1.469575in}}% -\pgfpathlineto{\pgfqpoint{4.128027in}{1.430575in}}% -\pgfpathlineto{\pgfqpoint{4.052500in}{1.394754in}}% -\pgfpathlineto{\pgfqpoint{3.974326in}{1.362245in}}% -\pgfpathlineto{\pgfqpoint{3.893762in}{1.333167in}}% -\pgfpathlineto{\pgfqpoint{3.811078in}{1.307631in}}% -\pgfpathlineto{\pgfqpoint{3.726550in}{1.285733in}}% -\pgfpathlineto{\pgfqpoint{3.640464in}{1.267559in}}% -\pgfpathlineto{\pgfqpoint{3.553115in}{1.253180in}}% -\pgfpathlineto{\pgfqpoint{3.464801in}{1.242654in}}% -\pgfpathlineto{\pgfqpoint{3.375828in}{1.236027in}}% -\pgfpathlineto{\pgfqpoint{3.286504in}{1.233329in}}% -\pgfpathlineto{\pgfqpoint{3.197142in}{1.234577in}}% -\pgfpathlineto{\pgfqpoint{3.108056in}{1.239772in}}% -\pgfpathlineto{\pgfqpoint{3.019560in}{1.248903in}}% -\pgfpathlineto{\pgfqpoint{2.931969in}{1.261943in}}% -\pgfpathlineto{\pgfqpoint{2.845595in}{1.278850in}}% -\pgfpathlineto{\pgfqpoint{2.760749in}{1.299569in}}% -\pgfpathlineto{\pgfqpoint{2.677735in}{1.324028in}}% -\pgfpathlineto{\pgfqpoint{2.596855in}{1.352142in}}% -\pgfpathlineto{\pgfqpoint{2.518402in}{1.383813in}}% -\pgfpathlineto{\pgfqpoint{2.442663in}{1.418928in}}% -\pgfpathlineto{\pgfqpoint{2.369915in}{1.457359in}}% -\pgfpathlineto{\pgfqpoint{2.300427in}{1.498969in}}% -\pgfpathlineto{\pgfqpoint{2.234454in}{1.543603in}}% -\pgfpathlineto{\pgfqpoint{2.172241in}{1.591097in}}% -\pgfpathlineto{\pgfqpoint{2.114019in}{1.641275in}}% -\pgfpathlineto{\pgfqpoint{2.060005in}{1.693949in}}% -\pgfpathlineto{\pgfqpoint{2.010401in}{1.748922in}}% -\pgfpathlineto{\pgfqpoint{1.965393in}{1.805984in}}% -\pgfpathlineto{\pgfqpoint{1.925149in}{1.864920in}}% -\pgfpathlineto{\pgfqpoint{1.889821in}{1.925505in}}% -\pgfpathlineto{\pgfqpoint{1.859541in}{1.987504in}}% -\pgfpathlineto{\pgfqpoint{1.834423in}{2.050680in}}% -\pgfpathlineto{\pgfqpoint{1.814560in}{2.114787in}}% -\pgfpathlineto{\pgfqpoint{1.800025in}{2.179575in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{2.244791in}}% -\pgfpathlineto{\pgfqpoint{1.787131in}{2.310179in}}% -\pgfpathlineto{\pgfqpoint{1.788813in}{2.375480in}}% -\pgfpathlineto{\pgfqpoint{1.795906in}{2.440434in}}% -\pgfpathlineto{\pgfqpoint{1.808377in}{2.504784in}}% -\pgfpathlineto{\pgfqpoint{1.826170in}{2.568272in}}% -\pgfpathlineto{\pgfqpoint{1.849209in}{2.630643in}}% -\pgfpathlineto{\pgfqpoint{1.877396in}{2.691644in}}% -\pgfpathlineto{\pgfqpoint{1.910610in}{2.751028in}}% -\pgfpathlineto{\pgfqpoint{1.948711in}{2.808554in}}% -\pgfpathlineto{\pgfqpoint{1.991536in}{2.863985in}}% -\pgfpathlineto{\pgfqpoint{2.038905in}{2.917095in}}% -\pgfpathlineto{\pgfqpoint{2.090616in}{2.967663in}}% -\pgfpathlineto{\pgfqpoint{2.146448in}{3.015481in}}% -\pgfpathlineto{\pgfqpoint{2.206164in}{3.060348in}}% -\pgfpathlineto{\pgfqpoint{2.269508in}{3.102076in}}% -\pgfpathlineto{\pgfqpoint{2.336207in}{3.140490in}}% -\pgfpathlineto{\pgfqpoint{2.405975in}{3.175427in}}% -\pgfpathlineto{\pgfqpoint{2.478509in}{3.206739in}}% -\pgfpathlineto{\pgfqpoint{2.553495in}{3.234289in}}% -\pgfpathlineto{\pgfqpoint{2.630606in}{3.257961in}}% -\pgfpathlineto{\pgfqpoint{2.709504in}{3.277650in}}% -\pgfpathlineto{\pgfqpoint{2.789843in}{3.293269in}}% -\pgfpathlineto{\pgfqpoint{2.871268in}{3.304750in}}% -\pgfpathlineto{\pgfqpoint{2.953418in}{3.312039in}}% -\pgfpathlineto{\pgfqpoint{3.035925in}{3.315102in}}% -\pgfpathlineto{\pgfqpoint{3.118421in}{3.313922in}}% -\pgfpathlineto{\pgfqpoint{3.200533in}{3.308501in}}% -\pgfpathlineto{\pgfqpoint{3.281890in}{3.298859in}}% -\pgfpathlineto{\pgfqpoint{3.362119in}{3.285035in}}% -\pgfpathlineto{\pgfqpoint{3.440853in}{3.267085in}}% -\pgfpathlineto{\pgfqpoint{3.517728in}{3.245086in}}% -\pgfpathlineto{\pgfqpoint{3.592386in}{3.219130in}}% -\pgfpathlineto{\pgfqpoint{3.664475in}{3.189330in}}% -\pgfpathlineto{\pgfqpoint{3.733656in}{3.155815in}}% -\pgfpathlineto{\pgfqpoint{3.799598in}{3.118732in}}% -\pgfpathlineto{\pgfqpoint{3.861982in}{3.078243in}}% -\pgfpathlineto{\pgfqpoint{3.920503in}{3.034529in}}% -\pgfpathlineto{\pgfqpoint{3.974873in}{2.987784in}}% -\pgfpathlineto{\pgfqpoint{4.024819in}{2.938219in}}% -\pgfpathlineto{\pgfqpoint{4.070085in}{2.886057in}}% -\pgfpathlineto{\pgfqpoint{4.110436in}{2.831537in}}% -\pgfpathlineto{\pgfqpoint{4.145657in}{2.774906in}}% -\pgfpathlineto{\pgfqpoint{4.175554in}{2.716427in}}% -\pgfpathlineto{\pgfqpoint{4.199956in}{2.656371in}}% -\pgfpathlineto{\pgfqpoint{4.218715in}{2.595018in}}% -\pgfpathlineto{\pgfqpoint{4.231708in}{2.532656in}}% -\pgfpathlineto{\pgfqpoint{4.238838in}{2.469580in}}% -\pgfpathlineto{\pgfqpoint{4.240031in}{2.406091in}}% -\pgfpathlineto{\pgfqpoint{4.235243in}{2.342495in}}% -\pgfpathlineto{\pgfqpoint{4.224454in}{2.279100in}}% -\pgfpathlineto{\pgfqpoint{4.207674in}{2.216214in}}% -\pgfpathlineto{\pgfqpoint{4.184938in}{2.154148in}}% -\pgfpathlineto{\pgfqpoint{4.156309in}{2.093212in}}% -\pgfpathlineto{\pgfqpoint{4.121878in}{2.033710in}}% -\pgfpathlineto{\pgfqpoint{4.081764in}{1.975947in}}% -\pgfpathlineto{\pgfqpoint{4.036113in}{1.920219in}}% -\pgfpathlineto{\pgfqpoint{3.985097in}{1.866816in}}% -\pgfpathlineto{\pgfqpoint{3.928914in}{1.816022in}}% -\pgfpathlineto{\pgfqpoint{3.867788in}{1.768109in}}% -\pgfpathlineto{\pgfqpoint{3.801970in}{1.723340in}}% -\pgfpathlineto{\pgfqpoint{3.731731in}{1.681965in}}% -\pgfpathlineto{\pgfqpoint{3.657368in}{1.644222in}}% -\pgfpathlineto{\pgfqpoint{3.579199in}{1.610334in}}% -\pgfpathlineto{\pgfqpoint{3.497564in}{1.580507in}}% -\pgfpathlineto{\pgfqpoint{3.412819in}{1.554933in}}% -\pgfpathlineto{\pgfqpoint{3.325342in}{1.533783in}}% -\pgfpathlineto{\pgfqpoint{3.235524in}{1.517213in}}% -\pgfpathlineto{\pgfqpoint{3.143774in}{1.505356in}}% -\pgfpathlineto{\pgfqpoint{3.050511in}{1.498327in}}% -\pgfpathlineto{\pgfqpoint{2.956169in}{1.496219in}}% -\pgfpathlineto{\pgfqpoint{2.861189in}{1.499102in}}% -\pgfpathlineto{\pgfqpoint{2.766019in}{1.507026in}}% -\pgfpathlineto{\pgfqpoint{2.671115in}{1.520016in}}% -\pgfpathlineto{\pgfqpoint{2.576935in}{1.538076in}}% -\pgfpathlineto{\pgfqpoint{2.483940in}{1.561185in}}% -\pgfpathlineto{\pgfqpoint{2.392589in}{1.589299in}}% -\pgfpathlineto{\pgfqpoint{2.303340in}{1.622350in}}% -\pgfpathlineto{\pgfqpoint{2.216645in}{1.660247in}}% -\pgfpathlineto{\pgfqpoint{2.132949in}{1.702875in}}% -\pgfpathlineto{\pgfqpoint{2.052690in}{1.750096in}}% -\pgfpathlineto{\pgfqpoint{1.976293in}{1.801750in}}% -\pgfpathlineto{\pgfqpoint{1.904172in}{1.857653in}}% -\pgfpathlineto{\pgfqpoint{1.836723in}{1.917602in}}% -\pgfpathlineto{\pgfqpoint{1.774328in}{1.981370in}}% -\pgfpathlineto{\pgfqpoint{1.717348in}{2.048712in}}% -\pgfpathlineto{\pgfqpoint{1.666124in}{2.119363in}}% -\pgfpathlineto{\pgfqpoint{1.620974in}{2.193040in}}% -\pgfpathlineto{\pgfqpoint{1.582192in}{2.269442in}}% -\pgfpathlineto{\pgfqpoint{1.550045in}{2.348253in}}% -\pgfpathlineto{\pgfqpoint{1.524775in}{2.429141in}}% -\pgfpathlineto{\pgfqpoint{1.506591in}{2.511764in}}% -\pgfpathlineto{\pgfqpoint{1.495676in}{2.595763in}}% -\pgfpathlineto{\pgfqpoint{1.492180in}{2.680773in}}% -\pgfpathlineto{\pgfqpoint{1.496219in}{2.766418in}}% -\pgfpathlineto{\pgfqpoint{1.507879in}{2.852315in}}% -\pgfpathlineto{\pgfqpoint{1.527209in}{2.938076in}}% -\pgfpathlineto{\pgfqpoint{1.554225in}{3.023310in}}% -\pgfpathlineto{\pgfqpoint{1.588909in}{3.107621in}}% -\pgfpathlineto{\pgfqpoint{1.631204in}{3.190617in}}% -\pgfpathlineto{\pgfqpoint{1.681021in}{3.271903in}}% -\pgfpathlineto{\pgfqpoint{1.738235in}{3.351092in}}% -\pgfpathlineto{\pgfqpoint{1.802684in}{3.427799in}}% -\pgfpathlineto{\pgfqpoint{1.874172in}{3.501647in}}% -\pgfpathlineto{\pgfqpoint{1.952470in}{3.572269in}}% -\pgfpathlineto{\pgfqpoint{2.037313in}{3.639306in}}% -\pgfpathlineto{\pgfqpoint{2.128405in}{3.702414in}}% -\pgfpathlineto{\pgfqpoint{2.225418in}{3.761262in}}% -\pgfpathlineto{\pgfqpoint{2.327993in}{3.815536in}}% -\pgfpathlineto{\pgfqpoint{2.435740in}{3.864938in}}% -\pgfpathlineto{\pgfqpoint{2.548245in}{3.909190in}}% -\pgfpathlineto{\pgfqpoint{2.665065in}{3.948033in}}% -\pgfpathlineto{\pgfqpoint{2.785734in}{3.981232in}}% -\pgfpathlineto{\pgfqpoint{2.909762in}{4.008574in}}% -\pgfpathlineto{\pgfqpoint{3.036639in}{4.029871in}}% -\pgfpathlineto{\pgfqpoint{3.165839in}{4.044961in}}% -\pgfpathlineto{\pgfqpoint{3.296817in}{4.053706in}}% -\pgfpathlineto{\pgfqpoint{3.429016in}{4.056000in}}% -\pgfpathlineto{\pgfqpoint{3.561867in}{4.051761in}}% -\pgfpathlineto{\pgfqpoint{3.694792in}{4.040939in}}% -\pgfpathlineto{\pgfqpoint{3.827209in}{4.023511in}}% -\pgfpathlineto{\pgfqpoint{3.958530in}{3.999486in}}% -\pgfpathlineto{\pgfqpoint{4.088167in}{3.968902in}}% -\pgfpathlineto{\pgfqpoint{4.215534in}{3.931828in}}% -\pgfpathlineto{\pgfqpoint{4.340051in}{3.888362in}}% -\pgfpathlineto{\pgfqpoint{4.461144in}{3.838634in}}% -\pgfpathlineto{\pgfqpoint{4.578248in}{3.782801in}}% -\pgfpathlineto{\pgfqpoint{4.690815in}{3.721053in}}% -\pgfpathlineto{\pgfqpoint{4.798309in}{3.653606in}}% -\pgfpathlineto{\pgfqpoint{4.900213in}{3.580704in}}% -\pgfpathlineto{\pgfqpoint{4.996032in}{3.502620in}}% -\pgfpathlineto{\pgfqpoint{5.085292in}{3.419651in}}% -\pgfpathlineto{\pgfqpoint{5.167549in}{3.332121in}}% -\pgfpathlineto{\pgfqpoint{5.242383in}{3.240375in}}% -\pgfpathlineto{\pgfqpoint{5.309406in}{3.144784in}}% -\pgfpathlineto{\pgfqpoint{5.368262in}{3.045736in}}% -\pgfpathlineto{\pgfqpoint{5.418631in}{2.943641in}}% -\pgfpathlineto{\pgfqpoint{5.460227in}{2.838924in}}% -\pgfpathlineto{\pgfqpoint{5.492804in}{2.732027in}}% -\pgfpathlineto{\pgfqpoint{5.516154in}{2.623406in}}% -\pgfpathlineto{\pgfqpoint{5.530109in}{2.513527in}}% -\pgfpathlineto{\pgfqpoint{5.534545in}{2.402867in}}% -\pgfpathlineto{\pgfqpoint{5.529381in}{2.291908in}}% -\pgfpathlineto{\pgfqpoint{5.514576in}{2.181141in}}% -\pgfpathlineto{\pgfqpoint{5.490138in}{2.071056in}}% -\pgfpathlineto{\pgfqpoint{5.456115in}{1.962145in}}% -\pgfpathlineto{\pgfqpoint{5.412604in}{1.854898in}}% -\pgfpathlineto{\pgfqpoint{5.359742in}{1.749802in}}% -\pgfpathlineto{\pgfqpoint{5.297714in}{1.647336in}}% -\pgfpathlineto{\pgfqpoint{5.226748in}{1.547970in}}% -\pgfpathlineto{\pgfqpoint{5.147113in}{1.452165in}}% -\pgfpathlineto{\pgfqpoint{5.059123in}{1.360366in}}% -\pgfpathlineto{\pgfqpoint{4.963131in}{1.273003in}}% -\pgfpathlineto{\pgfqpoint{4.859530in}{1.190491in}}% -\pgfpathlineto{\pgfqpoint{4.748751in}{1.113220in}}% -\pgfpathlineto{\pgfqpoint{4.631262in}{1.041563in}}% -\pgfpathlineto{\pgfqpoint{4.507564in}{0.975865in}}% -\pgfpathlineto{\pgfqpoint{4.378193in}{0.916449in}}% -\pgfpathlineto{\pgfqpoint{4.243711in}{0.863607in}}% -\pgfpathlineto{\pgfqpoint{4.104710in}{0.817604in}}% -\pgfpathlineto{\pgfqpoint{3.961806in}{0.778674in}}% -\pgfpathlineto{\pgfqpoint{3.815636in}{0.747018in}}% -\pgfpathlineto{\pgfqpoint{3.666859in}{0.722806in}}% -\pgfpathlineto{\pgfqpoint{3.516147in}{0.706172in}}% -\pgfpathlineto{\pgfqpoint{3.364185in}{0.697216in}}% -\pgfpathlineto{\pgfqpoint{3.211670in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{3.059303in}{0.702552in}}% -\pgfpathlineto{\pgfqpoint{2.907790in}{0.716862in}}% -\pgfpathlineto{\pgfqpoint{2.757834in}{0.738883in}}% -\pgfpathlineto{\pgfqpoint{2.610136in}{0.768532in}}% -\pgfpathlineto{\pgfqpoint{2.465390in}{0.805687in}}% -\pgfpathlineto{\pgfqpoint{2.324277in}{0.850192in}}% -\pgfpathlineto{\pgfqpoint{2.187467in}{0.901852in}}% -\pgfpathlineto{\pgfqpoint{2.055610in}{0.960440in}}% -\pgfpathlineto{\pgfqpoint{1.929335in}{1.025692in}}% -\pgfpathlineto{\pgfqpoint{1.809250in}{1.097312in}}% -\pgfpathlineto{\pgfqpoint{1.695932in}{1.174971in}}% -\pgfpathlineto{\pgfqpoint{1.589930in}{1.258310in}}% -\pgfpathlineto{\pgfqpoint{1.491760in}{1.346940in}}% -\pgfpathlineto{\pgfqpoint{1.401900in}{1.440445in}}% -\pgfpathlineto{\pgfqpoint{1.320792in}{1.538385in}}% -\pgfpathlineto{\pgfqpoint{1.248836in}{1.640294in}}% -\pgfpathlineto{\pgfqpoint{1.186388in}{1.745686in}}% -\pgfpathlineto{\pgfqpoint{1.133760in}{1.854056in}}% -\pgfpathlineto{\pgfqpoint{1.091217in}{1.964882in}}% -\pgfpathlineto{\pgfqpoint{1.058974in}{2.077628in}}% -\pgfpathlineto{\pgfqpoint{1.037198in}{2.191746in}}% -\pgfpathlineto{\pgfqpoint{1.026004in}{2.306681in}}% -\pgfpathlineto{\pgfqpoint{1.025455in}{2.421870in}}% -\pgfpathlineto{\pgfqpoint{1.035559in}{2.536747in}}% -\pgfpathlineto{\pgfqpoint{1.056276in}{2.650746in}}% -\pgfpathlineto{\pgfqpoint{1.087509in}{2.763303in}}% -\pgfpathlineto{\pgfqpoint{1.129109in}{2.873860in}}% -\pgfpathlineto{\pgfqpoint{1.180876in}{2.981866in}}% -\pgfpathlineto{\pgfqpoint{1.242556in}{3.086782in}}% -\pgfpathlineto{\pgfqpoint{1.313846in}{3.188081in}}% -\pgfpathlineto{\pgfqpoint{1.394394in}{3.285254in}}% -\pgfpathlineto{\pgfqpoint{1.483797in}{3.377811in}}% -\pgfpathlineto{\pgfqpoint{1.581610in}{3.465285in}}% -\pgfpathlineto{\pgfqpoint{1.687341in}{3.547229in}}% -\pgfpathlineto{\pgfqpoint{1.800458in}{3.623228in}}% -\pgfpathlineto{\pgfqpoint{1.920388in}{3.692892in}}% -\pgfpathlineto{\pgfqpoint{2.046523in}{3.755865in}}% -\pgfpathlineto{\pgfqpoint{2.178221in}{3.811822in}}% -\pgfpathlineto{\pgfqpoint{2.314808in}{3.860473in}}% -\pgfpathlineto{\pgfqpoint{2.455585in}{3.901567in}}% -\pgfpathlineto{\pgfqpoint{2.599829in}{3.934889in}}% -\pgfpathlineto{\pgfqpoint{2.746795in}{3.960264in}}% -\pgfpathlineto{\pgfqpoint{2.895725in}{3.977557in}}% -\pgfpathlineto{\pgfqpoint{3.045845in}{3.986676in}}% -\pgfpathlineto{\pgfqpoint{3.196376in}{3.987571in}}% -\pgfpathlineto{\pgfqpoint{3.346531in}{3.980232in}}% -\pgfpathlineto{\pgfqpoint{3.495527in}{3.964695in}}% -\pgfpathlineto{\pgfqpoint{3.642582in}{3.941038in}}% -\pgfpathlineto{\pgfqpoint{3.786921in}{3.909381in}}% -\pgfpathlineto{\pgfqpoint{3.927784in}{3.869888in}}% -\pgfpathlineto{\pgfqpoint{4.064426in}{3.822762in}}% -\pgfpathlineto{\pgfqpoint{4.196121in}{3.768249in}}% -\pgfpathlineto{\pgfqpoint{4.322168in}{3.706635in}}% -\pgfpathlineto{\pgfqpoint{4.441894in}{3.638242in}}% -\pgfpathlineto{\pgfqpoint{4.554658in}{3.563431in}}% -\pgfpathlineto{\pgfqpoint{4.659854in}{3.482597in}}% -\pgfpathlineto{\pgfqpoint{4.756914in}{3.396170in}}% -\pgfpathlineto{\pgfqpoint{4.845312in}{3.304607in}}% -\pgfpathlineto{\pgfqpoint{4.924568in}{3.208399in}}% -\pgfpathlineto{\pgfqpoint{4.994249in}{3.108059in}}% -\pgfpathlineto{\pgfqpoint{5.053971in}{3.004126in}}% -\pgfpathlineto{\pgfqpoint{5.103404in}{2.897158in}}% -\pgfpathlineto{\pgfqpoint{5.142273in}{2.787733in}}% -\pgfpathlineto{\pgfqpoint{5.170358in}{2.676442in}}% -\pgfpathlineto{\pgfqpoint{5.187497in}{2.563889in}}% -\pgfpathlineto{\pgfqpoint{5.193588in}{2.450686in}}% -\pgfpathlineto{\pgfqpoint{5.188587in}{2.337451in}}% -\pgfpathlineto{\pgfqpoint{5.172513in}{2.224802in}}% -\pgfpathlineto{\pgfqpoint{5.145442in}{2.113357in}}% -\pgfpathlineto{\pgfqpoint{5.107513in}{2.003730in}}% -\pgfpathlineto{\pgfqpoint{5.058924in}{1.896525in}}% -\pgfpathlineto{\pgfqpoint{4.999933in}{1.792335in}}% -\pgfpathlineto{\pgfqpoint{4.930854in}{1.691738in}}% -\pgfpathlineto{\pgfqpoint{4.852060in}{1.595295in}}% -\pgfpathlineto{\pgfqpoint{4.763977in}{1.503544in}}% -\pgfpathlineto{\pgfqpoint{4.667083in}{1.417000in}}% -\pgfpathlineto{\pgfqpoint{4.561910in}{1.336149in}}% -\pgfpathlineto{\pgfqpoint{4.449033in}{1.261448in}}% -\pgfpathlineto{\pgfqpoint{4.329074in}{1.193322in}}% -\pgfpathlineto{\pgfqpoint{4.202697in}{1.132158in}}% -\pgfpathlineto{\pgfqpoint{4.070602in}{1.078307in}}% -\pgfpathlineto{\pgfqpoint{3.933525in}{1.032081in}}% -\pgfpathlineto{\pgfqpoint{3.792231in}{0.993747in}}% -\pgfpathlineto{\pgfqpoint{3.647512in}{0.963532in}}% -\pgfpathlineto{\pgfqpoint{3.500180in}{0.941616in}}% -\pgfpathlineto{\pgfqpoint{3.351067in}{0.928132in}}% -\pgfpathlineto{\pgfqpoint{3.201016in}{0.923167in}}% -\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% -\pgfpathlineto{\pgfqpoint{3.050878in}{0.926761in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/zeta/zeta_re_0.5_plot.pgf b/buch/papers/zeta/zeta_re_0.5_plot.pgf deleted file mode 100644 index 3ac7df8..0000000 --- a/buch/papers/zeta/zeta_re_0.5_plot.pgf +++ /dev/null @@ -1,1206 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% and, on pdftex -%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} -%% -%% or, on luatex and xetex -%% \usepackage{unicode-math} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.497200in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.497200in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.521943in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.521943in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.546687in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.546687in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.571430in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.571430in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.596173in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.596173in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{0.894147in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.460105in, y=0.855567in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.374788in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.460105in, y=1.336208in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1.0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.855429in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.460105in, y=1.816849in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-0.5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.336069in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=2.297489in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.816710in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=2.778130in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0.5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.297351in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=3.258771in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.777992in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=3.739411in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1.5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.404549in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.025455in}{2.336069in}}% -\pgfpathlineto{\pgfqpoint{1.038495in}{2.186217in}}% -\pgfpathlineto{\pgfqpoint{1.076639in}{2.042087in}}% -\pgfpathlineto{\pgfqpoint{1.137137in}{1.908708in}}% -\pgfpathlineto{\pgfqpoint{1.215937in}{1.789896in}}% -\pgfpathlineto{\pgfqpoint{1.308314in}{1.687993in}}% -\pgfpathlineto{\pgfqpoint{1.409481in}{1.603898in}}% -\pgfpathlineto{\pgfqpoint{1.515072in}{1.537295in}}% -\pgfpathlineto{\pgfqpoint{1.621432in}{1.486981in}}% -\pgfpathlineto{\pgfqpoint{1.725731in}{1.451216in}}% -\pgfpathlineto{\pgfqpoint{1.825942in}{1.428011in}}% -\pgfpathlineto{\pgfqpoint{1.920744in}{1.415352in}}% -\pgfpathlineto{\pgfqpoint{2.009382in}{1.411339in}}% -\pgfpathlineto{\pgfqpoint{2.091535in}{1.414268in}}% -\pgfpathlineto{\pgfqpoint{2.167190in}{1.422662in}}% -\pgfpathlineto{\pgfqpoint{2.236544in}{1.435276in}}% -\pgfpathlineto{\pgfqpoint{2.299923in}{1.451081in}}% -\pgfpathlineto{\pgfqpoint{2.357727in}{1.469237in}}% -\pgfpathlineto{\pgfqpoint{2.410389in}{1.489073in}}% -\pgfpathlineto{\pgfqpoint{2.458347in}{1.510052in}}% -\pgfpathlineto{\pgfqpoint{2.502030in}{1.531753in}}% -\pgfpathlineto{\pgfqpoint{2.541842in}{1.553849in}}% -\pgfpathlineto{\pgfqpoint{2.578159in}{1.576085in}}% -\pgfpathlineto{\pgfqpoint{2.611326in}{1.598269in}}% -\pgfpathlineto{\pgfqpoint{2.641659in}{1.620252in}}% -\pgfpathlineto{\pgfqpoint{2.694929in}{1.663218in}}% -\pgfpathlineto{\pgfqpoint{2.739912in}{1.704430in}}% -\pgfpathlineto{\pgfqpoint{2.778168in}{1.743637in}}% -\pgfpathlineto{\pgfqpoint{2.810942in}{1.780765in}}% -\pgfpathlineto{\pgfqpoint{2.839224in}{1.815845in}}% -\pgfpathlineto{\pgfqpoint{2.874923in}{1.864826in}}% -\pgfpathlineto{\pgfqpoint{2.904327in}{1.909812in}}% -\pgfpathlineto{\pgfqpoint{2.928933in}{1.951250in}}% -\pgfpathlineto{\pgfqpoint{2.956147in}{2.001721in}}% -\pgfpathlineto{\pgfqpoint{2.983709in}{2.058389in}}% -\pgfpathlineto{\pgfqpoint{3.010449in}{2.118876in}}% -\pgfpathlineto{\pgfqpoint{3.046181in}{2.206269in}}% -\pgfpathlineto{\pgfqpoint{3.091487in}{2.316676in}}% -\pgfpathlineto{\pgfqpoint{3.115316in}{2.368880in}}% -\pgfpathlineto{\pgfqpoint{3.137213in}{2.411802in}}% -\pgfpathlineto{\pgfqpoint{3.160720in}{2.452550in}}% -\pgfpathlineto{\pgfqpoint{3.182543in}{2.485902in}}% -\pgfpathlineto{\pgfqpoint{3.206220in}{2.517844in}}% -\pgfpathlineto{\pgfqpoint{3.232012in}{2.548337in}}% -\pgfpathlineto{\pgfqpoint{3.255293in}{2.572564in}}% -\pgfpathlineto{\pgfqpoint{3.280331in}{2.595610in}}% -\pgfpathlineto{\pgfqpoint{3.307232in}{2.617345in}}% -\pgfpathlineto{\pgfqpoint{3.336086in}{2.637605in}}% -\pgfpathlineto{\pgfqpoint{3.366959in}{2.656195in}}% -\pgfpathlineto{\pgfqpoint{3.399890in}{2.672893in}}% -\pgfpathlineto{\pgfqpoint{3.427726in}{2.684718in}}% -\pgfpathlineto{\pgfqpoint{3.456874in}{2.695029in}}% -\pgfpathlineto{\pgfqpoint{3.487307in}{2.703674in}}% -\pgfpathlineto{\pgfqpoint{3.518978in}{2.710490in}}% -\pgfpathlineto{\pgfqpoint{3.551819in}{2.715311in}}% -\pgfpathlineto{\pgfqpoint{3.585740in}{2.717962in}}% -\pgfpathlineto{\pgfqpoint{3.620624in}{2.718264in}}% -\pgfpathlineto{\pgfqpoint{3.656331in}{2.716038in}}% -\pgfpathlineto{\pgfqpoint{3.692689in}{2.711104in}}% -\pgfpathlineto{\pgfqpoint{3.729498in}{2.703288in}}% -\pgfpathlineto{\pgfqpoint{3.757261in}{2.695433in}}% -\pgfpathlineto{\pgfqpoint{3.785039in}{2.685796in}}% -\pgfpathlineto{\pgfqpoint{3.812709in}{2.674315in}}% -\pgfpathlineto{\pgfqpoint{3.840140in}{2.660933in}}% -\pgfpathlineto{\pgfqpoint{3.867192in}{2.645601in}}% -\pgfpathlineto{\pgfqpoint{3.893712in}{2.628278in}}% -\pgfpathlineto{\pgfqpoint{3.919537in}{2.608930in}}% -\pgfpathlineto{\pgfqpoint{3.944495in}{2.587536in}}% -\pgfpathlineto{\pgfqpoint{3.968405in}{2.564086in}}% -\pgfpathlineto{\pgfqpoint{3.991077in}{2.538582in}}% -\pgfpathlineto{\pgfqpoint{4.012311in}{2.511041in}}% -\pgfpathlineto{\pgfqpoint{4.031904in}{2.481497in}}% -\pgfpathlineto{\pgfqpoint{4.049645in}{2.449999in}}% -\pgfpathlineto{\pgfqpoint{4.065318in}{2.416614in}}% -\pgfpathlineto{\pgfqpoint{4.078707in}{2.381431in}}% -\pgfpathlineto{\pgfqpoint{4.089591in}{2.344557in}}% -\pgfpathlineto{\pgfqpoint{4.097755in}{2.306122in}}% -\pgfpathlineto{\pgfqpoint{4.102982in}{2.266278in}}% -\pgfpathlineto{\pgfqpoint{4.105064in}{2.225199in}}% -\pgfpathlineto{\pgfqpoint{4.104606in}{2.197224in}}% -\pgfpathlineto{\pgfqpoint{4.102602in}{2.168853in}}% -\pgfpathlineto{\pgfqpoint{4.099000in}{2.140155in}}% -\pgfpathlineto{\pgfqpoint{4.093747in}{2.111205in}}% -\pgfpathlineto{\pgfqpoint{4.086794in}{2.082081in}}% -\pgfpathlineto{\pgfqpoint{4.078098in}{2.052867in}}% -\pgfpathlineto{\pgfqpoint{4.067617in}{2.023651in}}% -\pgfpathlineto{\pgfqpoint{4.055316in}{1.994526in}}% -\pgfpathlineto{\pgfqpoint{4.041162in}{1.965588in}}% -\pgfpathlineto{\pgfqpoint{4.025130in}{1.936939in}}% -\pgfpathlineto{\pgfqpoint{4.007201in}{1.908684in}}% -\pgfpathlineto{\pgfqpoint{3.987360in}{1.880930in}}% -\pgfpathlineto{\pgfqpoint{3.965600in}{1.853790in}}% -\pgfpathlineto{\pgfqpoint{3.941922in}{1.827380in}}% -\pgfpathlineto{\pgfqpoint{3.916332in}{1.801817in}}% -\pgfpathlineto{\pgfqpoint{3.888846in}{1.777221in}}% -\pgfpathlineto{\pgfqpoint{3.859487in}{1.753715in}}% -\pgfpathlineto{\pgfqpoint{3.828289in}{1.731423in}}% -\pgfpathlineto{\pgfqpoint{3.795290in}{1.710468in}}% -\pgfpathlineto{\pgfqpoint{3.760543in}{1.690977in}}% -\pgfpathlineto{\pgfqpoint{3.724108in}{1.673073in}}% -\pgfpathlineto{\pgfqpoint{3.686052in}{1.656883in}}% -\pgfpathlineto{\pgfqpoint{3.646457in}{1.642528in}}% -\pgfpathlineto{\pgfqpoint{3.605412in}{1.630130in}}% -\pgfpathlineto{\pgfqpoint{3.563018in}{1.619807in}}% -\pgfpathlineto{\pgfqpoint{3.519383in}{1.611674in}}% -\pgfpathlineto{\pgfqpoint{3.474630in}{1.605842in}}% -\pgfpathlineto{\pgfqpoint{3.428888in}{1.602417in}}% -\pgfpathlineto{\pgfqpoint{3.382299in}{1.601500in}}% -\pgfpathlineto{\pgfqpoint{3.335015in}{1.603183in}}% -\pgfpathlineto{\pgfqpoint{3.287195in}{1.607554in}}% -\pgfpathlineto{\pgfqpoint{3.239010in}{1.614690in}}% -\pgfpathlineto{\pgfqpoint{3.190641in}{1.624662in}}% -\pgfpathlineto{\pgfqpoint{3.142274in}{1.637528in}}% -\pgfpathlineto{\pgfqpoint{3.094105in}{1.653339in}}% -\pgfpathlineto{\pgfqpoint{3.046340in}{1.672132in}}% -\pgfpathlineto{\pgfqpoint{2.999188in}{1.693933in}}% -\pgfpathlineto{\pgfqpoint{2.952866in}{1.718754in}}% -\pgfpathlineto{\pgfqpoint{2.907596in}{1.746596in}}% -\pgfpathlineto{\pgfqpoint{2.863604in}{1.777444in}}% -\pgfpathlineto{\pgfqpoint{2.821120in}{1.811267in}}% -\pgfpathlineto{\pgfqpoint{2.780377in}{1.848022in}}% -\pgfpathlineto{\pgfqpoint{2.741607in}{1.887648in}}% -\pgfpathlineto{\pgfqpoint{2.705043in}{1.930067in}}% -\pgfpathlineto{\pgfqpoint{2.670919in}{1.975186in}}% -\pgfpathlineto{\pgfqpoint{2.639462in}{2.022894in}}% -\pgfpathlineto{\pgfqpoint{2.610899in}{2.073064in}}% -\pgfpathlineto{\pgfqpoint{2.585449in}{2.125551in}}% -\pgfpathlineto{\pgfqpoint{2.563326in}{2.180192in}}% -\pgfpathlineto{\pgfqpoint{2.544735in}{2.236809in}}% -\pgfpathlineto{\pgfqpoint{2.529870in}{2.295206in}}% -\pgfpathlineto{\pgfqpoint{2.518915in}{2.355170in}}% -\pgfpathlineto{\pgfqpoint{2.512042in}{2.416472in}}% -\pgfpathlineto{\pgfqpoint{2.509405in}{2.478869in}}% -\pgfpathlineto{\pgfqpoint{2.511144in}{2.542101in}}% -\pgfpathlineto{\pgfqpoint{2.513695in}{2.573946in}}% -\pgfpathlineto{\pgfqpoint{2.517384in}{2.605896in}}% -\pgfpathlineto{\pgfqpoint{2.522223in}{2.637916in}}% -\pgfpathlineto{\pgfqpoint{2.528225in}{2.669968in}}% -\pgfpathlineto{\pgfqpoint{2.535399in}{2.702015in}}% -\pgfpathlineto{\pgfqpoint{2.543753in}{2.734019in}}% -\pgfpathlineto{\pgfqpoint{2.553294in}{2.765941in}}% -\pgfpathlineto{\pgfqpoint{2.564027in}{2.797742in}}% -\pgfpathlineto{\pgfqpoint{2.575957in}{2.829381in}}% -\pgfpathlineto{\pgfqpoint{2.589086in}{2.860819in}}% -\pgfpathlineto{\pgfqpoint{2.603415in}{2.892013in}}% -\pgfpathlineto{\pgfqpoint{2.618943in}{2.922924in}}% -\pgfpathlineto{\pgfqpoint{2.635668in}{2.953509in}}% -\pgfpathlineto{\pgfqpoint{2.653587in}{2.983727in}}% -\pgfpathlineto{\pgfqpoint{2.672693in}{3.013535in}}% -\pgfpathlineto{\pgfqpoint{2.692980in}{3.042891in}}% -\pgfpathlineto{\pgfqpoint{2.714437in}{3.071753in}}% -\pgfpathlineto{\pgfqpoint{2.737055in}{3.100078in}}% -\pgfpathlineto{\pgfqpoint{2.760822in}{3.127825in}}% -\pgfpathlineto{\pgfqpoint{2.785721in}{3.154950in}}% -\pgfpathlineto{\pgfqpoint{2.811738in}{3.181412in}}% -\pgfpathlineto{\pgfqpoint{2.838855in}{3.207169in}}% -\pgfpathlineto{\pgfqpoint{2.867052in}{3.232178in}}% -\pgfpathlineto{\pgfqpoint{2.896306in}{3.256399in}}% -\pgfpathlineto{\pgfqpoint{2.926596in}{3.279792in}}% -\pgfpathlineto{\pgfqpoint{2.957895in}{3.302315in}}% -\pgfpathlineto{\pgfqpoint{2.990177in}{3.323928in}}% -\pgfpathlineto{\pgfqpoint{3.023412in}{3.344593in}}% -\pgfpathlineto{\pgfqpoint{3.057571in}{3.364272in}}% -\pgfpathlineto{\pgfqpoint{3.092620in}{3.382926in}}% -\pgfpathlineto{\pgfqpoint{3.128525in}{3.400519in}}% -\pgfpathlineto{\pgfqpoint{3.165251in}{3.417015in}}% -\pgfpathlineto{\pgfqpoint{3.202759in}{3.432378in}}% -\pgfpathlineto{\pgfqpoint{3.241010in}{3.446577in}}% -\pgfpathlineto{\pgfqpoint{3.279964in}{3.459577in}}% -\pgfpathlineto{\pgfqpoint{3.319577in}{3.471347in}}% -\pgfpathlineto{\pgfqpoint{3.359805in}{3.481858in}}% -\pgfpathlineto{\pgfqpoint{3.400602in}{3.491080in}}% -\pgfpathlineto{\pgfqpoint{3.441920in}{3.498987in}}% -\pgfpathlineto{\pgfqpoint{3.483711in}{3.505553in}}% -\pgfpathlineto{\pgfqpoint{3.525925in}{3.510753in}}% -\pgfpathlineto{\pgfqpoint{3.568510in}{3.514565in}}% -\pgfpathlineto{\pgfqpoint{3.611412in}{3.516968in}}% -\pgfpathlineto{\pgfqpoint{3.654577in}{3.517944in}}% -\pgfpathlineto{\pgfqpoint{3.697951in}{3.517475in}}% -\pgfpathlineto{\pgfqpoint{3.741477in}{3.515545in}}% -\pgfpathlineto{\pgfqpoint{3.785096in}{3.512142in}}% -\pgfpathlineto{\pgfqpoint{3.828751in}{3.507255in}}% -\pgfpathlineto{\pgfqpoint{3.872382in}{3.500873in}}% -\pgfpathlineto{\pgfqpoint{3.915929in}{3.492991in}}% -\pgfpathlineto{\pgfqpoint{3.959331in}{3.483603in}}% -\pgfpathlineto{\pgfqpoint{4.002527in}{3.472706in}}% -\pgfpathlineto{\pgfqpoint{4.045454in}{3.460300in}}% -\pgfpathlineto{\pgfqpoint{4.088051in}{3.446387in}}% -\pgfpathlineto{\pgfqpoint{4.130253in}{3.430972in}}% -\pgfpathlineto{\pgfqpoint{4.171999in}{3.414060in}}% -\pgfpathlineto{\pgfqpoint{4.213225in}{3.395660in}}% -\pgfpathlineto{\pgfqpoint{4.253867in}{3.375785in}}% -\pgfpathlineto{\pgfqpoint{4.293863in}{3.354448in}}% -\pgfpathlineto{\pgfqpoint{4.333150in}{3.331664in}}% -\pgfpathlineto{\pgfqpoint{4.371664in}{3.307454in}}% -\pgfpathlineto{\pgfqpoint{4.409344in}{3.281838in}}% -\pgfpathlineto{\pgfqpoint{4.446129in}{3.254841in}}% -\pgfpathlineto{\pgfqpoint{4.481956in}{3.226487in}}% -\pgfpathlineto{\pgfqpoint{4.516765in}{3.196806in}}% -\pgfpathlineto{\pgfqpoint{4.550497in}{3.165829in}}% -\pgfpathlineto{\pgfqpoint{4.583094in}{3.133590in}}% -\pgfpathlineto{\pgfqpoint{4.614497in}{3.100124in}}% -\pgfpathlineto{\pgfqpoint{4.644652in}{3.065470in}}% -\pgfpathlineto{\pgfqpoint{4.673502in}{3.029670in}}% -\pgfpathlineto{\pgfqpoint{4.700994in}{2.992765in}}% -\pgfpathlineto{\pgfqpoint{4.727078in}{2.954802in}}% -\pgfpathlineto{\pgfqpoint{4.751701in}{2.915828in}}% -\pgfpathlineto{\pgfqpoint{4.774817in}{2.875894in}}% -\pgfpathlineto{\pgfqpoint{4.796377in}{2.835051in}}% -\pgfpathlineto{\pgfqpoint{4.816339in}{2.793353in}}% -\pgfpathlineto{\pgfqpoint{4.834660in}{2.750857in}}% -\pgfpathlineto{\pgfqpoint{4.851300in}{2.707620in}}% -\pgfpathlineto{\pgfqpoint{4.866220in}{2.663704in}}% -\pgfpathlineto{\pgfqpoint{4.879386in}{2.619169in}}% -\pgfpathlineto{\pgfqpoint{4.890764in}{2.574079in}}% -\pgfpathlineto{\pgfqpoint{4.900326in}{2.528500in}}% -\pgfpathlineto{\pgfqpoint{4.908043in}{2.482498in}}% -\pgfpathlineto{\pgfqpoint{4.913891in}{2.436141in}}% -\pgfpathlineto{\pgfqpoint{4.917848in}{2.389499in}}% -\pgfpathlineto{\pgfqpoint{4.919896in}{2.342642in}}% -\pgfpathlineto{\pgfqpoint{4.920018in}{2.295642in}}% -\pgfpathlineto{\pgfqpoint{4.918204in}{2.248572in}}% -\pgfpathlineto{\pgfqpoint{4.914443in}{2.201505in}}% -\pgfpathlineto{\pgfqpoint{4.908729in}{2.154516in}}% -\pgfpathlineto{\pgfqpoint{4.901061in}{2.107680in}}% -\pgfpathlineto{\pgfqpoint{4.891438in}{2.061071in}}% -\pgfpathlineto{\pgfqpoint{4.879865in}{2.014767in}}% -\pgfpathlineto{\pgfqpoint{4.866349in}{1.968842in}}% -\pgfpathlineto{\pgfqpoint{4.850903in}{1.923372in}}% -\pgfpathlineto{\pgfqpoint{4.833539in}{1.878435in}}% -\pgfpathlineto{\pgfqpoint{4.814277in}{1.834104in}}% -\pgfpathlineto{\pgfqpoint{4.793138in}{1.790456in}}% -\pgfpathlineto{\pgfqpoint{4.770148in}{1.747565in}}% -\pgfpathlineto{\pgfqpoint{4.745336in}{1.705506in}}% -\pgfpathlineto{\pgfqpoint{4.718733in}{1.664351in}}% -\pgfpathlineto{\pgfqpoint{4.690376in}{1.624173in}}% -\pgfpathlineto{\pgfqpoint{4.660304in}{1.585043in}}% -\pgfpathlineto{\pgfqpoint{4.628560in}{1.547031in}}% -\pgfpathlineto{\pgfqpoint{4.595190in}{1.510205in}}% -\pgfpathlineto{\pgfqpoint{4.560244in}{1.474631in}}% -\pgfpathlineto{\pgfqpoint{4.523775in}{1.440375in}}% -\pgfpathlineto{\pgfqpoint{4.485839in}{1.407500in}}% -\pgfpathlineto{\pgfqpoint{4.446495in}{1.376067in}}% -\pgfpathlineto{\pgfqpoint{4.405807in}{1.346135in}}% -\pgfpathlineto{\pgfqpoint{4.363840in}{1.317760in}}% -\pgfpathlineto{\pgfqpoint{4.320661in}{1.290996in}}% -\pgfpathlineto{\pgfqpoint{4.276342in}{1.265894in}}% -\pgfpathlineto{\pgfqpoint{4.230958in}{1.242504in}}% -\pgfpathlineto{\pgfqpoint{4.184585in}{1.220870in}}% -\pgfpathlineto{\pgfqpoint{4.137302in}{1.201036in}}% -\pgfpathlineto{\pgfqpoint{4.089189in}{1.183041in}}% -\pgfpathlineto{\pgfqpoint{4.040332in}{1.166921in}}% -\pgfpathlineto{\pgfqpoint{3.990814in}{1.152709in}}% -\pgfpathlineto{\pgfqpoint{3.940724in}{1.140435in}}% -\pgfpathlineto{\pgfqpoint{3.890151in}{1.130125in}}% -\pgfpathlineto{\pgfqpoint{3.839186in}{1.121800in}}% -\pgfpathlineto{\pgfqpoint{3.787920in}{1.115478in}}% -\pgfpathlineto{\pgfqpoint{3.736447in}{1.111176in}}% -\pgfpathlineto{\pgfqpoint{3.684861in}{1.108902in}}% -\pgfpathlineto{\pgfqpoint{3.633258in}{1.108664in}}% -\pgfpathlineto{\pgfqpoint{3.581732in}{1.110465in}}% -\pgfpathlineto{\pgfqpoint{3.530381in}{1.114302in}}% -\pgfpathlineto{\pgfqpoint{3.479301in}{1.120170in}}% -\pgfpathlineto{\pgfqpoint{3.428588in}{1.128060in}}% -\pgfpathlineto{\pgfqpoint{3.378339in}{1.137957in}}% -\pgfpathlineto{\pgfqpoint{3.328650in}{1.149844in}}% -\pgfpathlineto{\pgfqpoint{3.279615in}{1.163697in}}% -\pgfpathlineto{\pgfqpoint{3.231330in}{1.179491in}}% -\pgfpathlineto{\pgfqpoint{3.183888in}{1.197194in}}% -\pgfpathlineto{\pgfqpoint{3.137381in}{1.216772in}}% -\pgfpathlineto{\pgfqpoint{3.091900in}{1.238185in}}% -\pgfpathlineto{\pgfqpoint{3.047534in}{1.261391in}}% -\pgfpathlineto{\pgfqpoint{3.004371in}{1.286341in}}% -\pgfpathlineto{\pgfqpoint{2.962495in}{1.312986in}}% -\pgfpathlineto{\pgfqpoint{2.921989in}{1.341270in}}% -\pgfpathlineto{\pgfqpoint{2.882933in}{1.371133in}}% -\pgfpathlineto{\pgfqpoint{2.845406in}{1.402515in}}% -\pgfpathlineto{\pgfqpoint{2.809481in}{1.435348in}}% -\pgfpathlineto{\pgfqpoint{2.775231in}{1.469563in}}% -\pgfpathlineto{\pgfqpoint{2.742722in}{1.505086in}}% -\pgfpathlineto{\pgfqpoint{2.712020in}{1.541842in}}% -\pgfpathlineto{\pgfqpoint{2.683186in}{1.579752in}}% -\pgfpathlineto{\pgfqpoint{2.656277in}{1.618732in}}% -\pgfpathlineto{\pgfqpoint{2.631345in}{1.658699in}}% -\pgfpathlineto{\pgfqpoint{2.608440in}{1.699564in}}% -\pgfpathlineto{\pgfqpoint{2.587605in}{1.741238in}}% -\pgfpathlineto{\pgfqpoint{2.568881in}{1.783627in}}% -\pgfpathlineto{\pgfqpoint{2.552303in}{1.826639in}}% -\pgfpathlineto{\pgfqpoint{2.537901in}{1.870177in}}% -\pgfpathlineto{\pgfqpoint{2.525701in}{1.914142in}}% -\pgfpathlineto{\pgfqpoint{2.515723in}{1.958437in}}% -\pgfpathlineto{\pgfqpoint{2.507983in}{2.002961in}}% -\pgfpathlineto{\pgfqpoint{2.502491in}{2.047612in}}% -\pgfpathlineto{\pgfqpoint{2.499252in}{2.092289in}}% -\pgfpathlineto{\pgfqpoint{2.498266in}{2.136889in}}% -\pgfpathlineto{\pgfqpoint{2.499526in}{2.181310in}}% -\pgfpathlineto{\pgfqpoint{2.503023in}{2.225449in}}% -\pgfpathlineto{\pgfqpoint{2.508739in}{2.269204in}}% -\pgfpathlineto{\pgfqpoint{2.516653in}{2.312473in}}% -\pgfpathlineto{\pgfqpoint{2.526738in}{2.355155in}}% -\pgfpathlineto{\pgfqpoint{2.538959in}{2.397151in}}% -\pgfpathlineto{\pgfqpoint{2.553280in}{2.438361in}}% -\pgfpathlineto{\pgfqpoint{2.569657in}{2.478689in}}% -\pgfpathlineto{\pgfqpoint{2.588041in}{2.518040in}}% -\pgfpathlineto{\pgfqpoint{2.608379in}{2.556320in}}% -\pgfpathlineto{\pgfqpoint{2.630611in}{2.593438in}}% -\pgfpathlineto{\pgfqpoint{2.654673in}{2.629307in}}% -\pgfpathlineto{\pgfqpoint{2.680496in}{2.663841in}}% -\pgfpathlineto{\pgfqpoint{2.708008in}{2.696959in}}% -\pgfpathlineto{\pgfqpoint{2.737128in}{2.728580in}}% -\pgfpathlineto{\pgfqpoint{2.767776in}{2.758629in}}% -\pgfpathlineto{\pgfqpoint{2.799864in}{2.787036in}}% -\pgfpathlineto{\pgfqpoint{2.833301in}{2.813732in}}% -\pgfpathlineto{\pgfqpoint{2.867991in}{2.838654in}}% -\pgfpathlineto{\pgfqpoint{2.903838in}{2.861744in}}% -\pgfpathlineto{\pgfqpoint{2.940738in}{2.882946in}}% -\pgfpathlineto{\pgfqpoint{2.978586in}{2.902211in}}% -\pgfpathlineto{\pgfqpoint{3.017274in}{2.919494in}}% -\pgfpathlineto{\pgfqpoint{3.056692in}{2.934757in}}% -\pgfpathlineto{\pgfqpoint{3.096726in}{2.947965in}}% -\pgfpathlineto{\pgfqpoint{3.137261in}{2.959089in}}% -\pgfpathlineto{\pgfqpoint{3.178179in}{2.968106in}}% -\pgfpathlineto{\pgfqpoint{3.219362in}{2.974999in}}% -\pgfpathlineto{\pgfqpoint{3.260689in}{2.979756in}}% -\pgfpathlineto{\pgfqpoint{3.302041in}{2.982370in}}% -\pgfpathlineto{\pgfqpoint{3.343294in}{2.982843in}}% -\pgfpathlineto{\pgfqpoint{3.384328in}{2.981180in}}% -\pgfpathlineto{\pgfqpoint{3.425020in}{2.977392in}}% -\pgfpathlineto{\pgfqpoint{3.465250in}{2.971499in}}% -\pgfpathlineto{\pgfqpoint{3.504896in}{2.963524in}}% -\pgfpathlineto{\pgfqpoint{3.543838in}{2.953497in}}% -\pgfpathlineto{\pgfqpoint{3.581960in}{2.941455in}}% -\pgfpathlineto{\pgfqpoint{3.619143in}{2.927439in}}% -\pgfpathlineto{\pgfqpoint{3.655274in}{2.911498in}}% -\pgfpathlineto{\pgfqpoint{3.690241in}{2.893686in}}% -\pgfpathlineto{\pgfqpoint{3.723935in}{2.874061in}}% -\pgfpathlineto{\pgfqpoint{3.756249in}{2.852690in}}% -\pgfpathlineto{\pgfqpoint{3.787081in}{2.829642in}}% -\pgfpathlineto{\pgfqpoint{3.816332in}{2.804995in}}% -\pgfpathlineto{\pgfqpoint{3.843907in}{2.778828in}}% -\pgfpathlineto{\pgfqpoint{3.869715in}{2.751229in}}% -\pgfpathlineto{\pgfqpoint{3.893672in}{2.722287in}}% -\pgfpathlineto{\pgfqpoint{3.915696in}{2.692100in}}% -\pgfpathlineto{\pgfqpoint{3.935712in}{2.660766in}}% -\pgfpathlineto{\pgfqpoint{3.953649in}{2.628389in}}% -\pgfpathlineto{\pgfqpoint{3.969443in}{2.595078in}}% -\pgfpathlineto{\pgfqpoint{3.983037in}{2.560944in}}% -\pgfpathlineto{\pgfqpoint{3.994379in}{2.526102in}}% -\pgfpathlineto{\pgfqpoint{4.003422in}{2.490669in}}% -\pgfpathlineto{\pgfqpoint{4.010128in}{2.454766in}}% -\pgfpathlineto{\pgfqpoint{4.014466in}{2.418515in}}% -\pgfpathlineto{\pgfqpoint{4.016410in}{2.382041in}}% -\pgfpathlineto{\pgfqpoint{4.015943in}{2.345471in}}% -\pgfpathlineto{\pgfqpoint{4.013054in}{2.308932in}}% -\pgfpathlineto{\pgfqpoint{4.007740in}{2.272553in}}% -\pgfpathlineto{\pgfqpoint{4.000006in}{2.236463in}}% -\pgfpathlineto{\pgfqpoint{3.989864in}{2.200792in}}% -\pgfpathlineto{\pgfqpoint{3.977333in}{2.165669in}}% -\pgfpathlineto{\pgfqpoint{3.962440in}{2.131222in}}% -\pgfpathlineto{\pgfqpoint{3.945221in}{2.097580in}}% -\pgfpathlineto{\pgfqpoint{3.925717in}{2.064869in}}% -\pgfpathlineto{\pgfqpoint{3.903980in}{2.033214in}}% -\pgfpathlineto{\pgfqpoint{3.880065in}{2.002736in}}% -\pgfpathlineto{\pgfqpoint{3.854039in}{1.973556in}}% -\pgfpathlineto{\pgfqpoint{3.825973in}{1.945792in}}% -\pgfpathlineto{\pgfqpoint{3.795947in}{1.919556in}}% -\pgfpathlineto{\pgfqpoint{3.764046in}{1.894959in}}% -\pgfpathlineto{\pgfqpoint{3.730365in}{1.872107in}}% -\pgfpathlineto{\pgfqpoint{3.695002in}{1.851102in}}% -\pgfpathlineto{\pgfqpoint{3.658064in}{1.832041in}}% -\pgfpathlineto{\pgfqpoint{3.619663in}{1.815015in}}% -\pgfpathlineto{\pgfqpoint{3.579917in}{1.800110in}}% -\pgfpathlineto{\pgfqpoint{3.538949in}{1.787407in}}% -\pgfpathlineto{\pgfqpoint{3.496889in}{1.776981in}}% -\pgfpathlineto{\pgfqpoint{3.453869in}{1.768899in}}% -\pgfpathlineto{\pgfqpoint{3.410029in}{1.763223in}}% -\pgfpathlineto{\pgfqpoint{3.365510in}{1.760007in}}% -\pgfpathlineto{\pgfqpoint{3.320459in}{1.759298in}}% -\pgfpathlineto{\pgfqpoint{3.275026in}{1.761136in}}% -\pgfpathlineto{\pgfqpoint{3.229363in}{1.765553in}}% -\pgfpathlineto{\pgfqpoint{3.183624in}{1.772574in}}% -\pgfpathlineto{\pgfqpoint{3.137969in}{1.782215in}}% -\pgfpathlineto{\pgfqpoint{3.092554in}{1.794484in}}% -\pgfpathlineto{\pgfqpoint{3.047540in}{1.809382in}}% -\pgfpathlineto{\pgfqpoint{3.003088in}{1.826899in}}% -\pgfpathlineto{\pgfqpoint{2.959359in}{1.847019in}}% -\pgfpathlineto{\pgfqpoint{2.916512in}{1.869717in}}% -\pgfpathlineto{\pgfqpoint{2.874709in}{1.894960in}}% -\pgfpathlineto{\pgfqpoint{2.834107in}{1.922705in}}% -\pgfpathlineto{\pgfqpoint{2.794862in}{1.952902in}}% -\pgfpathlineto{\pgfqpoint{2.757130in}{1.985491in}}% -\pgfpathlineto{\pgfqpoint{2.721061in}{2.020406in}}% -\pgfpathlineto{\pgfqpoint{2.686804in}{2.057571in}}% -\pgfpathlineto{\pgfqpoint{2.654502in}{2.096903in}}% -\pgfpathlineto{\pgfqpoint{2.624296in}{2.138310in}}% -\pgfpathlineto{\pgfqpoint{2.596321in}{2.181693in}}% -\pgfpathlineto{\pgfqpoint{2.570707in}{2.226946in}}% -\pgfpathlineto{\pgfqpoint{2.547578in}{2.273955in}}% -\pgfpathlineto{\pgfqpoint{2.527051in}{2.322600in}}% -\pgfpathlineto{\pgfqpoint{2.509238in}{2.372752in}}% -\pgfpathlineto{\pgfqpoint{2.494244in}{2.424279in}}% -\pgfpathlineto{\pgfqpoint{2.482164in}{2.477041in}}% -\pgfpathlineto{\pgfqpoint{2.473088in}{2.530891in}}% -\pgfpathlineto{\pgfqpoint{2.467095in}{2.585681in}}% -\pgfpathlineto{\pgfqpoint{2.464259in}{2.641254in}}% -\pgfpathlineto{\pgfqpoint{2.464643in}{2.697450in}}% -\pgfpathlineto{\pgfqpoint{2.468299in}{2.754105in}}% -\pgfpathlineto{\pgfqpoint{2.475273in}{2.811054in}}% -\pgfpathlineto{\pgfqpoint{2.485599in}{2.868124in}}% -\pgfpathlineto{\pgfqpoint{2.499302in}{2.925143in}}% -\pgfpathlineto{\pgfqpoint{2.516396in}{2.981936in}}% -\pgfpathlineto{\pgfqpoint{2.536886in}{3.038328in}}% -\pgfpathlineto{\pgfqpoint{2.560766in}{3.094141in}}% -\pgfpathlineto{\pgfqpoint{2.588019in}{3.149196in}}% -\pgfpathlineto{\pgfqpoint{2.618617in}{3.203318in}}% -\pgfpathlineto{\pgfqpoint{2.652524in}{3.256328in}}% -\pgfpathlineto{\pgfqpoint{2.689689in}{3.308052in}}% -\pgfpathlineto{\pgfqpoint{2.730055in}{3.358316in}}% -\pgfpathlineto{\pgfqpoint{2.773552in}{3.406949in}}% -\pgfpathlineto{\pgfqpoint{2.820099in}{3.453781in}}% -\pgfpathlineto{\pgfqpoint{2.869607in}{3.498650in}}% -\pgfpathlineto{\pgfqpoint{2.921974in}{3.541393in}}% -\pgfpathlineto{\pgfqpoint{2.977092in}{3.581855in}}% -\pgfpathlineto{\pgfqpoint{3.034839in}{3.619886in}}% -\pgfpathlineto{\pgfqpoint{3.095086in}{3.655339in}}% -\pgfpathlineto{\pgfqpoint{3.157696in}{3.688077in}}% -\pgfpathlineto{\pgfqpoint{3.222520in}{3.717967in}}% -\pgfpathlineto{\pgfqpoint{3.289404in}{3.744884in}}% -\pgfpathlineto{\pgfqpoint{3.358184in}{3.768710in}}% -\pgfpathlineto{\pgfqpoint{3.428690in}{3.789338in}}% -\pgfpathlineto{\pgfqpoint{3.500743in}{3.806665in}}% -\pgfpathlineto{\pgfqpoint{3.574158in}{3.820601in}}% -\pgfpathlineto{\pgfqpoint{3.648746in}{3.831063in}}% -\pgfpathlineto{\pgfqpoint{3.724311in}{3.837978in}}% -\pgfpathlineto{\pgfqpoint{3.800650in}{3.841285in}}% -\pgfpathlineto{\pgfqpoint{3.877560in}{3.840930in}}% -\pgfpathlineto{\pgfqpoint{3.954832in}{3.836872in}}% -\pgfpathlineto{\pgfqpoint{4.032252in}{3.829080in}}% -\pgfpathlineto{\pgfqpoint{4.109607in}{3.817534in}}% -\pgfpathlineto{\pgfqpoint{4.186681in}{3.802225in}}% -\pgfpathlineto{\pgfqpoint{4.263255in}{3.783156in}}% -\pgfpathlineto{\pgfqpoint{4.339113in}{3.760341in}}% -\pgfpathlineto{\pgfqpoint{4.414036in}{3.733806in}}% -\pgfpathlineto{\pgfqpoint{4.487809in}{3.703586in}}% -\pgfpathlineto{\pgfqpoint{4.560215in}{3.669730in}}% -\pgfpathlineto{\pgfqpoint{4.631043in}{3.632298in}}% -\pgfpathlineto{\pgfqpoint{4.700082in}{3.591361in}}% -\pgfpathlineto{\pgfqpoint{4.767128in}{3.547001in}}% -\pgfpathlineto{\pgfqpoint{4.831979in}{3.499311in}}% -\pgfpathlineto{\pgfqpoint{4.894438in}{3.448394in}}% -\pgfpathlineto{\pgfqpoint{4.954316in}{3.394365in}}% -\pgfpathlineto{\pgfqpoint{5.011427in}{3.337349in}}% -\pgfpathlineto{\pgfqpoint{5.065596in}{3.277480in}}% -\pgfpathlineto{\pgfqpoint{5.116654in}{3.214903in}}% -\pgfpathlineto{\pgfqpoint{5.164438in}{3.149769in}}% -\pgfpathlineto{\pgfqpoint{5.208798in}{3.082242in}}% -\pgfpathlineto{\pgfqpoint{5.249592in}{3.012491in}}% -\pgfpathlineto{\pgfqpoint{5.286686in}{2.940695in}}% -\pgfpathlineto{\pgfqpoint{5.319958in}{2.867038in}}% -\pgfpathlineto{\pgfqpoint{5.349298in}{2.791713in}}% -\pgfpathlineto{\pgfqpoint{5.374607in}{2.714917in}}% -\pgfpathlineto{\pgfqpoint{5.395795in}{2.636854in}}% -\pgfpathlineto{\pgfqpoint{5.412789in}{2.557733in}}% -\pgfpathlineto{\pgfqpoint{5.425524in}{2.477766in}}% -\pgfpathlineto{\pgfqpoint{5.433949in}{2.397168in}}% -\pgfpathlineto{\pgfqpoint{5.438029in}{2.316160in}}% -\pgfpathlineto{\pgfqpoint{5.437738in}{2.234963in}}% -\pgfpathlineto{\pgfqpoint{5.433065in}{2.153798in}}% -\pgfpathlineto{\pgfqpoint{5.424014in}{2.072889in}}% -\pgfpathlineto{\pgfqpoint{5.410600in}{1.992460in}}% -\pgfpathlineto{\pgfqpoint{5.392854in}{1.912733in}}% -\pgfpathlineto{\pgfqpoint{5.370817in}{1.833929in}}% -\pgfpathlineto{\pgfqpoint{5.344548in}{1.756266in}}% -\pgfpathlineto{\pgfqpoint{5.314115in}{1.679961in}}% -\pgfpathlineto{\pgfqpoint{5.279603in}{1.605225in}}% -\pgfpathlineto{\pgfqpoint{5.241106in}{1.532266in}}% -\pgfpathlineto{\pgfqpoint{5.198735in}{1.461287in}}% -\pgfpathlineto{\pgfqpoint{5.152609in}{1.392483in}}% -\pgfpathlineto{\pgfqpoint{5.102862in}{1.326044in}}% -\pgfpathlineto{\pgfqpoint{5.049639in}{1.262153in}}% -\pgfpathlineto{\pgfqpoint{4.993096in}{1.200985in}}% -\pgfpathlineto{\pgfqpoint{4.933398in}{1.142706in}}% -\pgfpathlineto{\pgfqpoint{4.870722in}{1.087473in}}% -\pgfpathlineto{\pgfqpoint{4.805255in}{1.035433in}}% -\pgfpathlineto{\pgfqpoint{4.737192in}{0.986724in}}% -\pgfpathlineto{\pgfqpoint{4.666735in}{0.941471in}}% -\pgfpathlineto{\pgfqpoint{4.594097in}{0.899789in}}% -\pgfpathlineto{\pgfqpoint{4.519493in}{0.861784in}}% -\pgfpathlineto{\pgfqpoint{4.443150in}{0.827545in}}% -\pgfpathlineto{\pgfqpoint{4.365296in}{0.797151in}}% -\pgfpathlineto{\pgfqpoint{4.286165in}{0.770670in}}% -\pgfpathlineto{\pgfqpoint{4.205996in}{0.748155in}}% -\pgfpathlineto{\pgfqpoint{4.125028in}{0.729645in}}% -\pgfpathlineto{\pgfqpoint{4.043506in}{0.715168in}}% -\pgfpathlineto{\pgfqpoint{3.961673in}{0.704737in}}% -\pgfpathlineto{\pgfqpoint{3.879773in}{0.698353in}}% -\pgfpathlineto{\pgfqpoint{3.798052in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{3.716752in}{0.697652in}}% -\pgfpathlineto{\pgfqpoint{3.636113in}{0.703269in}}% -\pgfpathlineto{\pgfqpoint{3.556373in}{0.712796in}}% -\pgfpathlineto{\pgfqpoint{3.477767in}{0.726165in}}% -\pgfpathlineto{\pgfqpoint{3.400521in}{0.743298in}}% -\pgfpathlineto{\pgfqpoint{3.324860in}{0.764100in}}% -\pgfpathlineto{\pgfqpoint{3.251001in}{0.788467in}}% -\pgfpathlineto{\pgfqpoint{3.179152in}{0.816281in}}% -\pgfpathlineto{\pgfqpoint{3.109514in}{0.847414in}}% -\pgfpathlineto{\pgfqpoint{3.042281in}{0.881727in}}% -\pgfpathlineto{\pgfqpoint{2.977635in}{0.919069in}}% -\pgfpathlineto{\pgfqpoint{2.915749in}{0.959279in}}% -\pgfpathlineto{\pgfqpoint{2.856784in}{1.002188in}}% -\pgfpathlineto{\pgfqpoint{2.800892in}{1.047617in}}% -\pgfpathlineto{\pgfqpoint{2.748209in}{1.095381in}}% -\pgfpathlineto{\pgfqpoint{2.698862in}{1.145285in}}% -\pgfpathlineto{\pgfqpoint{2.652964in}{1.197128in}}% -\pgfpathlineto{\pgfqpoint{2.610612in}{1.250704in}}% -\pgfpathlineto{\pgfqpoint{2.571893in}{1.305803in}}% -\pgfpathlineto{\pgfqpoint{2.536877in}{1.362207in}}% -\pgfpathlineto{\pgfqpoint{2.505621in}{1.419697in}}% -\pgfpathlineto{\pgfqpoint{2.478166in}{1.478053in}}% -\pgfpathlineto{\pgfqpoint{2.454539in}{1.537050in}}% -\pgfpathlineto{\pgfqpoint{2.434751in}{1.596465in}}% -\pgfpathlineto{\pgfqpoint{2.418799in}{1.656073in}}% -\pgfpathlineto{\pgfqpoint{2.406665in}{1.715651in}}% -\pgfpathlineto{\pgfqpoint{2.398316in}{1.774978in}}% -\pgfpathlineto{\pgfqpoint{2.393703in}{1.833835in}}% -\pgfpathlineto{\pgfqpoint{2.392763in}{1.892007in}}% -\pgfpathlineto{\pgfqpoint{2.395420in}{1.949285in}}% -\pgfpathlineto{\pgfqpoint{2.401583in}{2.005462in}}% -\pgfpathlineto{\pgfqpoint{2.411146in}{2.060340in}}% -\pgfpathlineto{\pgfqpoint{2.423991in}{2.113728in}}% -\pgfpathlineto{\pgfqpoint{2.439987in}{2.165441in}}% -\pgfpathlineto{\pgfqpoint{2.458992in}{2.215303in}}% -\pgfpathlineto{\pgfqpoint{2.480851in}{2.263150in}}% -\pgfpathlineto{\pgfqpoint{2.505399in}{2.308824in}}% -\pgfpathlineto{\pgfqpoint{2.532458in}{2.352181in}}% -\pgfpathlineto{\pgfqpoint{2.561845in}{2.393086in}}% -\pgfpathlineto{\pgfqpoint{2.593364in}{2.431418in}}% -\pgfpathlineto{\pgfqpoint{2.626814in}{2.467065in}}% -\pgfpathlineto{\pgfqpoint{2.661985in}{2.499931in}}% -\pgfpathlineto{\pgfqpoint{2.698663in}{2.529933in}}% -\pgfpathlineto{\pgfqpoint{2.736627in}{2.557001in}}% -\pgfpathlineto{\pgfqpoint{2.775652in}{2.581077in}}% -\pgfpathlineto{\pgfqpoint{2.815510in}{2.602122in}}% -\pgfpathlineto{\pgfqpoint{2.855971in}{2.620106in}}% -\pgfpathlineto{\pgfqpoint{2.896804in}{2.635018in}}% -\pgfpathlineto{\pgfqpoint{2.937775in}{2.646859in}}% -\pgfpathlineto{\pgfqpoint{2.978655in}{2.655645in}}% -\pgfpathlineto{\pgfqpoint{3.019214in}{2.661408in}}% -\pgfpathlineto{\pgfqpoint{3.059226in}{2.664193in}}% -\pgfpathlineto{\pgfqpoint{3.098467in}{2.664061in}}% -\pgfpathlineto{\pgfqpoint{3.136721in}{2.661084in}}% -\pgfpathlineto{\pgfqpoint{3.173775in}{2.655351in}}% -\pgfpathlineto{\pgfqpoint{3.209425in}{2.646964in}}% -\pgfpathlineto{\pgfqpoint{3.243473in}{2.636035in}}% -\pgfpathlineto{\pgfqpoint{3.275730in}{2.622692in}}% -\pgfpathlineto{\pgfqpoint{3.306019in}{2.607073in}}% -\pgfpathlineto{\pgfqpoint{3.334170in}{2.589328in}}% -\pgfpathlineto{\pgfqpoint{3.360027in}{2.569619in}}% -\pgfpathlineto{\pgfqpoint{3.383444in}{2.548114in}}% -\pgfpathlineto{\pgfqpoint{3.404289in}{2.524995in}}% -\pgfpathlineto{\pgfqpoint{3.422443in}{2.500450in}}% -\pgfpathlineto{\pgfqpoint{3.437801in}{2.474674in}}% -\pgfpathlineto{\pgfqpoint{3.450275in}{2.447871in}}% -\pgfpathlineto{\pgfqpoint{3.459787in}{2.420248in}}% -\pgfpathlineto{\pgfqpoint{3.466279in}{2.392019in}}% -\pgfpathlineto{\pgfqpoint{3.469707in}{2.363402in}}% -\pgfpathlineto{\pgfqpoint{3.470045in}{2.334615in}}% -\pgfpathlineto{\pgfqpoint{3.467280in}{2.305882in}}% -\pgfpathlineto{\pgfqpoint{3.461418in}{2.277424in}}% -\pgfpathlineto{\pgfqpoint{3.452483in}{2.249465in}}% -\pgfpathlineto{\pgfqpoint{3.440512in}{2.222224in}}% -\pgfpathlineto{\pgfqpoint{3.425561in}{2.195922in}}% -\pgfpathlineto{\pgfqpoint{3.407702in}{2.170773in}}% -\pgfpathlineto{\pgfqpoint{3.387023in}{2.146989in}}% -\pgfpathlineto{\pgfqpoint{3.363629in}{2.124774in}}% -\pgfpathlineto{\pgfqpoint{3.337639in}{2.104328in}}% -\pgfpathlineto{\pgfqpoint{3.309187in}{2.085841in}}% -\pgfpathlineto{\pgfqpoint{3.278423in}{2.069496in}}% -\pgfpathlineto{\pgfqpoint{3.245511in}{2.055467in}}% -\pgfpathlineto{\pgfqpoint{3.210626in}{2.043917in}}% -\pgfpathlineto{\pgfqpoint{3.173959in}{2.034997in}}% -\pgfpathlineto{\pgfqpoint{3.135709in}{2.028847in}}% -\pgfpathlineto{\pgfqpoint{3.096089in}{2.025594in}}% -\pgfpathlineto{\pgfqpoint{3.055322in}{2.025350in}}% -\pgfpathlineto{\pgfqpoint{3.013638in}{2.028215in}}% -\pgfpathlineto{\pgfqpoint{2.971276in}{2.034272in}}% -\pgfpathlineto{\pgfqpoint{2.928482in}{2.043591in}}% -\pgfpathlineto{\pgfqpoint{2.885510in}{2.056224in}}% -\pgfpathlineto{\pgfqpoint{2.842614in}{2.072207in}}% -\pgfpathlineto{\pgfqpoint{2.800058in}{2.091560in}}% -\pgfpathlineto{\pgfqpoint{2.758102in}{2.114287in}}% -\pgfpathlineto{\pgfqpoint{2.717011in}{2.140372in}}% -\pgfpathlineto{\pgfqpoint{2.677049in}{2.169784in}}% -\pgfpathlineto{\pgfqpoint{2.638479in}{2.202475in}}% -\pgfpathlineto{\pgfqpoint{2.601561in}{2.238378in}}% -\pgfpathlineto{\pgfqpoint{2.566552in}{2.277410in}}% -\pgfpathlineto{\pgfqpoint{2.533702in}{2.319471in}}% -\pgfpathlineto{\pgfqpoint{2.503257in}{2.364443in}}% -\pgfpathlineto{\pgfqpoint{2.475454in}{2.412194in}}% -\pgfpathlineto{\pgfqpoint{2.450521in}{2.462575in}}% -\pgfpathlineto{\pgfqpoint{2.428678in}{2.515421in}}% -\pgfpathlineto{\pgfqpoint{2.410132in}{2.570554in}}% -\pgfpathlineto{\pgfqpoint{2.395078in}{2.627778in}}% -\pgfpathlineto{\pgfqpoint{2.383699in}{2.686889in}}% -\pgfpathlineto{\pgfqpoint{2.376163in}{2.747667in}}% -\pgfpathlineto{\pgfqpoint{2.372623in}{2.809880in}}% -\pgfpathlineto{\pgfqpoint{2.373215in}{2.873286in}}% -\pgfpathlineto{\pgfqpoint{2.378060in}{2.937635in}}% -\pgfpathlineto{\pgfqpoint{2.387259in}{3.002666in}}% -\pgfpathlineto{\pgfqpoint{2.400897in}{3.068110in}}% -\pgfpathlineto{\pgfqpoint{2.419038in}{3.133693in}}% -\pgfpathlineto{\pgfqpoint{2.441727in}{3.199136in}}% -\pgfpathlineto{\pgfqpoint{2.468992in}{3.264153in}}% -\pgfpathlineto{\pgfqpoint{2.500835in}{3.328459in}}% -\pgfpathlineto{\pgfqpoint{2.537243in}{3.391764in}}% -\pgfpathlineto{\pgfqpoint{2.578178in}{3.453781in}}% -\pgfpathlineto{\pgfqpoint{2.623585in}{3.514220in}}% -\pgfpathlineto{\pgfqpoint{2.673385in}{3.572797in}}% -\pgfpathlineto{\pgfqpoint{2.727480in}{3.629229in}}% -\pgfpathlineto{\pgfqpoint{2.785751in}{3.683241in}}% -\pgfpathlineto{\pgfqpoint{2.848059in}{3.734560in}}% -\pgfpathlineto{\pgfqpoint{2.914244in}{3.782926in}}% -\pgfpathlineto{\pgfqpoint{2.984130in}{3.828083in}}% -\pgfpathlineto{\pgfqpoint{3.057517in}{3.869787in}}% -\pgfpathlineto{\pgfqpoint{3.134192in}{3.907806in}}% -\pgfpathlineto{\pgfqpoint{3.213922in}{3.941920in}}% -\pgfpathlineto{\pgfqpoint{3.296458in}{3.971922in}}% -\pgfpathlineto{\pgfqpoint{3.381535in}{3.997621in}}% -\pgfpathlineto{\pgfqpoint{3.468875in}{4.018840in}}% -\pgfpathlineto{\pgfqpoint{3.558186in}{4.035420in}}% -\pgfpathlineto{\pgfqpoint{3.649161in}{4.047219in}}% -\pgfpathlineto{\pgfqpoint{3.741487in}{4.054114in}}% -\pgfpathlineto{\pgfqpoint{3.834837in}{4.056000in}}% -\pgfpathlineto{\pgfqpoint{3.928877in}{4.052793in}}% -\pgfpathlineto{\pgfqpoint{4.023266in}{4.044429in}}% -\pgfpathlineto{\pgfqpoint{4.117659in}{4.030865in}}% -\pgfpathlineto{\pgfqpoint{4.211703in}{4.012079in}}% -\pgfpathlineto{\pgfqpoint{4.305047in}{3.988070in}}% -\pgfpathlineto{\pgfqpoint{4.397335in}{3.958861in}}% -\pgfpathlineto{\pgfqpoint{4.488215in}{3.924494in}}% -\pgfpathlineto{\pgfqpoint{4.577333in}{3.885034in}}% -\pgfpathlineto{\pgfqpoint{4.664343in}{3.840570in}}% -\pgfpathlineto{\pgfqpoint{4.748902in}{3.791209in}}% -\pgfpathlineto{\pgfqpoint{4.830673in}{3.737083in}}% -\pgfpathlineto{\pgfqpoint{4.909329in}{3.678343in}}% -\pgfpathlineto{\pgfqpoint{4.984553in}{3.615160in}}% -\pgfpathlineto{\pgfqpoint{5.056037in}{3.547726in}}% -\pgfpathlineto{\pgfqpoint{5.123488in}{3.476252in}}% -\pgfpathlineto{\pgfqpoint{5.186627in}{3.400968in}}% -\pgfpathlineto{\pgfqpoint{5.245190in}{3.322121in}}% -\pgfpathlineto{\pgfqpoint{5.298929in}{3.239975in}}% -\pgfpathlineto{\pgfqpoint{5.347616in}{3.154810in}}% -\pgfpathlineto{\pgfqpoint{5.391041in}{3.066919in}}% -\pgfpathlineto{\pgfqpoint{5.429014in}{2.976610in}}% -\pgfpathlineto{\pgfqpoint{5.461368in}{2.884202in}}% -\pgfpathlineto{\pgfqpoint{5.487956in}{2.790027in}}% -\pgfpathlineto{\pgfqpoint{5.508654in}{2.694423in}}% -\pgfpathlineto{\pgfqpoint{5.523365in}{2.597738in}}% -\pgfpathlineto{\pgfqpoint{5.532012in}{2.500326in}}% -\pgfpathlineto{\pgfqpoint{5.534545in}{2.402546in}}% -\pgfpathlineto{\pgfqpoint{5.530940in}{2.304762in}}% -\pgfpathlineto{\pgfqpoint{5.521195in}{2.207336in}}% -\pgfpathlineto{\pgfqpoint{5.505338in}{2.110633in}}% -\pgfpathlineto{\pgfqpoint{5.483419in}{2.015017in}}% -\pgfpathlineto{\pgfqpoint{5.455515in}{1.920848in}}% -\pgfpathlineto{\pgfqpoint{5.421729in}{1.828479in}}% -\pgfpathlineto{\pgfqpoint{5.382188in}{1.738262in}}% -\pgfpathlineto{\pgfqpoint{5.337044in}{1.650536in}}% -\pgfpathlineto{\pgfqpoint{5.286472in}{1.565633in}}% -\pgfpathlineto{\pgfqpoint{5.230672in}{1.483875in}}% -\pgfpathlineto{\pgfqpoint{5.169866in}{1.405568in}}% -\pgfpathlineto{\pgfqpoint{5.104298in}{1.331009in}}% -\pgfpathlineto{\pgfqpoint{5.034231in}{1.260475in}}% -\pgfpathlineto{\pgfqpoint{4.959950in}{1.194230in}}% -\pgfpathlineto{\pgfqpoint{4.881756in}{1.132518in}}% -\pgfpathlineto{\pgfqpoint{4.799970in}{1.075565in}}% -\pgfpathlineto{\pgfqpoint{4.714926in}{1.023576in}}% -\pgfpathlineto{\pgfqpoint{4.626974in}{0.976736in}}% -\pgfpathlineto{\pgfqpoint{4.536476in}{0.935207in}}% -\pgfpathlineto{\pgfqpoint{4.443805in}{0.899128in}}% -\pgfpathlineto{\pgfqpoint{4.349345in}{0.868616in}}% -\pgfpathlineto{\pgfqpoint{4.253485in}{0.843763in}}% -\pgfpathlineto{\pgfqpoint{4.156624in}{0.824635in}}% -\pgfpathlineto{\pgfqpoint{4.059160in}{0.811275in}}% -\pgfpathlineto{\pgfqpoint{3.961499in}{0.803700in}}% -\pgfpathlineto{\pgfqpoint{3.864044in}{0.801901in}}% -\pgfpathlineto{\pgfqpoint{3.767197in}{0.805844in}}% -\pgfpathlineto{\pgfqpoint{3.671359in}{0.815469in}}% -\pgfpathlineto{\pgfqpoint{3.576922in}{0.830693in}}% -\pgfpathlineto{\pgfqpoint{3.484276in}{0.851405in}}% -\pgfpathlineto{\pgfqpoint{3.393799in}{0.877472in}}% -\pgfpathlineto{\pgfqpoint{3.305860in}{0.908737in}}% -\pgfpathlineto{\pgfqpoint{3.220815in}{0.945018in}}% -\pgfpathlineto{\pgfqpoint{3.139007in}{0.986114in}}% -\pgfpathlineto{\pgfqpoint{3.060763in}{1.031799in}}% -\pgfpathlineto{\pgfqpoint{2.986393in}{1.081830in}}% -\pgfpathlineto{\pgfqpoint{2.916188in}{1.135941in}}% -\pgfpathlineto{\pgfqpoint{2.850420in}{1.193853in}}% -\pgfpathlineto{\pgfqpoint{2.789341in}{1.255266in}}% -\pgfpathlineto{\pgfqpoint{2.733177in}{1.319866in}}% -\pgfpathlineto{\pgfqpoint{2.682134in}{1.387325in}}% -\pgfpathlineto{\pgfqpoint{2.636391in}{1.457305in}}% -\pgfpathlineto{\pgfqpoint{2.596104in}{1.529454in}}% -\pgfpathlineto{\pgfqpoint{2.561400in}{1.603413in}}% -\pgfpathlineto{\pgfqpoint{2.532382in}{1.678814in}}% -\pgfpathlineto{\pgfqpoint{2.509124in}{1.755287in}}% -\pgfpathlineto{\pgfqpoint{2.491673in}{1.832455in}}% -\pgfpathlineto{\pgfqpoint{2.480048in}{1.909940in}}% -\pgfpathlineto{\pgfqpoint{2.474240in}{1.987363in}}% -\pgfpathlineto{\pgfqpoint{2.474212in}{2.064350in}}% -\pgfpathlineto{\pgfqpoint{2.479899in}{2.140527in}}% -\pgfpathlineto{\pgfqpoint{2.491211in}{2.215528in}}% -\pgfpathlineto{\pgfqpoint{2.508027in}{2.288991in}}% -\pgfpathlineto{\pgfqpoint{2.530202in}{2.360567in}}% -\pgfpathlineto{\pgfqpoint{2.557565in}{2.429916in}}% -\pgfpathlineto{\pgfqpoint{2.589920in}{2.496709in}}% -\pgfpathlineto{\pgfqpoint{2.627048in}{2.560632in}}% -\pgfpathlineto{\pgfqpoint{2.668706in}{2.621388in}}% -\pgfpathlineto{\pgfqpoint{2.714631in}{2.678695in}}% -\pgfpathlineto{\pgfqpoint{2.764538in}{2.732290in}}% -\pgfpathlineto{\pgfqpoint{2.818124in}{2.781930in}}% -\pgfpathlineto{\pgfqpoint{2.875070in}{2.827394in}}% -\pgfpathlineto{\pgfqpoint{2.935040in}{2.868480in}}% -\pgfpathlineto{\pgfqpoint{2.997684in}{2.905013in}}% -\pgfpathlineto{\pgfqpoint{3.062640in}{2.936838in}}% -\pgfpathlineto{\pgfqpoint{3.129538in}{2.963828in}}% -\pgfpathlineto{\pgfqpoint{3.197996in}{2.985878in}}% -\pgfpathlineto{\pgfqpoint{3.267628in}{3.002913in}}% -\pgfpathlineto{\pgfqpoint{3.338042in}{3.014880in}}% -\pgfpathlineto{\pgfqpoint{3.408846in}{3.021754in}}% -\pgfpathlineto{\pgfqpoint{3.479646in}{3.023538in}}% -\pgfpathlineto{\pgfqpoint{3.550049in}{3.020260in}}% -\pgfpathlineto{\pgfqpoint{3.619666in}{3.011973in}}% -\pgfpathlineto{\pgfqpoint{3.688115in}{2.998759in}}% -\pgfpathlineto{\pgfqpoint{3.755020in}{2.980724in}}% -\pgfpathlineto{\pgfqpoint{3.820015in}{2.957998in}}% -\pgfpathlineto{\pgfqpoint{3.882747in}{2.930736in}}% -\pgfpathlineto{\pgfqpoint{3.942875in}{2.899118in}}% -\pgfpathlineto{\pgfqpoint{4.000071in}{2.863344in}}% -\pgfpathlineto{\pgfqpoint{4.054029in}{2.823637in}}% -\pgfpathlineto{\pgfqpoint{4.104457in}{2.780240in}}% -\pgfpathlineto{\pgfqpoint{4.151084in}{2.733412in}}% -\pgfpathlineto{\pgfqpoint{4.193661in}{2.683435in}}% -\pgfpathlineto{\pgfqpoint{4.231962in}{2.630602in}}% -\pgfpathlineto{\pgfqpoint{4.265784in}{2.575223in}}% -\pgfpathlineto{\pgfqpoint{4.294948in}{2.517619in}}% -\pgfpathlineto{\pgfqpoint{4.319303in}{2.458123in}}% -\pgfpathlineto{\pgfqpoint{4.338723in}{2.397077in}}% -\pgfpathlineto{\pgfqpoint{4.353109in}{2.334831in}}% -\pgfpathlineto{\pgfqpoint{4.362392in}{2.271738in}}% -\pgfpathlineto{\pgfqpoint{4.366528in}{2.208157in}}% -\pgfpathlineto{\pgfqpoint{4.365503in}{2.144448in}}% -\pgfpathlineto{\pgfqpoint{4.359332in}{2.080969in}}% -\pgfpathlineto{\pgfqpoint{4.348056in}{2.018078in}}% -\pgfpathlineto{\pgfqpoint{4.331745in}{1.956126in}}% -\pgfpathlineto{\pgfqpoint{4.310498in}{1.895459in}}% -\pgfpathlineto{\pgfqpoint{4.284439in}{1.836416in}}% -\pgfpathlineto{\pgfqpoint{4.253718in}{1.779324in}}% -\pgfpathlineto{\pgfqpoint{4.218513in}{1.724500in}}% -\pgfpathlineto{\pgfqpoint{4.179023in}{1.672245in}}% -\pgfpathlineto{\pgfqpoint{4.135473in}{1.622847in}}% -\pgfpathlineto{\pgfqpoint{4.088107in}{1.576577in}}% -\pgfpathlineto{\pgfqpoint{4.037193in}{1.533686in}}% -\pgfpathlineto{\pgfqpoint{3.983016in}{1.494407in}}% -\pgfpathlineto{\pgfqpoint{3.925877in}{1.458951in}}% -\pgfpathlineto{\pgfqpoint{3.866097in}{1.427508in}}% -\pgfpathlineto{\pgfqpoint{3.804007in}{1.400243in}}% -\pgfpathlineto{\pgfqpoint{3.739950in}{1.377299in}}% -\pgfpathlineto{\pgfqpoint{3.674282in}{1.358792in}}% -\pgfpathlineto{\pgfqpoint{3.607365in}{1.344815in}}% -\pgfpathlineto{\pgfqpoint{3.539567in}{1.335433in}}% -\pgfpathlineto{\pgfqpoint{3.471260in}{1.330684in}}% -\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% -\pgfpathlineto{\pgfqpoint{3.402816in}{1.330582in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/zeta/zeta_re_0_plot.pgf b/buch/papers/zeta/zeta_re_0_plot.pgf deleted file mode 100644 index 29a844e..0000000 --- a/buch/papers/zeta/zeta_re_0_plot.pgf +++ /dev/null @@ -1,1242 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% and, on pdftex -%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} -%% -%% or, on luatex and xetex -%% \usepackage{unicode-math} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.479870in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.479870in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.174916in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.174916in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.869963in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.869963in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.565009in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.565009in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.260056in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.260056in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.955103in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.955103in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {4}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.650149in}{0.528000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.650149in,y=0.430778in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {5}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.280000in,y=0.276457in,,top]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Re\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{0.897985in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=0.859405in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-3}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.384529in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=1.345949in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-2}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{1.871074in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.551927in, y=1.832493in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {-1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.357618in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=2.319038in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {0}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{2.844162in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=2.805582in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {1}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.330706in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=3.292126in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {2}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.800000in}{3.817250in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.643749in, y=3.778670in, left, base]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle {3}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.496371in,y=2.376000in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{8.000000}{9.600000}\selectfont \(\displaystyle \Im\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.800000in}{0.528000in}}{\pgfqpoint{4.960000in}{3.696000in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.827393in}{2.357618in}}% -\pgfpathlineto{\pgfqpoint{1.828507in}{2.339765in}}% -\pgfpathlineto{\pgfqpoint{1.831827in}{2.322097in}}% -\pgfpathlineto{\pgfqpoint{1.837291in}{2.304795in}}% -\pgfpathlineto{\pgfqpoint{1.844799in}{2.288026in}}% -\pgfpathlineto{\pgfqpoint{1.854214in}{2.271943in}}% -\pgfpathlineto{\pgfqpoint{1.865375in}{2.256678in}}% -\pgfpathlineto{\pgfqpoint{1.878097in}{2.242341in}}% -\pgfpathlineto{\pgfqpoint{1.892182in}{2.229019in}}% -\pgfpathlineto{\pgfqpoint{1.907424in}{2.216774in}}% -\pgfpathlineto{\pgfqpoint{1.923617in}{2.205644in}}% -\pgfpathlineto{\pgfqpoint{1.940559in}{2.195648in}}% -\pgfpathlineto{\pgfqpoint{1.958058in}{2.186782in}}% -\pgfpathlineto{\pgfqpoint{1.994025in}{2.172353in}}% -\pgfpathlineto{\pgfqpoint{2.030278in}{2.162054in}}% -\pgfpathlineto{\pgfqpoint{2.065858in}{2.155446in}}% -\pgfpathlineto{\pgfqpoint{2.100079in}{2.152026in}}% -\pgfpathlineto{\pgfqpoint{2.132493in}{2.151287in}}% -\pgfpathlineto{\pgfqpoint{2.162845in}{2.152748in}}% -\pgfpathlineto{\pgfqpoint{2.191028in}{2.155979in}}% -\pgfpathlineto{\pgfqpoint{2.217038in}{2.160607in}}% -\pgfpathlineto{\pgfqpoint{2.252138in}{2.169498in}}% -\pgfpathlineto{\pgfqpoint{2.282908in}{2.180004in}}% -\pgfpathlineto{\pgfqpoint{2.309834in}{2.191516in}}% -\pgfpathlineto{\pgfqpoint{2.333422in}{2.203603in}}% -\pgfpathlineto{\pgfqpoint{2.360491in}{2.220114in}}% -\pgfpathlineto{\pgfqpoint{2.383456in}{2.236679in}}% -\pgfpathlineto{\pgfqpoint{2.407642in}{2.257082in}}% -\pgfpathlineto{\pgfqpoint{2.431700in}{2.280833in}}% -\pgfpathlineto{\pgfqpoint{2.454993in}{2.307400in}}% -\pgfpathlineto{\pgfqpoint{2.480238in}{2.339873in}}% -\pgfpathlineto{\pgfqpoint{2.554623in}{2.438671in}}% -\pgfpathlineto{\pgfqpoint{2.576803in}{2.463336in}}% -\pgfpathlineto{\pgfqpoint{2.601466in}{2.487332in}}% -\pgfpathlineto{\pgfqpoint{2.625599in}{2.507664in}}% -\pgfpathlineto{\pgfqpoint{2.652540in}{2.527196in}}% -\pgfpathlineto{\pgfqpoint{2.678147in}{2.543114in}}% -\pgfpathlineto{\pgfqpoint{2.706290in}{2.558061in}}% -\pgfpathlineto{\pgfqpoint{2.737139in}{2.571792in}}% -\pgfpathlineto{\pgfqpoint{2.770816in}{2.584016in}}% -\pgfpathlineto{\pgfqpoint{2.801091in}{2.592812in}}% -\pgfpathlineto{\pgfqpoint{2.833379in}{2.600113in}}% -\pgfpathlineto{\pgfqpoint{2.867640in}{2.605685in}}% -\pgfpathlineto{\pgfqpoint{2.903786in}{2.609274in}}% -\pgfpathlineto{\pgfqpoint{2.941676in}{2.610615in}}% -\pgfpathlineto{\pgfqpoint{2.981105in}{2.609433in}}% -\pgfpathlineto{\pgfqpoint{3.013576in}{2.606481in}}% -\pgfpathlineto{\pgfqpoint{3.046687in}{2.601592in}}% -\pgfpathlineto{\pgfqpoint{3.080230in}{2.594625in}}% -\pgfpathlineto{\pgfqpoint{3.113964in}{2.585449in}}% -\pgfpathlineto{\pgfqpoint{3.147615in}{2.573938in}}% -\pgfpathlineto{\pgfqpoint{3.180869in}{2.559983in}}% -\pgfpathlineto{\pgfqpoint{3.213377in}{2.543487in}}% -\pgfpathlineto{\pgfqpoint{3.244756in}{2.524379in}}% -\pgfpathlineto{\pgfqpoint{3.267298in}{2.508303in}}% -\pgfpathlineto{\pgfqpoint{3.288781in}{2.490719in}}% -\pgfpathlineto{\pgfqpoint{3.309005in}{2.471629in}}% -\pgfpathlineto{\pgfqpoint{3.327765in}{2.451046in}}% -\pgfpathlineto{\pgfqpoint{3.344844in}{2.428993in}}% -\pgfpathlineto{\pgfqpoint{3.360023in}{2.405512in}}% -\pgfpathlineto{\pgfqpoint{3.373075in}{2.380654in}}% -\pgfpathlineto{\pgfqpoint{3.383772in}{2.354491in}}% -\pgfpathlineto{\pgfqpoint{3.391884in}{2.327109in}}% -\pgfpathlineto{\pgfqpoint{3.397184in}{2.298612in}}% -\pgfpathlineto{\pgfqpoint{3.399446in}{2.269122in}}% -\pgfpathlineto{\pgfqpoint{3.399158in}{2.248981in}}% -\pgfpathlineto{\pgfqpoint{3.397360in}{2.228507in}}% -\pgfpathlineto{\pgfqpoint{3.393993in}{2.207752in}}% -\pgfpathlineto{\pgfqpoint{3.388998in}{2.186770in}}% -\pgfpathlineto{\pgfqpoint{3.382321in}{2.165620in}}% -\pgfpathlineto{\pgfqpoint{3.373911in}{2.144364in}}% -\pgfpathlineto{\pgfqpoint{3.363720in}{2.123067in}}% -\pgfpathlineto{\pgfqpoint{3.351707in}{2.101800in}}% -\pgfpathlineto{\pgfqpoint{3.337834in}{2.080635in}}% -\pgfpathlineto{\pgfqpoint{3.322068in}{2.059650in}}% -\pgfpathlineto{\pgfqpoint{3.304383in}{2.038925in}}% -\pgfpathlineto{\pgfqpoint{3.284760in}{2.018544in}}% -\pgfpathlineto{\pgfqpoint{3.263185in}{1.998593in}}% -\pgfpathlineto{\pgfqpoint{3.239652in}{1.979161in}}% -\pgfpathlineto{\pgfqpoint{3.214165in}{1.960341in}}% -\pgfpathlineto{\pgfqpoint{3.186732in}{1.942226in}}% -\pgfpathlineto{\pgfqpoint{3.157375in}{1.924912in}}% -\pgfpathlineto{\pgfqpoint{3.126120in}{1.908497in}}% -\pgfpathlineto{\pgfqpoint{3.093007in}{1.893079in}}% -\pgfpathlineto{\pgfqpoint{3.058082in}{1.878758in}}% -\pgfpathlineto{\pgfqpoint{3.021405in}{1.865633in}}% -\pgfpathlineto{\pgfqpoint{2.983044in}{1.853803in}}% -\pgfpathlineto{\pgfqpoint{2.943079in}{1.843368in}}% -\pgfpathlineto{\pgfqpoint{2.901600in}{1.834424in}}% -\pgfpathlineto{\pgfqpoint{2.858711in}{1.827067in}}% -\pgfpathlineto{\pgfqpoint{2.814524in}{1.821391in}}% -\pgfpathlineto{\pgfqpoint{2.769163in}{1.817484in}}% -\pgfpathlineto{\pgfqpoint{2.722767in}{1.815434in}}% -\pgfpathlineto{\pgfqpoint{2.675481in}{1.815322in}}% -\pgfpathlineto{\pgfqpoint{2.627465in}{1.817226in}}% -\pgfpathlineto{\pgfqpoint{2.578889in}{1.821215in}}% -\pgfpathlineto{\pgfqpoint{2.529934in}{1.827356in}}% -\pgfpathlineto{\pgfqpoint{2.480789in}{1.835705in}}% -\pgfpathlineto{\pgfqpoint{2.431657in}{1.846313in}}% -\pgfpathlineto{\pgfqpoint{2.382746in}{1.859221in}}% -\pgfpathlineto{\pgfqpoint{2.334276in}{1.874461in}}% -\pgfpathlineto{\pgfqpoint{2.286473in}{1.892055in}}% -\pgfpathlineto{\pgfqpoint{2.239571in}{1.912016in}}% -\pgfpathlineto{\pgfqpoint{2.193808in}{1.934343in}}% -\pgfpathlineto{\pgfqpoint{2.149432in}{1.959027in}}% -\pgfpathlineto{\pgfqpoint{2.106689in}{1.986044in}}% -\pgfpathlineto{\pgfqpoint{2.065833in}{2.015358in}}% -\pgfpathlineto{\pgfqpoint{2.027116in}{2.046921in}}% -\pgfpathlineto{\pgfqpoint{1.990793in}{2.080669in}}% -\pgfpathlineto{\pgfqpoint{1.957116in}{2.116527in}}% -\pgfpathlineto{\pgfqpoint{1.926335in}{2.154403in}}% -\pgfpathlineto{\pgfqpoint{1.898696in}{2.194193in}}% -\pgfpathlineto{\pgfqpoint{1.874438in}{2.235778in}}% -\pgfpathlineto{\pgfqpoint{1.853794in}{2.279024in}}% -\pgfpathlineto{\pgfqpoint{1.836986in}{2.323782in}}% -\pgfpathlineto{\pgfqpoint{1.824226in}{2.369891in}}% -\pgfpathlineto{\pgfqpoint{1.819427in}{2.393397in}}% -\pgfpathlineto{\pgfqpoint{1.815713in}{2.417174in}}% -\pgfpathlineto{\pgfqpoint{1.813108in}{2.441197in}}% -\pgfpathlineto{\pgfqpoint{1.811632in}{2.465441in}}% -\pgfpathlineto{\pgfqpoint{1.811306in}{2.489881in}}% -\pgfpathlineto{\pgfqpoint{1.812150in}{2.514490in}}% -\pgfpathlineto{\pgfqpoint{1.814181in}{2.539240in}}% -\pgfpathlineto{\pgfqpoint{1.817417in}{2.564105in}}% -\pgfpathlineto{\pgfqpoint{1.821872in}{2.589054in}}% -\pgfpathlineto{\pgfqpoint{1.827562in}{2.614059in}}% -\pgfpathlineto{\pgfqpoint{1.834499in}{2.639089in}}% -\pgfpathlineto{\pgfqpoint{1.842694in}{2.664115in}}% -\pgfpathlineto{\pgfqpoint{1.852157in}{2.689104in}}% -\pgfpathlineto{\pgfqpoint{1.862896in}{2.714025in}}% -\pgfpathlineto{\pgfqpoint{1.874918in}{2.738845in}}% -\pgfpathlineto{\pgfqpoint{1.888229in}{2.763532in}}% -\pgfpathlineto{\pgfqpoint{1.902831in}{2.788052in}}% -\pgfpathlineto{\pgfqpoint{1.918725in}{2.812372in}}% -\pgfpathlineto{\pgfqpoint{1.935912in}{2.836457in}}% -\pgfpathlineto{\pgfqpoint{1.954390in}{2.860274in}}% -\pgfpathlineto{\pgfqpoint{1.974155in}{2.883788in}}% -\pgfpathlineto{\pgfqpoint{1.995200in}{2.906963in}}% -\pgfpathlineto{\pgfqpoint{2.017519in}{2.929766in}}% -\pgfpathlineto{\pgfqpoint{2.041101in}{2.952161in}}% -\pgfpathlineto{\pgfqpoint{2.065934in}{2.974112in}}% -\pgfpathlineto{\pgfqpoint{2.092006in}{2.995585in}}% -\pgfpathlineto{\pgfqpoint{2.119301in}{3.016544in}}% -\pgfpathlineto{\pgfqpoint{2.147800in}{3.036954in}}% -\pgfpathlineto{\pgfqpoint{2.177483in}{3.056782in}}% -\pgfpathlineto{\pgfqpoint{2.208330in}{3.075991in}}% -\pgfpathlineto{\pgfqpoint{2.240316in}{3.094548in}}% -\pgfpathlineto{\pgfqpoint{2.273414in}{3.112418in}}% -\pgfpathlineto{\pgfqpoint{2.307598in}{3.129569in}}% -\pgfpathlineto{\pgfqpoint{2.342836in}{3.145966in}}% -\pgfpathlineto{\pgfqpoint{2.379096in}{3.161577in}}% -\pgfpathlineto{\pgfqpoint{2.416343in}{3.176371in}}% -\pgfpathlineto{\pgfqpoint{2.454543in}{3.190315in}}% -\pgfpathlineto{\pgfqpoint{2.493654in}{3.203380in}}% -\pgfpathlineto{\pgfqpoint{2.533638in}{3.215535in}}% -\pgfpathlineto{\pgfqpoint{2.574452in}{3.226751in}}% -\pgfpathlineto{\pgfqpoint{2.616051in}{3.237000in}}% -\pgfpathlineto{\pgfqpoint{2.658389in}{3.246256in}}% -\pgfpathlineto{\pgfqpoint{2.701417in}{3.254491in}}% -\pgfpathlineto{\pgfqpoint{2.745085in}{3.261682in}}% -\pgfpathlineto{\pgfqpoint{2.789341in}{3.267804in}}% -\pgfpathlineto{\pgfqpoint{2.834132in}{3.272834in}}% -\pgfpathlineto{\pgfqpoint{2.879401in}{3.276752in}}% -\pgfpathlineto{\pgfqpoint{2.925092in}{3.279537in}}% -\pgfpathlineto{\pgfqpoint{2.971147in}{3.281172in}}% -\pgfpathlineto{\pgfqpoint{3.017504in}{3.281638in}}% -\pgfpathlineto{\pgfqpoint{3.064102in}{3.280921in}}% -\pgfpathlineto{\pgfqpoint{3.110879in}{3.279007in}}% -\pgfpathlineto{\pgfqpoint{3.157769in}{3.275883in}}% -\pgfpathlineto{\pgfqpoint{3.204707in}{3.271539in}}% -\pgfpathlineto{\pgfqpoint{3.251627in}{3.265966in}}% -\pgfpathlineto{\pgfqpoint{3.298462in}{3.259157in}}% -\pgfpathlineto{\pgfqpoint{3.345141in}{3.251108in}}% -\pgfpathlineto{\pgfqpoint{3.391597in}{3.241814in}}% -\pgfpathlineto{\pgfqpoint{3.437759in}{3.231274in}}% -\pgfpathlineto{\pgfqpoint{3.483556in}{3.219490in}}% -\pgfpathlineto{\pgfqpoint{3.528917in}{3.206463in}}% -\pgfpathlineto{\pgfqpoint{3.573771in}{3.192199in}}% -\pgfpathlineto{\pgfqpoint{3.618045in}{3.176703in}}% -\pgfpathlineto{\pgfqpoint{3.661668in}{3.159986in}}% -\pgfpathlineto{\pgfqpoint{3.704568in}{3.142058in}}% -\pgfpathlineto{\pgfqpoint{3.746673in}{3.122931in}}% -\pgfpathlineto{\pgfqpoint{3.787911in}{3.102622in}}% -\pgfpathlineto{\pgfqpoint{3.828211in}{3.081147in}}% -\pgfpathlineto{\pgfqpoint{3.867502in}{3.058526in}}% -\pgfpathlineto{\pgfqpoint{3.905714in}{3.034781in}}% -\pgfpathlineto{\pgfqpoint{3.942778in}{3.009935in}}% -\pgfpathlineto{\pgfqpoint{3.978626in}{2.984015in}}% -\pgfpathlineto{\pgfqpoint{4.013190in}{2.957049in}}% -\pgfpathlineto{\pgfqpoint{4.046403in}{2.929067in}}% -\pgfpathlineto{\pgfqpoint{4.078202in}{2.900102in}}% -\pgfpathlineto{\pgfqpoint{4.108522in}{2.870189in}}% -\pgfpathlineto{\pgfqpoint{4.137302in}{2.839363in}}% -\pgfpathlineto{\pgfqpoint{4.164483in}{2.807663in}}% -\pgfpathlineto{\pgfqpoint{4.190005in}{2.775131in}}% -\pgfpathlineto{\pgfqpoint{4.213814in}{2.741809in}}% -\pgfpathlineto{\pgfqpoint{4.235854in}{2.707741in}}% -\pgfpathlineto{\pgfqpoint{4.256076in}{2.672975in}}% -\pgfpathlineto{\pgfqpoint{4.274429in}{2.637557in}}% -\pgfpathlineto{\pgfqpoint{4.290867in}{2.601539in}}% -\pgfpathlineto{\pgfqpoint{4.305347in}{2.564972in}}% -\pgfpathlineto{\pgfqpoint{4.317828in}{2.527909in}}% -\pgfpathlineto{\pgfqpoint{4.328270in}{2.490405in}}% -\pgfpathlineto{\pgfqpoint{4.336641in}{2.452517in}}% -\pgfpathlineto{\pgfqpoint{4.342908in}{2.414303in}}% -\pgfpathlineto{\pgfqpoint{4.347042in}{2.375821in}}% -\pgfpathlineto{\pgfqpoint{4.349019in}{2.337131in}}% -\pgfpathlineto{\pgfqpoint{4.348818in}{2.298295in}}% -\pgfpathlineto{\pgfqpoint{4.346420in}{2.259376in}}% -\pgfpathlineto{\pgfqpoint{4.341812in}{2.220437in}}% -\pgfpathlineto{\pgfqpoint{4.334983in}{2.181541in}}% -\pgfpathlineto{\pgfqpoint{4.325927in}{2.142754in}}% -\pgfpathlineto{\pgfqpoint{4.314641in}{2.104141in}}% -\pgfpathlineto{\pgfqpoint{4.301128in}{2.065767in}}% -\pgfpathlineto{\pgfqpoint{4.285392in}{2.027699in}}% -\pgfpathlineto{\pgfqpoint{4.267443in}{1.990004in}}% -\pgfpathlineto{\pgfqpoint{4.247296in}{1.952747in}}% -\pgfpathlineto{\pgfqpoint{4.224969in}{1.915996in}}% -\pgfpathlineto{\pgfqpoint{4.200483in}{1.879815in}}% -\pgfpathlineto{\pgfqpoint{4.173866in}{1.844272in}}% -\pgfpathlineto{\pgfqpoint{4.145149in}{1.809431in}}% -\pgfpathlineto{\pgfqpoint{4.114366in}{1.775358in}}% -\pgfpathlineto{\pgfqpoint{4.081557in}{1.742116in}}% -\pgfpathlineto{\pgfqpoint{4.046766in}{1.709769in}}% -\pgfpathlineto{\pgfqpoint{4.010041in}{1.678379in}}% -\pgfpathlineto{\pgfqpoint{3.971434in}{1.648007in}}% -\pgfpathlineto{\pgfqpoint{3.931001in}{1.618713in}}% -\pgfpathlineto{\pgfqpoint{3.888802in}{1.590556in}}% -\pgfpathlineto{\pgfqpoint{3.844901in}{1.563591in}}% -\pgfpathlineto{\pgfqpoint{3.799368in}{1.537874in}}% -\pgfpathlineto{\pgfqpoint{3.752273in}{1.513459in}}% -\pgfpathlineto{\pgfqpoint{3.703694in}{1.490397in}}% -\pgfpathlineto{\pgfqpoint{3.653709in}{1.468736in}}% -\pgfpathlineto{\pgfqpoint{3.602401in}{1.448524in}}% -\pgfpathlineto{\pgfqpoint{3.549857in}{1.429805in}}% -\pgfpathlineto{\pgfqpoint{3.496168in}{1.412621in}}% -\pgfpathlineto{\pgfqpoint{3.441424in}{1.397011in}}% -\pgfpathlineto{\pgfqpoint{3.385724in}{1.383012in}}% -\pgfpathlineto{\pgfqpoint{3.329165in}{1.370659in}}% -\pgfpathlineto{\pgfqpoint{3.271849in}{1.359980in}}% -\pgfpathlineto{\pgfqpoint{3.213879in}{1.351005in}}% -\pgfpathlineto{\pgfqpoint{3.155363in}{1.343758in}}% -\pgfpathlineto{\pgfqpoint{3.096407in}{1.338259in}}% -\pgfpathlineto{\pgfqpoint{3.037123in}{1.334527in}}% -\pgfpathlineto{\pgfqpoint{2.977621in}{1.332576in}}% -\pgfpathlineto{\pgfqpoint{2.918016in}{1.332418in}}% -\pgfpathlineto{\pgfqpoint{2.858422in}{1.334058in}}% -\pgfpathlineto{\pgfqpoint{2.798954in}{1.337501in}}% -\pgfpathlineto{\pgfqpoint{2.739729in}{1.342747in}}% -\pgfpathlineto{\pgfqpoint{2.680862in}{1.349792in}}% -\pgfpathlineto{\pgfqpoint{2.622472in}{1.358628in}}% -\pgfpathlineto{\pgfqpoint{2.564675in}{1.369244in}}% -\pgfpathlineto{\pgfqpoint{2.507587in}{1.381624in}}% -\pgfpathlineto{\pgfqpoint{2.451326in}{1.395748in}}% -\pgfpathlineto{\pgfqpoint{2.396006in}{1.411595in}}% -\pgfpathlineto{\pgfqpoint{2.341741in}{1.429137in}}% -\pgfpathlineto{\pgfqpoint{2.288645in}{1.448342in}}% -\pgfpathlineto{\pgfqpoint{2.236829in}{1.469176in}}% -\pgfpathlineto{\pgfqpoint{2.186402in}{1.491601in}}% -\pgfpathlineto{\pgfqpoint{2.137472in}{1.515575in}}% -\pgfpathlineto{\pgfqpoint{2.090143in}{1.541050in}}% -\pgfpathlineto{\pgfqpoint{2.044518in}{1.567978in}}% -\pgfpathlineto{\pgfqpoint{2.000696in}{1.596306in}}% -\pgfpathlineto{\pgfqpoint{1.958773in}{1.625976in}}% -\pgfpathlineto{\pgfqpoint{1.918841in}{1.656927in}}% -\pgfpathlineto{\pgfqpoint{1.880989in}{1.689098in}}% -\pgfpathlineto{\pgfqpoint{1.845302in}{1.722420in}}% -\pgfpathlineto{\pgfqpoint{1.811860in}{1.756824in}}% -\pgfpathlineto{\pgfqpoint{1.780740in}{1.792237in}}% -\pgfpathlineto{\pgfqpoint{1.752012in}{1.828584in}}% -\pgfpathlineto{\pgfqpoint{1.725742in}{1.865785in}}% -\pgfpathlineto{\pgfqpoint{1.701993in}{1.903760in}}% -\pgfpathlineto{\pgfqpoint{1.680819in}{1.942426in}}% -\pgfpathlineto{\pgfqpoint{1.662272in}{1.981697in}}% -\pgfpathlineto{\pgfqpoint{1.646394in}{2.021486in}}% -\pgfpathlineto{\pgfqpoint{1.633225in}{2.061703in}}% -\pgfpathlineto{\pgfqpoint{1.622798in}{2.102257in}}% -\pgfpathlineto{\pgfqpoint{1.615137in}{2.143056in}}% -\pgfpathlineto{\pgfqpoint{1.610264in}{2.184006in}}% -\pgfpathlineto{\pgfqpoint{1.608191in}{2.225013in}}% -\pgfpathlineto{\pgfqpoint{1.608925in}{2.265980in}}% -\pgfpathlineto{\pgfqpoint{1.612465in}{2.306813in}}% -\pgfpathlineto{\pgfqpoint{1.618806in}{2.347414in}}% -\pgfpathlineto{\pgfqpoint{1.627933in}{2.387686in}}% -\pgfpathlineto{\pgfqpoint{1.639826in}{2.427535in}}% -\pgfpathlineto{\pgfqpoint{1.654457in}{2.466863in}}% -\pgfpathlineto{\pgfqpoint{1.671793in}{2.505576in}}% -\pgfpathlineto{\pgfqpoint{1.691790in}{2.543578in}}% -\pgfpathlineto{\pgfqpoint{1.714402in}{2.580777in}}% -\pgfpathlineto{\pgfqpoint{1.739574in}{2.617080in}}% -\pgfpathlineto{\pgfqpoint{1.767242in}{2.652397in}}% -\pgfpathlineto{\pgfqpoint{1.797340in}{2.686641in}}% -\pgfpathlineto{\pgfqpoint{1.829791in}{2.719723in}}% -\pgfpathlineto{\pgfqpoint{1.864515in}{2.751560in}}% -\pgfpathlineto{\pgfqpoint{1.901422in}{2.782072in}}% -\pgfpathlineto{\pgfqpoint{1.940419in}{2.811178in}}% -\pgfpathlineto{\pgfqpoint{1.981406in}{2.838804in}}% -\pgfpathlineto{\pgfqpoint{2.024277in}{2.864878in}}% -\pgfpathlineto{\pgfqpoint{2.068919in}{2.889331in}}% -\pgfpathlineto{\pgfqpoint{2.115216in}{2.912097in}}% -\pgfpathlineto{\pgfqpoint{2.163046in}{2.933117in}}% -\pgfpathlineto{\pgfqpoint{2.212282in}{2.952333in}}% -\pgfpathlineto{\pgfqpoint{2.262792in}{2.969693in}}% -\pgfpathlineto{\pgfqpoint{2.314440in}{2.985149in}}% -\pgfpathlineto{\pgfqpoint{2.367086in}{2.998658in}}% -\pgfpathlineto{\pgfqpoint{2.420586in}{3.010182in}}% -\pgfpathlineto{\pgfqpoint{2.474794in}{3.019687in}}% -\pgfpathlineto{\pgfqpoint{2.529560in}{3.027146in}}% -\pgfpathlineto{\pgfqpoint{2.584732in}{3.032537in}}% -\pgfpathlineto{\pgfqpoint{2.640154in}{3.035842in}}% -\pgfpathlineto{\pgfqpoint{2.695671in}{3.037049in}}% -\pgfpathlineto{\pgfqpoint{2.751124in}{3.036154in}}% -\pgfpathlineto{\pgfqpoint{2.806355in}{3.033155in}}% -\pgfpathlineto{\pgfqpoint{2.861204in}{3.028058in}}% -\pgfpathlineto{\pgfqpoint{2.915513in}{3.020876in}}% -\pgfpathlineto{\pgfqpoint{2.969121in}{3.011625in}}% -\pgfpathlineto{\pgfqpoint{3.021870in}{3.000329in}}% -\pgfpathlineto{\pgfqpoint{3.073603in}{2.987017in}}% -\pgfpathlineto{\pgfqpoint{3.124165in}{2.971724in}}% -\pgfpathlineto{\pgfqpoint{3.173402in}{2.954492in}}% -\pgfpathlineto{\pgfqpoint{3.221162in}{2.935367in}}% -\pgfpathlineto{\pgfqpoint{3.267299in}{2.914403in}}% -\pgfpathlineto{\pgfqpoint{3.311668in}{2.891656in}}% -\pgfpathlineto{\pgfqpoint{3.354128in}{2.867193in}}% -\pgfpathlineto{\pgfqpoint{3.394543in}{2.841081in}}% -\pgfpathlineto{\pgfqpoint{3.432781in}{2.813395in}}% -\pgfpathlineto{\pgfqpoint{3.468716in}{2.784216in}}% -\pgfpathlineto{\pgfqpoint{3.502229in}{2.753628in}}% -\pgfpathlineto{\pgfqpoint{3.533203in}{2.721721in}}% -\pgfpathlineto{\pgfqpoint{3.561531in}{2.688590in}}% -\pgfpathlineto{\pgfqpoint{3.587113in}{2.654333in}}% -\pgfpathlineto{\pgfqpoint{3.609852in}{2.619053in}}% -\pgfpathlineto{\pgfqpoint{3.629664in}{2.582858in}}% -\pgfpathlineto{\pgfqpoint{3.646470in}{2.545857in}}% -\pgfpathlineto{\pgfqpoint{3.660198in}{2.508165in}}% -\pgfpathlineto{\pgfqpoint{3.670787in}{2.469898in}}% -\pgfpathlineto{\pgfqpoint{3.678185in}{2.431177in}}% -\pgfpathlineto{\pgfqpoint{3.682346in}{2.392123in}}% -\pgfpathlineto{\pgfqpoint{3.683236in}{2.352862in}}% -\pgfpathlineto{\pgfqpoint{3.680829in}{2.313520in}}% -\pgfpathlineto{\pgfqpoint{3.675111in}{2.274224in}}% -\pgfpathlineto{\pgfqpoint{3.666074in}{2.235103in}}% -\pgfpathlineto{\pgfqpoint{3.653724in}{2.196287in}}% -\pgfpathlineto{\pgfqpoint{3.638074in}{2.157906in}}% -\pgfpathlineto{\pgfqpoint{3.619149in}{2.120089in}}% -\pgfpathlineto{\pgfqpoint{3.596984in}{2.082966in}}% -\pgfpathlineto{\pgfqpoint{3.571623in}{2.046667in}}% -\pgfpathlineto{\pgfqpoint{3.543121in}{2.011318in}}% -\pgfpathlineto{\pgfqpoint{3.511545in}{1.977045in}}% -\pgfpathlineto{\pgfqpoint{3.476968in}{1.943972in}}% -\pgfpathlineto{\pgfqpoint{3.439477in}{1.912222in}}% -\pgfpathlineto{\pgfqpoint{3.399166in}{1.881913in}}% -\pgfpathlineto{\pgfqpoint{3.356141in}{1.853160in}}% -\pgfpathlineto{\pgfqpoint{3.310516in}{1.826076in}}% -\pgfpathlineto{\pgfqpoint{3.262415in}{1.800768in}}% -\pgfpathlineto{\pgfqpoint{3.211971in}{1.777342in}}% -\pgfpathlineto{\pgfqpoint{3.159325in}{1.755896in}}% -\pgfpathlineto{\pgfqpoint{3.104626in}{1.736524in}}% -\pgfpathlineto{\pgfqpoint{3.048034in}{1.719316in}}% -\pgfpathlineto{\pgfqpoint{2.989713in}{1.704354in}}% -\pgfpathlineto{\pgfqpoint{2.929837in}{1.691716in}}% -\pgfpathlineto{\pgfqpoint{2.868585in}{1.681472in}}% -\pgfpathlineto{\pgfqpoint{2.806143in}{1.673687in}}% -\pgfpathlineto{\pgfqpoint{2.742703in}{1.668418in}}% -\pgfpathlineto{\pgfqpoint{2.678463in}{1.665715in}}% -\pgfpathlineto{\pgfqpoint{2.613625in}{1.665620in}}% -\pgfpathlineto{\pgfqpoint{2.548395in}{1.668169in}}% -\pgfpathlineto{\pgfqpoint{2.482983in}{1.673389in}}% -\pgfpathlineto{\pgfqpoint{2.417602in}{1.681299in}}% -\pgfpathlineto{\pgfqpoint{2.352468in}{1.691910in}}% -\pgfpathlineto{\pgfqpoint{2.287799in}{1.705224in}}% -\pgfpathlineto{\pgfqpoint{2.223813in}{1.721237in}}% -\pgfpathlineto{\pgfqpoint{2.160728in}{1.739934in}}% -\pgfpathlineto{\pgfqpoint{2.098765in}{1.761291in}}% -\pgfpathlineto{\pgfqpoint{2.038142in}{1.785278in}}% -\pgfpathlineto{\pgfqpoint{1.979074in}{1.811854in}}% -\pgfpathlineto{\pgfqpoint{1.921776in}{1.840972in}}% -\pgfpathlineto{\pgfqpoint{1.866461in}{1.872573in}}% -\pgfpathlineto{\pgfqpoint{1.813335in}{1.906592in}}% -\pgfpathlineto{\pgfqpoint{1.762602in}{1.942954in}}% -\pgfpathlineto{\pgfqpoint{1.714462in}{1.981579in}}% -\pgfpathlineto{\pgfqpoint{1.669106in}{2.022374in}}% -\pgfpathlineto{\pgfqpoint{1.626723in}{2.065243in}}% -\pgfpathlineto{\pgfqpoint{1.587490in}{2.110078in}}% -\pgfpathlineto{\pgfqpoint{1.551580in}{2.156766in}}% -\pgfpathlineto{\pgfqpoint{1.519158in}{2.205188in}}% -\pgfpathlineto{\pgfqpoint{1.490377in}{2.255214in}}% -\pgfpathlineto{\pgfqpoint{1.465384in}{2.306710in}}% -\pgfpathlineto{\pgfqpoint{1.444312in}{2.359537in}}% -\pgfpathlineto{\pgfqpoint{1.427288in}{2.413548in}}% -\pgfpathlineto{\pgfqpoint{1.414425in}{2.468591in}}% -\pgfpathlineto{\pgfqpoint{1.405824in}{2.524508in}}% -\pgfpathlineto{\pgfqpoint{1.401576in}{2.581139in}}% -\pgfpathlineto{\pgfqpoint{1.401758in}{2.638318in}}% -\pgfpathlineto{\pgfqpoint{1.406433in}{2.695874in}}% -\pgfpathlineto{\pgfqpoint{1.415655in}{2.753636in}}% -\pgfpathlineto{\pgfqpoint{1.429459in}{2.811427in}}% -\pgfpathlineto{\pgfqpoint{1.447871in}{2.869070in}}% -\pgfpathlineto{\pgfqpoint{1.470898in}{2.926386in}}% -\pgfpathlineto{\pgfqpoint{1.498538in}{2.983193in}}% -\pgfpathlineto{\pgfqpoint{1.530771in}{3.039312in}}% -\pgfpathlineto{\pgfqpoint{1.567563in}{3.094560in}}% -\pgfpathlineto{\pgfqpoint{1.608866in}{3.148757in}}% -\pgfpathlineto{\pgfqpoint{1.654617in}{3.201724in}}% -\pgfpathlineto{\pgfqpoint{1.704739in}{3.253284in}}% -\pgfpathlineto{\pgfqpoint{1.759139in}{3.303261in}}% -\pgfpathlineto{\pgfqpoint{1.817712in}{3.351482in}}% -\pgfpathlineto{\pgfqpoint{1.880337in}{3.397779in}}% -\pgfpathlineto{\pgfqpoint{1.946878in}{3.441987in}}% -\pgfpathlineto{\pgfqpoint{2.017189in}{3.483947in}}% -\pgfpathlineto{\pgfqpoint{2.091106in}{3.523502in}}% -\pgfpathlineto{\pgfqpoint{2.168456in}{3.560505in}}% -\pgfpathlineto{\pgfqpoint{2.249051in}{3.594812in}}% -\pgfpathlineto{\pgfqpoint{2.332692in}{3.626287in}}% -\pgfpathlineto{\pgfqpoint{2.419167in}{3.654802in}}% -\pgfpathlineto{\pgfqpoint{2.508254in}{3.680236in}}% -\pgfpathlineto{\pgfqpoint{2.599721in}{3.702477in}}% -\pgfpathlineto{\pgfqpoint{2.693325in}{3.721420in}}% -\pgfpathlineto{\pgfqpoint{2.788815in}{3.736972in}}% -\pgfpathlineto{\pgfqpoint{2.885929in}{3.749048in}}% -\pgfpathlineto{\pgfqpoint{2.984401in}{3.757573in}}% -\pgfpathlineto{\pgfqpoint{3.083956in}{3.762482in}}% -\pgfpathlineto{\pgfqpoint{3.184313in}{3.763721in}}% -\pgfpathlineto{\pgfqpoint{3.285185in}{3.761247in}}% -\pgfpathlineto{\pgfqpoint{3.386283in}{3.755030in}}% -\pgfpathlineto{\pgfqpoint{3.487312in}{3.745047in}}% -\pgfpathlineto{\pgfqpoint{3.587975in}{3.731291in}}% -\pgfpathlineto{\pgfqpoint{3.687976in}{3.713763in}}% -\pgfpathlineto{\pgfqpoint{3.787015in}{3.692479in}}% -\pgfpathlineto{\pgfqpoint{3.884793in}{3.667466in}}% -\pgfpathlineto{\pgfqpoint{3.981014in}{3.638761in}}% -\pgfpathlineto{\pgfqpoint{4.075383in}{3.606416in}}% -\pgfpathlineto{\pgfqpoint{4.167608in}{3.570491in}}% -\pgfpathlineto{\pgfqpoint{4.257402in}{3.531061in}}% -\pgfpathlineto{\pgfqpoint{4.344483in}{3.488212in}}% -\pgfpathlineto{\pgfqpoint{4.428575in}{3.442040in}}% -\pgfpathlineto{\pgfqpoint{4.509409in}{3.392654in}}% -\pgfpathlineto{\pgfqpoint{4.586726in}{3.340173in}}% -\pgfpathlineto{\pgfqpoint{4.660274in}{3.284726in}}% -\pgfpathlineto{\pgfqpoint{4.729811in}{3.226454in}}% -\pgfpathlineto{\pgfqpoint{4.795106in}{3.165506in}}% -\pgfpathlineto{\pgfqpoint{4.855942in}{3.102043in}}% -\pgfpathlineto{\pgfqpoint{4.912111in}{3.036232in}}% -\pgfpathlineto{\pgfqpoint{4.963422in}{2.968251in}}% -\pgfpathlineto{\pgfqpoint{5.009694in}{2.898286in}}% -\pgfpathlineto{\pgfqpoint{5.050764in}{2.826529in}}% -\pgfpathlineto{\pgfqpoint{5.086484in}{2.753180in}}% -\pgfpathlineto{\pgfqpoint{5.116721in}{2.678445in}}% -\pgfpathlineto{\pgfqpoint{5.141359in}{2.602536in}}% -\pgfpathlineto{\pgfqpoint{5.160300in}{2.525669in}}% -\pgfpathlineto{\pgfqpoint{5.173463in}{2.448067in}}% -\pgfpathlineto{\pgfqpoint{5.180785in}{2.369952in}}% -\pgfpathlineto{\pgfqpoint{5.182222in}{2.291554in}}% -\pgfpathlineto{\pgfqpoint{5.177748in}{2.213101in}}% -\pgfpathlineto{\pgfqpoint{5.167356in}{2.134824in}}% -\pgfpathlineto{\pgfqpoint{5.151058in}{2.056956in}}% -\pgfpathlineto{\pgfqpoint{5.128885in}{1.979727in}}% -\pgfpathlineto{\pgfqpoint{5.100889in}{1.903368in}}% -\pgfpathlineto{\pgfqpoint{5.067139in}{1.828106in}}% -\pgfpathlineto{\pgfqpoint{5.027723in}{1.754170in}}% -\pgfpathlineto{\pgfqpoint{4.982750in}{1.681779in}}% -\pgfpathlineto{\pgfqpoint{4.932344in}{1.611154in}}% -\pgfpathlineto{\pgfqpoint{4.876652in}{1.542506in}}% -\pgfpathlineto{\pgfqpoint{4.815834in}{1.476045in}}% -\pgfpathlineto{\pgfqpoint{4.750070in}{1.411970in}}% -\pgfpathlineto{\pgfqpoint{4.679558in}{1.350476in}}% -\pgfpathlineto{\pgfqpoint{4.604510in}{1.291749in}}% -\pgfpathlineto{\pgfqpoint{4.525155in}{1.235965in}}% -\pgfpathlineto{\pgfqpoint{4.441736in}{1.183293in}}% -\pgfpathlineto{\pgfqpoint{4.354511in}{1.133891in}}% -\pgfpathlineto{\pgfqpoint{4.263751in}{1.087905in}}% -\pgfpathlineto{\pgfqpoint{4.169739in}{1.045473in}}% -\pgfpathlineto{\pgfqpoint{4.072771in}{1.006718in}}% -\pgfpathlineto{\pgfqpoint{3.973152in}{0.971752in}}% -\pgfpathlineto{\pgfqpoint{3.871197in}{0.940676in}}% -\pgfpathlineto{\pgfqpoint{3.767229in}{0.913575in}}% -\pgfpathlineto{\pgfqpoint{3.661580in}{0.890524in}}% -\pgfpathlineto{\pgfqpoint{3.554585in}{0.871580in}}% -\pgfpathlineto{\pgfqpoint{3.446588in}{0.856789in}}% -\pgfpathlineto{\pgfqpoint{3.337933in}{0.846182in}}% -\pgfpathlineto{\pgfqpoint{3.228969in}{0.839775in}}% -\pgfpathlineto{\pgfqpoint{3.120045in}{0.837570in}}% -\pgfpathlineto{\pgfqpoint{3.011510in}{0.839554in}}% -\pgfpathlineto{\pgfqpoint{2.903711in}{0.845700in}}% -\pgfpathlineto{\pgfqpoint{2.796996in}{0.855965in}}% -\pgfpathlineto{\pgfqpoint{2.691704in}{0.870292in}}% -\pgfpathlineto{\pgfqpoint{2.588172in}{0.888611in}}% -\pgfpathlineto{\pgfqpoint{2.486731in}{0.910835in}}% -\pgfpathlineto{\pgfqpoint{2.387702in}{0.936865in}}% -\pgfpathlineto{\pgfqpoint{2.291399in}{0.966589in}}% -\pgfpathlineto{\pgfqpoint{2.198124in}{0.999880in}}% -\pgfpathlineto{\pgfqpoint{2.108170in}{1.036599in}}% -\pgfpathlineto{\pgfqpoint{2.021817in}{1.076595in}}% -\pgfpathlineto{\pgfqpoint{1.939329in}{1.119704in}}% -\pgfpathlineto{\pgfqpoint{1.860959in}{1.165753in}}% -\pgfpathlineto{\pgfqpoint{1.786942in}{1.214556in}}% -\pgfpathlineto{\pgfqpoint{1.717497in}{1.265917in}}% -\pgfpathlineto{\pgfqpoint{1.652825in}{1.319634in}}% -\pgfpathlineto{\pgfqpoint{1.593111in}{1.375492in}}% -\pgfpathlineto{\pgfqpoint{1.538518in}{1.433273in}}% -\pgfpathlineto{\pgfqpoint{1.489191in}{1.492748in}}% -\pgfpathlineto{\pgfqpoint{1.445255in}{1.553685in}}% -\pgfpathlineto{\pgfqpoint{1.406811in}{1.615845in}}% -\pgfpathlineto{\pgfqpoint{1.373942in}{1.678985in}}% -\pgfpathlineto{\pgfqpoint{1.346708in}{1.742861in}}% -\pgfpathlineto{\pgfqpoint{1.325146in}{1.807224in}}% -\pgfpathlineto{\pgfqpoint{1.309273in}{1.871824in}}% -\pgfpathlineto{\pgfqpoint{1.299080in}{1.936413in}}% -\pgfpathlineto{\pgfqpoint{1.294539in}{2.000742in}}% -\pgfpathlineto{\pgfqpoint{1.295597in}{2.064562in}}% -\pgfpathlineto{\pgfqpoint{1.302181in}{2.127631in}}% -\pgfpathlineto{\pgfqpoint{1.314193in}{2.189706in}}% -\pgfpathlineto{\pgfqpoint{1.331516in}{2.250553in}}% -\pgfpathlineto{\pgfqpoint{1.354010in}{2.309939in}}% -\pgfpathlineto{\pgfqpoint{1.381515in}{2.367643in}}% -\pgfpathlineto{\pgfqpoint{1.413849in}{2.423446in}}% -\pgfpathlineto{\pgfqpoint{1.450813in}{2.477142in}}% -\pgfpathlineto{\pgfqpoint{1.492188in}{2.528532in}}% -\pgfpathlineto{\pgfqpoint{1.537736in}{2.577427in}}% -\pgfpathlineto{\pgfqpoint{1.587204in}{2.623650in}}% -\pgfpathlineto{\pgfqpoint{1.640320in}{2.667036in}}% -\pgfpathlineto{\pgfqpoint{1.696801in}{2.707432in}}% -\pgfpathlineto{\pgfqpoint{1.756347in}{2.744698in}}% -\pgfpathlineto{\pgfqpoint{1.818645in}{2.778709in}}% -\pgfpathlineto{\pgfqpoint{1.883375in}{2.809351in}}% -\pgfpathlineto{\pgfqpoint{1.950201in}{2.836530in}}% -\pgfpathlineto{\pgfqpoint{2.018783in}{2.860164in}}% -\pgfpathlineto{\pgfqpoint{2.088772in}{2.880188in}}% -\pgfpathlineto{\pgfqpoint{2.159813in}{2.896553in}}% -\pgfpathlineto{\pgfqpoint{2.231548in}{2.909226in}}% -\pgfpathlineto{\pgfqpoint{2.303615in}{2.918191in}}% -\pgfpathlineto{\pgfqpoint{2.375650in}{2.923449in}}% -\pgfpathlineto{\pgfqpoint{2.447293in}{2.925018in}}% -\pgfpathlineto{\pgfqpoint{2.518182in}{2.922932in}}% -\pgfpathlineto{\pgfqpoint{2.587962in}{2.917243in}}% -\pgfpathlineto{\pgfqpoint{2.656280in}{2.908019in}}% -\pgfpathlineto{\pgfqpoint{2.722791in}{2.895345in}}% -\pgfpathlineto{\pgfqpoint{2.787160in}{2.879320in}}% -\pgfpathlineto{\pgfqpoint{2.849060in}{2.860061in}}% -\pgfpathlineto{\pgfqpoint{2.908175in}{2.837700in}}% -\pgfpathlineto{\pgfqpoint{2.964202in}{2.812384in}}% -\pgfpathlineto{\pgfqpoint{3.016854in}{2.784273in}}% -\pgfpathlineto{\pgfqpoint{3.065857in}{2.753541in}}% -\pgfpathlineto{\pgfqpoint{3.110956in}{2.720376in}}% -\pgfpathlineto{\pgfqpoint{3.151913in}{2.684977in}}% -\pgfpathlineto{\pgfqpoint{3.188509in}{2.647555in}}% -\pgfpathlineto{\pgfqpoint{3.220546in}{2.608331in}}% -\pgfpathlineto{\pgfqpoint{3.247848in}{2.567535in}}% -\pgfpathlineto{\pgfqpoint{3.270260in}{2.525407in}}% -\pgfpathlineto{\pgfqpoint{3.287651in}{2.482194in}}% -\pgfpathlineto{\pgfqpoint{3.299914in}{2.438148in}}% -\pgfpathlineto{\pgfqpoint{3.306966in}{2.393527in}}% -\pgfpathlineto{\pgfqpoint{3.308750in}{2.348595in}}% -\pgfpathlineto{\pgfqpoint{3.305234in}{2.303616in}}% -\pgfpathlineto{\pgfqpoint{3.296412in}{2.258858in}}% -\pgfpathlineto{\pgfqpoint{3.282304in}{2.214588in}}% -\pgfpathlineto{\pgfqpoint{3.262956in}{2.171075in}}% -\pgfpathlineto{\pgfqpoint{3.238442in}{2.128582in}}% -\pgfpathlineto{\pgfqpoint{3.208860in}{2.087372in}}% -\pgfpathlineto{\pgfqpoint{3.174335in}{2.047704in}}% -\pgfpathlineto{\pgfqpoint{3.135016in}{2.009829in}}% -\pgfpathlineto{\pgfqpoint{3.091079in}{1.973992in}}% -\pgfpathlineto{\pgfqpoint{3.042724in}{1.940431in}}% -\pgfpathlineto{\pgfqpoint{2.990172in}{1.909375in}}% -\pgfpathlineto{\pgfqpoint{2.933672in}{1.881042in}}% -\pgfpathlineto{\pgfqpoint{2.873489in}{1.855637in}}% -\pgfpathlineto{\pgfqpoint{2.809913in}{1.833356in}}% -\pgfpathlineto{\pgfqpoint{2.743253in}{1.814379in}}% -\pgfpathlineto{\pgfqpoint{2.673836in}{1.798872in}}% -\pgfpathlineto{\pgfqpoint{2.602005in}{1.786987in}}% -\pgfpathlineto{\pgfqpoint{2.528120in}{1.778858in}}% -\pgfpathlineto{\pgfqpoint{2.452556in}{1.774604in}}% -\pgfpathlineto{\pgfqpoint{2.375698in}{1.774324in}}% -\pgfpathlineto{\pgfqpoint{2.297944in}{1.778100in}}% -\pgfpathlineto{\pgfqpoint{2.219701in}{1.785996in}}% -\pgfpathlineto{\pgfqpoint{2.141383in}{1.798056in}}% -\pgfpathlineto{\pgfqpoint{2.063408in}{1.814303in}}% -\pgfpathlineto{\pgfqpoint{1.986201in}{1.834741in}}% -\pgfpathlineto{\pgfqpoint{1.910185in}{1.859354in}}% -\pgfpathlineto{\pgfqpoint{1.835785in}{1.888106in}}% -\pgfpathlineto{\pgfqpoint{1.763423in}{1.920939in}}% -\pgfpathlineto{\pgfqpoint{1.693517in}{1.957776in}}% -\pgfpathlineto{\pgfqpoint{1.626479in}{1.998518in}}% -\pgfpathlineto{\pgfqpoint{1.562713in}{2.043049in}}% -\pgfpathlineto{\pgfqpoint{1.502612in}{2.091230in}}% -\pgfpathlineto{\pgfqpoint{1.446558in}{2.142906in}}% -\pgfpathlineto{\pgfqpoint{1.394917in}{2.197899in}}% -\pgfpathlineto{\pgfqpoint{1.348042in}{2.256018in}}% -\pgfpathlineto{\pgfqpoint{1.306267in}{2.317050in}}% -\pgfpathlineto{\pgfqpoint{1.269906in}{2.380768in}}% -\pgfpathlineto{\pgfqpoint{1.239253in}{2.446928in}}% -\pgfpathlineto{\pgfqpoint{1.214580in}{2.515272in}}% -\pgfpathlineto{\pgfqpoint{1.196132in}{2.585529in}}% -\pgfpathlineto{\pgfqpoint{1.184133in}{2.657412in}}% -\pgfpathlineto{\pgfqpoint{1.178776in}{2.730626in}}% -\pgfpathlineto{\pgfqpoint{1.180228in}{2.804864in}}% -\pgfpathlineto{\pgfqpoint{1.188627in}{2.879810in}}% -\pgfpathlineto{\pgfqpoint{1.204081in}{2.955141in}}% -\pgfpathlineto{\pgfqpoint{1.226666in}{3.030528in}}% -\pgfpathlineto{\pgfqpoint{1.256428in}{3.105635in}}% -\pgfpathlineto{\pgfqpoint{1.293380in}{3.180124in}}% -\pgfpathlineto{\pgfqpoint{1.337503in}{3.253658in}}% -\pgfpathlineto{\pgfqpoint{1.388744in}{3.325894in}}% -\pgfpathlineto{\pgfqpoint{1.447019in}{3.396495in}}% -\pgfpathlineto{\pgfqpoint{1.512210in}{3.465126in}}% -\pgfpathlineto{\pgfqpoint{1.584166in}{3.531453in}}% -\pgfpathlineto{\pgfqpoint{1.662704in}{3.595153in}}% -\pgfpathlineto{\pgfqpoint{1.747610in}{3.655906in}}% -\pgfpathlineto{\pgfqpoint{1.838637in}{3.713404in}}% -\pgfpathlineto{\pgfqpoint{1.935508in}{3.767349in}}% -\pgfpathlineto{\pgfqpoint{2.037919in}{3.817453in}}% -\pgfpathlineto{\pgfqpoint{2.145534in}{3.863445in}}% -\pgfpathlineto{\pgfqpoint{2.257991in}{3.905064in}}% -\pgfpathlineto{\pgfqpoint{2.374904in}{3.942071in}}% -\pgfpathlineto{\pgfqpoint{2.495859in}{3.974238in}}% -\pgfpathlineto{\pgfqpoint{2.620422in}{4.001362in}}% -\pgfpathlineto{\pgfqpoint{2.748138in}{4.023254in}}% -\pgfpathlineto{\pgfqpoint{2.878531in}{4.039750in}}% -\pgfpathlineto{\pgfqpoint{3.011109in}{4.050706in}}% -\pgfpathlineto{\pgfqpoint{3.145365in}{4.056000in}}% -\pgfpathlineto{\pgfqpoint{3.280778in}{4.055535in}}% -\pgfpathlineto{\pgfqpoint{3.416817in}{4.049236in}}% -\pgfpathlineto{\pgfqpoint{3.552942in}{4.037055in}}% -\pgfpathlineto{\pgfqpoint{3.688607in}{4.018967in}}% -\pgfpathlineto{\pgfqpoint{3.823262in}{3.994974in}}% -\pgfpathlineto{\pgfqpoint{3.956358in}{3.965102in}}% -\pgfpathlineto{\pgfqpoint{4.087344in}{3.929405in}}% -\pgfpathlineto{\pgfqpoint{4.215673in}{3.887962in}}% -\pgfpathlineto{\pgfqpoint{4.340807in}{3.840876in}}% -\pgfpathlineto{\pgfqpoint{4.462213in}{3.788277in}}% -\pgfpathlineto{\pgfqpoint{4.579373in}{3.730321in}}% -\pgfpathlineto{\pgfqpoint{4.691779in}{3.667186in}}% -\pgfpathlineto{\pgfqpoint{4.798942in}{3.599076in}}% -\pgfpathlineto{\pgfqpoint{4.900389in}{3.526218in}}% -\pgfpathlineto{\pgfqpoint{4.995669in}{3.448862in}}% -\pgfpathlineto{\pgfqpoint{5.084354in}{3.367277in}}% -\pgfpathlineto{\pgfqpoint{5.166040in}{3.281756in}}% -\pgfpathlineto{\pgfqpoint{5.240352in}{3.192609in}}% -\pgfpathlineto{\pgfqpoint{5.306942in}{3.100165in}}% -\pgfpathlineto{\pgfqpoint{5.365493in}{3.004769in}}% -\pgfpathlineto{\pgfqpoint{5.415722in}{2.906782in}}% -\pgfpathlineto{\pgfqpoint{5.457379in}{2.806579in}}% -\pgfpathlineto{\pgfqpoint{5.490248in}{2.704547in}}% -\pgfpathlineto{\pgfqpoint{5.514153in}{2.601084in}}% -\pgfpathlineto{\pgfqpoint{5.528953in}{2.496594in}}% -\pgfpathlineto{\pgfqpoint{5.534545in}{2.391493in}}% -\pgfpathlineto{\pgfqpoint{5.530870in}{2.286198in}}% -\pgfpathlineto{\pgfqpoint{5.517903in}{2.181131in}}% -\pgfpathlineto{\pgfqpoint{5.495663in}{2.076715in}}% -\pgfpathlineto{\pgfqpoint{5.464209in}{1.973373in}}% -\pgfpathlineto{\pgfqpoint{5.423640in}{1.871526in}}% -\pgfpathlineto{\pgfqpoint{5.374095in}{1.771589in}}% -\pgfpathlineto{\pgfqpoint{5.315755in}{1.673972in}}% -\pgfpathlineto{\pgfqpoint{5.248837in}{1.579077in}}% -\pgfpathlineto{\pgfqpoint{5.173599in}{1.487296in}}% -\pgfpathlineto{\pgfqpoint{5.090337in}{1.399006in}}% -\pgfpathlineto{\pgfqpoint{4.999382in}{1.314576in}}% -\pgfpathlineto{\pgfqpoint{4.901101in}{1.234353in}}% -\pgfpathlineto{\pgfqpoint{4.795895in}{1.158673in}}% -\pgfpathlineto{\pgfqpoint{4.684196in}{1.087847in}}% -\pgfpathlineto{\pgfqpoint{4.566469in}{1.022172in}}% -\pgfpathlineto{\pgfqpoint{4.443204in}{0.961917in}}% -\pgfpathlineto{\pgfqpoint{4.314919in}{0.907332in}}% -\pgfpathlineto{\pgfqpoint{4.182156in}{0.858640in}}% -\pgfpathlineto{\pgfqpoint{4.045477in}{0.816040in}}% -\pgfpathlineto{\pgfqpoint{3.905465in}{0.779704in}}% -\pgfpathlineto{\pgfqpoint{3.762718in}{0.749775in}}% -\pgfpathlineto{\pgfqpoint{3.617848in}{0.726369in}}% -\pgfpathlineto{\pgfqpoint{3.471479in}{0.709571in}}% -\pgfpathlineto{\pgfqpoint{3.324242in}{0.699440in}}% -\pgfpathlineto{\pgfqpoint{3.176772in}{0.696000in}}% -\pgfpathlineto{\pgfqpoint{3.029708in}{0.699249in}}% -\pgfpathlineto{\pgfqpoint{2.883687in}{0.709151in}}% -\pgfpathlineto{\pgfqpoint{2.739343in}{0.725643in}}% -\pgfpathlineto{\pgfqpoint{2.597303in}{0.748629in}}% -\pgfpathlineto{\pgfqpoint{2.458183in}{0.777984in}}% -\pgfpathlineto{\pgfqpoint{2.322587in}{0.813555in}}% -\pgfpathlineto{\pgfqpoint{2.191105in}{0.855158in}}% -\pgfpathlineto{\pgfqpoint{2.064305in}{0.902583in}}% -\pgfpathlineto{\pgfqpoint{1.942735in}{0.955590in}}% -\pgfpathlineto{\pgfqpoint{1.826920in}{1.013917in}}% -\pgfpathlineto{\pgfqpoint{1.717358in}{1.077273in}}% -\pgfpathlineto{\pgfqpoint{1.614517in}{1.145346in}}% -\pgfpathlineto{\pgfqpoint{1.518835in}{1.217801in}}% -\pgfpathlineto{\pgfqpoint{1.430713in}{1.294283in}}% -\pgfpathlineto{\pgfqpoint{1.350521in}{1.374417in}}% -\pgfpathlineto{\pgfqpoint{1.278588in}{1.457812in}}% -\pgfpathlineto{\pgfqpoint{1.215205in}{1.544060in}}% -\pgfpathlineto{\pgfqpoint{1.160622in}{1.632741in}}% -\pgfpathlineto{\pgfqpoint{1.115048in}{1.723423in}}% -\pgfpathlineto{\pgfqpoint{1.078645in}{1.815664in}}% -\pgfpathlineto{\pgfqpoint{1.051536in}{1.909017in}}% -\pgfpathlineto{\pgfqpoint{1.033796in}{2.003028in}}% -\pgfpathlineto{\pgfqpoint{1.025455in}{2.097239in}}% -\pgfpathlineto{\pgfqpoint{1.026497in}{2.191195in}}% -\pgfpathlineto{\pgfqpoint{1.036862in}{2.284441in}}% -\pgfpathlineto{\pgfqpoint{1.056444in}{2.376523in}}% -\pgfpathlineto{\pgfqpoint{1.085090in}{2.466998in}}% -\pgfpathlineto{\pgfqpoint{1.122607in}{2.555429in}}% -\pgfpathlineto{\pgfqpoint{1.168753in}{2.641389in}}% -\pgfpathlineto{\pgfqpoint{1.223249in}{2.724464in}}% -\pgfpathlineto{\pgfqpoint{1.285772in}{2.804255in}}% -\pgfpathlineto{\pgfqpoint{1.355959in}{2.880381in}}% -\pgfpathlineto{\pgfqpoint{1.433412in}{2.952479in}}% -\pgfpathlineto{\pgfqpoint{1.517694in}{3.020205in}}% -\pgfpathlineto{\pgfqpoint{1.608337in}{3.083239in}}% -\pgfpathlineto{\pgfqpoint{1.704840in}{3.141285in}}% -\pgfpathlineto{\pgfqpoint{1.806675in}{3.194072in}}% -\pgfpathlineto{\pgfqpoint{1.913286in}{3.241357in}}% -\pgfpathlineto{\pgfqpoint{2.024094in}{3.282924in}}% -\pgfpathlineto{\pgfqpoint{2.138499in}{3.318587in}}% -\pgfpathlineto{\pgfqpoint{2.255885in}{3.348190in}}% -\pgfpathlineto{\pgfqpoint{2.375622in}{3.371609in}}% -\pgfpathlineto{\pgfqpoint{2.497065in}{3.388752in}}% -\pgfpathlineto{\pgfqpoint{2.619567in}{3.399557in}}% -\pgfpathlineto{\pgfqpoint{2.742471in}{3.403999in}}% -\pgfpathlineto{\pgfqpoint{2.865123in}{3.402082in}}% -\pgfpathlineto{\pgfqpoint{2.986868in}{3.393845in}}% -\pgfpathlineto{\pgfqpoint{3.107060in}{3.379359in}}% -\pgfpathlineto{\pgfqpoint{3.225059in}{3.358729in}}% -\pgfpathlineto{\pgfqpoint{3.340240in}{3.332090in}}% -\pgfpathlineto{\pgfqpoint{3.451992in}{3.299610in}}% -\pgfpathlineto{\pgfqpoint{3.559723in}{3.261486in}}% -\pgfpathlineto{\pgfqpoint{3.662865in}{3.217945in}}% -\pgfpathlineto{\pgfqpoint{3.760871in}{3.169242in}}% -\pgfpathlineto{\pgfqpoint{3.853226in}{3.115660in}}% -\pgfpathlineto{\pgfqpoint{3.939445in}{3.057508in}}% -\pgfpathlineto{\pgfqpoint{4.019074in}{2.995115in}}% -\pgfpathlineto{\pgfqpoint{4.091697in}{2.928837in}}% -\pgfpathlineto{\pgfqpoint{4.156936in}{2.859048in}}% -\pgfpathlineto{\pgfqpoint{4.214451in}{2.786140in}}% -\pgfpathlineto{\pgfqpoint{4.263947in}{2.710521in}}% -\pgfpathlineto{\pgfqpoint{4.305170in}{2.632616in}}% -\pgfpathlineto{\pgfqpoint{4.337913in}{2.552858in}}% -\pgfpathlineto{\pgfqpoint{4.362013in}{2.471691in}}% -\pgfpathlineto{\pgfqpoint{4.377356in}{2.389567in}}% -\pgfpathlineto{\pgfqpoint{4.383875in}{2.306941in}}% -\pgfpathlineto{\pgfqpoint{4.381551in}{2.224272in}}% -\pgfpathlineto{\pgfqpoint{4.370413in}{2.142017in}}% -\pgfpathlineto{\pgfqpoint{4.350540in}{2.060631in}}% -\pgfpathlineto{\pgfqpoint{4.322056in}{1.980563in}}% -\pgfpathlineto{\pgfqpoint{4.285135in}{1.902256in}}% -\pgfpathlineto{\pgfqpoint{4.239995in}{1.826140in}}% -\pgfpathlineto{\pgfqpoint{4.186900in}{1.752635in}}% -\pgfpathlineto{\pgfqpoint{4.126159in}{1.682145in}}% -\pgfpathlineto{\pgfqpoint{4.058121in}{1.615056in}}% -\pgfpathlineto{\pgfqpoint{3.983177in}{1.551736in}}% -\pgfpathlineto{\pgfqpoint{3.901754in}{1.492532in}}% -\pgfpathlineto{\pgfqpoint{3.814316in}{1.437766in}}% -\pgfpathlineto{\pgfqpoint{3.721361in}{1.387736in}}% -\pgfpathlineto{\pgfqpoint{3.623415in}{1.342711in}}% -\pgfpathlineto{\pgfqpoint{3.521035in}{1.302936in}}% -\pgfpathlineto{\pgfqpoint{3.414799in}{1.268621in}}% -\pgfpathlineto{\pgfqpoint{3.305307in}{1.239949in}}% -\pgfpathlineto{\pgfqpoint{3.193179in}{1.217069in}}% -\pgfpathlineto{\pgfqpoint{3.079047in}{1.200096in}}% -\pgfpathlineto{\pgfqpoint{2.963554in}{1.189114in}}% -\pgfpathlineto{\pgfqpoint{2.847352in}{1.184170in}}% -\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% -\pgfpathlineto{\pgfqpoint{2.731094in}{1.185279in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{0.528000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{0.528000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.800000in}{4.224000in}}% -\pgfpathlineto{\pgfqpoint{5.760000in}{4.224000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% -- cgit v1.2.1 From 676b8ffe21376e27f7f21c093bee2fd8692b7a4b Mon Sep 17 00:00:00 2001 From: runterer Date: Mon, 8 Aug 2022 00:01:33 +0200 Subject: finished fazit --- buch/papers/zeta/fazit.tex | 85 +- buch/papers/zeta/images/zeta_re_0.5_paper.pgf | 1137 +++++++++++++++++++++++++ buch/papers/zeta/references.bib | 15 + 3 files changed, 1228 insertions(+), 9 deletions(-) create mode 100644 buch/papers/zeta/images/zeta_re_0.5_paper.pgf (limited to 'buch') diff --git a/buch/papers/zeta/fazit.tex b/buch/papers/zeta/fazit.tex index f696f83..fe2d35d 100644 --- a/buch/papers/zeta/fazit.tex +++ b/buch/papers/zeta/fazit.tex @@ -3,26 +3,93 @@ Ganz zu Beginn dieses Papers wurde die Behauptung erwähnt, dass die Summe aller natürlichen Zahlen $-\frac{1}{12}$ sei. Diese Summe ist nichts anderes als die Zetafunktion am Wert $s=-1$. -Da wir die analytische Fortsetzung mit der Funktionalgleichung \eqref{zeta:equation:functional} gefunden haben, können wir diese Behauptung prüfen. -Zunächst berechnen wir $\zeta(1-s) = \zeta(2) = \frac{\pi^2}{6}$, welches im konvergenten Bereich der Reihe liegt und auch bekannt ist als das Basler Problem. -Somit haben wir +Da wir die analytische Fortsetzung mit der Funktionalgleichung \eqref{zeta:equation:functional} gefunden haben, können wir den Wert $s=-1$ einsetzen und erhalten \begin{align*} - \zeta(s) = \zeta(-1) + \zeta(s) &= \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}} \zeta(1-s) \frac{\pi^{\frac{s}{2}}}{\Gamma \left( \frac{s}{2} \right)} \\ + \zeta(-1) &= \frac{\Gamma(1)}{\pi} - \frac{\pi^2}{6} - \frac{\pi^{\frac{-1}{2}}}{\Gamma \left( \frac{-1}{2} \right)} + \zeta(2) + \frac{\pi^{-\frac{1}{2}}}{\Gamma \left( -\frac{1}{2} \right)}. +\end{align*} +Also fehlen uns drei Werte, $\zeta(2)$, $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$. + +Zunächst konzentrieren wir uns auf $\zeta(2)$, welches im konvergenten Bereich der Reihe liegt und auch bekannt ist als das Basler Problem. +Wir lösen das Basler Problem \cite{zeta:online:basel} mithilfe der parsevalschen Gleichung \cite{zeta:online:pars} +\begin{align} + \int_{-\pi}^{\pi} |f(x)|^2 dx + &= + 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2 \\ + c_n + &= + \frac{1}{2\pi} + \int_{-\pi}^{\pi}f(x)e^{-inx} dx, +\end{align} +welche besagt dass die Summe der quadrierten Fourierkoeffizienten einer Funktion identisch ist mit dem Integral der quadrierten Funktion. +Wenn wir dies für $f(x) = x$ auswerten erhalten wir +\begin{align} + c_n + &= + \begin{cases} + \frac{(-1)^n}{n} i, & \text{for } n\neq0, \\ + 0, & \text{for } n=0 + \end{cases} + \\ + \int_{-\pi}^{\pi} x^2 dx + &= + 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2 + = + 4\pi \underbrace{\sum_{n=1}^{\infty} \frac{1}{n^2}}_{\zeta(2)}. +\end{align} +Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als +\begin{equation} + \zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{4\pi} + \int_{-\pi}^{\pi} x^2 dx + = \frac{\pi^2}{6}. +\end{equation} + +Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$ mithilfe der Integraldefinition der Gammafunktion \ref{buch:rekursion:def:gamma}. +Da das Integral für $\Gamma\left(-\frac{1}{2}\right)$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet. +Es ergeben sich die Werte +\begin{align*} + \Gamma(1) + &= 1\\ + \Gamma\left(-\frac{1}{2}\right) + &= \frac{\pi}{\sin\left(-\frac{\pi}{2}\right) + \Gamma\left(\frac{3}{2}\right)} + = -\frac{\sqrt{\pi}}{2}. +\end{align*} + +Wenn wir diese Werte in die Funktionalgleichung einsetzen, erhalten wir das gewünschte Ergebnis +\begin{align*} + \zeta(-1) + &= + \frac{\Gamma(1)}{\pi} + \zeta(2) + \frac{\pi^{-\frac{1}{2}}}{\Gamma \left( -\frac{1}{2} \right)} \\ &= \frac{1}{\pi} \frac{\pi^2}{6} - \frac{1}{\sqrt{\pi} (-2\sqrt{\pi})} + \frac{\pi^{-\frac{1}{2}}}{ + -\frac{\sqrt{\pi}}{2}} + \\ &= - -\frac{1}{12}, + -\frac{1}{12}. \end{align*} -wobei die Werte der Gammafunktion TODO berechnet werden. + +Weiter wurde zu Beginn dieses Papers auf die Riemannsche Vermutung hingewiesen, wonach alle nichttrivialen Nullstellen der Zetafunktion auf der $\Re(s)=\frac{1}{2}$ Geraden liegen. +Abbildung \ref{zeta:fig:einzweitel} zeigt die Funktionswerte dieser Geraden. +%TODO colorplot does not work.. Ausserdem zeigt Abbildung \ref{zeta:fig:colorplot} die farbcodierte Zetafunktion für Werte der analytischen Fortsetzung und des originalen Definitionsbereichs. +\begin{figure} + \centering + \input{papers/zeta/images/zeta_re_0.5_paper.pgf} + \caption{Die komplexen Werte der Zetafunktion für die kritische Gerade $\Re(s)=\frac{1}{2}$ im Bereich $\Im(s) = 0\dots40$. + Klar sichtbar sind die immer wiederkehrenden Nullstellen, wie sie Gegenstand der Riemannschen Vermutung sind.} + \label{zeta:fig:einzweitel} +\end{figure} diff --git a/buch/papers/zeta/images/zeta_re_0.5_paper.pgf b/buch/papers/zeta/images/zeta_re_0.5_paper.pgf new file mode 100644 index 0000000..44fffce --- /dev/null +++ b/buch/papers/zeta/images/zeta_re_0.5_paper.pgf @@ -0,0 +1,1137 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% and, on pdftex +%% \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +%% +%% or, on luatex and xetex +%% \usepackage{unicode-math} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{3.700000in}{3.100000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{3.700000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{3.700000in}{3.100000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.100000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.555000in}{0.465000in}}% +\pgfpathlineto{\pgfqpoint{3.330000in}{0.465000in}}% +\pgfpathlineto{\pgfqpoint{3.330000in}{2.728000in}}% +\pgfpathlineto{\pgfqpoint{0.555000in}{2.728000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.945066in}{0.465000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.945066in,y=0.367778in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {-1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.518386in}{0.465000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.518386in,y=0.367778in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.091705in}{0.465000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.091705in,y=0.367778in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.665024in}{0.465000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.665024in,y=0.367778in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.238343in}{0.465000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.238343in,y=0.367778in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {3}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.942500in,y=0.188766in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \Re\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{0.689186in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.172283in, y=0.640961in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {-1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{0.983474in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.172283in, y=0.935249in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {-1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{1.277763in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.172283in, y=1.229538in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {-0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{1.572051in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.280308in, y=1.523826in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{1.866340in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.280308in, y=1.818114in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{2.160628in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.280308in, y=2.112403in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.555000in}{2.454916in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.280308in, y=2.406691in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.116727in,y=1.596500in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \Im\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.555000in}{0.465000in}}{\pgfqpoint{2.775000in}{2.263000in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681136in}{1.572051in}}% +\pgfpathlineto{\pgfqpoint{0.688432in}{1.480299in}}% +\pgfpathlineto{\pgfqpoint{0.709773in}{1.392050in}}% +\pgfpathlineto{\pgfqpoint{0.743620in}{1.310385in}}% +\pgfpathlineto{\pgfqpoint{0.787707in}{1.237638in}}% +\pgfpathlineto{\pgfqpoint{0.839389in}{1.175245in}}% +\pgfpathlineto{\pgfqpoint{0.895990in}{1.123755in}}% +\pgfpathlineto{\pgfqpoint{0.955065in}{1.082975in}}% +\pgfpathlineto{\pgfqpoint{1.014571in}{1.052169in}}% +\pgfpathlineto{\pgfqpoint{1.072924in}{1.030270in}}% +\pgfpathlineto{\pgfqpoint{1.128990in}{1.016062in}}% +\pgfpathlineto{\pgfqpoint{1.182029in}{1.008311in}}% +\pgfpathlineto{\pgfqpoint{1.231620in}{1.005854in}}% +\pgfpathlineto{\pgfqpoint{1.277582in}{1.007647in}}% +\pgfpathlineto{\pgfqpoint{1.319910in}{1.012787in}}% +\pgfpathlineto{\pgfqpoint{1.358712in}{1.020510in}}% +\pgfpathlineto{\pgfqpoint{1.394171in}{1.030187in}}% +\pgfpathlineto{\pgfqpoint{1.426510in}{1.041304in}}% +\pgfpathlineto{\pgfqpoint{1.455973in}{1.053449in}}% +\pgfpathlineto{\pgfqpoint{1.482805in}{1.066294in}}% +\pgfpathlineto{\pgfqpoint{1.507245in}{1.079582in}}% +\pgfpathlineto{\pgfqpoint{1.549837in}{1.106725in}}% +\pgfpathlineto{\pgfqpoint{1.585364in}{1.133768in}}% +\pgfpathlineto{\pgfqpoint{1.615167in}{1.160075in}}% +\pgfpathlineto{\pgfqpoint{1.640334in}{1.185309in}}% +\pgfpathlineto{\pgfqpoint{1.661737in}{1.209315in}}% +\pgfpathlineto{\pgfqpoint{1.688269in}{1.242941in}}% +\pgfpathlineto{\pgfqpoint{1.709653in}{1.273805in}}% +\pgfpathlineto{\pgfqpoint{1.732320in}{1.311061in}}% +\pgfpathlineto{\pgfqpoint{1.754085in}{1.352271in}}% +\pgfpathlineto{\pgfqpoint{1.773904in}{1.395401in}}% +\pgfpathlineto{\pgfqpoint{1.793916in}{1.444833in}}% +\pgfpathlineto{\pgfqpoint{1.855523in}{1.603579in}}% +\pgfpathlineto{\pgfqpoint{1.871899in}{1.636369in}}% +\pgfpathlineto{\pgfqpoint{1.887975in}{1.663791in}}% +\pgfpathlineto{\pgfqpoint{1.905893in}{1.689673in}}% +\pgfpathlineto{\pgfqpoint{1.923353in}{1.711002in}}% +\pgfpathlineto{\pgfqpoint{1.942685in}{1.730964in}}% +\pgfpathlineto{\pgfqpoint{1.960876in}{1.746828in}}% +\pgfpathlineto{\pgfqpoint{1.980651in}{1.761359in}}% +\pgfpathlineto{\pgfqpoint{2.002067in}{1.774342in}}% +\pgfpathlineto{\pgfqpoint{2.025149in}{1.785523in}}% +\pgfpathlineto{\pgfqpoint{2.049882in}{1.794616in}}% +\pgfpathlineto{\pgfqpoint{2.071710in}{1.800370in}}% +\pgfpathlineto{\pgfqpoint{2.094576in}{1.804255in}}% +\pgfpathlineto{\pgfqpoint{2.118386in}{1.806063in}}% +\pgfpathlineto{\pgfqpoint{2.143008in}{1.805582in}}% +\pgfpathlineto{\pgfqpoint{2.168276in}{1.802595in}}% +\pgfpathlineto{\pgfqpoint{2.193983in}{1.796893in}}% +\pgfpathlineto{\pgfqpoint{2.214699in}{1.790240in}}% +\pgfpathlineto{\pgfqpoint{2.235388in}{1.781624in}}% +\pgfpathlineto{\pgfqpoint{2.255885in}{1.770960in}}% +\pgfpathlineto{\pgfqpoint{2.276003in}{1.758173in}}% +\pgfpathlineto{\pgfqpoint{2.295538in}{1.743207in}}% +\pgfpathlineto{\pgfqpoint{2.314269in}{1.726020in}}% +\pgfpathlineto{\pgfqpoint{2.331956in}{1.706596in}}% +\pgfpathlineto{\pgfqpoint{2.348347in}{1.684942in}}% +\pgfpathlineto{\pgfqpoint{2.363172in}{1.661094in}}% +\pgfpathlineto{\pgfqpoint{2.376155in}{1.635120in}}% +\pgfpathlineto{\pgfqpoint{2.387010in}{1.607125in}}% +\pgfpathlineto{\pgfqpoint{2.393580in}{1.584884in}}% +\pgfpathlineto{\pgfqpoint{2.398668in}{1.561660in}}% +\pgfpathlineto{\pgfqpoint{2.402154in}{1.537540in}}% +\pgfpathlineto{\pgfqpoint{2.403918in}{1.512628in}}% +\pgfpathlineto{\pgfqpoint{2.403847in}{1.487038in}}% +\pgfpathlineto{\pgfqpoint{2.401832in}{1.460904in}}% +\pgfpathlineto{\pgfqpoint{2.397772in}{1.434370in}}% +\pgfpathlineto{\pgfqpoint{2.391573in}{1.407598in}}% +\pgfpathlineto{\pgfqpoint{2.383153in}{1.380763in}}% +\pgfpathlineto{\pgfqpoint{2.372442in}{1.354053in}}% +\pgfpathlineto{\pgfqpoint{2.359382in}{1.327670in}}% +\pgfpathlineto{\pgfqpoint{2.343935in}{1.301831in}}% +\pgfpathlineto{\pgfqpoint{2.326077in}{1.276760in}}% +\pgfpathlineto{\pgfqpoint{2.305804in}{1.252694in}}% +\pgfpathlineto{\pgfqpoint{2.283135in}{1.229878in}}% +\pgfpathlineto{\pgfqpoint{2.258109in}{1.208563in}}% +\pgfpathlineto{\pgfqpoint{2.230793in}{1.189006in}}% +\pgfpathlineto{\pgfqpoint{2.201276in}{1.171464in}}% +\pgfpathlineto{\pgfqpoint{2.169676in}{1.156196in}}% +\pgfpathlineto{\pgfqpoint{2.136140in}{1.143457in}}% +\pgfpathlineto{\pgfqpoint{2.100841in}{1.133495in}}% +\pgfpathlineto{\pgfqpoint{2.076429in}{1.128516in}}% +\pgfpathlineto{\pgfqpoint{2.051391in}{1.124945in}}% +\pgfpathlineto{\pgfqpoint{2.025799in}{1.122848in}}% +\pgfpathlineto{\pgfqpoint{1.999734in}{1.122286in}}% +\pgfpathlineto{\pgfqpoint{1.973279in}{1.123317in}}% +\pgfpathlineto{\pgfqpoint{1.946525in}{1.125993in}}% +\pgfpathlineto{\pgfqpoint{1.919567in}{1.130362in}}% +\pgfpathlineto{\pgfqpoint{1.892506in}{1.136468in}}% +\pgfpathlineto{\pgfqpoint{1.865445in}{1.144346in}}% +\pgfpathlineto{\pgfqpoint{1.838497in}{1.154027in}}% +\pgfpathlineto{\pgfqpoint{1.811773in}{1.165533in}}% +\pgfpathlineto{\pgfqpoint{1.785392in}{1.178882in}}% +\pgfpathlineto{\pgfqpoint{1.759476in}{1.194079in}}% +\pgfpathlineto{\pgfqpoint{1.734149in}{1.211126in}}% +\pgfpathlineto{\pgfqpoint{1.709537in}{1.230014in}}% +\pgfpathlineto{\pgfqpoint{1.685768in}{1.250724in}}% +\pgfpathlineto{\pgfqpoint{1.662973in}{1.273228in}}% +\pgfpathlineto{\pgfqpoint{1.641282in}{1.297490in}}% +\pgfpathlineto{\pgfqpoint{1.620826in}{1.323462in}}% +\pgfpathlineto{\pgfqpoint{1.601734in}{1.351088in}}% +\pgfpathlineto{\pgfqpoint{1.584134in}{1.380299in}}% +\pgfpathlineto{\pgfqpoint{1.568154in}{1.411017in}}% +\pgfpathlineto{\pgfqpoint{1.553915in}{1.443154in}}% +\pgfpathlineto{\pgfqpoint{1.541538in}{1.476610in}}% +\pgfpathlineto{\pgfqpoint{1.531137in}{1.511276in}}% +\pgfpathlineto{\pgfqpoint{1.522820in}{1.547031in}}% +\pgfpathlineto{\pgfqpoint{1.516692in}{1.583746in}}% +\pgfpathlineto{\pgfqpoint{1.512846in}{1.621280in}}% +\pgfpathlineto{\pgfqpoint{1.511371in}{1.659485in}}% +\pgfpathlineto{\pgfqpoint{1.512344in}{1.698201in}}% +\pgfpathlineto{\pgfqpoint{1.515835in}{1.737261in}}% +\pgfpathlineto{\pgfqpoint{1.521900in}{1.776492in}}% +\pgfpathlineto{\pgfqpoint{1.530587in}{1.815709in}}% +\pgfpathlineto{\pgfqpoint{1.541930in}{1.854726in}}% +\pgfpathlineto{\pgfqpoint{1.555950in}{1.893346in}}% +\pgfpathlineto{\pgfqpoint{1.572655in}{1.931373in}}% +\pgfpathlineto{\pgfqpoint{1.592037in}{1.968601in}}% +\pgfpathlineto{\pgfqpoint{1.614076in}{2.004826in}}% +\pgfpathlineto{\pgfqpoint{1.638736in}{2.039841in}}% +\pgfpathlineto{\pgfqpoint{1.665963in}{2.073438in}}% +\pgfpathlineto{\pgfqpoint{1.695690in}{2.105411in}}% +\pgfpathlineto{\pgfqpoint{1.727833in}{2.135554in}}% +\pgfpathlineto{\pgfqpoint{1.762290in}{2.163667in}}% +\pgfpathlineto{\pgfqpoint{1.798945in}{2.189554in}}% +\pgfpathlineto{\pgfqpoint{1.837665in}{2.213024in}}% +\pgfpathlineto{\pgfqpoint{1.878301in}{2.233896in}}% +\pgfpathlineto{\pgfqpoint{1.920686in}{2.251996in}}% +\pgfpathlineto{\pgfqpoint{1.964642in}{2.267163in}}% +\pgfpathlineto{\pgfqpoint{2.009974in}{2.279245in}}% +\pgfpathlineto{\pgfqpoint{2.056472in}{2.288107in}}% +\pgfpathlineto{\pgfqpoint{2.103914in}{2.293625in}}% +\pgfpathlineto{\pgfqpoint{2.152067in}{2.295693in}}% +\pgfpathlineto{\pgfqpoint{2.200685in}{2.294225in}}% +\pgfpathlineto{\pgfqpoint{2.249513in}{2.289149in}}% +\pgfpathlineto{\pgfqpoint{2.298287in}{2.280415in}}% +\pgfpathlineto{\pgfqpoint{2.346736in}{2.267995in}}% +\pgfpathlineto{\pgfqpoint{2.394585in}{2.251880in}}% +\pgfpathlineto{\pgfqpoint{2.441552in}{2.232087in}}% +\pgfpathlineto{\pgfqpoint{2.487355in}{2.208652in}}% +\pgfpathlineto{\pgfqpoint{2.531712in}{2.181638in}}% +\pgfpathlineto{\pgfqpoint{2.574341in}{2.151130in}}% +\pgfpathlineto{\pgfqpoint{2.614965in}{2.117239in}}% +\pgfpathlineto{\pgfqpoint{2.653312in}{2.080099in}}% +\pgfpathlineto{\pgfqpoint{2.689119in}{2.039869in}}% +\pgfpathlineto{\pgfqpoint{2.722131in}{1.996731in}}% +\pgfpathlineto{\pgfqpoint{2.752105in}{1.950891in}}% +\pgfpathlineto{\pgfqpoint{2.778814in}{1.902577in}}% +\pgfpathlineto{\pgfqpoint{2.802045in}{1.852038in}}% +\pgfpathlineto{\pgfqpoint{2.821604in}{1.799546in}}% +\pgfpathlineto{\pgfqpoint{2.837318in}{1.745388in}}% +\pgfpathlineto{\pgfqpoint{2.849033in}{1.689873in}}% +\pgfpathlineto{\pgfqpoint{2.856622in}{1.633323in}}% +\pgfpathlineto{\pgfqpoint{2.859982in}{1.576075in}}% +\pgfpathlineto{\pgfqpoint{2.859035in}{1.518478in}}% +\pgfpathlineto{\pgfqpoint{2.853735in}{1.460889in}}% +\pgfpathlineto{\pgfqpoint{2.844060in}{1.403674in}}% +\pgfpathlineto{\pgfqpoint{2.837586in}{1.375323in}}% +\pgfpathlineto{\pgfqpoint{2.830024in}{1.347204in}}% +\pgfpathlineto{\pgfqpoint{2.821382in}{1.319364in}}% +\pgfpathlineto{\pgfqpoint{2.811668in}{1.291849in}}% +\pgfpathlineto{\pgfqpoint{2.800891in}{1.264706in}}% +\pgfpathlineto{\pgfqpoint{2.789064in}{1.237981in}}% +\pgfpathlineto{\pgfqpoint{2.776202in}{1.211720in}}% +\pgfpathlineto{\pgfqpoint{2.762320in}{1.185968in}}% +\pgfpathlineto{\pgfqpoint{2.747436in}{1.160769in}}% +\pgfpathlineto{\pgfqpoint{2.731571in}{1.136169in}}% +\pgfpathlineto{\pgfqpoint{2.714746in}{1.112210in}}% +\pgfpathlineto{\pgfqpoint{2.696986in}{1.088936in}}% +\pgfpathlineto{\pgfqpoint{2.678317in}{1.066388in}}% +\pgfpathlineto{\pgfqpoint{2.658765in}{1.044607in}}% +\pgfpathlineto{\pgfqpoint{2.638362in}{1.023632in}}% +\pgfpathlineto{\pgfqpoint{2.617138in}{1.003504in}}% +\pgfpathlineto{\pgfqpoint{2.595126in}{0.984258in}}% +\pgfpathlineto{\pgfqpoint{2.572362in}{0.965931in}}% +\pgfpathlineto{\pgfqpoint{2.548882in}{0.948557in}}% +\pgfpathlineto{\pgfqpoint{2.524725in}{0.932170in}}% +\pgfpathlineto{\pgfqpoint{2.499930in}{0.916800in}}% +\pgfpathlineto{\pgfqpoint{2.474538in}{0.902479in}}% +\pgfpathlineto{\pgfqpoint{2.448593in}{0.889233in}}% +\pgfpathlineto{\pgfqpoint{2.422139in}{0.877089in}}% +\pgfpathlineto{\pgfqpoint{2.395222in}{0.866071in}}% +\pgfpathlineto{\pgfqpoint{2.367887in}{0.856201in}}% +\pgfpathlineto{\pgfqpoint{2.340183in}{0.847499in}}% +\pgfpathlineto{\pgfqpoint{2.312159in}{0.839984in}}% +\pgfpathlineto{\pgfqpoint{2.283865in}{0.833671in}}% +\pgfpathlineto{\pgfqpoint{2.255351in}{0.828574in}}% +\pgfpathlineto{\pgfqpoint{2.226669in}{0.824703in}}% +\pgfpathlineto{\pgfqpoint{2.197871in}{0.822069in}}% +\pgfpathlineto{\pgfqpoint{2.169010in}{0.820677in}}% +\pgfpathlineto{\pgfqpoint{2.140139in}{0.820531in}}% +\pgfpathlineto{\pgfqpoint{2.111312in}{0.821633in}}% +\pgfpathlineto{\pgfqpoint{2.082582in}{0.823983in}}% +\pgfpathlineto{\pgfqpoint{2.054004in}{0.827576in}}% +\pgfpathlineto{\pgfqpoint{2.025632in}{0.832407in}}% +\pgfpathlineto{\pgfqpoint{1.997519in}{0.838467in}}% +\pgfpathlineto{\pgfqpoint{1.969718in}{0.845745in}}% +\pgfpathlineto{\pgfqpoint{1.942285in}{0.854227in}}% +\pgfpathlineto{\pgfqpoint{1.915270in}{0.863897in}}% +\pgfpathlineto{\pgfqpoint{1.888728in}{0.874737in}}% +\pgfpathlineto{\pgfqpoint{1.862708in}{0.886724in}}% +\pgfpathlineto{\pgfqpoint{1.837263in}{0.899835in}}% +\pgfpathlineto{\pgfqpoint{1.812441in}{0.914043in}}% +\pgfpathlineto{\pgfqpoint{1.788292in}{0.929320in}}% +\pgfpathlineto{\pgfqpoint{1.764863in}{0.945634in}}% +\pgfpathlineto{\pgfqpoint{1.742201in}{0.962952in}}% +\pgfpathlineto{\pgfqpoint{1.720351in}{0.981237in}}% +\pgfpathlineto{\pgfqpoint{1.699355in}{1.000451in}}% +\pgfpathlineto{\pgfqpoint{1.679256in}{1.020554in}}% +\pgfpathlineto{\pgfqpoint{1.660094in}{1.041503in}}% +\pgfpathlineto{\pgfqpoint{1.641906in}{1.063254in}}% +\pgfpathlineto{\pgfqpoint{1.624729in}{1.085759in}}% +\pgfpathlineto{\pgfqpoint{1.608597in}{1.108970in}}% +\pgfpathlineto{\pgfqpoint{1.593542in}{1.132838in}}% +\pgfpathlineto{\pgfqpoint{1.579593in}{1.157308in}}% +\pgfpathlineto{\pgfqpoint{1.566778in}{1.182329in}}% +\pgfpathlineto{\pgfqpoint{1.555122in}{1.207845in}}% +\pgfpathlineto{\pgfqpoint{1.544646in}{1.233800in}}% +\pgfpathlineto{\pgfqpoint{1.535371in}{1.260135in}}% +\pgfpathlineto{\pgfqpoint{1.527314in}{1.286793in}}% +\pgfpathlineto{\pgfqpoint{1.520488in}{1.313712in}}% +\pgfpathlineto{\pgfqpoint{1.514905in}{1.340833in}}% +\pgfpathlineto{\pgfqpoint{1.510575in}{1.368094in}}% +\pgfpathlineto{\pgfqpoint{1.507502in}{1.395433in}}% +\pgfpathlineto{\pgfqpoint{1.505690in}{1.422788in}}% +\pgfpathlineto{\pgfqpoint{1.505138in}{1.450096in}}% +\pgfpathlineto{\pgfqpoint{1.505844in}{1.477294in}}% +\pgfpathlineto{\pgfqpoint{1.507800in}{1.504320in}}% +\pgfpathlineto{\pgfqpoint{1.510998in}{1.531110in}}% +\pgfpathlineto{\pgfqpoint{1.515426in}{1.557603in}}% +\pgfpathlineto{\pgfqpoint{1.521068in}{1.583737in}}% +\pgfpathlineto{\pgfqpoint{1.527906in}{1.609450in}}% +\pgfpathlineto{\pgfqpoint{1.535918in}{1.634683in}}% +\pgfpathlineto{\pgfqpoint{1.545080in}{1.659375in}}% +\pgfpathlineto{\pgfqpoint{1.555366in}{1.683468in}}% +\pgfpathlineto{\pgfqpoint{1.566744in}{1.706907in}}% +\pgfpathlineto{\pgfqpoint{1.579182in}{1.729634in}}% +\pgfpathlineto{\pgfqpoint{1.592645in}{1.751596in}}% +\pgfpathlineto{\pgfqpoint{1.607092in}{1.772741in}}% +\pgfpathlineto{\pgfqpoint{1.622484in}{1.793018in}}% +\pgfpathlineto{\pgfqpoint{1.638776in}{1.812379in}}% +\pgfpathlineto{\pgfqpoint{1.655923in}{1.830778in}}% +\pgfpathlineto{\pgfqpoint{1.673875in}{1.848171in}}% +\pgfpathlineto{\pgfqpoint{1.692583in}{1.864516in}}% +\pgfpathlineto{\pgfqpoint{1.711991in}{1.879776in}}% +\pgfpathlineto{\pgfqpoint{1.732046in}{1.893913in}}% +\pgfpathlineto{\pgfqpoint{1.752691in}{1.906894in}}% +\pgfpathlineto{\pgfqpoint{1.773866in}{1.918690in}}% +\pgfpathlineto{\pgfqpoint{1.795511in}{1.929273in}}% +\pgfpathlineto{\pgfqpoint{1.817565in}{1.938618in}}% +\pgfpathlineto{\pgfqpoint{1.839963in}{1.946705in}}% +\pgfpathlineto{\pgfqpoint{1.862641in}{1.953516in}}% +\pgfpathlineto{\pgfqpoint{1.885533in}{1.959037in}}% +\pgfpathlineto{\pgfqpoint{1.908574in}{1.963257in}}% +\pgfpathlineto{\pgfqpoint{1.931696in}{1.966170in}}% +\pgfpathlineto{\pgfqpoint{1.954831in}{1.967771in}}% +\pgfpathlineto{\pgfqpoint{1.977912in}{1.968060in}}% +\pgfpathlineto{\pgfqpoint{2.000869in}{1.967041in}}% +\pgfpathlineto{\pgfqpoint{2.023635in}{1.964723in}}% +\pgfpathlineto{\pgfqpoint{2.046143in}{1.961114in}}% +\pgfpathlineto{\pgfqpoint{2.068324in}{1.956231in}}% +\pgfpathlineto{\pgfqpoint{2.090111in}{1.950092in}}% +\pgfpathlineto{\pgfqpoint{2.111439in}{1.942719in}}% +\pgfpathlineto{\pgfqpoint{2.132242in}{1.934137in}}% +\pgfpathlineto{\pgfqpoint{2.152457in}{1.924377in}}% +\pgfpathlineto{\pgfqpoint{2.172020in}{1.913470in}}% +\pgfpathlineto{\pgfqpoint{2.190871in}{1.901455in}}% +\pgfpathlineto{\pgfqpoint{2.208950in}{1.888369in}}% +\pgfpathlineto{\pgfqpoint{2.226199in}{1.874258in}}% +\pgfpathlineto{\pgfqpoint{2.242565in}{1.859166in}}% +\pgfpathlineto{\pgfqpoint{2.257992in}{1.843145in}}% +\pgfpathlineto{\pgfqpoint{2.272432in}{1.826246in}}% +\pgfpathlineto{\pgfqpoint{2.285835in}{1.808526in}}% +\pgfpathlineto{\pgfqpoint{2.298157in}{1.790043in}}% +\pgfpathlineto{\pgfqpoint{2.309355in}{1.770857in}}% +\pgfpathlineto{\pgfqpoint{2.319390in}{1.751034in}}% +\pgfpathlineto{\pgfqpoint{2.328227in}{1.730638in}}% +\pgfpathlineto{\pgfqpoint{2.335832in}{1.709738in}}% +\pgfpathlineto{\pgfqpoint{2.342178in}{1.688405in}}% +\pgfpathlineto{\pgfqpoint{2.347237in}{1.666710in}}% +\pgfpathlineto{\pgfqpoint{2.350989in}{1.644727in}}% +\pgfpathlineto{\pgfqpoint{2.353416in}{1.622531in}}% +\pgfpathlineto{\pgfqpoint{2.354504in}{1.600199in}}% +\pgfpathlineto{\pgfqpoint{2.354242in}{1.577807in}}% +\pgfpathlineto{\pgfqpoint{2.352626in}{1.555435in}}% +\pgfpathlineto{\pgfqpoint{2.349653in}{1.533161in}}% +\pgfpathlineto{\pgfqpoint{2.345326in}{1.511064in}}% +\pgfpathlineto{\pgfqpoint{2.339652in}{1.489223in}}% +\pgfpathlineto{\pgfqpoint{2.332641in}{1.467718in}}% +\pgfpathlineto{\pgfqpoint{2.324309in}{1.446627in}}% +\pgfpathlineto{\pgfqpoint{2.314675in}{1.426028in}}% +\pgfpathlineto{\pgfqpoint{2.303763in}{1.406000in}}% +\pgfpathlineto{\pgfqpoint{2.291602in}{1.386618in}}% +\pgfpathlineto{\pgfqpoint{2.278222in}{1.367957in}}% +\pgfpathlineto{\pgfqpoint{2.263661in}{1.350090in}}% +\pgfpathlineto{\pgfqpoint{2.247959in}{1.333090in}}% +\pgfpathlineto{\pgfqpoint{2.231160in}{1.317027in}}% +\pgfpathlineto{\pgfqpoint{2.213312in}{1.301967in}}% +\pgfpathlineto{\pgfqpoint{2.194468in}{1.287975in}}% +\pgfpathlineto{\pgfqpoint{2.174684in}{1.275114in}}% +\pgfpathlineto{\pgfqpoint{2.154018in}{1.263443in}}% +\pgfpathlineto{\pgfqpoint{2.132533in}{1.253018in}}% +\pgfpathlineto{\pgfqpoint{2.110296in}{1.243892in}}% +\pgfpathlineto{\pgfqpoint{2.087376in}{1.236114in}}% +\pgfpathlineto{\pgfqpoint{2.063844in}{1.229730in}}% +\pgfpathlineto{\pgfqpoint{2.039776in}{1.224782in}}% +\pgfpathlineto{\pgfqpoint{2.015248in}{1.221307in}}% +\pgfpathlineto{\pgfqpoint{1.990341in}{1.219337in}}% +\pgfpathlineto{\pgfqpoint{1.965136in}{1.218903in}}% +\pgfpathlineto{\pgfqpoint{1.939717in}{1.220029in}}% +\pgfpathlineto{\pgfqpoint{1.914170in}{1.222734in}}% +\pgfpathlineto{\pgfqpoint{1.888580in}{1.227032in}}% +\pgfpathlineto{\pgfqpoint{1.863037in}{1.232935in}}% +\pgfpathlineto{\pgfqpoint{1.837628in}{1.240448in}}% +\pgfpathlineto{\pgfqpoint{1.812444in}{1.249569in}}% +\pgfpathlineto{\pgfqpoint{1.787575in}{1.260294in}}% +\pgfpathlineto{\pgfqpoint{1.763109in}{1.272614in}}% +\pgfpathlineto{\pgfqpoint{1.739138in}{1.286512in}}% +\pgfpathlineto{\pgfqpoint{1.715750in}{1.301967in}}% +\pgfpathlineto{\pgfqpoint{1.693034in}{1.318955in}}% +\pgfpathlineto{\pgfqpoint{1.671077in}{1.337444in}}% +\pgfpathlineto{\pgfqpoint{1.649967in}{1.357398in}}% +\pgfpathlineto{\pgfqpoint{1.629787in}{1.378776in}}% +\pgfpathlineto{\pgfqpoint{1.610621in}{1.401531in}}% +\pgfpathlineto{\pgfqpoint{1.592549in}{1.425613in}}% +\pgfpathlineto{\pgfqpoint{1.575650in}{1.450966in}}% +\pgfpathlineto{\pgfqpoint{1.559998in}{1.477529in}}% +\pgfpathlineto{\pgfqpoint{1.545668in}{1.505237in}}% +\pgfpathlineto{\pgfqpoint{1.532727in}{1.534020in}}% +\pgfpathlineto{\pgfqpoint{1.521243in}{1.563804in}}% +\pgfpathlineto{\pgfqpoint{1.511278in}{1.594511in}}% +\pgfpathlineto{\pgfqpoint{1.502888in}{1.626061in}}% +\pgfpathlineto{\pgfqpoint{1.496130in}{1.658366in}}% +\pgfpathlineto{\pgfqpoint{1.491052in}{1.691337in}}% +\pgfpathlineto{\pgfqpoint{1.487700in}{1.724884in}}% +\pgfpathlineto{\pgfqpoint{1.486113in}{1.758910in}}% +\pgfpathlineto{\pgfqpoint{1.486327in}{1.793318in}}% +\pgfpathlineto{\pgfqpoint{1.488373in}{1.828008in}}% +\pgfpathlineto{\pgfqpoint{1.492275in}{1.862876in}}% +\pgfpathlineto{\pgfqpoint{1.498052in}{1.897819in}}% +\pgfpathlineto{\pgfqpoint{1.505718in}{1.932731in}}% +\pgfpathlineto{\pgfqpoint{1.515282in}{1.967505in}}% +\pgfpathlineto{\pgfqpoint{1.526746in}{2.002033in}}% +\pgfpathlineto{\pgfqpoint{1.540106in}{2.036206in}}% +\pgfpathlineto{\pgfqpoint{1.555353in}{2.069915in}}% +\pgfpathlineto{\pgfqpoint{1.572472in}{2.103053in}}% +\pgfpathlineto{\pgfqpoint{1.591442in}{2.135511in}}% +\pgfpathlineto{\pgfqpoint{1.612236in}{2.167180in}}% +\pgfpathlineto{\pgfqpoint{1.634819in}{2.197956in}}% +\pgfpathlineto{\pgfqpoint{1.659155in}{2.227733in}}% +\pgfpathlineto{\pgfqpoint{1.685197in}{2.256408in}}% +\pgfpathlineto{\pgfqpoint{1.712895in}{2.283880in}}% +\pgfpathlineto{\pgfqpoint{1.742193in}{2.310051in}}% +\pgfpathlineto{\pgfqpoint{1.773030in}{2.334825in}}% +\pgfpathlineto{\pgfqpoint{1.805338in}{2.358111in}}% +\pgfpathlineto{\pgfqpoint{1.839045in}{2.379819in}}% +\pgfpathlineto{\pgfqpoint{1.874074in}{2.399863in}}% +\pgfpathlineto{\pgfqpoint{1.910341in}{2.418164in}}% +\pgfpathlineto{\pgfqpoint{1.947761in}{2.434645in}}% +\pgfpathlineto{\pgfqpoint{1.986242in}{2.449234in}}% +\pgfpathlineto{\pgfqpoint{2.025688in}{2.461863in}}% +\pgfpathlineto{\pgfqpoint{2.066000in}{2.472473in}}% +\pgfpathlineto{\pgfqpoint{2.107074in}{2.481005in}}% +\pgfpathlineto{\pgfqpoint{2.148805in}{2.487411in}}% +\pgfpathlineto{\pgfqpoint{2.191081in}{2.491645in}}% +\pgfpathlineto{\pgfqpoint{2.233791in}{2.493670in}}% +\pgfpathlineto{\pgfqpoint{2.276821in}{2.493452in}}% +\pgfpathlineto{\pgfqpoint{2.320052in}{2.490968in}}% +\pgfpathlineto{\pgfqpoint{2.363367in}{2.486197in}}% +\pgfpathlineto{\pgfqpoint{2.406645in}{2.479127in}}% +\pgfpathlineto{\pgfqpoint{2.449766in}{2.469754in}}% +\pgfpathlineto{\pgfqpoint{2.492608in}{2.458079in}}% +\pgfpathlineto{\pgfqpoint{2.535048in}{2.444110in}}% +\pgfpathlineto{\pgfqpoint{2.576966in}{2.427862in}}% +\pgfpathlineto{\pgfqpoint{2.618240in}{2.409359in}}% +\pgfpathlineto{\pgfqpoint{2.658749in}{2.388630in}}% +\pgfpathlineto{\pgfqpoint{2.698376in}{2.365711in}}% +\pgfpathlineto{\pgfqpoint{2.737002in}{2.340646in}}% +\pgfpathlineto{\pgfqpoint{2.774512in}{2.313485in}}% +\pgfpathlineto{\pgfqpoint{2.810795in}{2.284285in}}% +\pgfpathlineto{\pgfqpoint{2.845739in}{2.253109in}}% +\pgfpathlineto{\pgfqpoint{2.879239in}{2.220028in}}% +\pgfpathlineto{\pgfqpoint{2.911192in}{2.185118in}}% +\pgfpathlineto{\pgfqpoint{2.941498in}{2.148462in}}% +\pgfpathlineto{\pgfqpoint{2.970063in}{2.110146in}}% +\pgfpathlineto{\pgfqpoint{2.996798in}{2.070266in}}% +\pgfpathlineto{\pgfqpoint{3.021616in}{2.028920in}}% +\pgfpathlineto{\pgfqpoint{3.044439in}{1.986213in}}% +\pgfpathlineto{\pgfqpoint{3.065192in}{1.942253in}}% +\pgfpathlineto{\pgfqpoint{3.083807in}{1.897154in}}% +\pgfpathlineto{\pgfqpoint{3.100222in}{1.851034in}}% +\pgfpathlineto{\pgfqpoint{3.114382in}{1.804013in}}% +\pgfpathlineto{\pgfqpoint{3.126236in}{1.756217in}}% +\pgfpathlineto{\pgfqpoint{3.135744in}{1.707772in}}% +\pgfpathlineto{\pgfqpoint{3.142869in}{1.658809in}}% +\pgfpathlineto{\pgfqpoint{3.147583in}{1.609461in}}% +\pgfpathlineto{\pgfqpoint{3.149865in}{1.559861in}}% +\pgfpathlineto{\pgfqpoint{3.149702in}{1.510145in}}% +\pgfpathlineto{\pgfqpoint{3.147088in}{1.460449in}}% +\pgfpathlineto{\pgfqpoint{3.142024in}{1.410910in}}% +\pgfpathlineto{\pgfqpoint{3.134519in}{1.361665in}}% +\pgfpathlineto{\pgfqpoint{3.124591in}{1.312849in}}% +\pgfpathlineto{\pgfqpoint{3.112262in}{1.264599in}}% +\pgfpathlineto{\pgfqpoint{3.097565in}{1.217047in}}% +\pgfpathlineto{\pgfqpoint{3.080538in}{1.170327in}}% +\pgfpathlineto{\pgfqpoint{3.061229in}{1.124567in}}% +\pgfpathlineto{\pgfqpoint{3.039692in}{1.079896in}}% +\pgfpathlineto{\pgfqpoint{3.015986in}{1.036436in}}% +\pgfpathlineto{\pgfqpoint{2.990180in}{0.994308in}}% +\pgfpathlineto{\pgfqpoint{2.962347in}{0.953629in}}% +\pgfpathlineto{\pgfqpoint{2.932570in}{0.914510in}}% +\pgfpathlineto{\pgfqpoint{2.900936in}{0.877058in}}% +\pgfpathlineto{\pgfqpoint{2.867536in}{0.841375in}}% +\pgfpathlineto{\pgfqpoint{2.832471in}{0.807556in}}% +\pgfpathlineto{\pgfqpoint{2.795843in}{0.775693in}}% +\pgfpathlineto{\pgfqpoint{2.757764in}{0.745869in}}% +\pgfpathlineto{\pgfqpoint{2.718345in}{0.718161in}}% +\pgfpathlineto{\pgfqpoint{2.677705in}{0.692641in}}% +\pgfpathlineto{\pgfqpoint{2.635967in}{0.669370in}}% +\pgfpathlineto{\pgfqpoint{2.593254in}{0.648406in}}% +\pgfpathlineto{\pgfqpoint{2.549697in}{0.629797in}}% +\pgfpathlineto{\pgfqpoint{2.505425in}{0.613583in}}% +\pgfpathlineto{\pgfqpoint{2.460572in}{0.599797in}}% +\pgfpathlineto{\pgfqpoint{2.415273in}{0.588464in}}% +\pgfpathlineto{\pgfqpoint{2.369663in}{0.579600in}}% +\pgfpathlineto{\pgfqpoint{2.323879in}{0.573213in}}% +\pgfpathlineto{\pgfqpoint{2.278059in}{0.569304in}}% +\pgfpathlineto{\pgfqpoint{2.232338in}{0.567864in}}% +\pgfpathlineto{\pgfqpoint{2.186852in}{0.568875in}}% +\pgfpathlineto{\pgfqpoint{2.141737in}{0.572314in}}% +\pgfpathlineto{\pgfqpoint{2.097124in}{0.578147in}}% +\pgfpathlineto{\pgfqpoint{2.053146in}{0.586333in}}% +\pgfpathlineto{\pgfqpoint{2.009929in}{0.596823in}}% +\pgfpathlineto{\pgfqpoint{1.967598in}{0.609560in}}% +\pgfpathlineto{\pgfqpoint{1.926276in}{0.624479in}}% +\pgfpathlineto{\pgfqpoint{1.886078in}{0.641510in}}% +\pgfpathlineto{\pgfqpoint{1.847117in}{0.660572in}}% +\pgfpathlineto{\pgfqpoint{1.809502in}{0.681581in}}% +\pgfpathlineto{\pgfqpoint{1.773334in}{0.704445in}}% +\pgfpathlineto{\pgfqpoint{1.738710in}{0.729065in}}% +\pgfpathlineto{\pgfqpoint{1.705721in}{0.755337in}}% +\pgfpathlineto{\pgfqpoint{1.674450in}{0.783153in}}% +\pgfpathlineto{\pgfqpoint{1.644976in}{0.812398in}}% +\pgfpathlineto{\pgfqpoint{1.617367in}{0.842953in}}% +\pgfpathlineto{\pgfqpoint{1.591688in}{0.874696in}}% +\pgfpathlineto{\pgfqpoint{1.567994in}{0.907500in}}% +\pgfpathlineto{\pgfqpoint{1.546331in}{0.941236in}}% +\pgfpathlineto{\pgfqpoint{1.526741in}{0.975771in}}% +\pgfpathlineto{\pgfqpoint{1.509254in}{1.010972in}}% +\pgfpathlineto{\pgfqpoint{1.493893in}{1.046702in}}% +\pgfpathlineto{\pgfqpoint{1.480674in}{1.082825in}}% +\pgfpathlineto{\pgfqpoint{1.469603in}{1.119204in}}% +\pgfpathlineto{\pgfqpoint{1.460679in}{1.155701in}}% +\pgfpathlineto{\pgfqpoint{1.453890in}{1.192179in}}% +\pgfpathlineto{\pgfqpoint{1.449219in}{1.228504in}}% +\pgfpathlineto{\pgfqpoint{1.446638in}{1.264541in}}% +\pgfpathlineto{\pgfqpoint{1.446113in}{1.300159in}}% +\pgfpathlineto{\pgfqpoint{1.447599in}{1.335229in}}% +\pgfpathlineto{\pgfqpoint{1.451047in}{1.369626in}}% +\pgfpathlineto{\pgfqpoint{1.456397in}{1.403227in}}% +\pgfpathlineto{\pgfqpoint{1.463583in}{1.435915in}}% +\pgfpathlineto{\pgfqpoint{1.472533in}{1.467578in}}% +\pgfpathlineto{\pgfqpoint{1.483166in}{1.498108in}}% +\pgfpathlineto{\pgfqpoint{1.495396in}{1.527404in}}% +\pgfpathlineto{\pgfqpoint{1.509129in}{1.555370in}}% +\pgfpathlineto{\pgfqpoint{1.524268in}{1.581916in}}% +\pgfpathlineto{\pgfqpoint{1.540709in}{1.606962in}}% +\pgfpathlineto{\pgfqpoint{1.558344in}{1.630431in}}% +\pgfpathlineto{\pgfqpoint{1.577058in}{1.652258in}}% +\pgfpathlineto{\pgfqpoint{1.596736in}{1.672381in}}% +\pgfpathlineto{\pgfqpoint{1.617256in}{1.690751in}}% +\pgfpathlineto{\pgfqpoint{1.638496in}{1.707324in}}% +\pgfpathlineto{\pgfqpoint{1.660330in}{1.722066in}}% +\pgfpathlineto{\pgfqpoint{1.682629in}{1.734951in}}% +\pgfpathlineto{\pgfqpoint{1.705266in}{1.745962in}}% +\pgfpathlineto{\pgfqpoint{1.728111in}{1.755092in}}% +\pgfpathlineto{\pgfqpoint{1.751033in}{1.762342in}}% +\pgfpathlineto{\pgfqpoint{1.773905in}{1.767722in}}% +\pgfpathlineto{\pgfqpoint{1.796597in}{1.771251in}}% +\pgfpathlineto{\pgfqpoint{1.818982in}{1.772956in}}% +\pgfpathlineto{\pgfqpoint{1.840937in}{1.772875in}}% +\pgfpathlineto{\pgfqpoint{1.862339in}{1.771052in}}% +\pgfpathlineto{\pgfqpoint{1.883070in}{1.767542in}}% +\pgfpathlineto{\pgfqpoint{1.903015in}{1.762407in}}% +\pgfpathlineto{\pgfqpoint{1.922064in}{1.755715in}}% +\pgfpathlineto{\pgfqpoint{1.940111in}{1.747545in}}% +\pgfpathlineto{\pgfqpoint{1.957057in}{1.737982in}}% +\pgfpathlineto{\pgfqpoint{1.972807in}{1.727117in}}% +\pgfpathlineto{\pgfqpoint{1.987273in}{1.715050in}}% +\pgfpathlineto{\pgfqpoint{2.000374in}{1.701883in}}% +\pgfpathlineto{\pgfqpoint{2.012036in}{1.687727in}}% +\pgfpathlineto{\pgfqpoint{2.022193in}{1.672699in}}% +\pgfpathlineto{\pgfqpoint{2.030786in}{1.656917in}}% +\pgfpathlineto{\pgfqpoint{2.037764in}{1.640505in}}% +\pgfpathlineto{\pgfqpoint{2.043086in}{1.623592in}}% +\pgfpathlineto{\pgfqpoint{2.046719in}{1.606308in}}% +\pgfpathlineto{\pgfqpoint{2.048637in}{1.588786in}}% +\pgfpathlineto{\pgfqpoint{2.048825in}{1.571161in}}% +\pgfpathlineto{\pgfqpoint{2.047279in}{1.553568in}}% +\pgfpathlineto{\pgfqpoint{2.043999in}{1.536144in}}% +\pgfpathlineto{\pgfqpoint{2.039000in}{1.519024in}}% +\pgfpathlineto{\pgfqpoint{2.032302in}{1.502346in}}% +\pgfpathlineto{\pgfqpoint{2.023938in}{1.486241in}}% +\pgfpathlineto{\pgfqpoint{2.013946in}{1.470843in}}% +\pgfpathlineto{\pgfqpoint{2.002377in}{1.456280in}}% +\pgfpathlineto{\pgfqpoint{1.989288in}{1.442678in}}% +\pgfpathlineto{\pgfqpoint{1.974748in}{1.430159in}}% +\pgfpathlineto{\pgfqpoint{1.958829in}{1.418840in}}% +\pgfpathlineto{\pgfqpoint{1.941618in}{1.408833in}}% +\pgfpathlineto{\pgfqpoint{1.923204in}{1.400243in}}% +\pgfpathlineto{\pgfqpoint{1.903687in}{1.393171in}}% +\pgfpathlineto{\pgfqpoint{1.883172in}{1.387710in}}% +\pgfpathlineto{\pgfqpoint{1.861773in}{1.383944in}}% +\pgfpathlineto{\pgfqpoint{1.839607in}{1.381952in}}% +\pgfpathlineto{\pgfqpoint{1.816798in}{1.381803in}}% +\pgfpathlineto{\pgfqpoint{1.793477in}{1.383557in}}% +\pgfpathlineto{\pgfqpoint{1.769776in}{1.387266in}}% +\pgfpathlineto{\pgfqpoint{1.745834in}{1.392971in}}% +\pgfpathlineto{\pgfqpoint{1.721792in}{1.400706in}}% +\pgfpathlineto{\pgfqpoint{1.697793in}{1.410492in}}% +\pgfpathlineto{\pgfqpoint{1.673984in}{1.422342in}}% +\pgfpathlineto{\pgfqpoint{1.650510in}{1.436257in}}% +\pgfpathlineto{\pgfqpoint{1.627521in}{1.452229in}}% +\pgfpathlineto{\pgfqpoint{1.605164in}{1.470238in}}% +\pgfpathlineto{\pgfqpoint{1.583585in}{1.490254in}}% +\pgfpathlineto{\pgfqpoint{1.562930in}{1.512236in}}% +\pgfpathlineto{\pgfqpoint{1.543343in}{1.536135in}}% +\pgfpathlineto{\pgfqpoint{1.524964in}{1.561888in}}% +\pgfpathlineto{\pgfqpoint{1.507931in}{1.589424in}}% +\pgfpathlineto{\pgfqpoint{1.492376in}{1.618661in}}% +\pgfpathlineto{\pgfqpoint{1.478427in}{1.649509in}}% +\pgfpathlineto{\pgfqpoint{1.466206in}{1.681865in}}% +\pgfpathlineto{\pgfqpoint{1.455830in}{1.715622in}}% +\pgfpathlineto{\pgfqpoint{1.447408in}{1.750660in}}% +\pgfpathlineto{\pgfqpoint{1.441041in}{1.786852in}}% +\pgfpathlineto{\pgfqpoint{1.436825in}{1.824065in}}% +\pgfpathlineto{\pgfqpoint{1.434844in}{1.862157in}}% +\pgfpathlineto{\pgfqpoint{1.435176in}{1.900980in}}% +\pgfpathlineto{\pgfqpoint{1.437886in}{1.940380in}}% +\pgfpathlineto{\pgfqpoint{1.443033in}{1.980197in}}% +\pgfpathlineto{\pgfqpoint{1.450663in}{2.020268in}}% +\pgfpathlineto{\pgfqpoint{1.460812in}{2.060423in}}% +\pgfpathlineto{\pgfqpoint{1.473507in}{2.100493in}}% +\pgfpathlineto{\pgfqpoint{1.488760in}{2.140302in}}% +\pgfpathlineto{\pgfqpoint{1.506576in}{2.179675in}}% +\pgfpathlineto{\pgfqpoint{1.526945in}{2.218436in}}% +\pgfpathlineto{\pgfqpoint{1.549848in}{2.256407in}}% +\pgfpathlineto{\pgfqpoint{1.575252in}{2.293413in}}% +\pgfpathlineto{\pgfqpoint{1.603114in}{2.329279in}}% +\pgfpathlineto{\pgfqpoint{1.633379in}{2.363832in}}% +\pgfpathlineto{\pgfqpoint{1.665980in}{2.396902in}}% +\pgfpathlineto{\pgfqpoint{1.700839in}{2.428324in}}% +\pgfpathlineto{\pgfqpoint{1.737869in}{2.457938in}}% +\pgfpathlineto{\pgfqpoint{1.776968in}{2.485586in}}% +\pgfpathlineto{\pgfqpoint{1.818026in}{2.511121in}}% +\pgfpathlineto{\pgfqpoint{1.860924in}{2.534400in}}% +\pgfpathlineto{\pgfqpoint{1.905531in}{2.555287in}}% +\pgfpathlineto{\pgfqpoint{1.951708in}{2.573657in}}% +\pgfpathlineto{\pgfqpoint{1.999307in}{2.589392in}}% +\pgfpathlineto{\pgfqpoint{2.048171in}{2.602384in}}% +\pgfpathlineto{\pgfqpoint{2.098138in}{2.612536in}}% +\pgfpathlineto{\pgfqpoint{2.149037in}{2.619760in}}% +\pgfpathlineto{\pgfqpoint{2.200691in}{2.623981in}}% +\pgfpathlineto{\pgfqpoint{2.252918in}{2.625136in}}% +\pgfpathlineto{\pgfqpoint{2.305531in}{2.623173in}}% +\pgfpathlineto{\pgfqpoint{2.358340in}{2.618052in}}% +\pgfpathlineto{\pgfqpoint{2.411150in}{2.609747in}}% +\pgfpathlineto{\pgfqpoint{2.463766in}{2.598244in}}% +\pgfpathlineto{\pgfqpoint{2.515989in}{2.583544in}}% +\pgfpathlineto{\pgfqpoint{2.567622in}{2.565660in}}% +\pgfpathlineto{\pgfqpoint{2.618467in}{2.544617in}}% +\pgfpathlineto{\pgfqpoint{2.668327in}{2.520457in}}% +\pgfpathlineto{\pgfqpoint{2.717007in}{2.493232in}}% +\pgfpathlineto{\pgfqpoint{2.764315in}{2.463009in}}% +\pgfpathlineto{\pgfqpoint{2.810064in}{2.429869in}}% +\pgfpathlineto{\pgfqpoint{2.854070in}{2.393903in}}% +\pgfpathlineto{\pgfqpoint{2.896156in}{2.355217in}}% +\pgfpathlineto{\pgfqpoint{2.936150in}{2.313928in}}% +\pgfpathlineto{\pgfqpoint{2.973887in}{2.270166in}}% +\pgfpathlineto{\pgfqpoint{3.009212in}{2.224071in}}% +\pgfpathlineto{\pgfqpoint{3.041976in}{2.175795in}}% +\pgfpathlineto{\pgfqpoint{3.072042in}{2.125498in}}% +\pgfpathlineto{\pgfqpoint{3.099281in}{2.073353in}}% +\pgfpathlineto{\pgfqpoint{3.123576in}{2.019538in}}% +\pgfpathlineto{\pgfqpoint{3.144821in}{1.964244in}}% +\pgfpathlineto{\pgfqpoint{3.162923in}{1.907664in}}% +\pgfpathlineto{\pgfqpoint{3.177798in}{1.850002in}}% +\pgfpathlineto{\pgfqpoint{3.189378in}{1.791465in}}% +\pgfpathlineto{\pgfqpoint{3.197608in}{1.732266in}}% +\pgfpathlineto{\pgfqpoint{3.202446in}{1.672623in}}% +\pgfpathlineto{\pgfqpoint{3.203864in}{1.612754in}}% +\pgfpathlineto{\pgfqpoint{3.201846in}{1.552882in}}% +\pgfpathlineto{\pgfqpoint{3.196395in}{1.493230in}}% +\pgfpathlineto{\pgfqpoint{3.187523in}{1.434020in}}% +\pgfpathlineto{\pgfqpoint{3.175260in}{1.375476in}}% +\pgfpathlineto{\pgfqpoint{3.159648in}{1.317818in}}% +\pgfpathlineto{\pgfqpoint{3.140746in}{1.261262in}}% +\pgfpathlineto{\pgfqpoint{3.118623in}{1.206023in}}% +\pgfpathlineto{\pgfqpoint{3.093366in}{1.152310in}}% +\pgfpathlineto{\pgfqpoint{3.065072in}{1.100326in}}% +\pgfpathlineto{\pgfqpoint{3.033854in}{1.050266in}}% +\pgfpathlineto{\pgfqpoint{2.999834in}{1.002321in}}% +\pgfpathlineto{\pgfqpoint{2.963150in}{0.956669in}}% +\pgfpathlineto{\pgfqpoint{2.923950in}{0.913483in}}% +\pgfpathlineto{\pgfqpoint{2.882391in}{0.872922in}}% +\pgfpathlineto{\pgfqpoint{2.838644in}{0.835137in}}% +\pgfpathlineto{\pgfqpoint{2.792886in}{0.800265in}}% +\pgfpathlineto{\pgfqpoint{2.745306in}{0.768433in}}% +\pgfpathlineto{\pgfqpoint{2.696099in}{0.739753in}}% +\pgfpathlineto{\pgfqpoint{2.645468in}{0.714326in}}% +\pgfpathlineto{\pgfqpoint{2.593621in}{0.692236in}}% +\pgfpathlineto{\pgfqpoint{2.540772in}{0.673554in}}% +\pgfpathlineto{\pgfqpoint{2.487141in}{0.658336in}}% +\pgfpathlineto{\pgfqpoint{2.432950in}{0.646625in}}% +\pgfpathlineto{\pgfqpoint{2.378421in}{0.638445in}}% +\pgfpathlineto{\pgfqpoint{2.323782in}{0.633806in}}% +\pgfpathlineto{\pgfqpoint{2.269259in}{0.632705in}}% +\pgfpathlineto{\pgfqpoint{2.215075in}{0.635119in}}% +\pgfpathlineto{\pgfqpoint{2.161456in}{0.641013in}}% +\pgfpathlineto{\pgfqpoint{2.108621in}{0.650334in}}% +\pgfpathlineto{\pgfqpoint{2.056788in}{0.663015in}}% +\pgfpathlineto{\pgfqpoint{2.006168in}{0.678976in}}% +\pgfpathlineto{\pgfqpoint{1.956968in}{0.698119in}}% +\pgfpathlineto{\pgfqpoint{1.909388in}{0.720333in}}% +\pgfpathlineto{\pgfqpoint{1.863618in}{0.745496in}}% +\pgfpathlineto{\pgfqpoint{1.819842in}{0.773468in}}% +\pgfpathlineto{\pgfqpoint{1.778234in}{0.804101in}}% +\pgfpathlineto{\pgfqpoint{1.738956in}{0.837233in}}% +\pgfpathlineto{\pgfqpoint{1.702161in}{0.872691in}}% +\pgfpathlineto{\pgfqpoint{1.667988in}{0.910293in}}% +\pgfpathlineto{\pgfqpoint{1.636566in}{0.949846in}}% +\pgfpathlineto{\pgfqpoint{1.608008in}{0.991151in}}% +\pgfpathlineto{\pgfqpoint{1.582417in}{1.033998in}}% +\pgfpathlineto{\pgfqpoint{1.559877in}{1.078174in}}% +\pgfpathlineto{\pgfqpoint{1.540461in}{1.123457in}}% +\pgfpathlineto{\pgfqpoint{1.524226in}{1.169625in}}% +\pgfpathlineto{\pgfqpoint{1.511213in}{1.216448in}}% +\pgfpathlineto{\pgfqpoint{1.501450in}{1.263696in}}% +\pgfpathlineto{\pgfqpoint{1.494946in}{1.311139in}}% +\pgfpathlineto{\pgfqpoint{1.491697in}{1.358544in}}% +\pgfpathlineto{\pgfqpoint{1.491681in}{1.405682in}}% +\pgfpathlineto{\pgfqpoint{1.494863in}{1.452324in}}% +\pgfpathlineto{\pgfqpoint{1.501191in}{1.498245in}}% +\pgfpathlineto{\pgfqpoint{1.510600in}{1.543226in}}% +\pgfpathlineto{\pgfqpoint{1.523006in}{1.587051in}}% +\pgfpathlineto{\pgfqpoint{1.538315in}{1.629512in}}% +\pgfpathlineto{\pgfqpoint{1.556417in}{1.670408in}}% +\pgfpathlineto{\pgfqpoint{1.577189in}{1.709547in}}% +\pgfpathlineto{\pgfqpoint{1.600496in}{1.746747in}}% +\pgfpathlineto{\pgfqpoint{1.626190in}{1.781835in}}% +\pgfpathlineto{\pgfqpoint{1.654111in}{1.814650in}}% +\pgfpathlineto{\pgfqpoint{1.684092in}{1.845044in}}% +\pgfpathlineto{\pgfqpoint{1.715952in}{1.872881in}}% +\pgfpathlineto{\pgfqpoint{1.749503in}{1.898038in}}% +\pgfpathlineto{\pgfqpoint{1.784551in}{1.920406in}}% +\pgfpathlineto{\pgfqpoint{1.820892in}{1.939892in}}% +\pgfpathlineto{\pgfqpoint{1.858320in}{1.956417in}}% +\pgfpathlineto{\pgfqpoint{1.896621in}{1.969918in}}% +\pgfpathlineto{\pgfqpoint{1.935578in}{1.980348in}}% +\pgfpathlineto{\pgfqpoint{1.974973in}{1.987675in}}% +\pgfpathlineto{\pgfqpoint{2.014586in}{1.991885in}}% +\pgfpathlineto{\pgfqpoint{2.054197in}{1.992977in}}% +\pgfpathlineto{\pgfqpoint{2.093586in}{1.990970in}}% +\pgfpathlineto{\pgfqpoint{2.132535in}{1.985896in}}% +\pgfpathlineto{\pgfqpoint{2.170830in}{1.977805in}}% +\pgfpathlineto{\pgfqpoint{2.208262in}{1.966763in}}% +\pgfpathlineto{\pgfqpoint{2.244625in}{1.952848in}}% +\pgfpathlineto{\pgfqpoint{2.279722in}{1.936156in}}% +\pgfpathlineto{\pgfqpoint{2.313362in}{1.916797in}}% +\pgfpathlineto{\pgfqpoint{2.345363in}{1.894893in}}% +\pgfpathlineto{\pgfqpoint{2.375551in}{1.870581in}}% +\pgfpathlineto{\pgfqpoint{2.403764in}{1.844009in}}% +\pgfpathlineto{\pgfqpoint{2.429850in}{1.815338in}}% +\pgfpathlineto{\pgfqpoint{2.453671in}{1.784737in}}% +\pgfpathlineto{\pgfqpoint{2.475100in}{1.752389in}}% +\pgfpathlineto{\pgfqpoint{2.494022in}{1.718481in}}% +\pgfpathlineto{\pgfqpoint{2.510339in}{1.683211in}}% +\pgfpathlineto{\pgfqpoint{2.523965in}{1.646782in}}% +\pgfpathlineto{\pgfqpoint{2.534830in}{1.609405in}}% +\pgfpathlineto{\pgfqpoint{2.542879in}{1.571293in}}% +\pgfpathlineto{\pgfqpoint{2.548072in}{1.532662in}}% +\pgfpathlineto{\pgfqpoint{2.550386in}{1.493733in}}% +\pgfpathlineto{\pgfqpoint{2.549813in}{1.454725in}}% +\pgfpathlineto{\pgfqpoint{2.546360in}{1.415858in}}% +\pgfpathlineto{\pgfqpoint{2.540051in}{1.377350in}}% +\pgfpathlineto{\pgfqpoint{2.530926in}{1.339418in}}% +\pgfpathlineto{\pgfqpoint{2.519039in}{1.302273in}}% +\pgfpathlineto{\pgfqpoint{2.504459in}{1.266122in}}% +\pgfpathlineto{\pgfqpoint{2.487272in}{1.231165in}}% +\pgfpathlineto{\pgfqpoint{2.467575in}{1.197597in}}% +\pgfpathlineto{\pgfqpoint{2.445482in}{1.165602in}}% +\pgfpathlineto{\pgfqpoint{2.421116in}{1.135357in}}% +\pgfpathlineto{\pgfqpoint{2.394616in}{1.107026in}}% +\pgfpathlineto{\pgfqpoint{2.366131in}{1.080765in}}% +\pgfpathlineto{\pgfqpoint{2.335820in}{1.056715in}}% +\pgfpathlineto{\pgfqpoint{2.303853in}{1.035006in}}% +\pgfpathlineto{\pgfqpoint{2.270407in}{1.015754in}}% +\pgfpathlineto{\pgfqpoint{2.235669in}{0.999060in}}% +\pgfpathlineto{\pgfqpoint{2.199831in}{0.985012in}}% +\pgfpathlineto{\pgfqpoint{2.163092in}{0.973681in}}% +\pgfpathlineto{\pgfqpoint{2.125653in}{0.965123in}}% +\pgfpathlineto{\pgfqpoint{2.087721in}{0.959378in}}% +\pgfpathlineto{\pgfqpoint{2.049505in}{0.956470in}}% +\pgfpathlineto{\pgfqpoint{2.011213in}{0.956408in}}% +\pgfpathlineto{\pgfqpoint{2.011213in}{0.956408in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.555000in}{0.465000in}}% +\pgfpathlineto{\pgfqpoint{0.555000in}{2.728000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.330000in}{0.465000in}}% +\pgfpathlineto{\pgfqpoint{3.330000in}{2.728000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.555000in}{0.465000in}}% +\pgfpathlineto{\pgfqpoint{3.330000in}{0.465000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.555000in}{2.728000in}}% +\pgfpathlineto{\pgfqpoint{3.330000in}{2.728000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/zeta/references.bib b/buch/papers/zeta/references.bib index e8d6b22..f2a2f31 100644 --- a/buch/papers/zeta/references.bib +++ b/buch/papers/zeta/references.bib @@ -44,3 +44,18 @@ month = {8}, day = {7} } + +@online{zeta:online:basel, + title = {Basel Problem}, + url = {https://en.wikipedia.org/wiki/Basel_problem}, + year = {2022}, + month = {8}, + day = {7} +} +@online{zeta:online:pars, + title = {Parseval's identity}, + url = {https://en.wikipedia.org/wiki/Parseval%27s_identity}, + year = {2022}, + month = {8}, + day = {7} +} -- cgit v1.2.1 From a37eaf082bc34c696c40efe33cf868c41dd765a0 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Mon, 8 Aug 2022 19:00:45 +0200 Subject: last commit --- buch/papers/kreismembran/teil1.tex | 22 +++++++++++----------- buch/papers/kreismembran/teil2.tex | 16 ++++++++-------- buch/papers/kreismembran/teil3.tex | 24 ++++++++++++++---------- 3 files changed, 33 insertions(+), 29 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index f0d478f..a872ed1 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -23,7 +23,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d \frac1r \frac{\partial}{\partial r} + - \frac{1}{r 2} + \frac{1}{r^2} \frac{\partial^2}{\partial\varphi^2} \label{buch:pde:kreis:laplace} \end{equation*} @@ -39,16 +39,16 @@ Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Ome \end{align*} Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben. -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$: +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur Zeit $t = \text{0}$: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} \subsection{Lösung\label{sub:lösung1}} -Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst. +Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der Separationsmethode gelöst. \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} -Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +Hierfür wird folgenden Ansatz gemacht: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} @@ -64,26 +64,26 @@ Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^ T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. \end{align*} -In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: +In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also: \begin{align*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) &= 0 \\ - G''(\varphi) &= \nu G(\varphi). + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \quad \text{und} \quad + G''(\varphi) = \nu G(\varphi). \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: \begin{equation*} - G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) + G(\varphi) = C_n \cos(\nu\varphi) + D_n \sin(\nu\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} \subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} -Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator}) +Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialgleichungen:bessel-operator} \begin{align} r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} \end{align} -Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Besselfunktionen +Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} @@ -104,7 +104,7 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung \end{align} Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie (siehe Abbildung \ref{buch:pde:kreis:fig:pauke}). $J_n(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. \begin{figure} \centering diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 4fb139c..133ee31 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -34,7 +34,7 @@ Unter Verwendung der Integraldarstellung J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha \label{equation:bessel_n_ordnung} \end{equation*} - der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: + der Bessel-Funktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: \begin{align} F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), @@ -69,10 +69,10 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. \subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}} -In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. +In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden. \begin{satz}{Skalierung:} - Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: + Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: \begin{equation*} \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. @@ -80,7 +80,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation \end{satz} \begin{satz}{Parsevalsche Relation:} -Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: +Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann gilt: \begin{equation*} \int_{0}^{\infty}rf(r)g(r) \; dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) \; d\kappa. @@ -88,20 +88,20 @@ Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H \end{satz} \begin{satz}{Hankel-Transformationen von Ableitungen:} -Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: +Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann gilt: \begin{align*} &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} -vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$. +vorausgesetzt, dass $rf(r)$ verschwindet wenn $r\to0$ und $r\to\infty$. \end{satz} \begin{satz} -Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: +Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: \begin{equation*} \mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa), \end{equation*} -bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$. +bereitgestellt, dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$. \end{satz} diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 276f911..468ee24 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,25 +6,22 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. +Die Hankel-Transformation kann hier zur Lösung der Differentialgleichung verwendet werden. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. \subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: -\begin{equation*} +\begin{align} \frac{\partial^2u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} - \frac{\partial u}{\partial r} \right), \quad 00 - \label{eq:PDE_inf_membane} -\end{equation*} - -\begin{align} - u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 00 \label{eq:PDE_inf_membane} \\ + u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0 Date: Tue, 9 Aug 2022 07:26:30 +0200 Subject: =?UTF-8?q?Vorschlag=20f=C3=BCr=20Primzahlfunktion-Graph?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/zeta/images/Makefile | 5 ++ buch/papers/zeta/images/primzahlfunktion2.pdf | Bin 0 -> 17496 bytes buch/papers/zeta/images/primzahlfunktion2.tex | 63 ++++++++++++++++++++++++++ 3 files changed, 68 insertions(+) create mode 100644 buch/papers/zeta/images/Makefile create mode 100644 buch/papers/zeta/images/primzahlfunktion2.pdf create mode 100644 buch/papers/zeta/images/primzahlfunktion2.tex (limited to 'buch') diff --git a/buch/papers/zeta/images/Makefile b/buch/papers/zeta/images/Makefile new file mode 100644 index 0000000..c8deeec --- /dev/null +++ b/buch/papers/zeta/images/Makefile @@ -0,0 +1,5 @@ +# +# Makefile to build images +# +primzahlfunktion2.pdf: primzahlfunktion2.tex + pdflatex primzahlfunktion2.tex diff --git a/buch/papers/zeta/images/primzahlfunktion2.pdf b/buch/papers/zeta/images/primzahlfunktion2.pdf new file mode 100644 index 0000000..8998fb8 Binary files /dev/null and b/buch/papers/zeta/images/primzahlfunktion2.pdf differ diff --git a/buch/papers/zeta/images/primzahlfunktion2.tex b/buch/papers/zeta/images/primzahlfunktion2.tex new file mode 100644 index 0000000..7425ce5 --- /dev/null +++ b/buch/papers/zeta/images/primzahlfunktion2.tex @@ -0,0 +1,63 @@ +% +% primzahlfunktion2.tex -- Primzahlfunktion, alternativer Vorschlag +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\dx{0.38} +\def\dy{0.5} + +\foreach \x in {1,...,30}{ + \draw[color=gray!20] ({\x*\dx},0) -- ({\x*\dx},{10.5*\dy}); +} +\foreach \y in {1,...,10}{ + \draw[color=gray!20] (0,{\y*\dy}) -- ({30.5*\dx},{\y*\dy}); +} + +\draw[->] (-0.1,0) -- ({30.8*\dx},0) coordinate[label={$x$}]; +\draw[->] (0,-0.1) -- (0,{10.9*\dy}) coordinate[label={right:$\pi(x)$}]; + +\def\segment#1#2#3{ + %\draw[line width=0.1pt] ({#3*\dx},0) -- ({#3*\dx},{#2*\dy}); + \draw[color=blue,line width=1.4pt] + ({#1*\dx},{#2*\dy}) -- ({#3*\dx},{#2*\dy}); + \draw[color=blue,line width=0.3pt] + ({#3*\dx},{#2*\dy}) -- ({#3*\dx},{(#2+1)*\dy}); + \draw ({#3*\dx},-0.1) -- ({#3*\dx},0.1); + \node at ({(#3)*\dx},-0.1) [below] {$#3\mathstrut$}; +} + +\foreach \y in {2,4,...,10}{ + \draw (-0.1,{\y*\dy}) -- (0.1,{\y*\dy}); + \node at (-0.1,{\y*\dy}) [left] {$\y\mathstrut$}; +} + +\begin{scope} +\clip (0,-0.5) rectangle ({30*\dx},{10.1*\dy}); + +\segment{0}{0}{2} +\segment{2}{1}{3} +\segment{3}{2}{5} +\segment{5}{3}{7} +\segment{7}{4}{11} +\segment{11}{5}{13} +\segment{13}{6}{17} +\segment{17}{7}{19} +\segment{19}{8}{23} +\segment{23}{9}{29} +\segment{29}{10}{31} +\end{scope} + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From 1a6b529c9f88bd92579714a43bfa2c9fa32e6a12 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 9 Aug 2022 08:27:08 +0200 Subject: add zetaplot --- buch/papers/zeta/images/Makefile | 8 ++++++ buch/papers/zeta/images/zetaplot.m | 23 +++++++++++++++++ buch/papers/zeta/images/zetaplot.pdf | Bin 0 -> 41448 bytes buch/papers/zeta/images/zetaplot.tex | 47 +++++++++++++++++++++++++++++++++++ 4 files changed, 78 insertions(+) create mode 100644 buch/papers/zeta/images/zetaplot.m create mode 100644 buch/papers/zeta/images/zetaplot.pdf create mode 100644 buch/papers/zeta/images/zetaplot.tex (limited to 'buch') diff --git a/buch/papers/zeta/images/Makefile b/buch/papers/zeta/images/Makefile index c8deeec..d9cc20d 100644 --- a/buch/papers/zeta/images/Makefile +++ b/buch/papers/zeta/images/Makefile @@ -1,5 +1,13 @@ # # Makefile to build images # +all: primzahlfunktion2.pdf zetaplot.pdf + primzahlfunktion2.pdf: primzahlfunktion2.tex pdflatex primzahlfunktion2.tex + +zetapath.tex: zetaplot.m zeta.m + octave zetaplot.m + +zetaplot.pdf: zetaplot.tex zetapath.tex + pdflatex zetaplot.tex diff --git a/buch/papers/zeta/images/zetaplot.m b/buch/papers/zeta/images/zetaplot.m new file mode 100644 index 0000000..984b645 --- /dev/null +++ b/buch/papers/zeta/images/zetaplot.m @@ -0,0 +1,23 @@ +% +% zetaplot.m +% +% (c) 2022 Prof Dr Andreas Müller +% +s = 1; +h = 0.02; +m = 40; + +fn = fopen("zetapath.tex", "w"); +fprintf(fn, "\\def\\zetapath{\n"); +counter = 0; +for y = (0:h:m) + if (counter > 0) + fprintf(fn, "\n\t--"); + end + z = zeta(0.5 + i*y); + fprintf(fn, " ({%.4f*\\dx},{%.4f*\\dy})", real(z), imag(z)); + counter = counter + 1; +end +fprintf(fn, "\n}\n"); +fclose(fn); + diff --git a/buch/papers/zeta/images/zetaplot.pdf b/buch/papers/zeta/images/zetaplot.pdf new file mode 100644 index 0000000..5a59ce6 Binary files /dev/null and b/buch/papers/zeta/images/zetaplot.pdf differ diff --git a/buch/papers/zeta/images/zetaplot.tex b/buch/papers/zeta/images/zetaplot.tex new file mode 100644 index 0000000..1cd3259 --- /dev/null +++ b/buch/papers/zeta/images/zetaplot.tex @@ -0,0 +1,47 @@ +% +% zetaplot.tex -- Abbildung der kritischen Geraden +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\dx{2} +\def\dy{2} + +\draw[->] ({-1.6*\dx},0) -- ({3.4*\dx},0) + coordinate[label={$\Re\zeta(\frac12+it)$}]; +\draw[->] (0,{-2.1*\dx}) -- (0,{2.2*\dx}) + coordinate[label={left:$\Im\zeta(\frac12+it)$}]; + +\foreach \x in {-1,1,2,3}{ + \node at ({\x*\dx},-0.1) [below] {$\x$}; +} +\node at (-0.1,{1*\dy}) [above left] {$i$}; +\node at (-0.1,{2*\dy}) [left] {$2i$}; +\node at (-0.1,{-1*\dy}) [below left] {$-i$}; +\node at (-0.1,{-2*\dy}) [left] {$-2i$}; + +\foreach \x in {-1,1,2,3}{ + \draw ({\x*\dx},-0.1) -- ({\x*\dx},0.1); +} +\foreach \y in {1,2}{ + \draw (-0.1,{\y*\dy}) -- (0.1,{\y*\dy}); + \draw (-0.1,{-\y*\dy}) -- (0.1,{-\y*\dy}); +} + +\input{zetapath.tex} + +\draw[color=blue,line width=1pt] \zetapath; + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From a37a7fac0172ad671691904740cfc81da93248cc Mon Sep 17 00:00:00 2001 From: Roy Seitz Date: Tue, 9 Aug 2022 09:59:37 +0200 Subject: Typos --- buch/chapters/030-geometrie/hyperbolisch.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'buch') diff --git a/buch/chapters/030-geometrie/hyperbolisch.tex b/buch/chapters/030-geometrie/hyperbolisch.tex index 2938316..d2d0da2 100644 --- a/buch/chapters/030-geometrie/hyperbolisch.tex +++ b/buch/chapters/030-geometrie/hyperbolisch.tex @@ -163,9 +163,9 @@ In der speziellen Relativitätstheorie spielt das Minkowski-Skalarprodukt eine besondere Rolle. Die Koordinaten $x_0$ hat darin die Bedeutung der Zeit, man weiss aus Experimenten wie dem Michelson-Morley-Experiment, -dass die Grösse $\langle x,x\rangle$ ist eine Invariante ist. +dass die Grösse $\langle x,x\rangle$ eine Invariante ist. Die Transformationen mit der Matrix $A$ beschreiben also zulässige -Koordinatentransformationenn, die Invariante erhalten. +Koordinatentransformationen, die Invariante erhalten. Für Transformationen, die zusätzlich die Zeitrichtung erhalten sollen, muss $a_{00}=a_{11}=c>0$ verlangt werden. @@ -174,7 +174,7 @@ muss $a_{00}=a_{11}=c>0$ verlangt werden. Unter der Annahme $c>0$ lässt sich die Matrix vollständig durch den Parameter $t=s/c$ beschreiben. Dividiert man \eqref{buch:geometrie:hyperbolish:eqn:cs} durch $c^2$, -kann $c$ durch $t$ ausdrücken: +kann man $c$ durch $t$ ausdrücken: \[ \frac{1}{c^2} = @@ -199,10 +199,10 @@ H_t t&1 \end{pmatrix}. \] -Diese Formeln erinnern natürlich and die Formeln, mit denen +Diese Formeln erinnern natürlich an die Formeln, mit denen der hyperbolische Sinus und Kosinus aus dem hyperbolischen -Tangens berechnet werden kann. -Dieser Zusammenhang und soll im nächsten Abschnitt hergestellt +Tangens berechnet werden können. +Dieser Zusammenhang soll im nächsten Abschnitt hergestellt werden. % -- cgit v1.2.1 From 5f0bd2f0f44f0111977a9eece9ac555b06208ca9 Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 10:05:41 +0200 Subject: used matlab to calculate zetapath.tex --- buch/papers/zeta/images/Makefile | 3 - buch/papers/zeta/images/zetapath.tex | 2003 ++++++++++++++++++++++++++++++++++ buch/papers/zeta/images/zetaplot.pdf | Bin 41448 -> 37863 bytes 3 files changed, 2003 insertions(+), 3 deletions(-) create mode 100644 buch/papers/zeta/images/zetapath.tex (limited to 'buch') diff --git a/buch/papers/zeta/images/Makefile b/buch/papers/zeta/images/Makefile index d9cc20d..611662d 100644 --- a/buch/papers/zeta/images/Makefile +++ b/buch/papers/zeta/images/Makefile @@ -6,8 +6,5 @@ all: primzahlfunktion2.pdf zetaplot.pdf primzahlfunktion2.pdf: primzahlfunktion2.tex pdflatex primzahlfunktion2.tex -zetapath.tex: zetaplot.m zeta.m - octave zetaplot.m - zetaplot.pdf: zetaplot.tex zetapath.tex pdflatex zetaplot.tex diff --git a/buch/papers/zeta/images/zetapath.tex b/buch/papers/zeta/images/zetapath.tex new file mode 100644 index 0000000..75e1522 --- /dev/null +++ b/buch/papers/zeta/images/zetapath.tex @@ -0,0 +1,2003 @@ +\def\zetapath{ + ({-1.4604*\dx},{0.0000*\dy}) + -- ({-1.4572*\dx},{-0.0783*\dy}) + -- ({-1.4476*\dx},{-0.1559*\dy}) + -- ({-1.4319*\dx},{-0.2320*\dy}) + -- ({-1.4104*\dx},{-0.3058*\dy}) + -- ({-1.3834*\dx},{-0.3769*\dy}) + -- ({-1.3514*\dx},{-0.4446*\dy}) + -- ({-1.3149*\dx},{-0.5085*\dy}) + -- ({-1.2745*\dx},{-0.5682*\dy}) + -- ({-1.2308*\dx},{-0.6235*\dy}) + -- ({-1.1843*\dx},{-0.6742*\dy}) + -- ({-1.1358*\dx},{-0.7202*\dy}) + -- ({-1.0856*\dx},{-0.7617*\dy}) + -- ({-1.0344*\dx},{-0.7985*\dy}) + -- ({-0.9826*\dx},{-0.8309*\dy}) + -- ({-0.9306*\dx},{-0.8591*\dy}) + -- ({-0.8788*\dx},{-0.8833*\dy}) + -- ({-0.8275*\dx},{-0.9037*\dy}) + -- ({-0.7770*\dx},{-0.9205*\dy}) + -- ({-0.7275*\dx},{-0.9341*\dy}) + -- ({-0.6792*\dx},{-0.9446*\dy}) + -- ({-0.6322*\dx},{-0.9525*\dy}) + -- ({-0.5867*\dx},{-0.9578*\dy}) + -- ({-0.5427*\dx},{-0.9609*\dy}) + -- ({-0.5002*\dx},{-0.9620*\dy}) + -- ({-0.4593*\dx},{-0.9613*\dy}) + -- ({-0.4200*\dx},{-0.9589*\dy}) + -- ({-0.3823*\dx},{-0.9552*\dy}) + -- ({-0.3462*\dx},{-0.9502*\dy}) + -- ({-0.3116*\dx},{-0.9441*\dy}) + -- ({-0.2785*\dx},{-0.9371*\dy}) + -- ({-0.2469*\dx},{-0.9292*\dy}) + -- ({-0.2167*\dx},{-0.9206*\dy}) + -- ({-0.1878*\dx},{-0.9114*\dy}) + -- ({-0.1603*\dx},{-0.9017*\dy}) + -- ({-0.1340*\dx},{-0.8916*\dy}) + -- ({-0.1089*\dx},{-0.8811*\dy}) + -- ({-0.0849*\dx},{-0.8703*\dy}) + -- ({-0.0621*\dx},{-0.8593*\dy}) + -- ({-0.0402*\dx},{-0.8481*\dy}) + -- ({-0.0194*\dx},{-0.8367*\dy}) + -- ({0.0004*\dx},{-0.8253*\dy}) + -- ({0.0194*\dx},{-0.8137*\dy}) + -- ({0.0375*\dx},{-0.8022*\dy}) + -- ({0.0549*\dx},{-0.7906*\dy}) + -- ({0.0714*\dx},{-0.7790*\dy}) + -- ({0.0872*\dx},{-0.7675*\dy}) + -- ({0.1024*\dx},{-0.7560*\dy}) + -- ({0.1168*\dx},{-0.7446*\dy}) + -- ({0.1307*\dx},{-0.7333*\dy}) + -- ({0.1439*\dx},{-0.7221*\dy}) + -- ({0.1566*\dx},{-0.7110*\dy}) + -- ({0.1688*\dx},{-0.7000*\dy}) + -- ({0.1805*\dx},{-0.6890*\dy}) + -- ({0.1917*\dx},{-0.6783*\dy}) + -- ({0.2024*\dx},{-0.6676*\dy}) + -- ({0.2127*\dx},{-0.6571*\dy}) + -- ({0.2226*\dx},{-0.6467*\dy}) + -- ({0.2321*\dx},{-0.6364*\dy}) + -- ({0.2412*\dx},{-0.6263*\dy}) + -- ({0.2500*\dx},{-0.6163*\dy}) + -- ({0.2585*\dx},{-0.6064*\dy}) + -- ({0.2666*\dx},{-0.5967*\dy}) + -- ({0.2745*\dx},{-0.5871*\dy}) + -- ({0.2820*\dx},{-0.5777*\dy}) + -- ({0.2893*\dx},{-0.5684*\dy}) + -- ({0.2963*\dx},{-0.5592*\dy}) + -- ({0.3031*\dx},{-0.5501*\dy}) + -- ({0.3096*\dx},{-0.5412*\dy}) + -- ({0.3159*\dx},{-0.5324*\dy}) + -- ({0.3220*\dx},{-0.5237*\dy}) + -- ({0.3279*\dx},{-0.5152*\dy}) + -- ({0.3336*\dx},{-0.5067*\dy}) + -- ({0.3391*\dx},{-0.4984*\dy}) + -- ({0.3445*\dx},{-0.4902*\dy}) + -- ({0.3496*\dx},{-0.4821*\dy}) + -- ({0.3546*\dx},{-0.4742*\dy}) + -- ({0.3595*\dx},{-0.4663*\dy}) + -- ({0.3642*\dx},{-0.4586*\dy}) + -- ({0.3687*\dx},{-0.4510*\dy}) + -- ({0.3732*\dx},{-0.4434*\dy}) + -- ({0.3774*\dx},{-0.4360*\dy}) + -- ({0.3816*\dx},{-0.4287*\dy}) + -- ({0.3857*\dx},{-0.4214*\dy}) + -- ({0.3896*\dx},{-0.4143*\dy}) + -- ({0.3934*\dx},{-0.4073*\dy}) + -- ({0.3972*\dx},{-0.4003*\dy}) + -- ({0.4008*\dx},{-0.3935*\dy}) + -- ({0.4043*\dx},{-0.3867*\dy}) + -- ({0.4078*\dx},{-0.3800*\dy}) + -- ({0.4111*\dx},{-0.3734*\dy}) + -- ({0.4144*\dx},{-0.3669*\dy}) + -- ({0.4176*\dx},{-0.3605*\dy}) + -- ({0.4207*\dx},{-0.3541*\dy}) + -- ({0.4237*\dx},{-0.3478*\dy}) + -- ({0.4267*\dx},{-0.3416*\dy}) + -- ({0.4296*\dx},{-0.3355*\dy}) + -- ({0.4324*\dx},{-0.3294*\dy}) + -- ({0.4352*\dx},{-0.3234*\dy}) + -- ({0.4379*\dx},{-0.3175*\dy}) + -- ({0.4405*\dx},{-0.3116*\dy}) + -- ({0.4431*\dx},{-0.3059*\dy}) + -- ({0.4457*\dx},{-0.3001*\dy}) + -- ({0.4482*\dx},{-0.2945*\dy}) + -- ({0.4506*\dx},{-0.2889*\dy}) + -- ({0.4530*\dx},{-0.2833*\dy}) + -- ({0.4554*\dx},{-0.2778*\dy}) + -- ({0.4577*\dx},{-0.2724*\dy}) + -- ({0.4599*\dx},{-0.2670*\dy}) + -- ({0.4622*\dx},{-0.2617*\dy}) + -- ({0.4643*\dx},{-0.2565*\dy}) + -- ({0.4665*\dx},{-0.2513*\dy}) + -- ({0.4686*\dx},{-0.2461*\dy}) + -- ({0.4707*\dx},{-0.2410*\dy}) + -- ({0.4727*\dx},{-0.2359*\dy}) + -- ({0.4747*\dx},{-0.2309*\dy}) + -- ({0.4767*\dx},{-0.2259*\dy}) + -- ({0.4787*\dx},{-0.2210*\dy}) + -- ({0.4806*\dx},{-0.2161*\dy}) + -- ({0.4825*\dx},{-0.2113*\dy}) + -- ({0.4844*\dx},{-0.2065*\dy}) + -- ({0.4862*\dx},{-0.2018*\dy}) + -- ({0.4880*\dx},{-0.1971*\dy}) + -- ({0.4898*\dx},{-0.1924*\dy}) + -- ({0.4916*\dx},{-0.1878*\dy}) + -- ({0.4934*\dx},{-0.1832*\dy}) + -- ({0.4951*\dx},{-0.1786*\dy}) + -- ({0.4968*\dx},{-0.1741*\dy}) + -- ({0.4985*\dx},{-0.1696*\dy}) + -- ({0.5002*\dx},{-0.1652*\dy}) + -- ({0.5019*\dx},{-0.1608*\dy}) + -- ({0.5035*\dx},{-0.1564*\dy}) + -- ({0.5052*\dx},{-0.1521*\dy}) + -- ({0.5068*\dx},{-0.1478*\dy}) + -- ({0.5084*\dx},{-0.1435*\dy}) + -- ({0.5100*\dx},{-0.1392*\dy}) + -- ({0.5116*\dx},{-0.1350*\dy}) + -- ({0.5132*\dx},{-0.1308*\dy}) + -- ({0.5147*\dx},{-0.1267*\dy}) + -- ({0.5163*\dx},{-0.1226*\dy}) + -- ({0.5178*\dx},{-0.1185*\dy}) + -- ({0.5193*\dx},{-0.1144*\dy}) + -- ({0.5208*\dx},{-0.1103*\dy}) + -- ({0.5224*\dx},{-0.1063*\dy}) + -- ({0.5239*\dx},{-0.1023*\dy}) + -- ({0.5254*\dx},{-0.0984*\dy}) + -- ({0.5268*\dx},{-0.0944*\dy}) + -- ({0.5283*\dx},{-0.0905*\dy}) + -- ({0.5298*\dx},{-0.0866*\dy}) + -- ({0.5313*\dx},{-0.0827*\dy}) + -- ({0.5327*\dx},{-0.0789*\dy}) + -- ({0.5342*\dx},{-0.0751*\dy}) + -- ({0.5357*\dx},{-0.0713*\dy}) + -- ({0.5371*\dx},{-0.0675*\dy}) + -- ({0.5386*\dx},{-0.0637*\dy}) + -- ({0.5400*\dx},{-0.0600*\dy}) + -- ({0.5414*\dx},{-0.0563*\dy}) + -- ({0.5429*\dx},{-0.0526*\dy}) + -- ({0.5443*\dx},{-0.0489*\dy}) + -- ({0.5458*\dx},{-0.0453*\dy}) + -- ({0.5472*\dx},{-0.0416*\dy}) + -- ({0.5486*\dx},{-0.0380*\dy}) + -- ({0.5501*\dx},{-0.0344*\dy}) + -- ({0.5515*\dx},{-0.0308*\dy}) + -- ({0.5529*\dx},{-0.0272*\dy}) + -- ({0.5544*\dx},{-0.0237*\dy}) + -- ({0.5558*\dx},{-0.0202*\dy}) + -- ({0.5572*\dx},{-0.0167*\dy}) + -- ({0.5587*\dx},{-0.0132*\dy}) + -- ({0.5601*\dx},{-0.0097*\dy}) + -- ({0.5615*\dx},{-0.0062*\dy}) + -- ({0.5630*\dx},{-0.0028*\dy}) + -- ({0.5644*\dx},{0.0006*\dy}) + -- ({0.5659*\dx},{0.0041*\dy}) + -- ({0.5673*\dx},{0.0075*\dy}) + -- ({0.5688*\dx},{0.0108*\dy}) + -- ({0.5702*\dx},{0.0142*\dy}) + -- ({0.5717*\dx},{0.0176*\dy}) + -- ({0.5731*\dx},{0.0209*\dy}) + -- ({0.5746*\dx},{0.0242*\dy}) + -- ({0.5761*\dx},{0.0275*\dy}) + -- ({0.5776*\dx},{0.0308*\dy}) + -- ({0.5790*\dx},{0.0341*\dy}) + -- ({0.5805*\dx},{0.0374*\dy}) + -- ({0.5820*\dx},{0.0407*\dy}) + -- ({0.5835*\dx},{0.0439*\dy}) + -- ({0.5850*\dx},{0.0471*\dy}) + -- ({0.5865*\dx},{0.0504*\dy}) + -- ({0.5880*\dx},{0.0536*\dy}) + -- ({0.5896*\dx},{0.0568*\dy}) + -- ({0.5911*\dx},{0.0599*\dy}) + -- ({0.5926*\dx},{0.0631*\dy}) + -- ({0.5942*\dx},{0.0663*\dy}) + -- ({0.5957*\dx},{0.0694*\dy}) + -- ({0.5973*\dx},{0.0725*\dy}) + -- ({0.5988*\dx},{0.0757*\dy}) + -- ({0.6004*\dx},{0.0788*\dy}) + -- ({0.6020*\dx},{0.0819*\dy}) + -- ({0.6036*\dx},{0.0850*\dy}) + -- ({0.6052*\dx},{0.0880*\dy}) + -- ({0.6068*\dx},{0.0911*\dy}) + -- ({0.6084*\dx},{0.0942*\dy}) + -- ({0.6100*\dx},{0.0972*\dy}) + -- ({0.6117*\dx},{0.1002*\dy}) + -- ({0.6133*\dx},{0.1033*\dy}) + -- ({0.6149*\dx},{0.1063*\dy}) + -- ({0.6166*\dx},{0.1093*\dy}) + -- ({0.6183*\dx},{0.1123*\dy}) + -- ({0.6200*\dx},{0.1152*\dy}) + -- ({0.6217*\dx},{0.1182*\dy}) + -- ({0.6234*\dx},{0.1212*\dy}) + -- ({0.6251*\dx},{0.1241*\dy}) + -- ({0.6268*\dx},{0.1271*\dy}) + -- ({0.6285*\dx},{0.1300*\dy}) + -- ({0.6303*\dx},{0.1329*\dy}) + -- ({0.6320*\dx},{0.1358*\dy}) + -- ({0.6338*\dx},{0.1387*\dy}) + -- ({0.6356*\dx},{0.1416*\dy}) + -- ({0.6374*\dx},{0.1445*\dy}) + -- ({0.6392*\dx},{0.1473*\dy}) + -- ({0.6410*\dx},{0.1502*\dy}) + -- ({0.6428*\dx},{0.1530*\dy}) + -- ({0.6446*\dx},{0.1559*\dy}) + -- ({0.6465*\dx},{0.1587*\dy}) + -- ({0.6484*\dx},{0.1615*\dy}) + -- ({0.6502*\dx},{0.1643*\dy}) + -- ({0.6521*\dx},{0.1671*\dy}) + -- ({0.6540*\dx},{0.1699*\dy}) + -- ({0.6560*\dx},{0.1727*\dy}) + -- ({0.6579*\dx},{0.1754*\dy}) + -- ({0.6598*\dx},{0.1782*\dy}) + -- ({0.6618*\dx},{0.1809*\dy}) + -- ({0.6638*\dx},{0.1837*\dy}) + -- ({0.6658*\dx},{0.1864*\dy}) + -- ({0.6678*\dx},{0.1891*\dy}) + -- ({0.6698*\dx},{0.1918*\dy}) + -- ({0.6718*\dx},{0.1945*\dy}) + -- ({0.6738*\dx},{0.1972*\dy}) + -- ({0.6759*\dx},{0.1998*\dy}) + -- ({0.6780*\dx},{0.2025*\dy}) + -- ({0.6801*\dx},{0.2052*\dy}) + -- ({0.6822*\dx},{0.2078*\dy}) + -- ({0.6843*\dx},{0.2104*\dy}) + -- ({0.6864*\dx},{0.2130*\dy}) + -- ({0.6886*\dx},{0.2156*\dy}) + -- ({0.6907*\dx},{0.2182*\dy}) + -- ({0.6929*\dx},{0.2208*\dy}) + -- ({0.6951*\dx},{0.2234*\dy}) + -- ({0.6973*\dx},{0.2260*\dy}) + -- ({0.6996*\dx},{0.2285*\dy}) + -- ({0.7018*\dx},{0.2310*\dy}) + -- ({0.7041*\dx},{0.2336*\dy}) + -- ({0.7064*\dx},{0.2361*\dy}) + -- ({0.7087*\dx},{0.2386*\dy}) + -- ({0.7110*\dx},{0.2411*\dy}) + -- ({0.7133*\dx},{0.2436*\dy}) + -- ({0.7156*\dx},{0.2460*\dy}) + -- ({0.7180*\dx},{0.2485*\dy}) + -- ({0.7204*\dx},{0.2509*\dy}) + -- ({0.7228*\dx},{0.2533*\dy}) + -- ({0.7252*\dx},{0.2558*\dy}) + -- ({0.7276*\dx},{0.2582*\dy}) + -- ({0.7301*\dx},{0.2606*\dy}) + -- ({0.7326*\dx},{0.2629*\dy}) + -- ({0.7350*\dx},{0.2653*\dy}) + -- ({0.7376*\dx},{0.2677*\dy}) + -- ({0.7401*\dx},{0.2700*\dy}) + -- ({0.7426*\dx},{0.2723*\dy}) + -- ({0.7452*\dx},{0.2746*\dy}) + -- ({0.7478*\dx},{0.2769*\dy}) + -- ({0.7504*\dx},{0.2792*\dy}) + -- ({0.7530*\dx},{0.2815*\dy}) + -- ({0.7556*\dx},{0.2837*\dy}) + -- ({0.7583*\dx},{0.2860*\dy}) + -- ({0.7609*\dx},{0.2882*\dy}) + -- ({0.7636*\dx},{0.2904*\dy}) + -- ({0.7663*\dx},{0.2926*\dy}) + -- ({0.7691*\dx},{0.2948*\dy}) + -- ({0.7718*\dx},{0.2969*\dy}) + -- ({0.7746*\dx},{0.2991*\dy}) + -- ({0.7774*\dx},{0.3012*\dy}) + -- ({0.7802*\dx},{0.3033*\dy}) + -- ({0.7830*\dx},{0.3054*\dy}) + -- ({0.7858*\dx},{0.3075*\dy}) + -- ({0.7887*\dx},{0.3096*\dy}) + -- ({0.7916*\dx},{0.3116*\dy}) + -- ({0.7945*\dx},{0.3137*\dy}) + -- ({0.7974*\dx},{0.3157*\dy}) + -- ({0.8004*\dx},{0.3177*\dy}) + -- ({0.8033*\dx},{0.3197*\dy}) + -- ({0.8063*\dx},{0.3216*\dy}) + -- ({0.8093*\dx},{0.3236*\dy}) + -- ({0.8123*\dx},{0.3255*\dy}) + -- ({0.8154*\dx},{0.3274*\dy}) + -- ({0.8184*\dx},{0.3293*\dy}) + -- ({0.8215*\dx},{0.3312*\dy}) + -- ({0.8246*\dx},{0.3330*\dy}) + -- ({0.8277*\dx},{0.3348*\dy}) + -- ({0.8309*\dx},{0.3367*\dy}) + -- ({0.8340*\dx},{0.3384*\dy}) + -- ({0.8372*\dx},{0.3402*\dy}) + -- ({0.8404*\dx},{0.3420*\dy}) + -- ({0.8437*\dx},{0.3437*\dy}) + -- ({0.8469*\dx},{0.3454*\dy}) + -- ({0.8502*\dx},{0.3471*\dy}) + -- ({0.8534*\dx},{0.3487*\dy}) + -- ({0.8567*\dx},{0.3504*\dy}) + -- ({0.8601*\dx},{0.3520*\dy}) + -- ({0.8634*\dx},{0.3536*\dy}) + -- ({0.8668*\dx},{0.3552*\dy}) + -- ({0.8702*\dx},{0.3567*\dy}) + -- ({0.8736*\dx},{0.3583*\dy}) + -- ({0.8770*\dx},{0.3598*\dy}) + -- ({0.8804*\dx},{0.3612*\dy}) + -- ({0.8839*\dx},{0.3627*\dy}) + -- ({0.8874*\dx},{0.3641*\dy}) + -- ({0.8909*\dx},{0.3655*\dy}) + -- ({0.8944*\dx},{0.3669*\dy}) + -- ({0.8980*\dx},{0.3683*\dy}) + -- ({0.9015*\dx},{0.3696*\dy}) + -- ({0.9051*\dx},{0.3709*\dy}) + -- ({0.9087*\dx},{0.3722*\dy}) + -- ({0.9124*\dx},{0.3734*\dy}) + -- ({0.9160*\dx},{0.3746*\dy}) + -- ({0.9197*\dx},{0.3758*\dy}) + -- ({0.9233*\dx},{0.3770*\dy}) + -- ({0.9271*\dx},{0.3781*\dy}) + -- ({0.9308*\dx},{0.3793*\dy}) + -- ({0.9345*\dx},{0.3803*\dy}) + -- ({0.9383*\dx},{0.3814*\dy}) + -- ({0.9421*\dx},{0.3824*\dy}) + -- ({0.9459*\dx},{0.3834*\dy}) + -- ({0.9497*\dx},{0.3844*\dy}) + -- ({0.9535*\dx},{0.3853*\dy}) + -- ({0.9574*\dx},{0.3862*\dy}) + -- ({0.9612*\dx},{0.3871*\dy}) + -- ({0.9651*\dx},{0.3879*\dy}) + -- ({0.9690*\dx},{0.3887*\dy}) + -- ({0.9730*\dx},{0.3895*\dy}) + -- ({0.9769*\dx},{0.3902*\dy}) + -- ({0.9809*\dx},{0.3910*\dy}) + -- ({0.9848*\dx},{0.3916*\dy}) + -- ({0.9888*\dx},{0.3923*\dy}) + -- ({0.9929*\dx},{0.3929*\dy}) + -- ({0.9969*\dx},{0.3935*\dy}) + -- ({1.0009*\dx},{0.3940*\dy}) + -- ({1.0050*\dx},{0.3945*\dy}) + -- ({1.0091*\dx},{0.3950*\dy}) + -- ({1.0132*\dx},{0.3954*\dy}) + -- ({1.0173*\dx},{0.3958*\dy}) + -- ({1.0214*\dx},{0.3962*\dy}) + -- ({1.0256*\dx},{0.3965*\dy}) + -- ({1.0297*\dx},{0.3968*\dy}) + -- ({1.0339*\dx},{0.3971*\dy}) + -- ({1.0381*\dx},{0.3973*\dy}) + -- ({1.0423*\dx},{0.3975*\dy}) + -- ({1.0465*\dx},{0.3976*\dy}) + -- ({1.0508*\dx},{0.3977*\dy}) + -- ({1.0550*\dx},{0.3977*\dy}) + -- ({1.0593*\dx},{0.3978*\dy}) + -- ({1.0636*\dx},{0.3977*\dy}) + -- ({1.0679*\dx},{0.3977*\dy}) + -- ({1.0722*\dx},{0.3976*\dy}) + -- ({1.0765*\dx},{0.3974*\dy}) + -- ({1.0808*\dx},{0.3973*\dy}) + -- ({1.0851*\dx},{0.3970*\dy}) + -- ({1.0895*\dx},{0.3968*\dy}) + -- ({1.0938*\dx},{0.3965*\dy}) + -- ({1.0982*\dx},{0.3961*\dy}) + -- ({1.1026*\dx},{0.3957*\dy}) + -- ({1.1070*\dx},{0.3953*\dy}) + -- ({1.1114*\dx},{0.3948*\dy}) + -- ({1.1158*\dx},{0.3943*\dy}) + -- ({1.1202*\dx},{0.3937*\dy}) + -- ({1.1247*\dx},{0.3931*\dy}) + -- ({1.1291*\dx},{0.3924*\dy}) + -- ({1.1336*\dx},{0.3917*\dy}) + -- ({1.1380*\dx},{0.3909*\dy}) + -- ({1.1425*\dx},{0.3901*\dy}) + -- ({1.1469*\dx},{0.3893*\dy}) + -- ({1.1514*\dx},{0.3884*\dy}) + -- ({1.1559*\dx},{0.3875*\dy}) + -- ({1.1604*\dx},{0.3865*\dy}) + -- ({1.1649*\dx},{0.3854*\dy}) + -- ({1.1694*\dx},{0.3843*\dy}) + -- ({1.1739*\dx},{0.3832*\dy}) + -- ({1.1784*\dx},{0.3820*\dy}) + -- ({1.1829*\dx},{0.3808*\dy}) + -- ({1.1874*\dx},{0.3795*\dy}) + -- ({1.1919*\dx},{0.3782*\dy}) + -- ({1.1965*\dx},{0.3768*\dy}) + -- ({1.2010*\dx},{0.3753*\dy}) + -- ({1.2055*\dx},{0.3738*\dy}) + -- ({1.2100*\dx},{0.3723*\dy}) + -- ({1.2145*\dx},{0.3707*\dy}) + -- ({1.2190*\dx},{0.3691*\dy}) + -- ({1.2236*\dx},{0.3674*\dy}) + -- ({1.2281*\dx},{0.3656*\dy}) + -- ({1.2326*\dx},{0.3638*\dy}) + -- ({1.2371*\dx},{0.3620*\dy}) + -- ({1.2416*\dx},{0.3600*\dy}) + -- ({1.2461*\dx},{0.3581*\dy}) + -- ({1.2506*\dx},{0.3561*\dy}) + -- ({1.2551*\dx},{0.3540*\dy}) + -- ({1.2596*\dx},{0.3519*\dy}) + -- ({1.2641*\dx},{0.3497*\dy}) + -- ({1.2686*\dx},{0.3475*\dy}) + -- ({1.2730*\dx},{0.3452*\dy}) + -- ({1.2775*\dx},{0.3428*\dy}) + -- ({1.2819*\dx},{0.3404*\dy}) + -- ({1.2864*\dx},{0.3379*\dy}) + -- ({1.2908*\dx},{0.3354*\dy}) + -- ({1.2952*\dx},{0.3329*\dy}) + -- ({1.2996*\dx},{0.3302*\dy}) + -- ({1.3040*\dx},{0.3275*\dy}) + -- ({1.3084*\dx},{0.3248*\dy}) + -- ({1.3128*\dx},{0.3220*\dy}) + -- ({1.3171*\dx},{0.3191*\dy}) + -- ({1.3215*\dx},{0.3162*\dy}) + -- ({1.3258*\dx},{0.3132*\dy}) + -- ({1.3301*\dx},{0.3102*\dy}) + -- ({1.3344*\dx},{0.3071*\dy}) + -- ({1.3386*\dx},{0.3040*\dy}) + -- ({1.3429*\dx},{0.3008*\dy}) + -- ({1.3471*\dx},{0.2975*\dy}) + -- ({1.3513*\dx},{0.2942*\dy}) + -- ({1.3555*\dx},{0.2908*\dy}) + -- ({1.3597*\dx},{0.2874*\dy}) + -- ({1.3638*\dx},{0.2839*\dy}) + -- ({1.3680*\dx},{0.2803*\dy}) + -- ({1.3721*\dx},{0.2767*\dy}) + -- ({1.3761*\dx},{0.2730*\dy}) + -- ({1.3802*\dx},{0.2693*\dy}) + -- ({1.3842*\dx},{0.2655*\dy}) + -- ({1.3882*\dx},{0.2616*\dy}) + -- ({1.3922*\dx},{0.2577*\dy}) + -- ({1.3961*\dx},{0.2537*\dy}) + -- ({1.4000*\dx},{0.2497*\dy}) + -- ({1.4039*\dx},{0.2456*\dy}) + -- ({1.4077*\dx},{0.2414*\dy}) + -- ({1.4115*\dx},{0.2372*\dy}) + -- ({1.4153*\dx},{0.2329*\dy}) + -- ({1.4191*\dx},{0.2286*\dy}) + -- ({1.4228*\dx},{0.2242*\dy}) + -- ({1.4264*\dx},{0.2197*\dy}) + -- ({1.4301*\dx},{0.2152*\dy}) + -- ({1.4337*\dx},{0.2107*\dy}) + -- ({1.4372*\dx},{0.2060*\dy}) + -- ({1.4407*\dx},{0.2014*\dy}) + -- ({1.4442*\dx},{0.1966*\dy}) + -- ({1.4476*\dx},{0.1918*\dy}) + -- ({1.4510*\dx},{0.1869*\dy}) + -- ({1.4544*\dx},{0.1820*\dy}) + -- ({1.4577*\dx},{0.1770*\dy}) + -- ({1.4609*\dx},{0.1720*\dy}) + -- ({1.4642*\dx},{0.1669*\dy}) + -- ({1.4673*\dx},{0.1618*\dy}) + -- ({1.4704*\dx},{0.1566*\dy}) + -- ({1.4735*\dx},{0.1513*\dy}) + -- ({1.4765*\dx},{0.1460*\dy}) + -- ({1.4795*\dx},{0.1406*\dy}) + -- ({1.4824*\dx},{0.1352*\dy}) + -- ({1.4853*\dx},{0.1297*\dy}) + -- ({1.4881*\dx},{0.1241*\dy}) + -- ({1.4908*\dx},{0.1185*\dy}) + -- ({1.4935*\dx},{0.1129*\dy}) + -- ({1.4961*\dx},{0.1072*\dy}) + -- ({1.4987*\dx},{0.1014*\dy}) + -- ({1.5012*\dx},{0.0956*\dy}) + -- ({1.5037*\dx},{0.0897*\dy}) + -- ({1.5061*\dx},{0.0838*\dy}) + -- ({1.5084*\dx},{0.0778*\dy}) + -- ({1.5107*\dx},{0.0718*\dy}) + -- ({1.5129*\dx},{0.0657*\dy}) + -- ({1.5151*\dx},{0.0596*\dy}) + -- ({1.5172*\dx},{0.0534*\dy}) + -- ({1.5192*\dx},{0.0472*\dy}) + -- ({1.5211*\dx},{0.0409*\dy}) + -- ({1.5230*\dx},{0.0346*\dy}) + -- ({1.5248*\dx},{0.0282*\dy}) + -- ({1.5265*\dx},{0.0218*\dy}) + -- ({1.5282*\dx},{0.0153*\dy}) + -- ({1.5298*\dx},{0.0088*\dy}) + -- ({1.5313*\dx},{0.0023*\dy}) + -- ({1.5328*\dx},{-0.0043*\dy}) + -- ({1.5341*\dx},{-0.0110*\dy}) + -- ({1.5354*\dx},{-0.0177*\dy}) + -- ({1.5366*\dx},{-0.0244*\dy}) + -- ({1.5378*\dx},{-0.0312*\dy}) + -- ({1.5388*\dx},{-0.0380*\dy}) + -- ({1.5398*\dx},{-0.0448*\dy}) + -- ({1.5407*\dx},{-0.0517*\dy}) + -- ({1.5415*\dx},{-0.0586*\dy}) + -- ({1.5422*\dx},{-0.0656*\dy}) + -- ({1.5429*\dx},{-0.0726*\dy}) + -- ({1.5434*\dx},{-0.0796*\dy}) + -- ({1.5439*\dx},{-0.0867*\dy}) + -- ({1.5443*\dx},{-0.0938*\dy}) + -- ({1.5446*\dx},{-0.1010*\dy}) + -- ({1.5448*\dx},{-0.1081*\dy}) + -- ({1.5449*\dx},{-0.1153*\dy}) + -- ({1.5449*\dx},{-0.1226*\dy}) + -- ({1.5449*\dx},{-0.1298*\dy}) + -- ({1.5447*\dx},{-0.1371*\dy}) + -- ({1.5444*\dx},{-0.1444*\dy}) + -- ({1.5441*\dx},{-0.1518*\dy}) + -- ({1.5437*\dx},{-0.1591*\dy}) + -- ({1.5431*\dx},{-0.1665*\dy}) + -- ({1.5425*\dx},{-0.1740*\dy}) + -- ({1.5418*\dx},{-0.1814*\dy}) + -- ({1.5409*\dx},{-0.1888*\dy}) + -- ({1.5400*\dx},{-0.1963*\dy}) + -- ({1.5390*\dx},{-0.2038*\dy}) + -- ({1.5378*\dx},{-0.2113*\dy}) + -- ({1.5366*\dx},{-0.2188*\dy}) + -- ({1.5353*\dx},{-0.2264*\dy}) + -- ({1.5339*\dx},{-0.2339*\dy}) + -- ({1.5323*\dx},{-0.2415*\dy}) + -- ({1.5307*\dx},{-0.2491*\dy}) + -- ({1.5289*\dx},{-0.2566*\dy}) + -- ({1.5271*\dx},{-0.2642*\dy}) + -- ({1.5251*\dx},{-0.2718*\dy}) + -- ({1.5230*\dx},{-0.2794*\dy}) + -- ({1.5209*\dx},{-0.2870*\dy}) + -- ({1.5186*\dx},{-0.2946*\dy}) + -- ({1.5162*\dx},{-0.3022*\dy}) + -- ({1.5137*\dx},{-0.3098*\dy}) + -- ({1.5111*\dx},{-0.3174*\dy}) + -- ({1.5084*\dx},{-0.3250*\dy}) + -- ({1.5055*\dx},{-0.3326*\dy}) + -- ({1.5026*\dx},{-0.3402*\dy}) + -- ({1.4995*\dx},{-0.3477*\dy}) + -- ({1.4963*\dx},{-0.3553*\dy}) + -- ({1.4931*\dx},{-0.3628*\dy}) + -- ({1.4897*\dx},{-0.3704*\dy}) + -- ({1.4862*\dx},{-0.3779*\dy}) + -- ({1.4825*\dx},{-0.3854*\dy}) + -- ({1.4788*\dx},{-0.3929*\dy}) + -- ({1.4749*\dx},{-0.4003*\dy}) + -- ({1.4710*\dx},{-0.4078*\dy}) + -- ({1.4669*\dx},{-0.4152*\dy}) + -- ({1.4627*\dx},{-0.4226*\dy}) + -- ({1.4584*\dx},{-0.4300*\dy}) + -- ({1.4539*\dx},{-0.4373*\dy}) + -- ({1.4494*\dx},{-0.4446*\dy}) + -- ({1.4447*\dx},{-0.4519*\dy}) + -- ({1.4399*\dx},{-0.4591*\dy}) + -- ({1.4350*\dx},{-0.4663*\dy}) + -- ({1.4300*\dx},{-0.4735*\dy}) + -- ({1.4249*\dx},{-0.4806*\dy}) + -- ({1.4197*\dx},{-0.4877*\dy}) + -- ({1.4143*\dx},{-0.4947*\dy}) + -- ({1.4088*\dx},{-0.5017*\dy}) + -- ({1.4032*\dx},{-0.5086*\dy}) + -- ({1.3975*\dx},{-0.5155*\dy}) + -- ({1.3916*\dx},{-0.5224*\dy}) + -- ({1.3857*\dx},{-0.5292*\dy}) + -- ({1.3796*\dx},{-0.5359*\dy}) + -- ({1.3734*\dx},{-0.5426*\dy}) + -- ({1.3671*\dx},{-0.5492*\dy}) + -- ({1.3607*\dx},{-0.5558*\dy}) + -- ({1.3542*\dx},{-0.5623*\dy}) + -- ({1.3475*\dx},{-0.5687*\dy}) + -- ({1.3408*\dx},{-0.5751*\dy}) + -- ({1.3339*\dx},{-0.5814*\dy}) + -- ({1.3269*\dx},{-0.5876*\dy}) + -- ({1.3198*\dx},{-0.5937*\dy}) + -- ({1.3126*\dx},{-0.5998*\dy}) + -- ({1.3052*\dx},{-0.6058*\dy}) + -- ({1.2978*\dx},{-0.6117*\dy}) + -- ({1.2902*\dx},{-0.6176*\dy}) + -- ({1.2826*\dx},{-0.6233*\dy}) + -- ({1.2748*\dx},{-0.6290*\dy}) + -- ({1.2669*\dx},{-0.6346*\dy}) + -- ({1.2589*\dx},{-0.6401*\dy}) + -- ({1.2508*\dx},{-0.6455*\dy}) + -- ({1.2426*\dx},{-0.6508*\dy}) + -- ({1.2343*\dx},{-0.6560*\dy}) + -- ({1.2259*\dx},{-0.6611*\dy}) + -- ({1.2173*\dx},{-0.6662*\dy}) + -- ({1.2087*\dx},{-0.6711*\dy}) + -- ({1.2000*\dx},{-0.6759*\dy}) + -- ({1.1911*\dx},{-0.6806*\dy}) + -- ({1.1822*\dx},{-0.6852*\dy}) + -- ({1.1731*\dx},{-0.6897*\dy}) + -- ({1.1640*\dx},{-0.6941*\dy}) + -- ({1.1548*\dx},{-0.6984*\dy}) + -- ({1.1454*\dx},{-0.7025*\dy}) + -- ({1.1360*\dx},{-0.7065*\dy}) + -- ({1.1265*\dx},{-0.7105*\dy}) + -- ({1.1169*\dx},{-0.7143*\dy}) + -- ({1.1072*\dx},{-0.7179*\dy}) + -- ({1.0974*\dx},{-0.7215*\dy}) + -- ({1.0875*\dx},{-0.7249*\dy}) + -- ({1.0775*\dx},{-0.7282*\dy}) + -- ({1.0674*\dx},{-0.7313*\dy}) + -- ({1.0573*\dx},{-0.7344*\dy}) + -- ({1.0471*\dx},{-0.7373*\dy}) + -- ({1.0368*\dx},{-0.7400*\dy}) + -- ({1.0264*\dx},{-0.7426*\dy}) + -- ({1.0159*\dx},{-0.7451*\dy}) + -- ({1.0054*\dx},{-0.7474*\dy}) + -- ({0.9948*\dx},{-0.7496*\dy}) + -- ({0.9841*\dx},{-0.7517*\dy}) + -- ({0.9734*\dx},{-0.7536*\dy}) + -- ({0.9625*\dx},{-0.7553*\dy}) + -- ({0.9516*\dx},{-0.7569*\dy}) + -- ({0.9407*\dx},{-0.7584*\dy}) + -- ({0.9297*\dx},{-0.7596*\dy}) + -- ({0.9186*\dx},{-0.7608*\dy}) + -- ({0.9075*\dx},{-0.7617*\dy}) + -- ({0.8963*\dx},{-0.7626*\dy}) + -- ({0.8850*\dx},{-0.7632*\dy}) + -- ({0.8738*\dx},{-0.7637*\dy}) + -- ({0.8624*\dx},{-0.7640*\dy}) + -- ({0.8510*\dx},{-0.7642*\dy}) + -- ({0.8396*\dx},{-0.7642*\dy}) + -- ({0.8281*\dx},{-0.7640*\dy}) + -- ({0.8166*\dx},{-0.7636*\dy}) + -- ({0.8050*\dx},{-0.7631*\dy}) + -- ({0.7934*\dx},{-0.7624*\dy}) + -- ({0.7818*\dx},{-0.7615*\dy}) + -- ({0.7702*\dx},{-0.7605*\dy}) + -- ({0.7585*\dx},{-0.7593*\dy}) + -- ({0.7468*\dx},{-0.7579*\dy}) + -- ({0.7350*\dx},{-0.7563*\dy}) + -- ({0.7233*\dx},{-0.7545*\dy}) + -- ({0.7115*\dx},{-0.7526*\dy}) + -- ({0.6998*\dx},{-0.7504*\dy}) + -- ({0.6880*\dx},{-0.7481*\dy}) + -- ({0.6762*\dx},{-0.7456*\dy}) + -- ({0.6644*\dx},{-0.7429*\dy}) + -- ({0.6526*\dx},{-0.7401*\dy}) + -- ({0.6407*\dx},{-0.7370*\dy}) + -- ({0.6289*\dx},{-0.7337*\dy}) + -- ({0.6171*\dx},{-0.7303*\dy}) + -- ({0.6054*\dx},{-0.7267*\dy}) + -- ({0.5936*\dx},{-0.7229*\dy}) + -- ({0.5818*\dx},{-0.7188*\dy}) + -- ({0.5701*\dx},{-0.7146*\dy}) + -- ({0.5583*\dx},{-0.7102*\dy}) + -- ({0.5466*\dx},{-0.7056*\dy}) + -- ({0.5350*\dx},{-0.7008*\dy}) + -- ({0.5233*\dx},{-0.6959*\dy}) + -- ({0.5117*\dx},{-0.6907*\dy}) + -- ({0.5002*\dx},{-0.6853*\dy}) + -- ({0.4886*\dx},{-0.6797*\dy}) + -- ({0.4772*\dx},{-0.6740*\dy}) + -- ({0.4657*\dx},{-0.6680*\dy}) + -- ({0.4543*\dx},{-0.6618*\dy}) + -- ({0.4430*\dx},{-0.6555*\dy}) + -- ({0.4317*\dx},{-0.6489*\dy}) + -- ({0.4205*\dx},{-0.6422*\dy}) + -- ({0.4094*\dx},{-0.6352*\dy}) + -- ({0.3983*\dx},{-0.6281*\dy}) + -- ({0.3873*\dx},{-0.6208*\dy}) + -- ({0.3763*\dx},{-0.6132*\dy}) + -- ({0.3655*\dx},{-0.6055*\dy}) + -- ({0.3547*\dx},{-0.5976*\dy}) + -- ({0.3440*\dx},{-0.5894*\dy}) + -- ({0.3334*\dx},{-0.5811*\dy}) + -- ({0.3229*\dx},{-0.5726*\dy}) + -- ({0.3125*\dx},{-0.5639*\dy}) + -- ({0.3022*\dx},{-0.5550*\dy}) + -- ({0.2920*\dx},{-0.5459*\dy}) + -- ({0.2818*\dx},{-0.5367*\dy}) + -- ({0.2718*\dx},{-0.5272*\dy}) + -- ({0.2620*\dx},{-0.5175*\dy}) + -- ({0.2522*\dx},{-0.5077*\dy}) + -- ({0.2425*\dx},{-0.4977*\dy}) + -- ({0.2330*\dx},{-0.4875*\dy}) + -- ({0.2236*\dx},{-0.4771*\dy}) + -- ({0.2144*\dx},{-0.4665*\dy}) + -- ({0.2052*\dx},{-0.4557*\dy}) + -- ({0.1962*\dx},{-0.4448*\dy}) + -- ({0.1874*\dx},{-0.4337*\dy}) + -- ({0.1787*\dx},{-0.4224*\dy}) + -- ({0.1701*\dx},{-0.4109*\dy}) + -- ({0.1617*\dx},{-0.3992*\dy}) + -- ({0.1535*\dx},{-0.3874*\dy}) + -- ({0.1454*\dx},{-0.3754*\dy}) + -- ({0.1375*\dx},{-0.3633*\dy}) + -- ({0.1297*\dx},{-0.3509*\dy}) + -- ({0.1221*\dx},{-0.3384*\dy}) + -- ({0.1147*\dx},{-0.3258*\dy}) + -- ({0.1074*\dx},{-0.3130*\dy}) + -- ({0.1004*\dx},{-0.3000*\dy}) + -- ({0.0935*\dx},{-0.2869*\dy}) + -- ({0.0868*\dx},{-0.2736*\dy}) + -- ({0.0803*\dx},{-0.2602*\dy}) + -- ({0.0740*\dx},{-0.2466*\dy}) + -- ({0.0679*\dx},{-0.2329*\dy}) + -- ({0.0620*\dx},{-0.2190*\dy}) + -- ({0.0563*\dx},{-0.2050*\dy}) + -- ({0.0508*\dx},{-0.1908*\dy}) + -- ({0.0455*\dx},{-0.1766*\dy}) + -- ({0.0404*\dx},{-0.1622*\dy}) + -- ({0.0355*\dx},{-0.1476*\dy}) + -- ({0.0309*\dx},{-0.1330*\dy}) + -- ({0.0264*\dx},{-0.1182*\dy}) + -- ({0.0222*\dx},{-0.1033*\dy}) + -- ({0.0183*\dx},{-0.0882*\dy}) + -- ({0.0145*\dx},{-0.0731*\dy}) + -- ({0.0110*\dx},{-0.0579*\dy}) + -- ({0.0077*\dx},{-0.0425*\dy}) + -- ({0.0047*\dx},{-0.0271*\dy}) + -- ({0.0019*\dx},{-0.0115*\dy}) + -- ({-0.0006*\dx},{0.0041*\dy}) + -- ({-0.0030*\dx},{0.0199*\dy}) + -- ({-0.0050*\dx},{0.0357*\dy}) + -- ({-0.0068*\dx},{0.0516*\dy}) + -- ({-0.0084*\dx},{0.0676*\dy}) + -- ({-0.0097*\dx},{0.0836*\dy}) + -- ({-0.0107*\dx},{0.0998*\dy}) + -- ({-0.0115*\dx},{0.1160*\dy}) + -- ({-0.0120*\dx},{0.1322*\dy}) + -- ({-0.0122*\dx},{0.1486*\dy}) + -- ({-0.0122*\dx},{0.1649*\dy}) + -- ({-0.0119*\dx},{0.1813*\dy}) + -- ({-0.0114*\dx},{0.1978*\dy}) + -- ({-0.0105*\dx},{0.2143*\dy}) + -- ({-0.0094*\dx},{0.2309*\dy}) + -- ({-0.0080*\dx},{0.2475*\dy}) + -- ({-0.0064*\dx},{0.2641*\dy}) + -- ({-0.0044*\dx},{0.2807*\dy}) + -- ({-0.0022*\dx},{0.2973*\dy}) + -- ({0.0003*\dx},{0.3140*\dy}) + -- ({0.0031*\dx},{0.3307*\dy}) + -- ({0.0061*\dx},{0.3473*\dy}) + -- ({0.0095*\dx},{0.3640*\dy}) + -- ({0.0131*\dx},{0.3807*\dy}) + -- ({0.0171*\dx},{0.3973*\dy}) + -- ({0.0213*\dx},{0.4140*\dy}) + -- ({0.0258*\dx},{0.4306*\dy}) + -- ({0.0306*\dx},{0.4472*\dy}) + -- ({0.0357*\dx},{0.4637*\dy}) + -- ({0.0411*\dx},{0.4803*\dy}) + -- ({0.0467*\dx},{0.4967*\dy}) + -- ({0.0527*\dx},{0.5132*\dy}) + -- ({0.0590*\dx},{0.5296*\dy}) + -- ({0.0655*\dx},{0.5459*\dy}) + -- ({0.0724*\dx},{0.5621*\dy}) + -- ({0.0795*\dx},{0.5783*\dy}) + -- ({0.0869*\dx},{0.5945*\dy}) + -- ({0.0947*\dx},{0.6105*\dy}) + -- ({0.1027*\dx},{0.6264*\dy}) + -- ({0.1110*\dx},{0.6423*\dy}) + -- ({0.1196*\dx},{0.6581*\dy}) + -- ({0.1285*\dx},{0.6737*\dy}) + -- ({0.1376*\dx},{0.6893*\dy}) + -- ({0.1471*\dx},{0.7048*\dy}) + -- ({0.1569*\dx},{0.7201*\dy}) + -- ({0.1669*\dx},{0.7353*\dy}) + -- ({0.1772*\dx},{0.7504*\dy}) + -- ({0.1878*\dx},{0.7653*\dy}) + -- ({0.1987*\dx},{0.7801*\dy}) + -- ({0.2099*\dx},{0.7948*\dy}) + -- ({0.2214*\dx},{0.8093*\dy}) + -- ({0.2331*\dx},{0.8236*\dy}) + -- ({0.2451*\dx},{0.8378*\dy}) + -- ({0.2574*\dx},{0.8519*\dy}) + -- ({0.2700*\dx},{0.8657*\dy}) + -- ({0.2828*\dx},{0.8794*\dy}) + -- ({0.2959*\dx},{0.8929*\dy}) + -- ({0.3093*\dx},{0.9062*\dy}) + -- ({0.3229*\dx},{0.9193*\dy}) + -- ({0.3368*\dx},{0.9322*\dy}) + -- ({0.3509*\dx},{0.9449*\dy}) + -- ({0.3653*\dx},{0.9574*\dy}) + -- ({0.3800*\dx},{0.9697*\dy}) + -- ({0.3949*\dx},{0.9817*\dy}) + -- ({0.4100*\dx},{0.9936*\dy}) + -- ({0.4254*\dx},{1.0052*\dy}) + -- ({0.4411*\dx},{1.0165*\dy}) + -- ({0.4569*\dx},{1.0276*\dy}) + -- ({0.4730*\dx},{1.0385*\dy}) + -- ({0.4894*\dx},{1.0491*\dy}) + -- ({0.5059*\dx},{1.0595*\dy}) + -- ({0.5227*\dx},{1.0696*\dy}) + -- ({0.5397*\dx},{1.0795*\dy}) + -- ({0.5569*\dx},{1.0890*\dy}) + -- ({0.5743*\dx},{1.0983*\dy}) + -- ({0.5919*\dx},{1.1073*\dy}) + -- ({0.6098*\dx},{1.1160*\dy}) + -- ({0.6278*\dx},{1.1245*\dy}) + -- ({0.6460*\dx},{1.1326*\dy}) + -- ({0.6644*\dx},{1.1405*\dy}) + -- ({0.6830*\dx},{1.1480*\dy}) + -- ({0.7017*\dx},{1.1552*\dy}) + -- ({0.7206*\dx},{1.1622*\dy}) + -- ({0.7397*\dx},{1.1688*\dy}) + -- ({0.7590*\dx},{1.1750*\dy}) + -- ({0.7784*\dx},{1.1810*\dy}) + -- ({0.7979*\dx},{1.1866*\dy}) + -- ({0.8176*\dx},{1.1919*\dy}) + -- ({0.8375*\dx},{1.1969*\dy}) + -- ({0.8574*\dx},{1.2015*\dy}) + -- ({0.8775*\dx},{1.2058*\dy}) + -- ({0.8978*\dx},{1.2098*\dy}) + -- ({0.9181*\dx},{1.2133*\dy}) + -- ({0.9385*\dx},{1.2166*\dy}) + -- ({0.9591*\dx},{1.2195*\dy}) + -- ({0.9797*\dx},{1.2220*\dy}) + -- ({1.0005*\dx},{1.2242*\dy}) + -- ({1.0213*\dx},{1.2260*\dy}) + -- ({1.0422*\dx},{1.2274*\dy}) + -- ({1.0632*\dx},{1.2285*\dy}) + -- ({1.0842*\dx},{1.2292*\dy}) + -- ({1.1053*\dx},{1.2295*\dy}) + -- ({1.1264*\dx},{1.2294*\dy}) + -- ({1.1476*\dx},{1.2290*\dy}) + -- ({1.1688*\dx},{1.2282*\dy}) + -- ({1.1901*\dx},{1.2270*\dy}) + -- ({1.2114*\dx},{1.2254*\dy}) + -- ({1.2327*\dx},{1.2234*\dy}) + -- ({1.2540*\dx},{1.2211*\dy}) + -- ({1.2753*\dx},{1.2184*\dy}) + -- ({1.2965*\dx},{1.2152*\dy}) + -- ({1.3178*\dx},{1.2117*\dy}) + -- ({1.3391*\dx},{1.2078*\dy}) + -- ({1.3603*\dx},{1.2035*\dy}) + -- ({1.3815*\dx},{1.1988*\dy}) + -- ({1.4027*\dx},{1.1938*\dy}) + -- ({1.4238*\dx},{1.1883*\dy}) + -- ({1.4448*\dx},{1.1824*\dy}) + -- ({1.4658*\dx},{1.1762*\dy}) + -- ({1.4867*\dx},{1.1695*\dy}) + -- ({1.5076*\dx},{1.1625*\dy}) + -- ({1.5283*\dx},{1.1550*\dy}) + -- ({1.5489*\dx},{1.1472*\dy}) + -- ({1.5695*\dx},{1.1390*\dy}) + -- ({1.5899*\dx},{1.1304*\dy}) + -- ({1.6102*\dx},{1.1214*\dy}) + -- ({1.6304*\dx},{1.1120*\dy}) + -- ({1.6504*\dx},{1.1023*\dy}) + -- ({1.6703*\dx},{1.0921*\dy}) + -- ({1.6901*\dx},{1.0816*\dy}) + -- ({1.7097*\dx},{1.0707*\dy}) + -- ({1.7291*\dx},{1.0594*\dy}) + -- ({1.7484*\dx},{1.0477*\dy}) + -- ({1.7675*\dx},{1.0357*\dy}) + -- ({1.7864*\dx},{1.0233*\dy}) + -- ({1.8051*\dx},{1.0105*\dy}) + -- ({1.8235*\dx},{0.9974*\dy}) + -- ({1.8418*\dx},{0.9839*\dy}) + -- ({1.8599*\dx},{0.9700*\dy}) + -- ({1.8777*\dx},{0.9558*\dy}) + -- ({1.8953*\dx},{0.9412*\dy}) + -- ({1.9127*\dx},{0.9263*\dy}) + -- ({1.9298*\dx},{0.9110*\dy}) + -- ({1.9467*\dx},{0.8954*\dy}) + -- ({1.9632*\dx},{0.8795*\dy}) + -- ({1.9796*\dx},{0.8632*\dy}) + -- ({1.9956*\dx},{0.8466*\dy}) + -- ({2.0114*\dx},{0.8296*\dy}) + -- ({2.0269*\dx},{0.8124*\dy}) + -- ({2.0420*\dx},{0.7948*\dy}) + -- ({2.0569*\dx},{0.7770*\dy}) + -- ({2.0715*\dx},{0.7588*\dy}) + -- ({2.0857*\dx},{0.7403*\dy}) + -- ({2.0996*\dx},{0.7215*\dy}) + -- ({2.1132*\dx},{0.7025*\dy}) + -- ({2.1264*\dx},{0.6831*\dy}) + -- ({2.1393*\dx},{0.6635*\dy}) + -- ({2.1519*\dx},{0.6437*\dy}) + -- ({2.1641*\dx},{0.6235*\dy}) + -- ({2.1759*\dx},{0.6031*\dy}) + -- ({2.1874*\dx},{0.5825*\dy}) + -- ({2.1985*\dx},{0.5616*\dy}) + -- ({2.2092*\dx},{0.5404*\dy}) + -- ({2.2195*\dx},{0.5191*\dy}) + -- ({2.2295*\dx},{0.4975*\dy}) + -- ({2.2390*\dx},{0.4757*\dy}) + -- ({2.2481*\dx},{0.4537*\dy}) + -- ({2.2569*\dx},{0.4315*\dy}) + -- ({2.2652*\dx},{0.4091*\dy}) + -- ({2.2731*\dx},{0.3865*\dy}) + -- ({2.2806*\dx},{0.3638*\dy}) + -- ({2.2877*\dx},{0.3408*\dy}) + -- ({2.2943*\dx},{0.3177*\dy}) + -- ({2.3005*\dx},{0.2945*\dy}) + -- ({2.3063*\dx},{0.2711*\dy}) + -- ({2.3116*\dx},{0.2476*\dy}) + -- ({2.3165*\dx},{0.2239*\dy}) + -- ({2.3210*\dx},{0.2002*\dy}) + -- ({2.3249*\dx},{0.1763*\dy}) + -- ({2.3285*\dx},{0.1523*\dy}) + -- ({2.3316*\dx},{0.1283*\dy}) + -- ({2.3342*\dx},{0.1041*\dy}) + -- ({2.3364*\dx},{0.0799*\dy}) + -- ({2.3381*\dx},{0.0556*\dy}) + -- ({2.3393*\dx},{0.0312*\dy}) + -- ({2.3401*\dx},{0.0068*\dy}) + -- ({2.3403*\dx},{-0.0176*\dy}) + -- ({2.3402*\dx},{-0.0421*\dy}) + -- ({2.3395*\dx},{-0.0665*\dy}) + -- ({2.3384*\dx},{-0.0910*\dy}) + -- ({2.3368*\dx},{-0.1155*\dy}) + -- ({2.3347*\dx},{-0.1400*\dy}) + -- ({2.3322*\dx},{-0.1644*\dy}) + -- ({2.3292*\dx},{-0.1889*\dy}) + -- ({2.3257*\dx},{-0.2133*\dy}) + -- ({2.3217*\dx},{-0.2376*\dy}) + -- ({2.3172*\dx},{-0.2619*\dy}) + -- ({2.3123*\dx},{-0.2861*\dy}) + -- ({2.3069*\dx},{-0.3102*\dy}) + -- ({2.3010*\dx},{-0.3342*\dy}) + -- ({2.2946*\dx},{-0.3582*\dy}) + -- ({2.2878*\dx},{-0.3820*\dy}) + -- ({2.2805*\dx},{-0.4057*\dy}) + -- ({2.2727*\dx},{-0.4293*\dy}) + -- ({2.2645*\dx},{-0.4528*\dy}) + -- ({2.2558*\dx},{-0.4761*\dy}) + -- ({2.2466*\dx},{-0.4992*\dy}) + -- ({2.2370*\dx},{-0.5222*\dy}) + -- ({2.2269*\dx},{-0.5450*\dy}) + -- ({2.2164*\dx},{-0.5676*\dy}) + -- ({2.2054*\dx},{-0.5900*\dy}) + -- ({2.1939*\dx},{-0.6122*\dy}) + -- ({2.1820*\dx},{-0.6342*\dy}) + -- ({2.1697*\dx},{-0.6560*\dy}) + -- ({2.1569*\dx},{-0.6775*\dy}) + -- ({2.1437*\dx},{-0.6988*\dy}) + -- ({2.1301*\dx},{-0.7198*\dy}) + -- ({2.1161*\dx},{-0.7406*\dy}) + -- ({2.1016*\dx},{-0.7611*\dy}) + -- ({2.0867*\dx},{-0.7813*\dy}) + -- ({2.0714*\dx},{-0.8012*\dy}) + -- ({2.0558*\dx},{-0.8208*\dy}) + -- ({2.0397*\dx},{-0.8401*\dy}) + -- ({2.0232*\dx},{-0.8591*\dy}) + -- ({2.0063*\dx},{-0.8778*\dy}) + -- ({1.9891*\dx},{-0.8961*\dy}) + -- ({1.9715*\dx},{-0.9141*\dy}) + -- ({1.9535*\dx},{-0.9318*\dy}) + -- ({1.9352*\dx},{-0.9491*\dy}) + -- ({1.9165*\dx},{-0.9660*\dy}) + -- ({1.8974*\dx},{-0.9825*\dy}) + -- ({1.8781*\dx},{-0.9987*\dy}) + -- ({1.8584*\dx},{-1.0144*\dy}) + -- ({1.8384*\dx},{-1.0298*\dy}) + -- ({1.8181*\dx},{-1.0448*\dy}) + -- ({1.7974*\dx},{-1.0593*\dy}) + -- ({1.7765*\dx},{-1.0735*\dy}) + -- ({1.7553*\dx},{-1.0872*\dy}) + -- ({1.7338*\dx},{-1.1004*\dy}) + -- ({1.7120*\dx},{-1.1133*\dy}) + -- ({1.6900*\dx},{-1.1257*\dy}) + -- ({1.6677*\dx},{-1.1376*\dy}) + -- ({1.6452*\dx},{-1.1491*\dy}) + -- ({1.6225*\dx},{-1.1601*\dy}) + -- ({1.5995*\dx},{-1.1707*\dy}) + -- ({1.5764*\dx},{-1.1808*\dy}) + -- ({1.5530*\dx},{-1.1904*\dy}) + -- ({1.5294*\dx},{-1.1995*\dy}) + -- ({1.5057*\dx},{-1.2081*\dy}) + -- ({1.4817*\dx},{-1.2162*\dy}) + -- ({1.4576*\dx},{-1.2239*\dy}) + -- ({1.4334*\dx},{-1.2310*\dy}) + -- ({1.4090*\dx},{-1.2377*\dy}) + -- ({1.3845*\dx},{-1.2438*\dy}) + -- ({1.3599*\dx},{-1.2494*\dy}) + -- ({1.3352*\dx},{-1.2545*\dy}) + -- ({1.3103*\dx},{-1.2591*\dy}) + -- ({1.2854*\dx},{-1.2632*\dy}) + -- ({1.2605*\dx},{-1.2667*\dy}) + -- ({1.2354*\dx},{-1.2698*\dy}) + -- ({1.2103*\dx},{-1.2723*\dy}) + -- ({1.1852*\dx},{-1.2742*\dy}) + -- ({1.1600*\dx},{-1.2757*\dy}) + -- ({1.1348*\dx},{-1.2766*\dy}) + -- ({1.1097*\dx},{-1.2770*\dy}) + -- ({1.0845*\dx},{-1.2768*\dy}) + -- ({1.0593*\dx},{-1.2762*\dy}) + -- ({1.0342*\dx},{-1.2750*\dy}) + -- ({1.0091*\dx},{-1.2732*\dy}) + -- ({0.9841*\dx},{-1.2710*\dy}) + -- ({0.9591*\dx},{-1.2682*\dy}) + -- ({0.9342*\dx},{-1.2649*\dy}) + -- ({0.9094*\dx},{-1.2610*\dy}) + -- ({0.8848*\dx},{-1.2567*\dy}) + -- ({0.8602*\dx},{-1.2518*\dy}) + -- ({0.8357*\dx},{-1.2464*\dy}) + -- ({0.8114*\dx},{-1.2404*\dy}) + -- ({0.7872*\dx},{-1.2340*\dy}) + -- ({0.7632*\dx},{-1.2271*\dy}) + -- ({0.7394*\dx},{-1.2196*\dy}) + -- ({0.7157*\dx},{-1.2116*\dy}) + -- ({0.6923*\dx},{-1.2032*\dy}) + -- ({0.6690*\dx},{-1.1942*\dy}) + -- ({0.6460*\dx},{-1.1847*\dy}) + -- ({0.6231*\dx},{-1.1748*\dy}) + -- ({0.6006*\dx},{-1.1644*\dy}) + -- ({0.5783*\dx},{-1.1535*\dy}) + -- ({0.5562*\dx},{-1.1421*\dy}) + -- ({0.5344*\dx},{-1.1303*\dy}) + -- ({0.5129*\dx},{-1.1180*\dy}) + -- ({0.4917*\dx},{-1.1052*\dy}) + -- ({0.4708*\dx},{-1.0920*\dy}) + -- ({0.4502*\dx},{-1.0784*\dy}) + -- ({0.4299*\dx},{-1.0643*\dy}) + -- ({0.4100*\dx},{-1.0498*\dy}) + -- ({0.3904*\dx},{-1.0349*\dy}) + -- ({0.3711*\dx},{-1.0195*\dy}) + -- ({0.3523*\dx},{-1.0038*\dy}) + -- ({0.3338*\dx},{-0.9877*\dy}) + -- ({0.3157*\dx},{-0.9712*\dy}) + -- ({0.2979*\dx},{-0.9543*\dy}) + -- ({0.2806*\dx},{-0.9370*\dy}) + -- ({0.2637*\dx},{-0.9194*\dy}) + -- ({0.2472*\dx},{-0.9014*\dy}) + -- ({0.2311*\dx},{-0.8831*\dy}) + -- ({0.2154*\dx},{-0.8645*\dy}) + -- ({0.2002*\dx},{-0.8455*\dy}) + -- ({0.1855*\dx},{-0.8262*\dy}) + -- ({0.1712*\dx},{-0.8066*\dy}) + -- ({0.1573*\dx},{-0.7868*\dy}) + -- ({0.1440*\dx},{-0.7666*\dy}) + -- ({0.1311*\dx},{-0.7462*\dy}) + -- ({0.1187*\dx},{-0.7256*\dy}) + -- ({0.1068*\dx},{-0.7047*\dy}) + -- ({0.0953*\dx},{-0.6835*\dy}) + -- ({0.0844*\dx},{-0.6621*\dy}) + -- ({0.0740*\dx},{-0.6406*\dy}) + -- ({0.0641*\dx},{-0.6188*\dy}) + -- ({0.0547*\dx},{-0.5968*\dy}) + -- ({0.0458*\dx},{-0.5747*\dy}) + -- ({0.0375*\dx},{-0.5524*\dy}) + -- ({0.0296*\dx},{-0.5299*\dy}) + -- ({0.0223*\dx},{-0.5074*\dy}) + -- ({0.0156*\dx},{-0.4847*\dy}) + -- ({0.0093*\dx},{-0.4618*\dy}) + -- ({0.0037*\dx},{-0.4389*\dy}) + -- ({-0.0015*\dx},{-0.4159*\dy}) + -- ({-0.0061*\dx},{-0.3928*\dy}) + -- ({-0.0101*\dx},{-0.3697*\dy}) + -- ({-0.0136*\dx},{-0.3465*\dy}) + -- ({-0.0166*\dx},{-0.3233*\dy}) + -- ({-0.0190*\dx},{-0.3001*\dy}) + -- ({-0.0208*\dx},{-0.2768*\dy}) + -- ({-0.0221*\dx},{-0.2536*\dy}) + -- ({-0.0229*\dx},{-0.2304*\dy}) + -- ({-0.0231*\dx},{-0.2072*\dy}) + -- ({-0.0228*\dx},{-0.1841*\dy}) + -- ({-0.0219*\dx},{-0.1610*\dy}) + -- ({-0.0204*\dx},{-0.1380*\dy}) + -- ({-0.0185*\dx},{-0.1151*\dy}) + -- ({-0.0159*\dx},{-0.0923*\dy}) + -- ({-0.0129*\dx},{-0.0696*\dy}) + -- ({-0.0093*\dx},{-0.0470*\dy}) + -- ({-0.0052*\dx},{-0.0245*\dy}) + -- ({-0.0005*\dx},{-0.0023*\dy}) + -- ({0.0047*\dx},{0.0199*\dy}) + -- ({0.0104*\dx},{0.0418*\dy}) + -- ({0.0166*\dx},{0.0635*\dy}) + -- ({0.0233*\dx},{0.0851*\dy}) + -- ({0.0306*\dx},{0.1064*\dy}) + -- ({0.0383*\dx},{0.1275*\dy}) + -- ({0.0466*\dx},{0.1484*\dy}) + -- ({0.0553*\dx},{0.1690*\dy}) + -- ({0.0645*\dx},{0.1893*\dy}) + -- ({0.0742*\dx},{0.2094*\dy}) + -- ({0.0843*\dx},{0.2291*\dy}) + -- ({0.0950*\dx},{0.2486*\dy}) + -- ({0.1060*\dx},{0.2677*\dy}) + -- ({0.1176*\dx},{0.2866*\dy}) + -- ({0.1295*\dx},{0.3050*\dy}) + -- ({0.1419*\dx},{0.3232*\dy}) + -- ({0.1547*\dx},{0.3410*\dy}) + -- ({0.1679*\dx},{0.3584*\dy}) + -- ({0.1816*\dx},{0.3754*\dy}) + -- ({0.1956*\dx},{0.3921*\dy}) + -- ({0.2100*\dx},{0.4083*\dy}) + -- ({0.2248*\dx},{0.4242*\dy}) + -- ({0.2399*\dx},{0.4396*\dy}) + -- ({0.2554*\dx},{0.4546*\dy}) + -- ({0.2712*\dx},{0.4691*\dy}) + -- ({0.2874*\dx},{0.4832*\dy}) + -- ({0.3038*\dx},{0.4969*\dy}) + -- ({0.3206*\dx},{0.5101*\dy}) + -- ({0.3377*\dx},{0.5228*\dy}) + -- ({0.3550*\dx},{0.5351*\dy}) + -- ({0.3727*\dx},{0.5468*\dy}) + -- ({0.3906*\dx},{0.5581*\dy}) + -- ({0.4087*\dx},{0.5689*\dy}) + -- ({0.4270*\dx},{0.5792*\dy}) + -- ({0.4456*\dx},{0.5889*\dy}) + -- ({0.4644*\dx},{0.5982*\dy}) + -- ({0.4834*\dx},{0.6069*\dy}) + -- ({0.5025*\dx},{0.6151*\dy}) + -- ({0.5218*\dx},{0.6228*\dy}) + -- ({0.5413*\dx},{0.6299*\dy}) + -- ({0.5609*\dx},{0.6365*\dy}) + -- ({0.5806*\dx},{0.6426*\dy}) + -- ({0.6005*\dx},{0.6481*\dy}) + -- ({0.6204*\dx},{0.6531*\dy}) + -- ({0.6404*\dx},{0.6575*\dy}) + -- ({0.6605*\dx},{0.6614*\dy}) + -- ({0.6806*\dx},{0.6647*\dy}) + -- ({0.7007*\dx},{0.6674*\dy}) + -- ({0.7209*\dx},{0.6696*\dy}) + -- ({0.7411*\dx},{0.6713*\dy}) + -- ({0.7613*\dx},{0.6723*\dy}) + -- ({0.7814*\dx},{0.6729*\dy}) + -- ({0.8015*\dx},{0.6728*\dy}) + -- ({0.8216*\dx},{0.6722*\dy}) + -- ({0.8416*\dx},{0.6711*\dy}) + -- ({0.8615*\dx},{0.6694*\dy}) + -- ({0.8813*\dx},{0.6672*\dy}) + -- ({0.9010*\dx},{0.6644*\dy}) + -- ({0.9205*\dx},{0.6610*\dy}) + -- ({0.9400*\dx},{0.6571*\dy}) + -- ({0.9592*\dx},{0.6527*\dy}) + -- ({0.9783*\dx},{0.6478*\dy}) + -- ({0.9972*\dx},{0.6423*\dy}) + -- ({1.0159*\dx},{0.6363*\dy}) + -- ({1.0344*\dx},{0.6298*\dy}) + -- ({1.0527*\dx},{0.6227*\dy}) + -- ({1.0707*\dx},{0.6152*\dy}) + -- ({1.0885*\dx},{0.6071*\dy}) + -- ({1.1060*\dx},{0.5986*\dy}) + -- ({1.1232*\dx},{0.5896*\dy}) + -- ({1.1401*\dx},{0.5801*\dy}) + -- ({1.1567*\dx},{0.5701*\dy}) + -- ({1.1730*\dx},{0.5597*\dy}) + -- ({1.1889*\dx},{0.5488*\dy}) + -- ({1.2045*\dx},{0.5374*\dy}) + -- ({1.2197*\dx},{0.5257*\dy}) + -- ({1.2346*\dx},{0.5135*\dy}) + -- ({1.2491*\dx},{0.5008*\dy}) + -- ({1.2631*\dx},{0.4878*\dy}) + -- ({1.2768*\dx},{0.4744*\dy}) + -- ({1.2900*\dx},{0.4606*\dy}) + -- ({1.3029*\dx},{0.4464*\dy}) + -- ({1.3152*\dx},{0.4319*\dy}) + -- ({1.3271*\dx},{0.4170*\dy}) + -- ({1.3386*\dx},{0.4018*\dy}) + -- ({1.3496*\dx},{0.3862*\dy}) + -- ({1.3601*\dx},{0.3704*\dy}) + -- ({1.3701*\dx},{0.3542*\dy}) + -- ({1.3796*\dx},{0.3378*\dy}) + -- ({1.3886*\dx},{0.3211*\dy}) + -- ({1.3971*\dx},{0.3041*\dy}) + -- ({1.4051*\dx},{0.2869*\dy}) + -- ({1.4125*\dx},{0.2694*\dy}) + -- ({1.4195*\dx},{0.2518*\dy}) + -- ({1.4258*\dx},{0.2339*\dy}) + -- ({1.4316*\dx},{0.2159*\dy}) + -- ({1.4369*\dx},{0.1977*\dy}) + -- ({1.4416*\dx},{0.1793*\dy}) + -- ({1.4457*\dx},{0.1608*\dy}) + -- ({1.4493*\dx},{0.1422*\dy}) + -- ({1.4523*\dx},{0.1235*\dy}) + -- ({1.4547*\dx},{0.1047*\dy}) + -- ({1.4565*\dx},{0.0858*\dy}) + -- ({1.4577*\dx},{0.0668*\dy}) + -- ({1.4584*\dx},{0.0478*\dy}) + -- ({1.4584*\dx},{0.0288*\dy}) + -- ({1.4579*\dx},{0.0098*\dy}) + -- ({1.4568*\dx},{-0.0092*\dy}) + -- ({1.4551*\dx},{-0.0282*\dy}) + -- ({1.4528*\dx},{-0.0472*\dy}) + -- ({1.4499*\dx},{-0.0661*\dy}) + -- ({1.4464*\dx},{-0.0849*\dy}) + -- ({1.4424*\dx},{-0.1036*\dy}) + -- ({1.4377*\dx},{-0.1222*\dy}) + -- ({1.4325*\dx},{-0.1407*\dy}) + -- ({1.4267*\dx},{-0.1591*\dy}) + -- ({1.4202*\dx},{-0.1773*\dy}) + -- ({1.4133*\dx},{-0.1953*\dy}) + -- ({1.4057*\dx},{-0.2131*\dy}) + -- ({1.3976*\dx},{-0.2307*\dy}) + -- ({1.3889*\dx},{-0.2481*\dy}) + -- ({1.3797*\dx},{-0.2652*\dy}) + -- ({1.3699*\dx},{-0.2821*\dy}) + -- ({1.3595*\dx},{-0.2987*\dy}) + -- ({1.3487*\dx},{-0.3151*\dy}) + -- ({1.3373*\dx},{-0.3311*\dy}) + -- ({1.3253*\dx},{-0.3468*\dy}) + -- ({1.3129*\dx},{-0.3621*\dy}) + -- ({1.2999*\dx},{-0.3771*\dy}) + -- ({1.2865*\dx},{-0.3917*\dy}) + -- ({1.2725*\dx},{-0.4060*\dy}) + -- ({1.2581*\dx},{-0.4198*\dy}) + -- ({1.2432*\dx},{-0.4333*\dy}) + -- ({1.2279*\dx},{-0.4463*\dy}) + -- ({1.2121*\dx},{-0.4589*\dy}) + -- ({1.1959*\dx},{-0.4710*\dy}) + -- ({1.1792*\dx},{-0.4826*\dy}) + -- ({1.1622*\dx},{-0.4938*\dy}) + -- ({1.1447*\dx},{-0.5045*\dy}) + -- ({1.1269*\dx},{-0.5147*\dy}) + -- ({1.1087*\dx},{-0.5243*\dy}) + -- ({1.0901*\dx},{-0.5335*\dy}) + -- ({1.0712*\dx},{-0.5420*\dy}) + -- ({1.0520*\dx},{-0.5501*\dy}) + -- ({1.0324*\dx},{-0.5575*\dy}) + -- ({1.0126*\dx},{-0.5644*\dy}) + -- ({0.9924*\dx},{-0.5708*\dy}) + -- ({0.9721*\dx},{-0.5765*\dy}) + -- ({0.9514*\dx},{-0.5816*\dy}) + -- ({0.9305*\dx},{-0.5861*\dy}) + -- ({0.9094*\dx},{-0.5900*\dy}) + -- ({0.8881*\dx},{-0.5933*\dy}) + -- ({0.8666*\dx},{-0.5959*\dy}) + -- ({0.8450*\dx},{-0.5979*\dy}) + -- ({0.8232*\dx},{-0.5993*\dy}) + -- ({0.8013*\dx},{-0.6000*\dy}) + -- ({0.7792*\dx},{-0.6000*\dy}) + -- ({0.7571*\dx},{-0.5994*\dy}) + -- ({0.7349*\dx},{-0.5981*\dy}) + -- ({0.7126*\dx},{-0.5961*\dy}) + -- ({0.6903*\dx},{-0.5935*\dy}) + -- ({0.6680*\dx},{-0.5902*\dy}) + -- ({0.6457*\dx},{-0.5862*\dy}) + -- ({0.6234*\dx},{-0.5815*\dy}) + -- ({0.6012*\dx},{-0.5762*\dy}) + -- ({0.5790*\dx},{-0.5701*\dy}) + -- ({0.5568*\dx},{-0.5634*\dy}) + -- ({0.5348*\dx},{-0.5560*\dy}) + -- ({0.5129*\dx},{-0.5479*\dy}) + -- ({0.4911*\dx},{-0.5391*\dy}) + -- ({0.4695*\dx},{-0.5297*\dy}) + -- ({0.4481*\dx},{-0.5196*\dy}) + -- ({0.4269*\dx},{-0.5087*\dy}) + -- ({0.4058*\dx},{-0.4973*\dy}) + -- ({0.3850*\dx},{-0.4851*\dy}) + -- ({0.3645*\dx},{-0.4723*\dy}) + -- ({0.3442*\dx},{-0.4589*\dy}) + -- ({0.3243*\dx},{-0.4448*\dy}) + -- ({0.3046*\dx},{-0.4300*\dy}) + -- ({0.2853*\dx},{-0.4146*\dy}) + -- ({0.2663*\dx},{-0.3986*\dy}) + -- ({0.2477*\dx},{-0.3820*\dy}) + -- ({0.2295*\dx},{-0.3647*\dy}) + -- ({0.2117*\dx},{-0.3468*\dy}) + -- ({0.1943*\dx},{-0.3284*\dy}) + -- ({0.1774*\dx},{-0.3093*\dy}) + -- ({0.1609*\dx},{-0.2897*\dy}) + -- ({0.1449*\dx},{-0.2695*\dy}) + -- ({0.1294*\dx},{-0.2488*\dy}) + -- ({0.1144*\dx},{-0.2275*\dy}) + -- ({0.0999*\dx},{-0.2057*\dy}) + -- ({0.0860*\dx},{-0.1834*\dy}) + -- ({0.0726*\dx},{-0.1606*\dy}) + -- ({0.0598*\dx},{-0.1373*\dy}) + -- ({0.0476*\dx},{-0.1135*\dy}) + -- ({0.0360*\dx},{-0.0893*\dy}) + -- ({0.0250*\dx},{-0.0646*\dy}) + -- ({0.0147*\dx},{-0.0395*\dy}) + -- ({0.0050*\dx},{-0.0140*\dy}) + -- ({-0.0040*\dx},{0.0119*\dy}) + -- ({-0.0124*\dx},{0.0382*\dy}) + -- ({-0.0201*\dx},{0.0648*\dy}) + -- ({-0.0270*\dx},{0.0918*\dy}) + -- ({-0.0333*\dx},{0.1191*\dy}) + -- ({-0.0388*\dx},{0.1466*\dy}) + -- ({-0.0436*\dx},{0.1745*\dy}) + -- ({-0.0477*\dx},{0.2027*\dy}) + -- ({-0.0510*\dx},{0.2311*\dy}) + -- ({-0.0535*\dx},{0.2597*\dy}) + -- ({-0.0553*\dx},{0.2885*\dy}) + -- ({-0.0563*\dx},{0.3175*\dy}) + -- ({-0.0565*\dx},{0.3466*\dy}) + -- ({-0.0559*\dx},{0.3759*\dy}) + -- ({-0.0545*\dx},{0.4054*\dy}) + -- ({-0.0523*\dx},{0.4349*\dy}) + -- ({-0.0494*\dx},{0.4645*\dy}) + -- ({-0.0455*\dx},{0.4941*\dy}) + -- ({-0.0409*\dx},{0.5238*\dy}) + -- ({-0.0355*\dx},{0.5535*\dy}) + -- ({-0.0292*\dx},{0.5832*\dy}) + -- ({-0.0221*\dx},{0.6128*\dy}) + -- ({-0.0142*\dx},{0.6424*\dy}) + -- ({-0.0054*\dx},{0.6719*\dy}) + -- ({0.0042*\dx},{0.7013*\dy}) + -- ({0.0146*\dx},{0.7305*\dy}) + -- ({0.0258*\dx},{0.7597*\dy}) + -- ({0.0379*\dx},{0.7886*\dy}) + -- ({0.0508*\dx},{0.8174*\dy}) + -- ({0.0645*\dx},{0.8459*\dy}) + -- ({0.0790*\dx},{0.8742*\dy}) + -- ({0.0943*\dx},{0.9022*\dy}) + -- ({0.1105*\dx},{0.9299*\dy}) + -- ({0.1274*\dx},{0.9573*\dy}) + -- ({0.1452*\dx},{0.9844*\dy}) + -- ({0.1637*\dx},{1.0111*\dy}) + -- ({0.1830*\dx},{1.0375*\dy}) + -- ({0.2031*\dx},{1.0634*\dy}) + -- ({0.2239*\dx},{1.0889*\dy}) + -- ({0.2455*\dx},{1.1140*\dy}) + -- ({0.2679*\dx},{1.1386*\dy}) + -- ({0.2910*\dx},{1.1627*\dy}) + -- ({0.3148*\dx},{1.1863*\dy}) + -- ({0.3393*\dx},{1.2094*\dy}) + -- ({0.3645*\dx},{1.2319*\dy}) + -- ({0.3904*\dx},{1.2539*\dy}) + -- ({0.4169*\dx},{1.2752*\dy}) + -- ({0.4442*\dx},{1.2960*\dy}) + -- ({0.4720*\dx},{1.3161*\dy}) + -- ({0.5005*\dx},{1.3355*\dy}) + -- ({0.5296*\dx},{1.3543*\dy}) + -- ({0.5593*\dx},{1.3724*\dy}) + -- ({0.5896*\dx},{1.3898*\dy}) + -- ({0.6204*\dx},{1.4065*\dy}) + -- ({0.6518*\dx},{1.4224*\dy}) + -- ({0.6837*\dx},{1.4376*\dy}) + -- ({0.7161*\dx},{1.4520*\dy}) + -- ({0.7489*\dx},{1.4656*\dy}) + -- ({0.7823*\dx},{1.4784*\dy}) + -- ({0.8160*\dx},{1.4903*\dy}) + -- ({0.8503*\dx},{1.5015*\dy}) + -- ({0.8849*\dx},{1.5118*\dy}) + -- ({0.9198*\dx},{1.5213*\dy}) + -- ({0.9552*\dx},{1.5298*\dy}) + -- ({0.9908*\dx},{1.5375*\dy}) + -- ({1.0268*\dx},{1.5443*\dy}) + -- ({1.0631*\dx},{1.5502*\dy}) + -- ({1.0996*\dx},{1.5552*\dy}) + -- ({1.1364*\dx},{1.5593*\dy}) + -- ({1.1733*\dx},{1.5624*\dy}) + -- ({1.2105*\dx},{1.5646*\dy}) + -- ({1.2478*\dx},{1.5658*\dy}) + -- ({1.2853*\dx},{1.5661*\dy}) + -- ({1.3229*\dx},{1.5655*\dy}) + -- ({1.3606*\dx},{1.5638*\dy}) + -- ({1.3983*\dx},{1.5613*\dy}) + -- ({1.4361*\dx},{1.5577*\dy}) + -- ({1.4738*\dx},{1.5531*\dy}) + -- ({1.5116*\dx},{1.5476*\dy}) + -- ({1.5493*\dx},{1.5411*\dy}) + -- ({1.5870*\dx},{1.5337*\dy}) + -- ({1.6245*\dx},{1.5252*\dy}) + -- ({1.6620*\dx},{1.5158*\dy}) + -- ({1.6993*\dx},{1.5054*\dy}) + -- ({1.7364*\dx},{1.4940*\dy}) + -- ({1.7733*\dx},{1.4816*\dy}) + -- ({1.8100*\dx},{1.4683*\dy}) + -- ({1.8464*\dx},{1.4540*\dy}) + -- ({1.8826*\dx},{1.4388*\dy}) + -- ({1.9184*\dx},{1.4226*\dy}) + -- ({1.9539*\dx},{1.4055*\dy}) + -- ({1.9891*\dx},{1.3874*\dy}) + -- ({2.0238*\dx},{1.3684*\dy}) + -- ({2.0582*\dx},{1.3484*\dy}) + -- ({2.0921*\dx},{1.3276*\dy}) + -- ({2.1255*\dx},{1.3059*\dy}) + -- ({2.1585*\dx},{1.2832*\dy}) + -- ({2.1910*\dx},{1.2597*\dy}) + -- ({2.2229*\dx},{1.2353*\dy}) + -- ({2.2543*\dx},{1.2101*\dy}) + -- ({2.2850*\dx},{1.1840*\dy}) + -- ({2.3152*\dx},{1.1571*\dy}) + -- ({2.3448*\dx},{1.1294*\dy}) + -- ({2.3736*\dx},{1.1009*\dy}) + -- ({2.4019*\dx},{1.0716*\dy}) + -- ({2.4294*\dx},{1.0416*\dy}) + -- ({2.4562*\dx},{1.0108*\dy}) + -- ({2.4822*\dx},{0.9793*\dy}) + -- ({2.5075*\dx},{0.9471*\dy}) + -- ({2.5321*\dx},{0.9142*\dy}) + -- ({2.5558*\dx},{0.8807*\dy}) + -- ({2.5787*\dx},{0.8465*\dy}) + -- ({2.6008*\dx},{0.8117*\dy}) + -- ({2.6220*\dx},{0.7762*\dy}) + -- ({2.6423*\dx},{0.7402*\dy}) + -- ({2.6618*\dx},{0.7037*\dy}) + -- ({2.6803*\dx},{0.6666*\dy}) + -- ({2.6980*\dx},{0.6290*\dy}) + -- ({2.7147*\dx},{0.5909*\dy}) + -- ({2.7305*\dx},{0.5524*\dy}) + -- ({2.7453*\dx},{0.5134*\dy}) + -- ({2.7591*\dx},{0.4740*\dy}) + -- ({2.7719*\dx},{0.4342*\dy}) + -- ({2.7838*\dx},{0.3941*\dy}) + -- ({2.7946*\dx},{0.3537*\dy}) + -- ({2.8045*\dx},{0.3129*\dy}) + -- ({2.8133*\dx},{0.2719*\dy}) + -- ({2.8210*\dx},{0.2306*\dy}) + -- ({2.8278*\dx},{0.1891*\dy}) + -- ({2.8335*\dx},{0.1474*\dy}) + -- ({2.8381*\dx},{0.1055*\dy}) + -- ({2.8417*\dx},{0.0636*\dy}) + -- ({2.8442*\dx},{0.0215*\dy}) + -- ({2.8457*\dx},{-0.0207*\dy}) + -- ({2.8461*\dx},{-0.0629*\dy}) + -- ({2.8454*\dx},{-0.1052*\dy}) + -- ({2.8436*\dx},{-0.1474*\dy}) + -- ({2.8408*\dx},{-0.1896*\dy}) + -- ({2.8369*\dx},{-0.2317*\dy}) + -- ({2.8320*\dx},{-0.2738*\dy}) + -- ({2.8260*\dx},{-0.3157*\dy}) + -- ({2.8189*\dx},{-0.3574*\dy}) + -- ({2.8108*\dx},{-0.3990*\dy}) + -- ({2.8016*\dx},{-0.4404*\dy}) + -- ({2.7914*\dx},{-0.4815*\dy}) + -- ({2.7801*\dx},{-0.5224*\dy}) + -- ({2.7678*\dx},{-0.5629*\dy}) + -- ({2.7545*\dx},{-0.6032*\dy}) + -- ({2.7401*\dx},{-0.6430*\dy}) + -- ({2.7248*\dx},{-0.6825*\dy}) + -- ({2.7084*\dx},{-0.7216*\dy}) + -- ({2.6911*\dx},{-0.7603*\dy}) + -- ({2.6728*\dx},{-0.7985*\dy}) + -- ({2.6535*\dx},{-0.8362*\dy}) + -- ({2.6333*\dx},{-0.8734*\dy}) + -- ({2.6122*\dx},{-0.9100*\dy}) + -- ({2.5901*\dx},{-0.9461*\dy}) + -- ({2.5671*\dx},{-0.9816*\dy}) + -- ({2.5433*\dx},{-1.0165*\dy}) + -- ({2.5186*\dx},{-1.0507*\dy}) + -- ({2.4930*\dx},{-1.0843*\dy}) + -- ({2.4667*\dx},{-1.1172*\dy}) + -- ({2.4395*\dx},{-1.1494*\dy}) + -- ({2.4115*\dx},{-1.1808*\dy}) + -- ({2.3827*\dx},{-1.2115*\dy}) + -- ({2.3532*\dx},{-1.2414*\dy}) + -- ({2.3230*\dx},{-1.2706*\dy}) + -- ({2.2921*\dx},{-1.2989*\dy}) + -- ({2.2605*\dx},{-1.3264*\dy}) + -- ({2.2282*\dx},{-1.3530*\dy}) + -- ({2.1953*\dx},{-1.3788*\dy}) + -- ({2.1618*\dx},{-1.4037*\dy}) + -- ({2.1277*\dx},{-1.4277*\dy}) + -- ({2.0930*\dx},{-1.4508*\dy}) + -- ({2.0578*\dx},{-1.4729*\dy}) + -- ({2.0221*\dx},{-1.4941*\dy}) + -- ({1.9859*\dx},{-1.5144*\dy}) + -- ({1.9493*\dx},{-1.5337*\dy}) + -- ({1.9123*\dx},{-1.5520*\dy}) + -- ({1.8748*\dx},{-1.5693*\dy}) + -- ({1.8370*\dx},{-1.5856*\dy}) + -- ({1.7988*\dx},{-1.6009*\dy}) + -- ({1.7604*\dx},{-1.6152*\dy}) + -- ({1.7216*\dx},{-1.6285*\dy}) + -- ({1.6826*\dx},{-1.6407*\dy}) + -- ({1.6434*\dx},{-1.6519*\dy}) + -- ({1.6040*\dx},{-1.6620*\dy}) + -- ({1.5644*\dx},{-1.6711*\dy}) + -- ({1.5247*\dx},{-1.6792*\dy}) + -- ({1.4848*\dx},{-1.6862*\dy}) + -- ({1.4449*\dx},{-1.6921*\dy}) + -- ({1.4050*\dx},{-1.6970*\dy}) + -- ({1.3650*\dx},{-1.7009*\dy}) + -- ({1.3250*\dx},{-1.7037*\dy}) + -- ({1.2851*\dx},{-1.7054*\dy}) + -- ({1.2453*\dx},{-1.7061*\dy}) + -- ({1.2056*\dx},{-1.7058*\dy}) + -- ({1.1660*\dx},{-1.7044*\dy}) + -- ({1.1265*\dx},{-1.7020*\dy}) + -- ({1.0873*\dx},{-1.6986*\dy}) + -- ({1.0482*\dx},{-1.6941*\dy}) + -- ({1.0095*\dx},{-1.6887*\dy}) + -- ({0.9709*\dx},{-1.6822*\dy}) + -- ({0.9327*\dx},{-1.6747*\dy}) + -- ({0.8949*\dx},{-1.6663*\dy}) + -- ({0.8574*\dx},{-1.6569*\dy}) + -- ({0.8202*\dx},{-1.6466*\dy}) + -- ({0.7835*\dx},{-1.6353*\dy}) + -- ({0.7473*\dx},{-1.6231*\dy}) + -- ({0.7115*\dx},{-1.6099*\dy}) + -- ({0.6761*\dx},{-1.5959*\dy}) + -- ({0.6413*\dx},{-1.5810*\dy}) + -- ({0.6071*\dx},{-1.5652*\dy}) + -- ({0.5734*\dx},{-1.5486*\dy}) + -- ({0.5403*\dx},{-1.5312*\dy}) + -- ({0.5078*\dx},{-1.5129*\dy}) + -- ({0.4759*\dx},{-1.4939*\dy}) + -- ({0.4447*\dx},{-1.4741*\dy}) + -- ({0.4141*\dx},{-1.4535*\dy}) + -- ({0.3843*\dx},{-1.4322*\dy}) + -- ({0.3552*\dx},{-1.4103*\dy}) + -- ({0.3268*\dx},{-1.3876*\dy}) + -- ({0.2991*\dx},{-1.3643*\dy}) + -- ({0.2722*\dx},{-1.3403*\dy}) + -- ({0.2461*\dx},{-1.3158*\dy}) + -- ({0.2208*\dx},{-1.2907*\dy}) + -- ({0.1963*\dx},{-1.2650*\dy}) + -- ({0.1726*\dx},{-1.2387*\dy}) + -- ({0.1498*\dx},{-1.2120*\dy}) + -- ({0.1279*\dx},{-1.1848*\dy}) + -- ({0.1068*\dx},{-1.1572*\dy}) + -- ({0.0865*\dx},{-1.1291*\dy}) + -- ({0.0672*\dx},{-1.1006*\dy}) + -- ({0.0487*\dx},{-1.0718*\dy}) + -- ({0.0312*\dx},{-1.0426*\dy}) + -- ({0.0146*\dx},{-1.0131*\dy}) + -- ({-0.0011*\dx},{-0.9833*\dy}) + -- ({-0.0159*\dx},{-0.9533*\dy}) + -- ({-0.0298*\dx},{-0.9230*\dy}) + -- ({-0.0427*\dx},{-0.8926*\dy}) + -- ({-0.0547*\dx},{-0.8620*\dy}) + -- ({-0.0658*\dx},{-0.8312*\dy}) + -- ({-0.0759*\dx},{-0.8003*\dy}) + -- ({-0.0851*\dx},{-0.7694*\dy}) + -- ({-0.0933*\dx},{-0.7384*\dy}) + -- ({-0.1007*\dx},{-0.7074*\dy}) + -- ({-0.1070*\dx},{-0.6764*\dy}) + -- ({-0.1125*\dx},{-0.6454*\dy}) + -- ({-0.1170*\dx},{-0.6145*\dy}) + -- ({-0.1206*\dx},{-0.5837*\dy}) + -- ({-0.1233*\dx},{-0.5530*\dy}) + -- ({-0.1251*\dx},{-0.5225*\dy}) + -- ({-0.1260*\dx},{-0.4921*\dy}) + -- ({-0.1261*\dx},{-0.4619*\dy}) + -- ({-0.1252*\dx},{-0.4320*\dy}) + -- ({-0.1235*\dx},{-0.4024*\dy}) + -- ({-0.1209*\dx},{-0.3730*\dy}) + -- ({-0.1175*\dx},{-0.3439*\dy}) + -- ({-0.1132*\dx},{-0.3152*\dy}) + -- ({-0.1081*\dx},{-0.2868*\dy}) + -- ({-0.1022*\dx},{-0.2589*\dy}) + -- ({-0.0956*\dx},{-0.2313*\dy}) + -- ({-0.0882*\dx},{-0.2042*\dy}) + -- ({-0.0800*\dx},{-0.1775*\dy}) + -- ({-0.0711*\dx},{-0.1513*\dy}) + -- ({-0.0614*\dx},{-0.1256*\dy}) + -- ({-0.0511*\dx},{-0.1005*\dy}) + -- ({-0.0401*\dx},{-0.0759*\dy}) + -- ({-0.0284*\dx},{-0.0518*\dy}) + -- ({-0.0161*\dx},{-0.0283*\dy}) + -- ({-0.0032*\dx},{-0.0055*\dy}) + -- ({0.0103*\dx},{0.0168*\dy}) + -- ({0.0243*\dx},{0.0384*\dy}) + -- ({0.0389*\dx},{0.0593*\dy}) + -- ({0.0541*\dx},{0.0796*\dy}) + -- ({0.0697*\dx},{0.0992*\dy}) + -- ({0.0858*\dx},{0.1181*\dy}) + -- ({0.1023*\dx},{0.1363*\dy}) + -- ({0.1193*\dx},{0.1537*\dy}) + -- ({0.1367*\dx},{0.1705*\dy}) + -- ({0.1544*\dx},{0.1864*\dy}) + -- ({0.1725*\dx},{0.2017*\dy}) + -- ({0.1908*\dx},{0.2161*\dy}) + -- ({0.2095*\dx},{0.2298*\dy}) + -- ({0.2284*\dx},{0.2427*\dy}) + -- ({0.2476*\dx},{0.2549*\dy}) + -- ({0.2669*\dx},{0.2662*\dy}) + -- ({0.2865*\dx},{0.2768*\dy}) + -- ({0.3062*\dx},{0.2865*\dy}) + -- ({0.3260*\dx},{0.2955*\dy}) + -- ({0.3459*\dx},{0.3036*\dy}) + -- ({0.3658*\dx},{0.3110*\dy}) + -- ({0.3858*\dx},{0.3175*\dy}) + -- ({0.4058*\dx},{0.3233*\dy}) + -- ({0.4258*\dx},{0.3283*\dy}) + -- ({0.4457*\dx},{0.3324*\dy}) + -- ({0.4655*\dx},{0.3358*\dy}) + -- ({0.4853*\dx},{0.3384*\dy}) + -- ({0.5049*\dx},{0.3403*\dy}) + -- ({0.5243*\dx},{0.3413*\dy}) + -- ({0.5436*\dx},{0.3416*\dy}) + -- ({0.5626*\dx},{0.3412*\dy}) + -- ({0.5814*\dx},{0.3400*\dy}) + -- ({0.5999*\dx},{0.3381*\dy}) + -- ({0.6182*\dx},{0.3355*\dy}) + -- ({0.6361*\dx},{0.3321*\dy}) + -- ({0.6537*\dx},{0.3281*\dy}) + -- ({0.6709*\dx},{0.3234*\dy}) + -- ({0.6877*\dx},{0.3181*\dy}) + -- ({0.7041*\dx},{0.3120*\dy}) + -- ({0.7201*\dx},{0.3054*\dy}) + -- ({0.7356*\dx},{0.2982*\dy}) + -- ({0.7506*\dx},{0.2903*\dy}) + -- ({0.7651*\dx},{0.2819*\dy}) + -- ({0.7791*\dx},{0.2730*\dy}) + -- ({0.7926*\dx},{0.2635*\dy}) + -- ({0.8055*\dx},{0.2535*\dy}) + -- ({0.8178*\dx},{0.2430*\dy}) + -- ({0.8296*\dx},{0.2320*\dy}) + -- ({0.8407*\dx},{0.2206*\dy}) + -- ({0.8512*\dx},{0.2088*\dy}) + -- ({0.8610*\dx},{0.1965*\dy}) + -- ({0.8702*\dx},{0.1839*\dy}) + -- ({0.8788*\dx},{0.1710*\dy}) + -- ({0.8866*\dx},{0.1577*\dy}) + -- ({0.8937*\dx},{0.1442*\dy}) + -- ({0.9002*\dx},{0.1304*\dy}) + -- ({0.9059*\dx},{0.1163*\dy}) + -- ({0.9109*\dx},{0.1020*\dy}) + -- ({0.9152*\dx},{0.0876*\dy}) + -- ({0.9187*\dx},{0.0730*\dy}) + -- ({0.9215*\dx},{0.0582*\dy}) + -- ({0.9236*\dx},{0.0434*\dy}) + -- ({0.9249*\dx},{0.0284*\dy}) + -- ({0.9254*\dx},{0.0135*\dy}) + -- ({0.9252*\dx},{-0.0015*\dy}) + -- ({0.9242*\dx},{-0.0165*\dy}) + -- ({0.9225*\dx},{-0.0314*\dy}) + -- ({0.9200*\dx},{-0.0463*\dy}) + -- ({0.9168*\dx},{-0.0610*\dy}) + -- ({0.9128*\dx},{-0.0756*\dy}) + -- ({0.9081*\dx},{-0.0901*\dy}) + -- ({0.9026*\dx},{-0.1044*\dy}) + -- ({0.8964*\dx},{-0.1184*\dy}) + -- ({0.8895*\dx},{-0.1322*\dy}) + -- ({0.8818*\dx},{-0.1458*\dy}) + -- ({0.8734*\dx},{-0.1590*\dy}) + -- ({0.8644*\dx},{-0.1720*\dy}) + -- ({0.8546*\dx},{-0.1845*\dy}) + -- ({0.8442*\dx},{-0.1967*\dy}) + -- ({0.8331*\dx},{-0.2085*\dy}) + -- ({0.8214*\dx},{-0.2198*\dy}) + -- ({0.8090*\dx},{-0.2307*\dy}) + -- ({0.7960*\dx},{-0.2411*\dy}) + -- ({0.7824*\dx},{-0.2510*\dy}) + -- ({0.7682*\dx},{-0.2603*\dy}) + -- ({0.7535*\dx},{-0.2691*\dy}) + -- ({0.7382*\dx},{-0.2773*\dy}) + -- ({0.7224*\dx},{-0.2849*\dy}) + -- ({0.7061*\dx},{-0.2919*\dy}) + -- ({0.6893*\dx},{-0.2982*\dy}) + -- ({0.6721*\dx},{-0.3039*\dy}) + -- ({0.6544*\dx},{-0.3089*\dy}) + -- ({0.6363*\dx},{-0.3132*\dy}) + -- ({0.6178*\dx},{-0.3168*\dy}) + -- ({0.5989*\dx},{-0.3196*\dy}) + -- ({0.5798*\dx},{-0.3217*\dy}) + -- ({0.5603*\dx},{-0.3230*\dy}) + -- ({0.5405*\dx},{-0.3235*\dy}) + -- ({0.5205*\dx},{-0.3232*\dy}) + -- ({0.5003*\dx},{-0.3222*\dy}) + -- ({0.4798*\dx},{-0.3203*\dy}) + -- ({0.4592*\dx},{-0.3175*\dy}) + -- ({0.4385*\dx},{-0.3140*\dy}) + -- ({0.4176*\dx},{-0.3095*\dy}) + -- ({0.3967*\dx},{-0.3043*\dy}) + -- ({0.3758*\dx},{-0.2981*\dy}) + -- ({0.3548*\dx},{-0.2911*\dy}) + -- ({0.3338*\dx},{-0.2832*\dy}) + -- ({0.3129*\dx},{-0.2745*\dy}) + -- ({0.2921*\dx},{-0.2649*\dy}) + -- ({0.2714*\dx},{-0.2544*\dy}) + -- ({0.2508*\dx},{-0.2430*\dy}) + -- ({0.2305*\dx},{-0.2307*\dy}) + -- ({0.2103*\dx},{-0.2176*\dy}) + -- ({0.1904*\dx},{-0.2036*\dy}) + -- ({0.1707*\dx},{-0.1887*\dy}) + -- ({0.1514*\dx},{-0.1730*\dy}) + -- ({0.1324*\dx},{-0.1564*\dy}) + -- ({0.1137*\dx},{-0.1390*\dy}) + -- ({0.0955*\dx},{-0.1207*\dy}) + -- ({0.0777*\dx},{-0.1016*\dy}) + -- ({0.0604*\dx},{-0.0817*\dy}) + -- ({0.0435*\dx},{-0.0610*\dy}) + -- ({0.0272*\dx},{-0.0395*\dy}) + -- ({0.0115*\dx},{-0.0173*\dy}) + -- ({-0.0037*\dx},{0.0058*\dy}) + -- ({-0.0182*\dx},{0.0295*\dy}) + -- ({-0.0321*\dx},{0.0540*\dy}) + -- ({-0.0454*\dx},{0.0792*\dy}) + -- ({-0.0579*\dx},{0.1051*\dy}) + -- ({-0.0697*\dx},{0.1316*\dy}) + -- ({-0.0807*\dx},{0.1588*\dy}) + -- ({-0.0910*\dx},{0.1866*\dy}) + -- ({-0.1005*\dx},{0.2150*\dy}) + -- ({-0.1091*\dx},{0.2439*\dy}) + -- ({-0.1169*\dx},{0.2734*\dy}) + -- ({-0.1238*\dx},{0.3035*\dy}) + -- ({-0.1298*\dx},{0.3340*\dy}) + -- ({-0.1349*\dx},{0.3649*\dy}) + -- ({-0.1391*\dx},{0.3964*\dy}) + -- ({-0.1423*\dx},{0.4282*\dy}) + -- ({-0.1445*\dx},{0.4604*\dy}) + -- ({-0.1457*\dx},{0.4929*\dy}) + -- ({-0.1459*\dx},{0.5257*\dy}) + -- ({-0.1451*\dx},{0.5589*\dy}) + -- ({-0.1433*\dx},{0.5922*\dy}) + -- ({-0.1404*\dx},{0.6258*\dy}) + -- ({-0.1365*\dx},{0.6595*\dy}) + -- ({-0.1314*\dx},{0.6934*\dy}) + -- ({-0.1253*\dx},{0.7274*\dy}) + -- ({-0.1181*\dx},{0.7615*\dy}) + -- ({-0.1098*\dx},{0.7956*\dy}) + -- ({-0.1004*\dx},{0.8298*\dy}) + -- ({-0.0899*\dx},{0.8638*\dy}) + -- ({-0.0783*\dx},{0.8978*\dy}) + -- ({-0.0655*\dx},{0.9317*\dy}) + -- ({-0.0517*\dx},{0.9655*\dy}) + -- ({-0.0367*\dx},{0.9990*\dy}) + -- ({-0.0206*\dx},{1.0324*\dy}) + -- ({-0.0034*\dx},{1.0654*\dy}) + -- ({0.0149*\dx},{1.0982*\dy}) + -- ({0.0344*\dx},{1.1307*\dy}) + -- ({0.0549*\dx},{1.1627*\dy}) + -- ({0.0765*\dx},{1.1944*\dy}) + -- ({0.0992*\dx},{1.2256*\dy}) + -- ({0.1230*\dx},{1.2563*\dy}) + -- ({0.1478*\dx},{1.2865*\dy}) + -- ({0.1737*\dx},{1.3162*\dy}) + -- ({0.2006*\dx},{1.3452*\dy}) + -- ({0.2285*\dx},{1.3737*\dy}) + -- ({0.2574*\dx},{1.4014*\dy}) + -- ({0.2874*\dx},{1.4285*\dy}) + -- ({0.3182*\dx},{1.4548*\dy}) + -- ({0.3501*\dx},{1.4804*\dy}) + -- ({0.3828*\dx},{1.5051*\dy}) + -- ({0.4165*\dx},{1.5291*\dy}) + -- ({0.4510*\dx},{1.5521*\dy}) + -- ({0.4864*\dx},{1.5743*\dy}) + -- ({0.5226*\dx},{1.5955*\dy}) + -- ({0.5597*\dx},{1.6158*\dy}) + -- ({0.5975*\dx},{1.6350*\dy}) + -- ({0.6360*\dx},{1.6533*\dy}) + -- ({0.6753*\dx},{1.6705*\dy}) + -- ({0.7152*\dx},{1.6867*\dy}) + -- ({0.7558*\dx},{1.7017*\dy}) + -- ({0.7970*\dx},{1.7157*\dy}) + -- ({0.8388*\dx},{1.7285*\dy}) + -- ({0.8812*\dx},{1.7401*\dy}) + -- ({0.9241*\dx},{1.7505*\dy}) + -- ({0.9674*\dx},{1.7598*\dy}) + -- ({1.0112*\dx},{1.7678*\dy}) + -- ({1.0554*\dx},{1.7746*\dy}) + -- ({1.1000*\dx},{1.7801*\dy}) + -- ({1.1449*\dx},{1.7843*\dy}) + -- ({1.1901*\dx},{1.7872*\dy}) + -- ({1.2355*\dx},{1.7889*\dy}) + -- ({1.2812*\dx},{1.7892*\dy}) + -- ({1.3270*\dx},{1.7882*\dy}) + -- ({1.3730*\dx},{1.7859*\dy}) + -- ({1.4190*\dx},{1.7822*\dy}) + -- ({1.4651*\dx},{1.7772*\dy}) + -- ({1.5111*\dx},{1.7708*\dy}) + -- ({1.5572*\dx},{1.7631*\dy}) + -- ({1.6031*\dx},{1.7540*\dy}) + -- ({1.6490*\dx},{1.7435*\dy}) + -- ({1.6946*\dx},{1.7317*\dy}) + -- ({1.7400*\dx},{1.7185*\dy}) + -- ({1.7852*\dx},{1.7040*\dy}) + -- ({1.8301*\dx},{1.6882*\dy}) + -- ({1.8746*\dx},{1.6709*\dy}) + -- ({1.9188*\dx},{1.6524*\dy}) + -- ({1.9625*\dx},{1.6325*\dy}) + -- ({2.0058*\dx},{1.6114*\dy}) + -- ({2.0485*\dx},{1.5889*\dy}) + -- ({2.0907*\dx},{1.5651*\dy}) + -- ({2.1322*\dx},{1.5401*\dy}) + -- ({2.1732*\dx},{1.5138*\dy}) + -- ({2.2134*\dx},{1.4862*\dy}) + -- ({2.2530*\dx},{1.4574*\dy}) + -- ({2.2918*\dx},{1.4275*\dy}) + -- ({2.3297*\dx},{1.3963*\dy}) + -- ({2.3669*\dx},{1.3640*\dy}) + -- ({2.4031*\dx},{1.3306*\dy}) + -- ({2.4385*\dx},{1.2961*\dy}) + -- ({2.4729*\dx},{1.2605*\dy}) + -- ({2.5063*\dx},{1.2238*\dy}) + -- ({2.5387*\dx},{1.1861*\dy}) + -- ({2.5701*\dx},{1.1474*\dy}) + -- ({2.6003*\dx},{1.1078*\dy}) + -- ({2.6295*\dx},{1.0672*\dy}) + -- ({2.6575*\dx},{1.0258*\dy}) + -- ({2.6843*\dx},{0.9835*\dy}) + -- ({2.7099*\dx},{0.9403*\dy}) + -- ({2.7343*\dx},{0.8964*\dy}) + -- ({2.7574*\dx},{0.8517*\dy}) + -- ({2.7793*\dx},{0.8063*\dy}) + -- ({2.7998*\dx},{0.7603*\dy}) + -- ({2.8190*\dx},{0.7136*\dy}) + -- ({2.8369*\dx},{0.6663*\dy}) + -- ({2.8534*\dx},{0.6185*\dy}) + -- ({2.8684*\dx},{0.5702*\dy}) + -- ({2.8821*\dx},{0.5214*\dy}) + -- ({2.8944*\dx},{0.4722*\dy}) + -- ({2.9052*\dx},{0.4227*\dy}) + -- ({2.9146*\dx},{0.3728*\dy}) + -- ({2.9225*\dx},{0.3226*\dy}) + -- ({2.9289*\dx},{0.2722*\dy}) + -- ({2.9339*\dx},{0.2216*\dy}) + -- ({2.9374*\dx},{0.1709*\dy}) + -- ({2.9394*\dx},{0.1200*\dy}) + -- ({2.9399*\dx},{0.0692*\dy}) + -- ({2.9389*\dx},{0.0183*\dy}) + -- ({2.9363*\dx},{-0.0326*\dy}) + -- ({2.9323*\dx},{-0.0833*\dy}) + -- ({2.9268*\dx},{-0.1339*\dy}) + -- ({2.9198*\dx},{-0.1843*\dy}) + -- ({2.9114*\dx},{-0.2345*\dy}) + -- ({2.9014*\dx},{-0.2844*\dy}) + -- ({2.8900*\dx},{-0.3340*\dy}) + -- ({2.8771*\dx},{-0.3832*\dy}) + -- ({2.8627*\dx},{-0.4319*\dy}) + -- ({2.8470*\dx},{-0.4802*\dy}) + -- ({2.8298*\dx},{-0.5280*\dy}) + -- ({2.8112*\dx},{-0.5753*\dy}) + -- ({2.7912*\dx},{-0.6219*\dy}) + -- ({2.7698*\dx},{-0.6679*\dy}) + -- ({2.7471*\dx},{-0.7131*\dy}) + -- ({2.7231*\dx},{-0.7577*\dy}) + -- ({2.6978*\dx},{-0.8015*\dy}) + -- ({2.6712*\dx},{-0.8444*\dy}) + -- ({2.6433*\dx},{-0.8865*\dy}) + -- ({2.6143*\dx},{-0.9277*\dy}) + -- ({2.5840*\dx},{-0.9680*\dy}) + -- ({2.5526*\dx},{-1.0073*\dy}) + -- ({2.5200*\dx},{-1.0455*\dy}) + -- ({2.4863*\dx},{-1.0828*\dy}) + -- ({2.4516*\dx},{-1.1189*\dy}) + -- ({2.4159*\dx},{-1.1539*\dy}) + -- ({2.3791*\dx},{-1.1878*\dy}) + -- ({2.3414*\dx},{-1.2205*\dy}) + -- ({2.3028*\dx},{-1.2520*\dy}) + -- ({2.2633*\dx},{-1.2823*\dy}) + -- ({2.2230*\dx},{-1.3113*\dy}) + -- ({2.1819*\dx},{-1.3390*\dy}) + -- ({2.1400*\dx},{-1.3654*\dy}) + -- ({2.0974*\dx},{-1.3904*\dy}) + -- ({2.0542*\dx},{-1.4141*\dy}) + -- ({2.0103*\dx},{-1.4364*\dy}) + -- ({1.9659*\dx},{-1.4573*\dy}) + -- ({1.9209*\dx},{-1.4768*\dy}) + -- ({1.8755*\dx},{-1.4948*\dy}) + -- ({1.8296*\dx},{-1.5114*\dy}) + -- ({1.7833*\dx},{-1.5266*\dy}) + -- ({1.7367*\dx},{-1.5402*\dy}) + -- ({1.6897*\dx},{-1.5524*\dy}) + -- ({1.6426*\dx},{-1.5631*\dy}) + -- ({1.5952*\dx},{-1.5723*\dy}) + -- ({1.5477*\dx},{-1.5800*\dy}) + -- ({1.5001*\dx},{-1.5862*\dy}) + -- ({1.4524*\dx},{-1.5909*\dy}) + -- ({1.4048*\dx},{-1.5941*\dy}) + -- ({1.3572*\dx},{-1.5958*\dy}) + -- ({1.3097*\dx},{-1.5960*\dy}) + -- ({1.2623*\dx},{-1.5947*\dy}) + -- ({1.2152*\dx},{-1.5919*\dy}) + -- ({1.1683*\dx},{-1.5876*\dy}) + -- ({1.1217*\dx},{-1.5818*\dy}) + -- ({1.0754*\dx},{-1.5747*\dy}) + -- ({1.0295*\dx},{-1.5660*\dy}) + -- ({0.9841*\dx},{-1.5559*\dy}) + -- ({0.9391*\dx},{-1.5445*\dy}) + -- ({0.8947*\dx},{-1.5316*\dy}) + -- ({0.8508*\dx},{-1.5173*\dy}) + -- ({0.8076*\dx},{-1.5017*\dy}) + -- ({0.7650*\dx},{-1.4848*\dy}) + -- ({0.7231*\dx},{-1.4666*\dy}) + -- ({0.6820*\dx},{-1.4471*\dy}) + -- ({0.6417*\dx},{-1.4263*\dy}) + -- ({0.6022*\dx},{-1.4043*\dy}) + -- ({0.5635*\dx},{-1.3811*\dy}) + -- ({0.5258*\dx},{-1.3568*\dy}) + -- ({0.4890*\dx},{-1.3313*\dy}) + -- ({0.4532*\dx},{-1.3048*\dy}) + -- ({0.4185*\dx},{-1.2771*\dy}) + -- ({0.3847*\dx},{-1.2485*\dy}) + -- ({0.3521*\dx},{-1.2188*\dy}) + -- ({0.3205*\dx},{-1.1882*\dy}) + -- ({0.2902*\dx},{-1.1567*\dy}) + -- ({0.2609*\dx},{-1.1243*\dy}) + -- ({0.2329*\dx},{-1.0911*\dy}) + -- ({0.2061*\dx},{-1.0571*\dy}) + -- ({0.1806*\dx},{-1.0224*\dy}) + -- ({0.1563*\dx},{-0.9870*\dy}) + -- ({0.1333*\dx},{-0.9509*\dy}) + -- ({0.1117*\dx},{-0.9142*\dy}) + -- ({0.0914*\dx},{-0.8769*\dy}) + -- ({0.0724*\dx},{-0.8391*\dy}) + -- ({0.0547*\dx},{-0.8008*\dy}) + -- ({0.0385*\dx},{-0.7622*\dy}) + -- ({0.0236*\dx},{-0.7231*\dy}) + -- ({0.0102*\dx},{-0.6837*\dy}) + -- ({-0.0019*\dx},{-0.6441*\dy}) + -- ({-0.0125*\dx},{-0.6042*\dy}) + -- ({-0.0217*\dx},{-0.5641*\dy}) + -- ({-0.0295*\dx},{-0.5239*\dy}) + -- ({-0.0359*\dx},{-0.4836*\dy}) + -- ({-0.0409*\dx},{-0.4433*\dy}) + -- ({-0.0444*\dx},{-0.4030*\dy}) + -- ({-0.0466*\dx},{-0.3628*\dy}) + -- ({-0.0473*\dx},{-0.3226*\dy}) + -- ({-0.0466*\dx},{-0.2827*\dy}) + -- ({-0.0445*\dx},{-0.2429*\dy}) + -- ({-0.0410*\dx},{-0.2034*\dy}) + -- ({-0.0362*\dx},{-0.1642*\dy}) + -- ({-0.0300*\dx},{-0.1254*\dy}) + -- ({-0.0224*\dx},{-0.0870*\dy}) + -- ({-0.0136*\dx},{-0.0490*\dy}) + -- ({-0.0034*\dx},{-0.0115*\dy}) + -- ({0.0081*\dx},{0.0255*\dy}) + -- ({0.0208*\dx},{0.0619*\dy}) + -- ({0.0348*\dx},{0.0976*\dy}) + -- ({0.0500*\dx},{0.1327*\dy}) + -- ({0.0663*\dx},{0.1671*\dy}) + -- ({0.0839*\dx},{0.2008*\dy}) + -- ({0.1026*\dx},{0.2336*\dy}) + -- ({0.1224*\dx},{0.2656*\dy}) + -- ({0.1432*\dx},{0.2968*\dy}) + -- ({0.1651*\dx},{0.3271*\dy}) + -- ({0.1880*\dx},{0.3564*\dy}) + -- ({0.2119*\dx},{0.3848*\dy}) + -- ({0.2367*\dx},{0.4122*\dy}) + -- ({0.2625*\dx},{0.4385*\dy}) + -- ({0.2890*\dx},{0.4638*\dy}) + -- ({0.3164*\dx},{0.4880*\dy}) + -- ({0.3446*\dx},{0.5111*\dy}) + -- ({0.3735*\dx},{0.5331*\dy}) + -- ({0.4031*\dx},{0.5539*\dy}) + -- ({0.4334*\dx},{0.5735*\dy}) + -- ({0.4643*\dx},{0.5919*\dy}) + -- ({0.4957*\dx},{0.6090*\dy}) + -- ({0.5276*\dx},{0.6250*\dy}) + -- ({0.5601*\dx},{0.6396*\dy}) + -- ({0.5929*\dx},{0.6530*\dy}) + -- ({0.6262*\dx},{0.6652*\dy}) + -- ({0.6597*\dx},{0.6760*\dy}) + -- ({0.6936*\dx},{0.6855*\dy}) + -- ({0.7277*\dx},{0.6937*\dy}) + -- ({0.7620*\dx},{0.7006*\dy}) + -- ({0.7964*\dx},{0.7062*\dy}) + -- ({0.8309*\dx},{0.7104*\dy}) + -- ({0.8655*\dx},{0.7133*\dy}) + -- ({0.9001*\dx},{0.7149*\dy}) + -- ({0.9346*\dx},{0.7152*\dy}) + -- ({0.9690*\dx},{0.7141*\dy}) + -- ({1.0033*\dx},{0.7117*\dy}) + -- ({1.0374*\dx},{0.7081*\dy}) + -- ({1.0712*\dx},{0.7031*\dy}) + -- ({1.1048*\dx},{0.6969*\dy}) + -- ({1.1380*\dx},{0.6894*\dy}) + -- ({1.1709*\dx},{0.6806*\dy}) + -- ({1.2033*\dx},{0.6706*\dy}) + -- ({1.2353*\dx},{0.6594*\dy}) + -- ({1.2667*\dx},{0.6470*\dy}) + -- ({1.2976*\dx},{0.6334*\dy}) + -- ({1.3279*\dx},{0.6186*\dy}) + -- ({1.3576*\dx},{0.6027*\dy}) + -- ({1.3866*\dx},{0.5857*\dy}) + -- ({1.4149*\dx},{0.5676*\dy}) + -- ({1.4424*\dx},{0.5485*\dy}) + -- ({1.4692*\dx},{0.5284*\dy}) + -- ({1.4951*\dx},{0.5072*\dy}) + -- ({1.5201*\dx},{0.4851*\dy}) + -- ({1.5443*\dx},{0.4621*\dy}) + -- ({1.5675*\dx},{0.4381*\dy}) + -- ({1.5898*\dx},{0.4133*\dy}) + -- ({1.6111*\dx},{0.3877*\dy}) + -- ({1.6314*\dx},{0.3614*\dy}) + -- ({1.6506*\dx},{0.3342*\dy}) + -- ({1.6687*\dx},{0.3064*\dy}) + -- ({1.6858*\dx},{0.2779*\dy}) + -- ({1.7017*\dx},{0.2488*\dy}) + -- ({1.7165*\dx},{0.2191*\dy}) + -- ({1.7302*\dx},{0.1889*\dy}) + -- ({1.7427*\dx},{0.1581*\dy}) + -- ({1.7540*\dx},{0.1270*\dy}) + -- ({1.7640*\dx},{0.0954*\dy}) + -- ({1.7729*\dx},{0.0635*\dy}) + -- ({1.7806*\dx},{0.0312*\dy}) + -- ({1.7870*\dx},{-0.0013*\dy}) + -- ({1.7921*\dx},{-0.0340*\dy}) + -- ({1.7960*\dx},{-0.0669*\dy}) + -- ({1.7987*\dx},{-0.1000*\dy}) + -- ({1.8000*\dx},{-0.1331*\dy}) + -- ({1.8002*\dx},{-0.1662*\dy}) + -- ({1.7990*\dx},{-0.1993*\dy}) + -- ({1.7967*\dx},{-0.2324*\dy}) + -- ({1.7930*\dx},{-0.2654*\dy}) + -- ({1.7881*\dx},{-0.2982*\dy}) + -- ({1.7820*\dx},{-0.3308*\dy}) + -- ({1.7747*\dx},{-0.3632*\dy}) + -- ({1.7661*\dx},{-0.3952*\dy}) + -- ({1.7563*\dx},{-0.4270*\dy}) + -- ({1.7454*\dx},{-0.4584*\dy}) + -- ({1.7332*\dx},{-0.4893*\dy}) + -- ({1.7199*\dx},{-0.5198*\dy}) + -- ({1.7055*\dx},{-0.5497*\dy}) + -- ({1.6900*\dx},{-0.5792*\dy}) + -- ({1.6733*\dx},{-0.6080*\dy}) + -- ({1.6556*\dx},{-0.6362*\dy}) + -- ({1.6368*\dx},{-0.6637*\dy}) + -- ({1.6171*\dx},{-0.6906*\dy}) + -- ({1.5963*\dx},{-0.7166*\dy}) + -- ({1.5746*\dx},{-0.7419*\dy}) + -- ({1.5519*\dx},{-0.7664*\dy}) + -- ({1.5283*\dx},{-0.7901*\dy}) + -- ({1.5039*\dx},{-0.8128*\dy}) + -- ({1.4787*\dx},{-0.8347*\dy}) + -- ({1.4526*\dx},{-0.8556*\dy}) + -- ({1.4258*\dx},{-0.8756*\dy}) + -- ({1.3983*\dx},{-0.8945*\dy}) + -- ({1.3700*\dx},{-0.9124*\dy}) + -- ({1.3412*\dx},{-0.9293*\dy}) + -- ({1.3117*\dx},{-0.9452*\dy}) + -- ({1.2817*\dx},{-0.9599*\dy}) + -- ({1.2511*\dx},{-0.9735*\dy}) + -- ({1.2201*\dx},{-0.9860*\dy}) + -- ({1.1886*\dx},{-0.9974*\dy}) + -- ({1.1567*\dx},{-1.0076*\dy}) + -- ({1.1245*\dx},{-1.0166*\dy}) + -- ({1.0920*\dx},{-1.0245*\dy}) + -- ({1.0592*\dx},{-1.0312*\dy}) + -- ({1.0262*\dx},{-1.0367*\dy}) + -- ({0.9931*\dx},{-1.0409*\dy}) + -- ({0.9598*\dx},{-1.0440*\dy}) + -- ({0.9264*\dx},{-1.0459*\dy}) + -- ({0.8930*\dx},{-1.0465*\dy}) + -- ({0.8596*\dx},{-1.0460*\dy}) + -- ({0.8263*\dx},{-1.0442*\dy}) + -- ({0.7930*\dx},{-1.0413*\dy}) +} diff --git a/buch/papers/zeta/images/zetaplot.pdf b/buch/papers/zeta/images/zetaplot.pdf index 5a59ce6..c6d3693 100644 Binary files a/buch/papers/zeta/images/zetaplot.pdf and b/buch/papers/zeta/images/zetaplot.pdf differ -- cgit v1.2.1 From 970e6a8a2b2371834e8a4ff42123da59e3990fe4 Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 21:59:31 +0200 Subject: Finished --- buch/papers/zeta/analytic_continuation.tex | 26 +++++++++++++------------- buch/papers/zeta/einleitung.tex | 8 ++++---- buch/papers/zeta/euler_product.tex | 14 +++++++------- buch/papers/zeta/fazit.tex | 17 ++++++++--------- buch/papers/zeta/images/zetaplot.tex | 2 +- buch/papers/zeta/zeta_gamma.tex | 4 ++-- 6 files changed, 35 insertions(+), 36 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index 4046bb7..ed07e04 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -62,14 +62,14 @@ Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:a {\color{blue}\frac{2}{2^s}} + {\color{red}\frac{1}{2^s}} - }_{-\frac{1}{2^s}} + }_{\displaystyle{-\frac{1}{2^s}}} + {\color{red}\frac{1}{3^s}} \underbrace{- {\color{blue}\frac{2}{4^s}} + {\color{red}\frac{1}{4^s}} - }_{-\frac{1}{4^s}} + }_{\displaystyle{-\frac{1}{4^s}}} \ldots \\ &= \eta(s). @@ -89,7 +89,7 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen = \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt. \end{equation} -Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten +Nun substituieren wir $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten \begin{equation} \Gamma \left( \frac{s}{2} \right) = @@ -109,7 +109,7 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi e^{-\pi n^2 x} \,dx, \end{equation} -und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$ +und finden $\zeta(s)$ durch die Summenbildung über alle $n$ \begin{align} \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}} \zeta(s) @@ -139,14 +139,14 @@ Zunächst teilen wir nun das Integral auf in zwei Teile x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_1} + }_{\displaystyle{I_1}} + \underbrace{ \int_1^{\infty} x^{\frac{s}{2}-1} \psi(x) \,dx - }_{I_2} + }_{\displaystyle{I_2}} = I_1 + I_2. \end{equation} @@ -231,11 +231,11 @@ Somit haben wir die analytische Fortsetzung gefunden als \zeta(1-s), \end{equation} was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht. -Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. +Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Abschnitt \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden. \subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal} -Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. +Ziel dieses Abschnittes ist, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann. Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt. Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen. @@ -313,8 +313,8 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \underbrace{ \sum_{k=-\infty}^{\infty} e^{-i 2\pi x k} - }_{\text{\eqref{zeta:equation:fourier_dirac}}} - \, dx, + }_{\displaystyle{\text{\eqref{zeta:equation:fourier_dirac}}}} + \, dx, \label{zeta:equation:1934} \end{align} und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac} \begin{align} @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen und erhalten wir + Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) @@ -465,7 +465,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt x^{\frac{s}{2}-\frac{3}{2}} \psi \left( \frac{1}{x} \right) \,dx - }_{I_3} + }_{\displaystyle{I_3}} + \underbrace{ \frac{1}{2} @@ -474,7 +474,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt - x^{\frac{s}{2}-1} \,dx - }_{I_4}. \label{zeta:equation:integral3} + }_{\displaystyle{I_4}}. \label{zeta:equation:integral3} \end{align} Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als \begin{equation} diff --git a/buch/papers/zeta/einleitung.tex b/buch/papers/zeta/einleitung.tex index ad87fec..828678d 100644 --- a/buch/papers/zeta/einleitung.tex +++ b/buch/papers/zeta/einleitung.tex @@ -12,11 +12,11 @@ Die Zetafunktion ist bekannt als Bestandteil der Riemannschen Vermutung, welche Mithilfe dieser Vermutung kann eine gute Annäherung an die Primzahlfunktion gefunden werden. Die Primzahlfunktion steigt immer an, sobald eine Primzahl vorkommt. Eine Darstellung davon ist in Abbildung \ref{fig:zeta:primzahlfunktion} zu finden. -Die Riemannsche Vermutung ist eines der ungelösten Millennium-Probleme der Mathematik, auf deren Lösung eine Belohnung von einer Million Doller ausgesetzt ist \cite{zeta:online:millennium}. +Die Riemannsche Vermutung ist eines der ungelösten Millennium-Probleme der Mathematik, auf deren Lösung eine Belohnung von einer Million Dollar ausgesetzt ist \cite{zeta:online:millennium}. Auf eine genauere Beschreibung der Riemannschen Vermutung wird im Rahmen dieses Papers nicht eingegangen. \begin{figure} \centering - \input{papers/zeta/images/primzahlfunktion_paper.pgf} + \input{papers/zeta/images/primzahlfunktion2.tex} \caption{Die Primzahlfunktion von $0$ bis $30$.} \label{fig:zeta:primzahlfunktion} \end{figure} @@ -28,7 +28,7 @@ Schlussendlich folgt die Beschreibung der analytischen Fortsetzung die gesamte k Diese analytische Fortsetzung wird für die Riemannsche Vermutung benötigt, ermöglicht aber auch andere interessante Aussagen. So findet sich zum Beispiel immer wieder die aberwitzige Behauptung, das die Summe aller natürlichen Zahlen \begin{equation*} - \sum{n=1}^{\infty} n + \sum_{n=1}^{\infty} n = \sum_{n=1}^{\infty} \frac{1}{n^{-1}} @@ -36,6 +36,6 @@ So findet sich zum Beispiel immer wieder die aberwitzige Behauptung, das die Sum -\frac{1}{12} \end{equation*} sei. -Obwohl diese Behauptung offensichtlich Falsch ist, hat sie doch ihre Berechtigung, wie durch die analytische Fortsetzung gezeigt werden wird. +Obwohl diese Behauptung offensichtlich falsch ist, hat sie doch ihre Berechtigung, wie durch die analytische Fortsetzung gezeigt werden wird. Die folgenden mathematischen Herleitungen sind, sofern nicht anders gekennzeichnet, eigene Darstellungen basierend auf den überaus umfangreichen Wikipedia-Artikeln auf Deutsch \cite{zeta:online:wiki_de} und Englisch \cite{zeta:online:wiki_en} sowie einer Video-Playlist \cite{zeta:online:mryoumath}. diff --git a/buch/papers/zeta/euler_product.tex b/buch/papers/zeta/euler_product.tex index 7915c84..9c08dd2 100644 --- a/buch/papers/zeta/euler_product.tex +++ b/buch/papers/zeta/euler_product.tex @@ -28,9 +28,9 @@ Um daraus die Riemannsche Vermutung herzuleiten, wäre aber noch einiges mehr n = \prod_{p \in P} \sum_{k_i=0}^{\infty} - \left( + \biggl( \frac{1}{p_i^s} - \right)^{k_i} + \biggr)^{k_i} = \prod_{p \in P} \sum_{k_i=0}^{\infty} @@ -53,11 +53,11 @@ Um daraus die Riemannsche Vermutung herzuleiten, wäre aber noch einiges mehr n \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots - \left( + \biggl( \frac{1}{p_1^{k_1}} \frac{1}{p_2^{k_2}} \ldots - \right)^s. + \biggr)^s. \label{zeta:equation:eulerprodukt2} \end{align} Der Fundamentalsatz der Arithmetik (Primfaktorzerlegung) besagt, dass jede beliebige Zahl $n \in \mathbb{N}$ durch eine eindeutige Primfaktorzerlegung beschrieben werden kann @@ -70,17 +70,17 @@ Um daraus die Riemannsche Vermutung herzuleiten, wäre aber noch einiges mehr n \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \ldots - \left( + \biggl( \frac{1}{p_1^{k_1}} \frac{1}{p_2^{k_2}} \ldots - \right)^s + \biggr)^s = \sum_{n=1}^\infty \frac{1}{n^s} = \zeta(s), \end{equation} - wodurch das Eulerprudukt bewiesen ist. + wodurch das Eulerprodukt bewiesen ist. \end{proof} diff --git a/buch/papers/zeta/fazit.tex b/buch/papers/zeta/fazit.tex index fe2d35d..e33083a 100644 --- a/buch/papers/zeta/fazit.tex +++ b/buch/papers/zeta/fazit.tex @@ -1,5 +1,5 @@ -\section{Fazit} \label{zeta:section:fazit} -\rhead{Fazit} +\section{Der Wert $\zeta(-1)$} \label{zeta:section:fazit} +\rhead{Der Wert $\zeta(-1)$} Ganz zu Beginn dieses Papers wurde die Behauptung erwähnt, dass die Summe aller natürlichen Zahlen $-\frac{1}{12}$ sei. Diese Summe ist nichts anderes als die Zetafunktion am Wert $s=-1$. @@ -17,7 +17,7 @@ Da wir die analytische Fortsetzung mit der Funktionalgleichung \eqref{zeta:equat \zeta(2) \frac{\pi^{-\frac{1}{2}}}{\Gamma \left( -\frac{1}{2} \right)}. \end{align*} -Also fehlen uns drei Werte, $\zeta(2)$, $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$. +Also fehlen uns drei Werte, $\zeta(2)$, $\Gamma(1)$ und $\Gamma(-\frac{1}{2})$. Zunächst konzentrieren wir uns auf $\zeta(2)$, welches im konvergenten Bereich der Reihe liegt und auch bekannt ist als das Basler Problem. Wir lösen das Basler Problem \cite{zeta:online:basel} mithilfe der parsevalschen Gleichung \cite{zeta:online:pars} @@ -44,7 +44,7 @@ Wenn wir dies für $f(x) = x$ auswerten erhalten wir &= 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2 = - 4\pi \underbrace{\sum_{n=1}^{\infty} \frac{1}{n^2}}_{\zeta(2)}. + 4\pi \underbrace{\sum_{n=1}^{\infty} \frac{1}{n^2}}_{\displaystyle{\zeta(2)}}. \end{align} Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als \begin{equation} @@ -53,13 +53,13 @@ Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als = \frac{\pi^2}{6}. \end{equation} -Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma\left(-\frac{1}{2}\right)$ mithilfe der Integraldefinition der Gammafunktion \ref{buch:rekursion:def:gamma}. -Da das Integral für $\Gamma\left(-\frac{1}{2}\right)$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet. +Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma(-\frac{1}{2})$ mithilfe der Integraldefinition der Gammafunktion (Definition \ref{buch:rekursion:def:gamma}). +Da das Integral für $\Gamma(-\frac{1}{2})$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet. Es ergeben sich die Werte \begin{align*} \Gamma(1) &= 1\\ - \Gamma\left(-\frac{1}{2}\right) + \Gamma\biggl(-\frac{1}{2}\biggr) &= \frac{\pi}{\sin\left(-\frac{\pi}{2}\right) \Gamma\left(\frac{3}{2}\right)} = -\frac{\sqrt{\pi}}{2}. @@ -85,10 +85,9 @@ Wenn wir diese Werte in die Funktionalgleichung einsetzen, erhalten wir das gew Weiter wurde zu Beginn dieses Papers auf die Riemannsche Vermutung hingewiesen, wonach alle nichttrivialen Nullstellen der Zetafunktion auf der $\Re(s)=\frac{1}{2}$ Geraden liegen. Abbildung \ref{zeta:fig:einzweitel} zeigt die Funktionswerte dieser Geraden. -%TODO colorplot does not work.. Ausserdem zeigt Abbildung \ref{zeta:fig:colorplot} die farbcodierte Zetafunktion für Werte der analytischen Fortsetzung und des originalen Definitionsbereichs. \begin{figure} \centering - \input{papers/zeta/images/zeta_re_0.5_paper.pgf} + \input{papers/zeta/images/zetaplot.tex} \caption{Die komplexen Werte der Zetafunktion für die kritische Gerade $\Re(s)=\frac{1}{2}$ im Bereich $\Im(s) = 0\dots40$. Klar sichtbar sind die immer wiederkehrenden Nullstellen, wie sie Gegenstand der Riemannschen Vermutung sind.} \label{zeta:fig:einzweitel} diff --git a/buch/papers/zeta/images/zetaplot.tex b/buch/papers/zeta/images/zetaplot.tex index 1cd3259..521bb1a 100644 --- a/buch/papers/zeta/images/zetaplot.tex +++ b/buch/papers/zeta/images/zetaplot.tex @@ -38,7 +38,7 @@ \draw (-0.1,{-\y*\dy}) -- (0.1,{-\y*\dy}); } -\input{zetapath.tex} +\input{papers/zeta/images/zetapath.tex} \draw[color=blue,line width=1pt] \zetapath; diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex index 1f10a33..dd422e3 100644 --- a/buch/papers/zeta/zeta_gamma.tex +++ b/buch/papers/zeta/zeta_gamma.tex @@ -11,7 +11,7 @@ Wir erinnern uns an die Definition der Gammafunktion in \eqref{buch:rekursion:ga \int_0^{\infty} t^{s-1} e^{-t} \,dt, \end{equation*} wobei die Notation an die Zetafunktion angepasst ist. -Durch die Substitution von $t$ mit $t = nu$ und $dt = n\,du$ wird daraus +Durch die Substitution $t = nu$ und $dt = n\,du$ wird daraus \begin{align*} \Gamma(s) &= @@ -57,5 +57,5 @@ Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durc \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{u^{s-1}}{e^u -1} - du \qed + du. \end{equation} -- cgit v1.2.1 From 7d2e4ff7b1b50b382af659fcfbbc38adb6dd7ace Mon Sep 17 00:00:00 2001 From: runterer Date: Tue, 9 Aug 2022 22:05:19 +0200 Subject: minor changes --- buch/papers/zeta/analytic_continuation.tex | 2 +- buch/papers/zeta/fazit.tex | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex index ed07e04..d45a6ae 100644 --- a/buch/papers/zeta/analytic_continuation.tex +++ b/buch/papers/zeta/analytic_continuation.tex @@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier \sum_{k=-\infty}^{\infty} \delta(x + k). \end{align} - Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir + Wenn wir dies einsetzen in Gleichung \eqref{zeta:equation:1934} erhalten wir \begin{equation} \sum_{k=-\infty}^{\infty} F(k) diff --git a/buch/papers/zeta/fazit.tex b/buch/papers/zeta/fazit.tex index e33083a..027f324 100644 --- a/buch/papers/zeta/fazit.tex +++ b/buch/papers/zeta/fazit.tex @@ -54,7 +54,7 @@ Durch einfaches Umstellen erhalten wir somit die Lösung des Basler Problems als \end{equation} Als nächstes berechnen wir $\Gamma(1)$ und $\Gamma(-\frac{1}{2})$ mithilfe der Integraldefinition der Gammafunktion (Definition \ref{buch:rekursion:def:gamma}). -Da das Integral für $\Gamma(-\frac{1}{2})$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma\left(\frac{3}{2}\right)$ verwendet. +Da das Integral für $\Gamma(-\frac{1}{2})$ nicht konvergiert, wird die Reflektionsformel aus \ref{buch:funktionentheorie:subsection:gammareflektion} verwendet, welche das konvergierende Integral von $\Gamma(\frac{3}{2})$ verwendet. Es ergeben sich die Werte \begin{align*} \Gamma(1) -- cgit v1.2.1 From 2cf30b784f1cf73cd4ae8c9924435f236f351470 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 10 Aug 2022 21:51:06 +0200 Subject: =?UTF-8?q?Korrekturen=20von=20M=C3=BCller=20umgesetzt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil0.tex | 16 +++++++++------- buch/papers/kreismembran/teil4.tex | 29 ++++++++++++++--------------- 2 files changed, 23 insertions(+), 22 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 6f55358..a0a4152 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,18 +5,18 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Membran} -Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...''. +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen \dots''. Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften wie ein gespanntes Stück Papier. Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert, aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. -Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. +Wie genau diese Schwingungen untersucht werden können, wird in der folgenden Arbeit diskutiert. \subsection{Annahmen} \label{kreimembran:annahmen} @@ -48,9 +48,10 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s \end{center} \end{figure} -Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. -Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte +In Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Wie für die Membran ist die Annahme iii) gültig, keine Bewegung entlang der $ x $-Achse. +Um dies zu erfüllen, muss der Punkt $ P_1 $ gleich stark entgegen der $ x $-Achse gezogen werden wie der Punkt $ P_2 $ in Richtung der $ x $-Achse gezogen wird. +Ist $ T_1 $ die Kraft, welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} T_1 \cos \alpha = T_2 \cos \beta = T \end{equation} @@ -81,7 +82,8 @@ Durch die Division mit $ dx $ entsteht \begin{equation*} \frac{1}{dx} \left[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\right] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} -Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. +Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt. +Wenn $ dx $ als unendlich kleines Stück betrachtet wird, ergibt sich als Grenzwert die zweite Ableitung von $ u(x,t) $ nach $ x $. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die in der Literatur gebräuchliche Form \begin{equation} diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex index 74bb87d..95cb516 100644 --- a/buch/papers/kreismembran/teil4.tex +++ b/buch/papers/kreismembran/teil4.tex @@ -67,37 +67,37 @@ Die Filtermaske kann dann auf jedes Element einzeln angewendet werden mit einer \subsection{Simulation: Kreisförmige Membran} Als Beispiel soll nun eine schwingende kreisförmige Membran simuliert werden. -\paragraph{Initialisierung} -Die Anzahl der simulierten Elementen soll $ m \times n $ was dementsprechend die Dimensionen von $ U $ und $ V $ vorgibt. +\subsubsection{Initialisierung} +Die Anzahl der simulierten Elemente soll $ m \times n $ sein, was die Dimensionen von $ U $ und $ V $ vorgibt. Als Anfangsbedingung wird eine Membran gewählt, welche bei $ t=0 $ mit einer Gauss-Kurve ausgelenkt wird. Die Membran soll sich zu Beginn nicht bewegen, also wird $ V[0] $ mit Nullen initialisiert. Die Auslenkung kann kompakt erreicht werden, wenn $ U[0] $ als Null-Matrix mit einer $ 1 $ in der Mitte initialisiert wird. Diese Matrix wird anschliessend mit einer Filtermaske in Form einer Gauss-Glocke gefaltet. -Die Faltung mit einer Gauss-Glocke ist in Programmen wie Matlab eine Standartfunktion, da dies einm Tiefpassfilter in der Bildverarbeitung entspricht. +Die Faltung mit einer Gauss-Glocke ist in Programmen wie Matlab eine Standartfunktion, da dies einem Tiefpassfilter in der Bildverarbeitung entspricht. -\paragraph{Rand} +\subsubsection{Rand} Bislang ist die definierte Matrix rechteckig. Um eine kreisförmige Membran zu simulieren muss der Rand angepasst werden. Da in den meisten Programme keine Möglichkeit besteht, mit runden Matrizen zu rechnen, wird der Rand in der Berechnung des Folgezustandes implementiert. Der Rand bedeutet, das Membran-Elemente auf dem Rand sich nicht Bewegen können. -Die Position sowie die Geschwindigkeit aller Elemente welche nicht auf der definierten Membran sind müssen zu beliebiger Zeit $0$ entsprechen. +Die Position sowie die Geschwindigkeit aller Elemente, welche nicht auf der definierten Membran sind, müssen zu beliebiger Zeit $0$ sein. Hierzu wird eine Maske $M$ erstellt. Diese Maske besteht aus einer binären Matrix von identischer Dimension wie $ U $ und $ V $. Ist in der Matrix $M$ eine $1$ abgebildet so ist an jener stelle ein Element der Membran, ist es eine $0$ so befindet sich dieses Element auf dem Rand oder ausserhalb der Membran. In dieser Anwendung ist $M$ eine Matrix mit einem Kreis voller $1$ umgeben von $0$ bis an den Rand der Matrix. -Die Maske wird angewendet indem das Resultat des nächsten Zustandes noch mit der Maske elementweise multipliziert wird. +Die Maske wird angewendet, indem das Resultat des nächsten Zustandes noch mit der Maske elementweise multipliziert wird. Der Folgezustand kann also mit den Gleichungen \begin{align} \label{kreismembran:eq:folge_U} - U[w+1] &= (U[w] + dt \cdot V[w])*M\\ + U[w+1] &= (U[w] + dt \cdot V[w])\odot M\\ \label{kreismembran:eq:folge_V} - V[w+1] &= (V[w] + dt \cdot \Delta_h u \cdot c^2)*M + V[w+1] &= (V[w] + dt \cdot \Delta_h u \cdot c^2)\odot M \end{align} berechnet werden. -\paragraph{Simulation} +\subsubsection{Simulation} Mit den gegebenen Gleichungen \ref{kreismembran:eq:folge_U} und \ref{kreismembran:eq:folge_V} das Verhalten der Membran mit einem Loop über das zu untersuchende Zeitintervall berechnet werden. In der Abbildung \ref{kreismembran:im:simres_rund} sind Simulationsresultate zu sehen. -Die Erste Figur zeigt die Ausgangslage gefolgt von den Auslenkungen nach jeweils $ 50 $ weiteren Iterationsschritten. +Die erste Figur zeigt die Ausgangslage gefolgt von den Auslenkungen nach jeweils $ 50 $ weiteren Iterationsschritten. Es ist zu erkennen, wie sich die Störung vom Zentrum an den Rand ausbreitet. Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum. \begin{figure} @@ -123,13 +123,13 @@ Wenn anschliessend nur das Verhalten im Zentrum, bei der Störung beobachtet wir Dies aber nur bis die Störung am Rand reflektiert wird und wieder das innere zu beobachtende Zentrum beeinflusst. Soll erst gar keine Reflexion entstehen, muss ein Absorber modelliert werden welcher die Störung möglichst ohne Reflexion aufnimmt. -\paragraph{Absorber} +\subsubsection{Absorber} Sehr knapp formuliert entstehen Reflexionen, wenn eine Welle von einem Material in ein anderes Material mit unterschiedlichen Eigenschaften eindringen möchte. Je unterschiedlicher und abrupter der Übergang zwischen den Materialien umso ausgeprägter die Reflexion. In diesem Fall sind die Eigenschaften vorgegeben. Im Zentrum soll sich die Membran verhalten, wie von der DGL vorgegeben, am Rand jedoch muss sich jedes Membran-Element in der Ausgangslage befinden. Der Spielraum welcher dem Absorber übrig bleibt ist die Art der Überganges. -Bei der endlichen kreisförmigen Membran hat die Maske $M$ ein binärer Übergang von Membran zu Rand bezweckt. +Bei der endlichen kreisförmigen Membran hat die Maske $M$ einen binären Übergang von Membran zu Rand bezweckt. Anstelle dieses abrupten Wechsels wird nun eine Maske definiert, welche graduell von Membran $1$ zu Rand-Element $0$ wechselt. Die Elemente werden auf Basis ihres Abstand $r$ zum Zentrum definiert. Der Abstand entspricht @@ -156,11 +156,10 @@ In der Abbildung \ref{kreismembran:im:masks} ist der Unterschied der beiden Mask \label{kreismembran:im:masks} \end{center} \end{figure} -\paragraph{Simulation} +\subsubsection{Simulation} Bis auf die Absorber-Maske kann nun identisch zur endlichen Membran simuliert werden. Auch hier wurde eine Gauss-Glocke als Anfangsbedingung gewählt. Die Simulationsresultate von Abbildung \ref{kreismembran:im:simres_unendlich} - \begin{figure} \begin{center} @@ -183,7 +182,7 @@ Dieses Verhalten spricht für den Absorber-Ansatz, es soll jedoch erwähnt sein, Die DGL \ref{kreismembran:Ausgang_DGL} welche simuliert wird geht jedoch von der Annahme \ref{kreimembran:annahmen} iv) aus, dass die Membran keine Art von Dämpfung erfährt. \section{Schlusswort} -Auch wenn ein Physikalisches Verhalten bereits durch Annahmen und Annäherungen deutlich vereinfacht wird, bestehen auch dann noch eine Vielzahl von Lösungsansätzen. +Auch wenn ein physikalisches Verhalten bereits durch Annahmen und Annäherungen deutlich vereinfacht wird, bestehen auch dann noch eine Vielzahl von Lösungsansätzen. Lösungen einer unendlich grosse Membran scheinen fern der Realität zu sein, doch dies darf es im Sinne der Mathematik. Und wer weis, für eine Ameise auf einem Trampolin ist eine unendliche Membran vielleicht eine ganz gute Annäherung. -- cgit v1.2.1 From c2d2d48156ab7cfb0d69541e58f54c3a55b2daf9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 19:23:32 +0200 Subject: Added start to coefficient calculation. --- .../sturmliouville/waermeleitung_beispiel.tex | 75 ++++++++++++++++++++-- 1 file changed, 71 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 14fca40..58569e9 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -346,12 +346,79 @@ Schreiben wir also die Lösung $X(x)$ um zu \[ X(x) = - a_n\sin\left(\frac{n\pi}{l}x\right) + a_0 + - b_n\cos\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right). +\] + +Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere +Bedingungen benötigt. +Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$. +Es gilt also nun die Gleichung +\begin{equation} + \label{eq:slp-example-fourier-initial-conditions} + u(0, x) + = + a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right) +\end{equation} +nach allen $a_n$ und $b_n$ aufzulösen. +Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion +gehört, von der wir wissen, dass sie orthogonal zu allen anderen +trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt +verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen. +Es wird also die Tatsache ausgenutzt, dass die Gleichheit in +\eqref{eq:slp-example-fourier-initial-conditions} nach Anwendung des +Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer +Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. + +Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das +Skalarprodukt mit der Basisfunktion $ sin\left(\frac{m \pi}{l}x\right)$ +gebildet: +\[ + \langle u(0, x), sin\left(\frac{m \pi}{l}x\right) \rangle + = + \langle a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), + sin\left(\frac{m \pi}{l}x\right)\rangle +\] + +Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt +sein, welche Integralgrenzen zu verwenden sind. +In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze +Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. +Um die + +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}(0, x)sin\left(\frac{m \pi}{l}x\right)dx + =& + \int_{-l}^{l} \left[a_0 + + + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right)\right] + sin\left(\frac{m \pi}{l}x\right) dx + \\ + =& + a_0 \int_{-l}^{l}sin\left(\frac{m \pi}{l}x\right) dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] + \\ + &+ + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \cos\left(\frac{n\pi}{l}x\right) + sin\left(\frac{m \pi}{l}x\right)dx\right] +\end{aligned} \] -was für jedes $n$ wiederum eine Linearkombination aus orthogonalen Funktionen -ist. Betrachten wir zuletzt die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t}. -- cgit v1.2.1 From fc17a8247db60871ce49b23f1bbbb9b5523d8473 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 20:05:16 +0200 Subject: Corrected Coefficient names. --- .../sturmliouville/waermeleitung_beispiel.tex | 104 ++++++++++----------- 1 file changed, 52 insertions(+), 52 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 58569e9..fb5f331 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -181,7 +181,7 @@ Die Lösungen für $X(x)$ sind also von der Form \[ X(x) = - A \sin \left( \alpha x\right) + B \cos \left( \beta x\right). + A \cos \left( \alpha x\right) + B \sin \left( \beta x\right). \] Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung @@ -191,41 +191,41 @@ Man erhält also \[ X^{\prime}(x) = - \alpha A \cos \left( \alpha x \right) - - \beta B \sin \left( \beta x \right) + - \alpha A \sin \left( \alpha x \right) + + \beta B \cos \left( \beta x \right) \] und \[ X^{\prime \prime}(x) = - -\alpha^{2} A \sin \left( \alpha x \right) - - \beta^{2} B \cos \left( \beta x \right). + -\alpha^{2} A \cos \left( \alpha x \right) - + \beta^{2} B \sin \left( \beta x \right). \] Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies \[ - -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) - - \mu\left(A\sin(\alpha x) + B\cos(\beta x)\right) + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) - + \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right) = 0 \] und durch umformen somit \[ - -\alpha^{2}A\sin(\alpha x) - \beta^{2}B\cos(\beta x) + -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) = - \mu A\sin(\alpha x) + \mu B\cos(\beta x). + \mu A\cos(\alpha x) + \mu B\sin(\beta x). \] Mittels Koeffizientenvergleich von \[ \begin{aligned} - -\alpha^{2}A\sin(\alpha x) + -\alpha^{2}A\cos(\alpha x) &= - \mu A\sin(\alpha x) + \mu A\cos(\alpha x) \\ - -\beta^{2}B\cos(\beta x) + -\beta^{2}B\sin(\beta x) &= - \mu B\cos(\beta x) + \mu B\sin(\beta x) \end{aligned} \] ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für @@ -251,41 +251,41 @@ Dies fürht zu \[ X(0) = - A \sin(0 \alpha) + B \cos(0 \beta) + A \cos(0 \alpha) + B \sin(0 \beta) = 0. \] -Da $\cos(0) \neq 0$ ist, muss in diesem Fall $B = 0$ gelten. -Für den ersten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. +Da $\cos(0) \neq 0$ ist, muss in diesem Fall $A = 0$ gelten. +Für den zweiten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt. -Wird nun die zweite Randbedingung für $x = l$ mit $B = 0$ eingesetzt, ergibt +Wird nun die zweite Randbedingung für $x = l$ mit $A = 0$ eingesetzt, ergibt sich \[ X(l) = - A \sin(\alpha l) + 0 \cos(\beta l) + 0 \cos(\alpha l) + B \sin(\beta l) = - A \sin(\alpha l) + B \sin(\beta l) = 0. \] -$\alpha$ muss also so gewählt werden, dass $\sin(\alpha l) = 0$ gilt. -Es bleibt noch nach $\alpha$ aufzulösen: +$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt. +Es bleibt noch nach $\beta$ aufzulösen: \[ \begin{aligned} - \sin(\alpha l) &= 0 \\ - \alpha l &= n \pi \qquad n \in \mathbb{N} \\ - \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} + \sin(\beta l) &= 0 \\ + \beta l &= n \pi \qquad n \in \mathbb{N} \\ + \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} \end{aligned} \] -Es folgt nun wegen $\mu = -\alpha^{2}$, dass +Es folgt nun wegen $\mu = -\beta^{2}$, dass \begin{equation} - \mu_1 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} + \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} \end{equation} sein muss. -Ausserdem ist zu bemerken, dass dies auch gleich $-\beta^{2}$ ist. -Da aber $B = 0$ gilt und der Summand mit $\beta$ verschwindet, ist dies keine +Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. +Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine Verletzung der Randbedingungen. Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst @@ -296,18 +296,18 @@ ein, beginnend für $x = 0$. Es ergibt sich \[ X^{\prime}(0) = - \alpha A \cos(0 \alpha) - \beta B \sin(0 \beta) + -\alpha A \sin(0 \alpha) + \beta B \cos(0 \beta) = 0. \] -In diesem Fall muss $A = 0$ gelten. +In diesem Fall muss $B = 0$ gelten. Zusammen mit der Bedignung für $x = l$ folgt nun \[ X^{\prime}(l) = - 0 \alpha \cos(\alpha l) - \beta B \sin(\beta l) + - \alpha A \sin(\alpha l) + 0 \beta \cos(\beta l) = - -\beta B \sin(\beta l) + - \alpha A \sin(\alpha l) = 0. \] @@ -316,14 +316,14 @@ Ausdruck den Randbedingungen entspricht. Es folgt nun \[ \begin{aligned} - \sin(\beta l) &= 0 \\ - \beta l &= n \pi \qquad n \in \mathbb{N} \\ - \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N} + \sin(\alpha l) &= 0 \\ + \alpha l &= n \pi \qquad n \in \mathbb{N} \\ + \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N} \end{aligned} \] und somit \[ - \mu_2 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. + \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}. \] Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur @@ -348,9 +348,9 @@ Schreiben wir also die Lösung $X(x)$ um zu = a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right). + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right). \] Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere @@ -363,9 +363,9 @@ Es gilt also nun die Gleichung = a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right) \end{equation} nach allen $a_n$ und $b_n$ aufzulösen. Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion @@ -378,17 +378,17 @@ Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das -Skalarprodukt mit der Basisfunktion $ sin\left(\frac{m \pi}{l}x\right)$ +Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ gebildet: \[ - \langle u(0, x), sin\left(\frac{m \pi}{l}x\right) \rangle + \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle = \langle a_0 + \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), - sin\left(\frac{m \pi}{l}x\right)\rangle + \cos\left(\frac{m \pi}{l}x\right)\rangle \] Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt @@ -399,24 +399,24 @@ Um die \[ \begin{aligned} - \int_{-l}^{l}\hat{u}(0, x)sin\left(\frac{m \pi}{l}x\right)dx + \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& \int_{-l}^{l} \left[a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right)\right] - sin\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right] + \cos\left(\frac{m \pi}{l}x\right) dx \\ =& - a_0 \int_{-l}^{l}sin\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + - \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) - sin\left(\frac{m \pi}{l}x\right)dx\right] + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right] \\ &+ - \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \cos\left(\frac{n\pi}{l}x\right) - sin\left(\frac{m \pi}{l}x\right)dx\right] + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx\right] \end{aligned} \] -- cgit v1.2.1 From 37861bde4183d5134147df65dc06236d6878b36b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 21:19:44 +0200 Subject: Added periodically continued function u-hat. --- .../sturmliouville/waermeleitung_beispiel.tex | 23 +++++++++++++++++----- 1 file changed, 18 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index fb5f331..fa96eff 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -385,9 +385,9 @@ gebildet: = \langle a_0 + - \sum_{n = 1}^{\infty} a_n\sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + - \sum_{n = 1}^{\infty} b_n\cos\left(\frac{n\pi}{l}x\right), + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right), \cos\left(\frac{m \pi}{l}x\right)\rangle \] @@ -395,8 +395,21 @@ Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. -Um die - +Um die skalarprodukte aber korrekt zu berechnen, muss über die ganze Periode +integriert werden. +Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es wird ausserdem +eine neue Funktion +\[ + \hat{u}(0, x) + = + \begin{cases} + u(0, x + l) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases} +\] +angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. +Es kann nun das Skalarodukt geschrieben werden als \[ \begin{aligned} \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -416,7 +429,7 @@ Um die \\ &+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) - \cos\left(\frac{m \pi}{l}x\right)dx\right] + \cos\left(\frac{m \pi}{l}x\right)dx\right]. \end{aligned} \] -- cgit v1.2.1 From 6887191ba574292b6a9009867c0e16e66831ca17 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 22:01:25 +0200 Subject: Added titles to specific solutions. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index fa96eff..1bfdaef 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -409,7 +409,7 @@ eine neue Funktion \end{cases} \] angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. -Es kann nun das Skalarodukt geschrieben werden als +Das Skalarodukt kann nun geschrieben werden als \[ \begin{aligned} \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -428,7 +428,7 @@ Es kann nun das Skalarodukt geschrieben werden als \cos\left(\frac{m \pi}{l}x\right)dx\right] \\ &+ - \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l} \sin\left(\frac{n\pi}{l}x\right) + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right]. \end{aligned} \] @@ -457,22 +457,21 @@ Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} \] ergibt. -% TODO: Rechenweg -TODO: Rechenweg... Enden auf konstanter Temperatur: +\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} u(t,x) &= - \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} + \sum_{n=1}^{\infty}b_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t} \sin\left(\frac{n\pi}{l}x\right) \\ - a_{n} + b_{n} &= \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx \end{aligned} \] -TODO: Rechenweg... Enden isoliert: +\subsubsection{Lösung für einen Stab mit isolierten Enden} \[ \begin{aligned} u(t,x) -- cgit v1.2.1 From 964db187eaf5512601a04c6326094d6a1975d941 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Thu, 11 Aug 2022 22:11:59 +0200 Subject: Rewrote everything in passive form. --- .../sturmliouville/waermeleitung_beispiel.tex | 25 ++++++++++++---------- 1 file changed, 14 insertions(+), 11 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 1bfdaef..868f241 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -6,8 +6,8 @@ \subsection{Wärmeleitung in einem Homogenen Stab} -In diesem Abschnitt betrachten wir das Problem der Wärmeleitung in einem -homogenen Stab und wie das Sturm-Liouville-Problem bei der Beschreibung dieses +In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab +betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und @@ -141,8 +141,9 @@ erfüllt sein und es muss ausserdem \end{equation} gelten. -Um zu verifizieren, ob die Randbedingungen erfüllt sind, benötigen wir zunächst -$p(x)$. +Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst +$p(x)$ +benötigt. Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu $p(x) = 1$ führt. @@ -169,7 +170,7 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. -Widmen wir uns zunächst der ersten Gleichung. +Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung \[ X^{\prime \prime}(x) - \mu X(x) @@ -290,7 +291,7 @@ Verletzung der Randbedingungen. Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst werden. -Setzen wir nun die Randbedingungen +Setzt man nun die Randbedingungen \eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich \[ @@ -342,7 +343,7 @@ Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei $A$ und $B$ nicht um einzelne Koeffizienten handelt. Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$ unterschiedlich sein. -Schreiben wir also die Lösung $X(x)$ um zu +Die Lösung $X(x)$ wird nun umgeschrieben zu \[ X(x) = @@ -433,14 +434,16 @@ Das Skalarodukt kann nun geschrieben werden als \end{aligned} \] -Betrachten wir zuletzt die zweite Gleichung der Separation -\eqref{eq:slp-example-fourier-separated-t}. -Diese Lösen wir über das charakteristische Polynom +Zuletzt wird die zweite Gleichung der Separation +\eqref{eq:slp-example-fourier-separated-t} betrachtet. +Diese wird über das charakteristische Polynom \[ \lambda - \kappa \mu = - 0. + 0 \] +gelöst. + Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur Lösung \[ -- cgit v1.2.1 From ff04ad95214c0ecdf8343fa8cd0aaa74dda45715 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 12 Aug 2022 14:22:03 +0200 Subject: Corrected error with continuation of u hat. --- .../sturmliouville/waermeleitung_beispiel.tex | 52 +++++++++++++++++----- 1 file changed, 40 insertions(+), 12 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 868f241..cfa7386 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -381,7 +381,8 @@ Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ gebildet: -\[ +\begin{equation} + \label{eq:slp-dot-product-cosine} \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle = \langle a_0 @@ -390,30 +391,56 @@ gebildet: + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right), \cos\left(\frac{m \pi}{l}x\right)\rangle -\] +\end{equation} Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. -Um die skalarprodukte aber korrekt zu berechnen, muss über die ganze Periode -integriert werden. -Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es wird ausserdem -eine neue Funktion +Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges +Vielfaches der Periode der triginimetrischen Funktionen integriert werden. +Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem +neue Funktionen $ \hat{u}_c(0, x) $ für die Berechnung mit Cosinus und +$ \hat{u}_s(0, x) $ für die Berechnung mit Sinus angenomen, welche $ u(0, t) $ +gerade, respektive ungerade auf $[-l, l]$ fortsetzen: \[ - \hat{u}(0, x) - = +\begin{aligned} + \hat{u}_c(0, x) + &= \begin{cases} - u(0, x + l) & -l \leq x < 0 + u(0, -x) & -l \leq x < 0 \\ u(0, x) & 0 \leq x \leq l \end{cases} + \\ + \hat{u}_s(0, x) + &= + \begin{cases} + -u(0, -x) & -l \leq x < 0 + \\ + u(0, x) & 0 \leq x \leq l + \end{cases}. +\end{aligned} \] -angenomen, welche $u(0, x)$ auf dem Intervall $[-l, l]$ periodisch fortsetzt. -Das Skalarodukt kann nun geschrieben werden als + +Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei +skalliert wurde, also gilt nun +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \\ + \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx + &= + 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx. +\end{aligned} +\] + +Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \[ \begin{aligned} - \int_{-l}^{l}\hat{u}(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& \int_{-l}^{l} \left[a_0 + @@ -422,6 +449,7 @@ Das Skalarodukt kann nun geschrieben werden als \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right] \cos\left(\frac{m \pi}{l}x\right) dx \\ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + -- cgit v1.2.1 From a961142ba09e0e9a962aaba4d90e1613e0ff97b0 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Fri, 12 Aug 2022 15:06:08 +0200 Subject: 1. Ueberarbeitung --- buch/papers/0f1/teil1.tex | 22 +++++++++++----------- buch/papers/0f1/teil2.tex | 21 ++++++++++----------- buch/papers/0f1/teil3.tex | 18 +++++++++--------- 3 files changed, 30 insertions(+), 31 deletions(-) (limited to 'buch') diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index 2ca9647..f697f45 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -6,12 +6,12 @@ \section{Mathematischer Hintergrund \label{0f1:section:mathHintergrund}} \rhead{Mathematischer Hintergrund} -Basierend auf den Herleitungen des vorhergehenden Kapitels \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate +Basierend auf den Herleitungen des vorhergehenden Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate beschrieben. \subsection{Hypergeometrische Funktion \label{0f1:subsection:hypergeometrisch}} -Als Grundlage der umgesetzten Algorithmen dient die Hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Unterfunktion der allgemein definierten Funktion $\mathstrut_pF_q$. +Als Grundlage der umgesetzten Algorithmen dient die hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Anwendung der allgemein definierten Funktion $\mathstrut_pF_q$. \begin{definition} \label{0f1:math:qFp:def} @@ -42,7 +42,7 @@ Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$ \mathstrut_0F_1 \biggl( \begin{matrix} - \\ + \\- b_1 \end{matrix} ; @@ -60,22 +60,22 @@ Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$ \subsection{Airy Funktion \label{0f1:subsection:airy}} -Die Airy-Funktion $Ai(x)$ und die verwandte Funktion $Bi(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung. \cite{0f1:wiki-airyFunktion} +Die Funktion Ai(x) und die verwandte Funktion Bi(x) werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung \cite{0f1:wiki-airyFunktion}. \begin{definition} \label{0f1:airy:differentialgleichung:def} Die Differentialgleichung $y'' - xy = 0$ - heisst die {\em Airy-Differentialgleichung}. \cite{0f1:wiki-airyFunktion} + heisst die {\em Airy-Differentialgleichung}. \end{definition} -Die Airy Funktion lässt sich auf verschiedene Arten darstellen. \cite{0f1:wiki-airyFunktion} -Als hypergeometrische Funktion berechnet, ergibt sich wie in Kapitel \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $A(0)=1$ und $A'(0)=0$, sowie $B(0)=0$ und $B'(0)=0$. +Die Airy Funktion lässt sich auf verschiedene Arten darstellen. +Als hypergeometrische Funktion berechnet, ergibt sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $Ai(0)=1$ und $Ai'(0)=0$, sowie $Bi(0)=0$ und $Bi'(0)=0$. \begin{align} \label{0f1:airy:hypergeometrisch:eq} Ai(x) -= +=& \sum_{k=0}^\infty \frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k = @@ -84,7 +84,7 @@ Ai(x) \biggr). \\ Bi(x) -= +=& \sum_{k=0}^\infty \frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k = @@ -95,7 +95,7 @@ x\cdot\mathstrut_0F_1\biggl( \qedhere \end{align} -In diesem speziellem Fall wird die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} -benutzt, um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen. +Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in diesem speziellem Fall die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq} +benutzt. diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 9269961..15a1c44 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -6,12 +6,12 @@ \section{Umsetzung \label{0f1:section:teil2}} \rhead{Umsetzung} -Zur Umsetzung wurden drei verschiedene Ansätze gewählt.\cite{0f1:code} Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. -Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. +Zur Umsetzung wurden drei verschiedene Ansätze gewählt \cite{0f1:code}. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Library in Python die Resultate geplottet. \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double} +Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt \cite{0f1:double}. \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -34,23 +34,22 @@ Ein endlicher Kettenbruch ist ein Bruch der Form \begin{equation*} a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} \end{equation*} -in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. +in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. Die Kurzschreibweise für einen allgemeinen Kettenbruch ist \begin{equation*} a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots \end{equation*} -und ist somit verknüpfbar mit der Potenzreihe. -\cite{0f1:wiki-kettenbruch} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies\cite{0f1:wiki-fraction}: +\cite{0f1:wiki-kettenbruch}. +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies \cite{0f1:wiki-fraction}: \begin{equation*} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation*} -Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} +Umgeformt ergibt sich folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, \end{equation} -der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. +der als Code (siehe: Listing \ref{0f1:listing:kettenbruchIterativ}) umgesetzt wurde. \cite{0f1:wolfram-0f1} \lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} @@ -138,7 +137,7 @@ Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix \end{equation} Und Schlussendlich kann der Näherungsbruch \[ -\frac{Ak}{Bk} +\frac{A_k}{B_k} \] berechnet werden. @@ -166,7 +165,7 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ \end{itemize} -Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. +Ein grosser Vorteil dieser Umsetzung als Rekursionsformel ist \ref{0f1:listing:kettenbruchRekursion}, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. %Code \lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index 2855e26..72b1b21 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -6,19 +6,19 @@ \section{Auswertung \label{0f1:section:teil3}} \rhead{Resultate} -Im Verlauf des Seminares hat sich gezeigt, +Im Verlauf dieser Arbeit hat sich gezeigt, das ein einfacher mathematischer Algorithmus zu implementieren gar nicht so einfach ist. So haben alle drei umgesetzten Ansätze Probleme mit grossen negativen $z$ in der Funktion $\mathstrut_0F_1(;c;z)$. -Ebenso kann festgestellt werden,dass je grösser der Wert $z$ in $\mathstrut_0F_1(;c;z)$ wird, desto mehr weichen die berechneten Resultate von den Erwarteten ab. \cite{0f1:wolfram-0f1} +Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F_1(;c;z)$ wird, desto mehr weichen die berechneten Resultate von den Erwarteten ab \cite{0f1:wolfram-0f1}. \subsection{Konvergenz \label{0f1:subsection:konvergenz}} Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass schon nach drei Iterationen ($k = 3$) die Funktionen schon genaue Resultate im Bereich von -2 bis 2 liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich sogar mit der Referenzfunktion $Ai(x)$ übereinstimmt. Da die Rekursionsformel \ref{0f1:listing:kettenbruchRekursion} eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. -Erst wenn mehrere Durchläufe gemacht werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen, bezüglich Konvergenz überlegen. -Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach einschwingt. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von k bis zum Abbruch kleiner. -\ref{0f1:ausblick:plot:konvergenz:positiv} -Dieses Phänomen ist auf die Lösung der Rekursionsformel zurück zu führen.\ref{0f1:math:loesung:eq} Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. +Erst wenn mehrerer Iterationen gemacht werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen, bezüglich Konvergenz überlegen. +Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach einschwingt \ref{0f1:ausblick:plot:konvergenz:positiv}. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von k bis zum Abbruch kleiner +\ref{0f1:ausblick:plot:konvergenz:positiv}. +Dieses Phänomen ist auf die Lösung der Rekursionsformel zurück zu führen\eqref{0f1:math:loesung:eq}. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. Ist $z$ negativ wie im Abbild \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu einer Gegenseitigen Kompensation von negativen und positiven Termen so bricht die Rekursionsformel hier zusammen mit der Potenzreihe ab. Die ansteigende Differenz mit anschliessender, ist aufgrund der sich alternierenden Termen mit wechselnden Vorzeichens zu erklären. @@ -27,10 +27,10 @@ Die ansteigende Differenz mit anschliessender, ist aufgrund der sich alternieren \label{0f1:subsection:Stabilitaet}} Verändert sich der Wert von z in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion \ref{0f1:listing:kettenbruchIterativ} \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das, bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden. -Wohingegen die Potenzreihe \ref{0f1:listing:potenzreihe} das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät und irgendwann gibt es eine Bereichsüberschreitung von \verb+double+. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück. -Die Rekursionformel \ref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Stabilität zu gewährleisten, muss wie in \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden. +Wohingegen die Potenzreihe \eqref{0f1:listing:potenzreihe} das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät und irgendwann gibt es eine Bereichsüberschreitung von \verb+double+. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück. +Die Rekursionformel \eqref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Stabilität zu gewährleisten, muss wie in Abbild \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden. -Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Fakultät im Nenner, was zum Phänomen der Auslöschung führt.\cite{0f1:SeminarNumerik} Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind sowohl der Kettenbruch, als auch die Rekursionsformel bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da beide auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Das unterschiedliche Verhalten kann damit erklärt werden, dass beim Kettenbruch jeweils eine zusätzliche Division stattfindet. Diese Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} festzustellen. +Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von z, was zum Phänomen der Auslöschung führt \cite{0f1:SeminarNumerik}. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind sowohl der Kettenbruch, als auch die Rekursionsformel bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da beide auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Das unterschiedliche Verhalten kann damit erklärt werden, dass beim Kettenbruch jeweils eine zusätzliche Division stattfindet. Diese Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} festzustellen. -- cgit v1.2.1 From d9c6ead18aae68a14ce72b893d9c671156a1d6b3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Fri, 12 Aug 2022 18:03:55 +0200 Subject: Full calculation for a_m explained. --- .../sturmliouville/waermeleitung_beispiel.tex | 58 ++++++++++++++++++++++ 1 file changed, 58 insertions(+) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index cfa7386..5c246f2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -462,6 +462,64 @@ Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \end{aligned} \] +Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass +nahezu alle Terme verschinden, denn +\[ + \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + = + 0 +\] +da hier über ein ganzzahliges Vielfaches der Periode integriert wird, +\[ + \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen +orthogonal zueinander stehen und +\[ + \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + \cos\left(\frac{m \pi}{l}x\right)dx + = + 0 +\] +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sin. + +Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu +\[ + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + = + a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx +\] +vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite +berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst +mit $u = \frac{m \pi}{l}x$ substituiert wird: +\[ + \begin{aligned} + 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + &= + a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du + \\ + &= + a_m\frac{l}{m\pi}\left[\frac{u}{2} + + \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} + \\ + &= + a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - + \frac{-m\pi}{2} - + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \\ + &= + a_m l + \\ + a_m + &= + \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx + \end{aligned} +\] + Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom -- cgit v1.2.1 From b1f2ce6c7f7b277558e7fd18cedae9a0a06aefde Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Sat, 13 Aug 2022 12:33:04 +0200 Subject: Finished first draft of fourier example. --- .../sturmliouville/waermeleitung_beispiel.tex | 74 +++++++++++++++++++++- 1 file changed, 73 insertions(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5c246f2..5bd5ce2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -170,6 +170,7 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. +\subsubsection{Lösund der Differentialgleichung in x} Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung \[ @@ -463,7 +464,7 @@ Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: \] Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass -nahezu alle Terme verschinden, denn +nahezu alle Terme verschwinden, denn \[ \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx = @@ -520,6 +521,74 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \end{aligned} \] +Analog dazu kann durch das Bilden des Skalarproduktes mit +$ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass +\[ + b_m + = + \frac{2}{l} \int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx +\] +gilt. + +Etwas anders ist es allerdings bei $a_0$. +Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten +zur Basisfunktion $ \cos\left(\frac{0 \pi}{l}x\right) $ beziehungsweise der +konstanten Funktion $1$. +Um einen Ausdruck für $ a_0 $ zu erhalten, wird wiederum auf beiden Seiten +der Gleichung \eqref{eq:slp-example-fourier-initial-conditions} das +Skalarprodukt mit der konstanten Basisfunktion $ 1 $ gebildet: +\[ +\begin{aligned} + \int_{-l}^{l}\hat{u}_c(0, x)dx + &= + \int_{-l}^{l} a_0 + + + \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right) + + + \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)dx + \\ + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + + + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) + dx\right] + + \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right) + dx\right]. +\end{aligned} +\] + +Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils +über ein Vielfaches der Periode integriert wird. +Es bleibt also noch +\[ + 2\int_{0}^{l}u(0, x)dx + = + a_0 \int_{-l}^{l}dx +\] +, was sich wie folgt nach $a_0$ auflösen lässt: +\[ +\begin{aligned} + 2\int_{0}^{l}u(0, x)dx + &= + a_0 \int_{-l}^{l}dx + \\ + &= + a_0 \left[x\right]_{x=-l}^{l} + \\ + &= + a_0(l - (-l)) + \\ + &= + a_0 \cdot 2l + \\ + a_0 + &= + \frac{1}{l} \int_{0}^{l}u(0, x)dx +\end{aligned} +\] + +\subsubsection{Lösund der Differentialgleichung in t} Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom @@ -546,6 +615,9 @@ Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} \] ergibt. +Dieses Resultat kann nun mit allen vorhergehenden Resultaten zudammengesetzt +werden um die vollständige Lösung für das Stab-Problem zu erhalten. + \subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} -- cgit v1.2.1 From 0a59be0b3c470a0f7d71ba2e39fb6ec323d89f84 Mon Sep 17 00:00:00 2001 From: "samuel.niederer" Date: Sat, 13 Aug 2022 18:48:50 +0200 Subject: add content --- buch/papers/kra/anwendung.tex | 45 +++++++++-------------------------- buch/papers/kra/einleitung.tex | 16 ++++++------- buch/papers/kra/loesung.tex | 53 ++++++++++++++++++++++++++++++++++++------ buch/papers/kra/references.bib | 15 ++++++++++++ 4 files changed, 80 insertions(+), 49 deletions(-) (limited to 'buch') diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex index 4d4d351..0deaf3c 100644 --- a/buch/papers/kra/anwendung.tex +++ b/buch/papers/kra/anwendung.tex @@ -1,45 +1,40 @@ -\section{Anwendungen \label{kra:section:anwendung}} -\rhead{Anwendungen} +\section{Anwendung \label{kra:section:anwendung}} +\rhead{Anwendung} \newcommand{\dt}[0]{\frac{d}{dt}} Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalmanfilter. -Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:matrixriccati}) ein Feder-Masse-System untersuchen können. +Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:equation:matrixriccati}) ein Feder-Masse-System untersuchen können \cite{kra:riccati}. \subsection{Feder-Masse-System} -Die Einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. -Es besteht aus einer Masse $m$ welche reibungsfrei gelagert ist und einer Feder mit der Federkonstante $k$. +Die einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. +Es besteht aus einer reibungsfrei gelagerten Masse $m$ ,welche an eine Feder mit der Federkonstante $k$ gekoppelt ist. Die im System wirkenden Kräfte teilen sich auf in die auf dem hookeschen Gesetz basierenden Rückstellkraft $F_R = k \Delta_x$ und der auf dem Aktionsprinzip basierenden Kraft $F_a = am = \ddot{x} m$. Das Kräftegleichgewicht fordert $F_R = F_a$ woraus folgt, dass \begin{equation*} k \Delta_x = \ddot{x} m \Leftrightarrow \ddot{x} = \frac{k \Delta_x}{m} \end{equation*} -Die funktion die diese Differentialgleichung löst ist die harmonische Schwingung +Die Funktion die diese Differentialgleichung löst, ist die harmonische Schwingung \begin{equation} x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}} \end{equation} - - \begin{figure} \input{papers/kra/images/simple_mass_spring.tex} \caption{Einfaches Feder-Masse-System.} \label{kra:fig:simple_mass_spring} \end{figure} - \begin{figure} \input{papers/kra/images/multi_mass_spring.tex} \caption{Feder-Masse-System mit zwei Massen und drei Federn.} \label{kra:fig:multi_mass_spring} \end{figure} - \subsection{Hamilton-Funktion} Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. -Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten +Die hamiltonschen Gleichungen verwenden dafür die verallgemeinerten Ortskoordinaten $q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_spring}, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. - \begin{equation} \label{kra:harmonischer_oszillator} \begin{split} @@ -47,7 +42,6 @@ Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_s &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} \end{split} \end{equation} - Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} \begin{equation} \label{kra:hamilton:bewegungsgleichung} @@ -55,17 +49,13 @@ Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} \qquad \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} \end{equation} - daraus folgt - \[ \dot{q} = \frac{p}{m} \qquad \dot{p} = -kq \] - in Matrixschreibweise erhalten wir also - \[ \begin{pmatrix} \dot{q} \\ @@ -81,11 +71,9 @@ in Matrixschreibweise erhalten wir also p \end{pmatrix} \] - Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_mass_spring}, können wir analog vorgehen. Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. - \begin{align*} \begin{split} T &= T_1 + T_2 \\ @@ -97,16 +85,13 @@ Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} \end{split} \end{align*} - Die Hamilton-Funktion ist also - \begin{align*} \begin{split} \mathcal{H} &= T + V \\ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} \end{split} \end{align*} - Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern \begin{align*} \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k} @@ -127,9 +112,7 @@ Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern \end{alignedat} \right. \end{align*} - In Matrixschreibweise erhalten wir - \begin{equation} \label{kra:hamilton:multispringmass} \begin{pmatrix} @@ -171,7 +154,7 @@ In Matrixschreibweise erhalten wir \end{equation} \subsection{Phasenraum} -Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen System durch einen Punkt. +Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen Systems durch einen Punkt. Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme. \subsubsection{Harmonischer Oszillator} @@ -181,7 +164,6 @@ Die Hamiltonfunktion des harmonischen Oszillators \ref{kra:harmonischer_oszillat \end{equation*} die Phasenraumtrajektorien bilden also Ellipsen mit Zentrum $q=0, p=0$ und Halbachsen $A$ und $m \omega A$. Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien $E_{x \in \{A, B, C, D\}}$ und verschiedenen Werten von $\omega$. - \begin{figure} \input{papers/kra/images/phase_space.tex} \caption{Phasenraumdarstellung des einfachen Feder-Masse-Systems.} @@ -191,7 +173,6 @@ Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien \subsubsection{Erweitertes Feder-Masse-System} Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, wir suchen also die Grösse $\Theta = \dt U$. - Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir \begin{equation} \dt @@ -211,9 +192,7 @@ Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ P \end{pmatrix} \end{equation} - Mit einsetzten folgt - \begin{align*} \dot{Q} = AQ + BP \\ \dot{P} = CQ + DP @@ -227,9 +206,7 @@ Mit einsetzten folgt &= C + DU - UA - UBU \end{split} \end{equation} +was uns auf die Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} führt. -was uns auf die Matrix-Riccati Gleichung \ref{kra:matrixriccati} führt. - - -\subsection{Fazit} -% @TODO +% @TODO Einfluss auf anfangsbedingungen, plots? +% @TODO Fazit ? diff --git a/buch/papers/kra/einleitung.tex b/buch/papers/kra/einleitung.tex index 1a347a8..cde2e66 100644 --- a/buch/papers/kra/einleitung.tex +++ b/buch/papers/kra/einleitung.tex @@ -1,14 +1,14 @@ \section{Einleitung} \label{kra:section:einleitung} \rhead{Einleitung} -Die riccatische Differentialgleichung ist eine nichtlineare gewöhnliche Differentialgleichunge erster Ordnung der form +Die riccatische Differentialgleichung ist eine nicht lineare gewöhnliche Differentialgleichung erster Ordnung der Form \begin{equation} - \label{kra:riccati} - y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) + \label{kra:equation:riccati} + y' = f(x)y + g(x)y^2 + h(x) \end{equation} -Sie ist bennant nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste und Methoden zur Verringerung der Ordnung von Gleichungen entwickelte. -Als Riccati Gleichung werden auch Matrixgleichugen der Form +Sie ist benannt nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste. +Als Riccati Gleichung werden auch Matrixgleichungen der Form \begin{equation} - \label{kra:matrixriccati} - \dot{U}(t) = DU(t) - UA(t) - U(t)BU(t) % +Q ? + \label{kra:equation:matrixriccati} + \dot{X}(t) = C + DX(t) - X(t)A -X(t)BX(t) \end{equation} -bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse ähnlichkeit aufweisen. \ No newline at end of file +bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse Ähnlichkeit aufweisen \cite{kra:ethz} \cite{kra:riccati}. diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex index ece0f15..4e0da1c 100644 --- a/buch/papers/kra/loesung.tex +++ b/buch/papers/kra/loesung.tex @@ -1,11 +1,53 @@ \section{Lösungsmethoden} \label{kra:section:loesung} \rhead{Lösungsmethoden} -% @TODO Lösung normal riccati -Lösung der Riccatischen Differentialgleichung \ref{kra:riccati}. +\subsection{Riccatische Differentialgleichung} \label{kra:loesung:riccati} +Eine allgemeine analytische Lösung der Riccati Differentialgleichung ist nicht möglich. +Es gibt aber Spezialfälle, in denen sich die Gleichung vereinfachen lässt und so eine analytische Lösung gefunden werden kann. +Diese wollen wir im folgenden Abschnitt genauer anschauen. +\subsubsection{Fall 1: Konstante Koeffizienten} +Sind die Koeffizienten $f(x), g(x), h(x)$ Konstanten, so lässt sich die DGL separieren und reduziert sich auf die Lösung des Integrals \ref{kra:equation:case1_int}. +\begin{equation} + y' = fy^2 + gy + h +\end{equation} +\begin{equation} + \frac{dy}{dx} = fy^2 + gy + h +\end{equation} +\begin{equation} \label{kra:equation:case1_int} + \int \frac{dy}{fy^2 + gy + h} = \int dx +\end{equation} + +\subsubsection{Fall 2: Bekannte spezielle Lösung} +Kennt man eine spezielle Lösung $y_p$ so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden. +Wir wählen als Substitution +\begin{equation} \label{kra:equation:substitution} + z = \frac{1}{y - y_p} +\end{equation} +durch Umstellen von \ref{kra:equation:substitution} folgt +\begin{equation} + y = y_p + \frac{1}{z^2} \label{kra:equation:backsubstitution} +\end{equation} +\begin{equation} + y' = y_p' - \frac{1}{z^2}z' +\end{equation} +mit Einsetzten in die DGL \ref{kra:equation:riccati} folgt +\begin{equation} + y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x) +\end{equation} +\begin{equation} + -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{y_p'} - z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +was uns direkt auf eine lineare Differentialgleichung 1.Ordnung führt. +\begin{equation} + z' = -z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1.Ordnung gelöst werden. +Durch die Rücksubstitution \ref{kra:equation:backsubstitution} erhält man dann die Lösung von \ref{kra:equation:riccati}. + +\subsection{Matrix-Riccati Differentialgleichung} \label{kra:loesung:riccati} % Lösung matrix riccati -Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen +Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen \begin{equation} \label{kra:matrixriccati-solution} \begin{pmatrix} @@ -28,7 +70,6 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir na U_0(t) \end{pmatrix} \end{equation} - \begin{equation} U(t) = \begin{pmatrix} @@ -39,9 +80,7 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir na \end{pmatrix} ^{-1} \end{equation} - -wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. - +wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist. \begin{equation} \Phi(t_0, t) = e^{H(t - t_0)} \end{equation} diff --git a/buch/papers/kra/references.bib b/buch/papers/kra/references.bib index 7f972ec..a9a8ede 100644 --- a/buch/papers/kra/references.bib +++ b/buch/papers/kra/references.bib @@ -4,6 +4,19 @@ % (c) 2020 Autor, Hochschule Rapperswil % +@misc{kra:riccati, +title = {Riccatische Differentialgleichung}, +url = {https://de.wikipedia.org/wiki/Riccatische_Differentialgleichung}, +date = {2022-05-26} +} + +@misc{kra:ethz, +author = {Ch. Roduner}, +title = {Die-Riccati-Gleichung}, +url = {https://www.imrtweb.ethz.ch/users/geering/Riccati.pdf}, +date = {2022-05-26} +} + @online{kra:hamilton, title = {Hamilton-Funktion}, url = {https://de.wikipedia.org/wiki/Hamilton-Funktion}, @@ -28,3 +41,5 @@ url = {https://pagespro.isae-supaero.fr/IMG/pdf/introKalman_e_151211.pdf}, date = {2022-05-26} } + + -- cgit v1.2.1 From ac66147d7ac9b65ead1946ea4e72d681fc4abcf4 Mon Sep 17 00:00:00 2001 From: "samuel.niederer" Date: Sat, 13 Aug 2022 18:55:22 +0200 Subject: remove dev file --- buch/papers/kra/test.tex | 12 ------------ 1 file changed, 12 deletions(-) delete mode 100644 buch/papers/kra/test.tex (limited to 'buch') diff --git a/buch/papers/kra/test.tex b/buch/papers/kra/test.tex deleted file mode 100644 index ebe0aa0..0000000 --- a/buch/papers/kra/test.tex +++ /dev/null @@ -1,12 +0,0 @@ -\begin{figure} - \input{papers/kra/images/phase_space.tex} - % \begin{minipage}{.45\textwidth} - % \input{papers/kra/images/phase_space_small_omega.tex} - % \end{minipage} - % \begin{minipage}{.45\textwidth} - % \input{papers/kra/images/phase_space_large_omega.tex} - % \end{minipage} - % \begin{minipage}[.5\textwidth] - % \input{papers/kra/images/phase_space_large_omega.tex} - % \end{minipage} -\end{figure} \ No newline at end of file -- cgit v1.2.1 From a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6 Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 15 Aug 2022 00:50:56 +0200 Subject: gegengelesene Fehler angepasst --- buch/papers/kreismembran/teil0.tex | 10 +++++----- buch/papers/kreismembran/teil1.tex | 2 +- buch/papers/kreismembran/teil2.tex | 8 ++++---- buch/papers/kreismembran/teil3.tex | 6 +++--- buch/papers/kreismembran/teil4.tex | 16 ++++++++-------- 5 files changed, 21 insertions(+), 21 deletions(-) (limited to 'buch') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index a0a4152..c6dac06 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -10,7 +10,7 @@ Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigen Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert, aus der Ruhelage gebracht zu werden. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt, welche das Material daran hindert, aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. @@ -36,8 +36,8 @@ Das untersuchte Modell erfüllt folgende Eigenschaften: \end{enumerate} -\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. -Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten, wird vorerst eine schwingende Saite betrachtet. +Es lohnt sich, das Verhalten einer Saite zu beschreiben, da eine Saite dasselbe Verhalten wie eine Membran aufweist, mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. \begin{figure} @@ -49,7 +49,7 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s \end{figure} In Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii) gültig, keine Bewegung entlang der $ x $-Achse. +Wie für die Membran ist die Annahme iii) gültig, es entsteht keine Bewegung entlang der $ x $-Achse. Um dies zu erfüllen, muss der Punkt $ P_1 $ gleich stark entgegen der $ x $-Achse gezogen werden wie der Punkt $ P_2 $ in Richtung der $ x $-Achse gezogen wird. Ist $ T_1 $ die Kraft, welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} @@ -85,7 +85,7 @@ Durch die Division mit $ dx $ entsteht Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt. Wenn $ dx $ als unendlich kleines Stück betrachtet wird, ergibt sich als Grenzwert die zweite Ableitung von $ u(x,t) $ nach $ x $. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. -Somit resultiert die in der Literatur gebräuchliche Form +Damit resultiert die in der Literatur gebräuchliche Form \begin{equation} \label{kreismembran:Ausgang_DGL} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index a872ed1..f6ba7d1 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -83,7 +83,7 @@ Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialglei r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} \end{align} -Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen +Wie bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 133ee31..ec27bd3 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -7,7 +7,7 @@ Hermann Hankel (1839--1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analysis und insbesondere für die nach ihm benannte Transformation bekannt ist. Diese Transformation tritt bei der Untersuchung von Funktionen auf, die nur von der Entfernung des Ursprungs abhängen. -Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. +Er untersuchte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art. Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind. In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. @@ -17,12 +17,12 @@ Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_inte \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\ \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform} \end{align} -wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +definiert ist, wobei $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet. Mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi. \label{equation:F_ohne_variable_wechsel} \end{align} -Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: +Dann wird angenommen, dass $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha, \label{equation:F_ohne_bessel} @@ -69,7 +69,7 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. \subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}} -In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden. +In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, diese sind im Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden. \begin{satz}{Skalierung:} Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 468ee24..a9dcd95 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -17,7 +17,7 @@ Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ei + \frac{1}{r} \frac{\partial u}{\partial r} \right), \quad 00 \label{eq:PDE_inf_membane} \\ - u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0 Date: Mon, 15 Aug 2022 06:54:23 +0200 Subject: fix physics dependency --- buch/papers/kra/anwendung.tex | 5 ++++- buch/papers/kra/images/Makefile | 9 +++++++++ buch/papers/kra/images/simple.pdf | Bin 0 -> 23130 bytes buch/papers/kra/images/simple.tex | 24 ++++++++++++++++++++++++ buch/papers/kra/images/simple_mass_spring.tex | 12 ++++++------ buch/papers/kra/packages.tex | 6 +----- 6 files changed, 44 insertions(+), 12 deletions(-) create mode 100644 buch/papers/kra/images/Makefile create mode 100644 buch/papers/kra/images/simple.pdf create mode 100644 buch/papers/kra/images/simple.tex (limited to 'buch') diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex index 0deaf3c..6383984 100644 --- a/buch/papers/kra/anwendung.tex +++ b/buch/papers/kra/anwendung.tex @@ -19,7 +19,10 @@ Die Funktion die diese Differentialgleichung löst, ist die harmonische Schwingu x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}} \end{equation} \begin{figure} - \input{papers/kra/images/simple_mass_spring.tex} + % move image to standalone because the physics package is + % incompatible with underbrace + \includegraphics{papers/kra/images/simple.pdf} + %\input{papers/kra/images/simple_mass_spring.tex} \caption{Einfaches Feder-Masse-System.} \label{kra:fig:simple_mass_spring} \end{figure} diff --git a/buch/papers/kra/images/Makefile b/buch/papers/kra/images/Makefile new file mode 100644 index 0000000..ef226a9 --- /dev/null +++ b/buch/papers/kra/images/Makefile @@ -0,0 +1,9 @@ +# +# Makefile -- build standalone images +# +# (c) 2022 Prof Dr Andreas Müller +# +all: simple.pdf + +simple.pdf: simple.tex simple_mass_spring.tex + pdflatex simple.tex diff --git a/buch/papers/kra/images/simple.pdf b/buch/papers/kra/images/simple.pdf new file mode 100644 index 0000000..4351518 Binary files /dev/null and b/buch/papers/kra/images/simple.pdf differ diff --git a/buch/papers/kra/images/simple.tex b/buch/papers/kra/images/simple.tex new file mode 100644 index 0000000..3bdde27 --- /dev/null +++ b/buch/papers/kra/images/simple.tex @@ -0,0 +1,24 @@ +% +% tikztemplate.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\pgfplotsset{compat=1.16} +\usepackage[outline]{contour} +\usepackage{csvsimple} +\usepackage{physics} +\usetikzlibrary{arrows,intersections,math} +\usetikzlibrary{patterns} +\usetikzlibrary{snakes} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{decorations} +\usetikzlibrary{decorations.markings} +\begin{document} +\input{simple_mass_spring.tex} +\end{document} + diff --git a/buch/papers/kra/images/simple_mass_spring.tex b/buch/papers/kra/images/simple_mass_spring.tex index e0e869a..868362d 100644 --- a/buch/papers/kra/images/simple_mass_spring.tex +++ b/buch/papers/kra/images/simple_mass_spring.tex @@ -6,7 +6,7 @@ \tikzstyle{mass}=[line width=0.6,red!30!black,fill=red!40!black!10,rounded corners=1,top color=red!40!black!20,bottom color=red!40!black!10,shading angle=20] \tikzstyle{spring}=[line width=0.8,blue!7!black!80,snake=coil,segment amplitude=5,line cap=round] -\begin{tikzpicture}[scale=2] +\begin{tikzpicture}[scale=2,>=latex] \newcommand{\ticks}[2] { % arguments: x, y coordinates @@ -47,9 +47,9 @@ % create springs \draw[spring, segment length=(\xMass1 - \wWall) * \springscale] (\originX1, \originY1) ++ - (\wWall, \wWall + \hMass / 2) --++ (\xMass1 - \wWall, 0) node[midway,above=0.2] {$k$}; + (\wWall, \wWall + \hMass / 2) --++ (\xMass1 - \wWall, 0) node[midway,above=3.5] {$k$}; \draw[spring, segment length=(\xMass2 - \wWall) * \springscale] (\originX2, \originY2) ++ - (\wWall, \wWall + \hMass / 2) --++ (\xMass2 - \wWall, 0) node[midway,above=0.2] {$k$}; + (\wWall, \wWall + \hMass / 2) --++ (\xMass2 - \wWall, 0) node[midway,above=3.5] {$k$}; % create vertical measurement line \draw[vmline] (\xMass1, \xAxisYpos) --+(0, \originY1 + \wWall); @@ -57,10 +57,10 @@ \draw[vmline] (\wWall, \originY1+\wWall) --(\wWall, \originY2 + \hWall); % create horizontal measurement line - \draw[hmline] (\wWall, \xAxisYpos + 0.2) -- (\xMass1, \xAxisYpos + 0.2) node[midway,fill=white,inner sep=0] {$\ell_0$}; + \draw[hmline] (\wWall, \xAxisYpos + 0.2) -- (\xMass1, \xAxisYpos + 0.2) node[midway,fill=white,inner sep=0] {$l_0$}; \draw[hmline] (\xMass1, \xAxisYpos + 0.2) -- (\xMass2, \xAxisYpos + 0.2) node[midway,fill=white,inner sep=0] {$\Delta_{x}$}; - \draw[hmline] (\wWall, \xAxisYpos - 0.3) -- (\xMass2, \xAxisYpos - 0.3) node[midway,fill=white,inner sep=0] {$\ell_{1}$}; + \draw[hmline] (\wWall, \xAxisYpos - 0.3) -- (\xMass2, \xAxisYpos - 0.3) node[midway,fill=white,inner sep=0] {$l_{1}$}; % create force arrow \draw[->,blue, very thick,line cap=round] (\xMass2 + \wMass / 2, \originY2 + \wWall + \hMass + 0.15) node[above] {$\vb{F_{R}}$} --+ (-0.5, 0); -\end{tikzpicture} \ No newline at end of file +\end{tikzpicture} diff --git a/buch/papers/kra/packages.tex b/buch/papers/kra/packages.tex index b16f074..56c48d9 100644 --- a/buch/papers/kra/packages.tex +++ b/buch/papers/kra/packages.tex @@ -8,15 +8,11 @@ % following example %\usepackage{packagename} -\usepackage{physics} -\usepackage{pgfplots} -\usepackage{tikz} +%\usepackage{physics} \usepackage[outline]{contour} \pgfplotsset{compat=1.16} \usetikzlibrary{patterns} \usetikzlibrary{snakes} -\usetikzlibrary{math} \usetikzlibrary{arrows.meta} \usetikzlibrary{decorations} \usetikzlibrary{decorations.markings} -\usetikzlibrary{calc} \ No newline at end of file -- cgit v1.2.1 From 1b634d9be2a8536dbc55b3ac3b60efda6a5a16c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 09:46:33 +0200 Subject: Corrected some errors. --- .../sturmliouville/waermeleitung_beispiel.tex | 45 +++++++++++----------- 1 file changed, 23 insertions(+), 22 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5bd5ce2..5d178c2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -11,8 +11,8 @@ betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und -Wärmeleitkoeffizient $\kappa$. -Somit ergibt sich für das Wärmeleitungsproblem +Wärmeleitkoeffizient $\kappa$ betrachtet. +Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung \begin{equation} \label{eq:slp-example-fourier-heat-equation} @@ -26,13 +26,14 @@ Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter Tempreatur gehalten werden. -%%%%%%%%%%%%% Randbedingungen für Stab mit konstanten Endtemperaturen %%%%%%%%% - -\subsubsection{Stab mit Enden auf konstanter Temperatur} +% +% Randbedingungen für Stab mit konstanten Endtemperaturen +% +\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene -Temperatur zurückgeben darf. +Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. Es folgen nun \begin{equation} \label{eq:slp-example-fourier-boundary-condition-ends-constant} @@ -44,12 +45,14 @@ Es folgen nun \end{equation} als Randbedingungen. -%%%%%%%%%%%%% Randbedingungen für Stab mit isolierten Enden %%%%%%%%%%%%%%%%%%% +% +% Randbedingungen für Stab mit isolierten Enden +% -\subsubsection{Stab mit isolierten Enden} +\subsubsection{Randbedingungen für Stab mit isolierten Enden} Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und -$x = l$ auftreten. In diesem Fall nicht erlaubt ist es, dass Wärme vom Stab +$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen @@ -72,9 +75,6 @@ als Randbedingungen. \subsubsection{Lösung der Differenzialgleichung} -% TODO: Referenz Separationsmethode -% TODO: Formeln sauber in Text einbinden. - Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz die Separationsmethode verwendet. Dazu wird @@ -83,7 +83,8 @@ Dazu wird = T(t)X(x) \] -in die ursprüngliche Differenzialgleichung eingesetzt. +in die partielle Differenzialgleichung +\eqref{eq:slp-example-fourier-heat-equation} eingesetzt. Daraus ergibt sich \[ T^{\prime}(t)X(x) @@ -95,13 +96,13 @@ als neue Form. Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels der neuen Variablen $\mu$ gekoppelt werden: -\begin{equation} +\[ \frac{T^{\prime}(t)}{\kappa T(t)} = \frac{X^{\prime \prime}(x)}{X(x)} = \mu -\end{equation} +\] Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: \begin{equation} @@ -123,12 +124,14 @@ Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden. +Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können +diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$. Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen \begin{equation} \begin{aligned} \label{eq:slp-example-fourier-randbedingungen} - k_a y(a) + h_a p(a) y'(a) &= 0 \\ - k_b y(b) + h_b p(b) y'(b) &= 0 + k_a X(a) + h_a p(a) X'(a) &= 0 \\ + k_b X(b) + h_b p(b) X'(b) &= 0 \end{aligned} \end{equation} erfüllt sein und es muss ausserdem @@ -237,8 +240,6 @@ bestimmen. Dazu werden nochmals die Randbedingungen \eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und \eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. -Zu bemerken ist, dass die Randbedingungen nur Anforderungen in $x$ stellen und -somit direkt für $X(x)$ übernomen werden können. Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die @@ -282,9 +283,9 @@ Es bleibt noch nach $\beta$ aufzulösen: \] Es folgt nun wegen $\mu = -\beta^{2}$, dass -\begin{equation} +\[ \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}} -\end{equation} +\] sein muss. Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine @@ -485,7 +486,7 @@ orthogonal zueinander stehen und = 0 \] -da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sin. +da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind. Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu \[ -- cgit v1.2.1 From d80f928a8c5248d4fb92d04ed81cdaeec61bc10a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 09:51:21 +0200 Subject: Added comments to source. --- .../papers/sturmliouville/waermeleitung_beispiel.tex | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 5d178c2..14c0d9a 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -71,7 +71,9 @@ Somit folgen \end{equation} als Randbedingungen. -%%%%%%%%%%% Lösung der Differenzialgleichung %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung der Differenzialgleichung mittels Separation +% \subsubsection{Lösung der Differenzialgleichung} @@ -118,6 +120,10 @@ Differenzialgleichungen aufgeteilt werden: 0 \end{equation} +% +% Überprüfung Orthogonalität der Lösungen +% + Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in Sturm-Liouville-Form ist. Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des @@ -173,6 +179,10 @@ Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und somit auch zu orthogonalen Lösungen führen. +% +% Lösung von X(x), Teil mu +% + \subsubsection{Lösund der Differentialgleichung in x} Als erstes wird auf die erste erste Gleichung eingegangen. Aufgrund der Struktur der Gleichung @@ -338,7 +348,9 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} -%%%% Koeffizienten a_n und b_n mittels skalarprodukt. %%%%%%%%%%%%%%%%%%%%%%%%%% +% +% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. +% Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt. Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei @@ -589,6 +601,10 @@ Es bleibt also noch \end{aligned} \] +% +% Lösung von T(t) +% + \subsubsection{Lösund der Differentialgleichung in t} Zuletzt wird die zweite Gleichung der Separation \eqref{eq:slp-example-fourier-separated-t} betrachtet. -- cgit v1.2.1 From b06a9e5b30562e550540ea4b13b4e449970e9b2d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 10:03:42 +0200 Subject: Updated upstrem. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 14c0d9a..b466d15 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -602,7 +602,7 @@ Es bleibt also noch \] % -% Lösung von T(t) +% Lösung von T(t) % \subsubsection{Lösund der Differentialgleichung in t} -- cgit v1.2.1 From 97e85459986381371236d1b9529d67064ac226c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 11:58:27 +0200 Subject: Started properties of solutions. --- buch/papers/sturmliouville/eigenschaften.tex | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 9f20070..6e6a26f 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -1,9 +1,21 @@ % -% teil1.tex -- Beispiel-File für das Paper +% eigenschaften.tex -- Eigenschaften der Lösungen % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Eigenschaften von Lösungen \label{sturmliouville:section:solution-properties}} \rhead{Eigenschaften von Lösungen} -% Erik work + +Im weiteren werden nun die Eigenschaften der Lösungen eines +Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften +zustande kommen. + +Dazu wird der Operator $L_0$ welcher bereits in Kapitel +\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, +noch etwas genauer angeschaut. Es wird also +\[ + L_0 + = + -\frac{d}{dx}p(x) +\] \ No newline at end of file -- cgit v1.2.1 From 23d12ac04f38d75c3a904fd99cf6586efc7ea267 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 13:13:59 +0200 Subject: Finished first version of solution properties. --- buch/papers/sturmliouville/eigenschaften.tex | 60 ++++++++++++++++++++++++++-- 1 file changed, 57 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 6e6a26f..1552f7f 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -13,9 +13,63 @@ zustande kommen. Dazu wird der Operator $L_0$ welcher bereits in Kapitel \ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, -noch etwas genauer angeschaut. Es wird also +noch etwas genauer angeschaut. Es wird also im Folgenden \[ L_0 = - -\frac{d}{dx}p(x) -\] \ No newline at end of file + -\frac{d}{dx}p(x)\frac{d}{dx} +\] +zusammen mit den Randbedingungen +\[ + \begin{aligned} + k_a y(a) + h_a p(a) y'(a) &= 0 \\ + k_b y(b) + h_b p(b) y'(b) &= 0 + \end{aligned} +\] +verwendet. Wie im Kapitel +\ref{buch:integrale:subsection:sturm-liouville-problem} bereits gezeigt, +resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ +selbsadjungiert zu machen. +Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies +für die Lösungen des Sturm-Liouville-Problems zur Folge hat. + +\subsubsection{Exkurs zum Spektralsatz} + +Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +den Lösungen hervorbringt, wird der Spektralsatz benötigt. + +Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix +diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. +Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem +endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadungiert ist, also dass +\[ + \langle Av, w \rangle + = + \langle v, Aw \rangle +\] +für $ v, w \in \mathbb{K}^n$ gilt. +Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. +Dann wird die Aussage des Spektralsatzes verwended, welche besagt, dass für +Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, +wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. + +Dies ist allerdings nicht die Einzige Version des Spektralsatzes. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren. +Dieser besagt, dass wenn ein linearer kompakter Operator in +$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) +Orthonormalsystem existiert. + +\subsubsection{Anwendung des Spektralsatzes auf $L_0$} + +Der Spektralsatz besagt also, dass, weil $ L_0 $ selbstadjungiert ist, eine +Orthonormalbasis aus Eigenvektoren existiert. +Genauer bedeutet dies, dass alle Eigenvektoren beziehungsweise alle Lösungen +des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich dem +Skalarprodukt, in dem $ L_0 $ selbstadjungiert ist. + +Erfüllt also eine Differenzialgleichung die in Abschnitt +\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und erfüllen +die Randbedingungen der Differentialgleichung die Randbedingungen +des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die +Lösungsfunktion des Problems eine Linearkombination aus orthogonalen +Basisfunktionen ist. \ No newline at end of file -- cgit v1.2.1 From 8c6898303fc394c4f132664ef0b15fe484e9c5d9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 13:42:16 +0200 Subject: Added reference for "Spektralsatz". --- buch/papers/sturmliouville/eigenschaften.tex | 6 ++++-- buch/papers/sturmliouville/references.bib | 13 +++++++++++++ 2 files changed, 17 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 1552f7f..f972cd5 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -49,12 +49,14 @@ endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadungiert ist, also dass \] für $ v, w \in \mathbb{K}^n$ gilt. Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes verwended, welche besagt, dass für +Dann wird die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}. Dieser besagt, dass wenn ein linearer kompakter Operator in $\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) Orthonormalsystem existiert. diff --git a/buch/papers/sturmliouville/references.bib b/buch/papers/sturmliouville/references.bib index f66a74d..0c4724b 100644 --- a/buch/papers/sturmliouville/references.bib +++ b/buch/papers/sturmliouville/references.bib @@ -4,6 +4,19 @@ % (c) 2020 Autor, Hochschule Rapperswil % +@online{sturmliouville:spektralsatz-wiki, + title = {Spektralsatz}, + url = {https://de.wikipedia.org/wiki/Spektralsatz}, + date = {2020-08-15}, + year = {2020}, + month = {8}, + day = {15} +} + +% +% examples (not referenced in book) +% + @online{sturmliouville:bibtex, title = {BibTeX}, url = {https://de.wikipedia.org/wiki/BibTeX}, -- cgit v1.2.1 From 8b01c81f362cf20246e3d8319edfda15c18ff83f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 13:45:34 +0200 Subject: Improved code formatting. --- buch/papers/sturmliouville/eigenschaften.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index f972cd5..4c14630 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -13,7 +13,8 @@ zustande kommen. Dazu wird der Operator $L_0$ welcher bereits in Kapitel \ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, -noch etwas genauer angeschaut. Es wird also im Folgenden +noch etwas genauer angeschaut. +Es wird also im Folgenden \[ L_0 = @@ -26,7 +27,8 @@ zusammen mit den Randbedingungen k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \] -verwendet. Wie im Kapitel +verwendet. +Wie im Kapitel \ref{buch:integrale:subsection:sturm-liouville-problem} bereits gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ selbsadjungiert zu machen. -- cgit v1.2.1 From 987a5b51eaf65c4074c50ba12a3b21c2d2957260 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 15:06:11 +0200 Subject: Corrected small mistake in psolution roperties. --- buch/papers/sturmliouville/eigenschaften.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 4c14630..8553238 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -37,7 +37,7 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $ L_0 $ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix @@ -67,7 +67,7 @@ Orthonormalsystem existiert. Der Spektralsatz besagt also, dass, weil $ L_0 $ selbstadjungiert ist, eine Orthonormalbasis aus Eigenvektoren existiert. -Genauer bedeutet dies, dass alle Eigenvektoren beziehungsweise alle Lösungen +Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich dem Skalarprodukt, in dem $ L_0 $ selbstadjungiert ist. -- cgit v1.2.1 From 53cc7f1baf28448cb6196ba6ddf305e1b1403e7d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 15:45:11 +0200 Subject: Changed reference to conform with convetion. --- buch/papers/sturmliouville/eigenschaften.tex | 23 +++-- .../sturmliouville/waermeleitung_beispiel.tex | 107 +++++++++++---------- 2 files changed, 67 insertions(+), 63 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 8553238..fda8be6 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -11,9 +11,9 @@ Im weiteren werden nun die Eigenschaften der Lösungen eines Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften zustande kommen. -Dazu wird der Operator $L_0$ welcher bereits in Kapitel -\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet wurde, -noch etwas genauer angeschaut. +Dazu wird der Operator $L_0$ welcher bereits in +Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet +wurde, noch etwas genauer angeschaut. Es wird also im Folgenden \[ L_0 @@ -28,16 +28,15 @@ zusammen mit den Randbedingungen \end{aligned} \] verwendet. -Wie im Kapitel -\ref{buch:integrale:subsection:sturm-liouville-problem} bereits gezeigt, -resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ +Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits +gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$ selbsadjungiert zu machen. Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $ L_0 $ in +Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix @@ -65,15 +64,15 @@ Orthonormalsystem existiert. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} -Der Spektralsatz besagt also, dass, weil $ L_0 $ selbstadjungiert ist, eine +Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine Orthonormalbasis aus Eigenvektoren existiert. Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich dem -Skalarprodukt, in dem $ L_0 $ selbstadjungiert ist. +Skalarprodukt, in dem $L_0$ selbstadjungiert ist. -Erfüllt also eine Differenzialgleichung die in Abschnitt -\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und erfüllen -die Randbedingungen der Differentialgleichung die Randbedingungen +Erfüllt also eine Differenzialgleichung die in +Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und +erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die Lösungsfunktion des Problems eine Linearkombination aus orthogonalen Basisfunktionen ist. \ No newline at end of file diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index b466d15..b22d5f5 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -15,7 +15,7 @@ Wärmeleitkoeffizient $\kappa$ betrachtet. Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung \begin{equation} - \label{eq:slp-example-fourier-heat-equation} + \label{sturmliouville:eq:example-fourier-heat-equation} \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}} \end{equation} @@ -36,7 +36,7 @@ Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. Es folgen nun \begin{equation} - \label{eq:slp-example-fourier-boundary-condition-ends-constant} + \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} u(t,0) = u(t,l) @@ -62,7 +62,7 @@ dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$ verschwinden. Somit folgen \begin{equation} - \label{eq:slp-example-fourier-boundary-condition-ends-isolated} + \label{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} \frac{\partial}{\partial x} u(t, 0) = \frac{\partial}{\partial x} u(t, l) @@ -85,8 +85,9 @@ Dazu wird = T(t)X(x) \] -in die partielle Differenzialgleichung -\eqref{eq:slp-example-fourier-heat-equation} eingesetzt. +in die partielle +Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} +eingesetzt. Daraus ergibt sich \[ T^{\prime}(t)X(x) @@ -108,13 +109,13 @@ der neuen Variablen $\mu$ gekoppelt werden: Durch die Einführung von $\mu$ kann das Problem nun in zwei separate Differenzialgleichungen aufgeteilt werden: \begin{equation} - \label{eq:slp-example-fourier-separated-x} + \label{sturmliouville:eq:example-fourier-separated-x} X^{\prime \prime}(x) - \mu X(x) = 0 \end{equation} \begin{equation} - \label{eq:slp-example-fourier-separated-t} + \label{sturmliouville:eq:example-fourier-separated-t} T^{\prime}(t) - \kappa \mu T(t) = 0 @@ -135,7 +136,7 @@ diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$. Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen \begin{equation} \begin{aligned} - \label{eq:slp-example-fourier-randbedingungen} + \label{sturmliouville:eq:example-fourier-randbedingungen} k_a X(a) + h_a p(a) X'(a) &= 0 \\ k_b X(b) + h_b p(b) X'(b) &= 0 \end{aligned} @@ -143,7 +144,7 @@ Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen erfüllt sein und es muss ausserdem \begin{equation} \begin{aligned} - \label{eq:slp-example-fourier-coefficient-constraints} + \label{sturmliouville:eq:example-fourier-coefficient-constraints} |k_a|^2 + |h_a|^2 &\neq 0\\ |k_b|^2 + |h_b|^2 &\neq 0\\ \end{aligned} @@ -153,13 +154,15 @@ gelten. Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst $p(x)$ benötigt. -Dazu wird die Gleichung \eqref{eq:slp-example-fourier-separated-x} mit der -Sturm-Liouville-Form \eqref{eq:sturm-liouville-equation} verglichen, was zu +Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} +mit der +Sturm-Liouville-Form~\eqref{eq:sturm-liouville-equation} verglichen, was zu $p(x) = 1$ führt. -Werden nun $p(x)$ und die Randbedingungen -\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} in -\eqref{eq:slp-example-fourier-randbedingungen} eigesetzt, erhält man +Werden nun $p(x)$ und die +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} +in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt, erhält +man \[ \begin{aligned} k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\ @@ -167,10 +170,10 @@ Werden nun $p(x)$ und die Randbedingungen \end{aligned} \] Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein. -Zusätzlich müssen aber die Bedingungen -\eqref{eq:slp-example-fourier-coefficient-constraints} erfüllt sein und -da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$ und $k_b \neq 0$ -gewählt werden. +Zusätzlich müssen aber die +Bedingungen~\eqref{sturmliouville:eq:example-fourier-coefficient-constraints} +erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$ +und $k_b \neq 0$ gewählt werden. Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und @@ -199,9 +202,9 @@ Die Lösungen für $X(x)$ sind also von der Form A \cos \left( \alpha x\right) + B \sin \left( \beta x\right). \] -Dieser Ansatz wird nun solange differenziert, bis alle in Gleichung -\eqref{eq:slp-example-fourier-separated-x} enthaltenen Ableitungen vorhanden -sind. +Dieser Ansatz wird nun solange differenziert, bis alle in +Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} enthaltenen +Ableitungen vorhanden sind. Man erhält also \[ X^{\prime}(x) @@ -217,7 +220,8 @@ und \beta^{2} B \sin \left( \beta x \right). \] -Eingesetzt in Gleichung \eqref{eq:slp-example-fourier-separated-x} ergibt dies +Eingesetzt in Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} +ergibt dies \[ -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) - \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right) @@ -247,18 +251,19 @@ ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss fü $ A \neq 0 $ oder $ B \neq 0 $. Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu bestimmen. -Dazu werden nochmals die Randbedingungen -\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} und -\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} benötigt. +Dazu werden nochmals die +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} +und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} +benötigt. Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die trigonometrischen Funktionen erfüllt werden. -Es werden nun die Randbedingungen -\eqref{eq:slp-example-fourier-boundary-condition-ends-constant} für einen Stab -mit Enden auf konstanter Temperatur in die Gleichung -\eqref{eq:slp-example-fourier-separated-x} eingesetzt. +Es werden nun die +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} +für einen Stab mit Enden auf konstanter Temperatur in die +Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt. Betrachten wir zunächst die Bedingung für $x = 0$. Dies fürht zu \[ @@ -303,9 +308,9 @@ Verletzung der Randbedingungen. Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst werden. -Setzt man nun die Randbedingungen -\eqref{eq:slp-example-fourier-boundary-condition-ends-isolated} in $X^{\prime}$ -ein, beginnend für $x = 0$. Es ergibt sich +Setzt man nun die +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} +in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich \[ X^{\prime}(0) = @@ -324,7 +329,7 @@ folgt nun = 0. \] -Wiedrum muss über die $ \sin $-Funktion sicher gestellt werden, dass der +Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der Ausdruck den Randbedingungen entspricht. Es folgt nun \[ @@ -342,7 +347,7 @@ und somit Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur wie auch mit isolierten Enden \begin{equation} - \label{eq:slp-example-fourier-mu-solution} + \label{sturmliouville:eq:example-fourier-mu-solution} \mu = -\frac{n^{2}\pi^{2}}{l^{2}}. @@ -368,12 +373,12 @@ Die Lösung $X(x)$ wird nun umgeschrieben zu \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right). \] -Um eine eindeutige Lösung für $ X(x) $ zu erhalten werden noch weitere +Um eine eindeutige Lösung für $X(x)$ zu erhalten werden noch weitere Bedingungen benötigt. Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$. Es gilt also nun die Gleichung \begin{equation} - \label{eq:slp-example-fourier-initial-conditions} + \label{sturmliouville:eq:example-fourier-initial-conditions} u(0, x) = a_0 @@ -388,7 +393,7 @@ gehört, von der wir wissen, dass sie orthogonal zu allen anderen trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen. Es wird also die Tatsache ausgenutzt, dass die Gleichheit in -\eqref{eq:slp-example-fourier-initial-conditions} nach Anwendung des +\eqref{sturmliouville:eq:example-fourier-initial-conditions} nach Anwendung des Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht. @@ -396,7 +401,7 @@ Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$ gebildet: \begin{equation} - \label{eq:slp-dot-product-cosine} + \label{sturmliouville:eq:dot-product-cosine} \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle = \langle a_0 @@ -409,13 +414,13 @@ gebildet: Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt sein, welche Integralgrenzen zu verwenden sind. -In diesem Fall haben die $ \sin $ und $ \cos $ Terme beispielsweise keine ganze -Periode im Intervall $ x \in [0, l] $ für ungerade $ n $ und $ m $. +In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze +Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$. Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges Vielfaches der Periode der triginimetrischen Funktionen integriert werden. Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem -neue Funktionen $ \hat{u}_c(0, x) $ für die Berechnung mit Cosinus und -$ \hat{u}_s(0, x) $ für die Berechnung mit Sinus angenomen, welche $ u(0, t) $ +neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und +$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$ gerade, respektive ungerade auf $[-l, l]$ fortsetzen: \[ \begin{aligned} @@ -451,7 +456,8 @@ skalliert wurde, also gilt nun \end{aligned} \] -Zunächst wird nun das Skalaprodukt \eqref{eq:slp-dot-product-cosine} berechnet: +Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} +berechnet: \[ \begin{aligned} \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx @@ -545,11 +551,11 @@ gilt. Etwas anders ist es allerdings bei $a_0$. Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten -zur Basisfunktion $ \cos\left(\frac{0 \pi}{l}x\right) $ beziehungsweise der +zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der konstanten Funktion $1$. -Um einen Ausdruck für $ a_0 $ zu erhalten, wird wiederum auf beiden Seiten -der Gleichung \eqref{eq:slp-example-fourier-initial-conditions} das -Skalarprodukt mit der konstanten Basisfunktion $ 1 $ gebildet: +Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten +der Gleichung~\eqref{sturmliouville:eq:example-fourier-initial-conditions} das +Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet: \[ \begin{aligned} \int_{-l}^{l}\hat{u}_c(0, x)dx @@ -606,8 +612,8 @@ Es bleibt also noch % \subsubsection{Lösund der Differentialgleichung in t} -Zuletzt wird die zweite Gleichung der Separation -\eqref{eq:slp-example-fourier-separated-t} betrachtet. +Zuletzt wird die zweite Gleichung der +Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet. Diese wird über das charakteristische Polynom \[ \lambda - \kappa \mu @@ -623,8 +629,7 @@ Lösung = e^{-\kappa \mu t} \] -führt. -Und mit dem Resultat \eqref{eq:slp-example-fourier-mu-solution} +führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} \[ T(t) = -- cgit v1.2.1 From 2f1c9ad7d59e33f2c1e95a321947f608b5b06587 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Mon, 15 Aug 2022 15:58:10 +0200 Subject: Added renamed files to Makefile.inc and removed old ones. --- buch/papers/sturmliouville/Makefile.inc | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch') diff --git a/buch/papers/sturmliouville/Makefile.inc b/buch/papers/sturmliouville/Makefile.inc index e2039ce..7ffdad2 100644 --- a/buch/papers/sturmliouville/Makefile.inc +++ b/buch/papers/sturmliouville/Makefile.inc @@ -3,12 +3,12 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -dependencies-sturmliouville = \ +dependencies-sturmliouville = \ papers/sturmliouville/packages.tex \ - papers/sturmliouville/main.tex \ + papers/sturmliouville/main.tex \ papers/sturmliouville/references.bib \ - papers/sturmliouville/teil0.tex \ - papers/sturmliouville/teil1.tex \ - papers/sturmliouville/teil2.tex \ - papers/sturmliouville/teil3.tex - + papers/sturmliouville/einleitung.tex \ + papers/sturmliouville/eigenschaften.tex \ + papers/sturmliouville/beispiele.tex \ + papers/sturmliouville/waermeleitung_beispiel.tex \ + papers/sturmliouville/tschebyscheff_beispiel.tex -- cgit v1.2.1