# # fibonacci.m # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # global phi1; phi1 = (1+sqrt(5)) / 2; phi2 = (1-sqrt(5)) / 2; global logphi1; logphi1 = log(phi1) global logphi2; logphi2 = log(phi2) global s; s = 0.1; A = [ 1, 1; phi1, phi2 ]; b = [ 0; 1 ]; global a; a = A \ b global xmin; xmin = 0; global xmax; xmax = 10; global ylim; ylim = 10; global N; N = 200; function retval = fibonacci(n) global a; global logphi1; global logphi2; retval = a(1,1) * exp(n * logphi1) + a(2,1) * exp(n * logphi2); endfunction for n = (0:10) fibonacci(n) endfor function punkt(fn, z) if (abs(z) > 100) z = 100 * z / abs(z); endif fprintf(fn, "(%.5f,%.5f)", real(z), imag(z)); endfunction function drawline(fn, p, color,lw) global N; fprintf(fn, "\\draw[color=%s,line width=%.1fpt] ", color, lw); punkt(fn, p(1)); for i = (2:N+1) fprintf(fn, "\n\t--"); punkt(fn, p(i)); endfor fprintf(fn, ";\n"); endfunction function realline(fn, x, ymin, ymax, color, lw) global N; h = (ymax - ymin) / N; fprintf(fn, "%% real line for x = %f, h = %f\n", x, h); count = 1; for y = ymin + (0:N) * h z(count) = fibonacci(x + i * y); count = count + 1; endfor drawline(fn, z, color, lw); endfunction function imaginaryline(fn, y, xmin, xmax, color, lw) global N; h = (xmax - xmin) / N; fprintf(fn, "%% imaginary line for y = %f, h = %f\n", y, h); count = 1; for x = xmin + (0:N) * h z(count) = fibonacci(x + i * y); count = count + 1; endfor drawline(fn, z, color, lw); endfunction function fibmapping(fn, n, name, lw) global s; fprintf(fn, "\\def\\%s{\n", name); for x = n + s*(-5:5) realline(fn, x, -5*s, 5*s, "red", lw); endfor for y = s*(-5:5) imaginaryline(fn, y, n-5*s, n+5*s, "blue", lw); endfor fprintf(fn, "}\n"); endfunction function fibgrid(fn, lw) global s; fprintf(fn, "\\def\\fibgrid{\n"); for y = s*(-5:5) imaginaryline(fn, y, -0.5, 6.5, "gray", lw); endfor for x = s*(-5:65) realline(fn, x, -0.5, 0.5, "gray", lw); endfor fprintf(fn, "}\n"); endfunction function fibcurve(fn, lw) fprintf(fn, "\\def\\fibcurve{\n"); imaginaryline(fn, 0, 0, 6.5, "white", 1.2*lw); imaginaryline(fn, 0, 0, 6.5, "darkgreen", lw); for n = (0:6) z = fibonacci(n); fprintf(fn, "\\fill[color=darkgreen] "); punkt(fn, z); fprintf(fn, " circle[radius=0.08];\n"); fprintf(fn, "\\fill[color=white] "); punkt(fn, z); fprintf(fn, " circle[radius=0.04];\n"); endfor fprintf(fn, "}\n"); endfunction fn = fopen("fibonaccigrid.tex", "w"); fibmapping(fn, 0, "fibzero", 1); fibmapping(fn, 1, "fibone", 1); fibmapping(fn, 2, "fibtwo", 1); fibmapping(fn, 3, "fibthree", 1); fibmapping(fn, 4, "fibfour", 1); fibmapping(fn, 5, "fibfive", 1); fibmapping(fn, 6, "fibsix", 1); fibgrid(fn, 0.3); fibcurve(fn, 1.4); fclose(fn);