% % ellintegral.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \section{Elliptische Integrale \label{buch:elliptisch:section:integral}} \rhead{Elliptisches Integral} Bei der Berechnung des Ellipsenbogens in Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen} sind wir auf ein Integral gestossen, welches sich nicht in geschlossener Form ausdrücken liess. Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als neue spezielle Funktionen zu definieren. \subsection{Definition \label{buch:elliptisch:subsection:definition}} Ein elliptisches Integral ist ein Integral der Form \begin{equation} \int R\left( x, \sqrt{p(x)}\right)\,dx \label{buch:elliptisch:def:allgemein} \end{equation} wobei $R(x,y)$ eine rationale Funktion von zwei Variablen ist und $p(x)$ ein Polynom dritten oder vierten Grades. Hätte $p(x)$ ein mehrfache Nullstelle $x_0$, müsste es durch $(x-x_0)^2$ teilbar sein, man könnte also einen Faktor $(x-x_0)$ aus der Wurzel im Integraneden von \eqref{buch:elliptisch:def:allgemein} ausklammern und damit das Integral in eine Form bringen, wo $p(x)$ höchstens zweiten Grades ist. Solche Integrale lassen sich meistens mit trigonometrischen Substitutionen berechnen. Wir verlangen daher, dass $p(x)$ keine mehrfachen Nullstellen hat. Man kann zeigen, dass sich elliptische Integrale in Summen von elementaren Funktionen und speziellen elliptischen Integralen der folgenden Form überführen lassen. \begin{definition} \label{buch:elliptisch:def:integrale123} Die elliptischen Integrale erster, zweiter und dritter Art sind die Integrale \[ \begin{aligned} \text{1.~Art:}&&& \int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} \\ \text{2.~Art:}&&& \int \sqrt{\frac{1-k^2x^2}{1-x^2}}\,dx \\ \text{3.~Art:}&&& \int \frac{dx}{(1-nx^2)\sqrt{(1-x^2)(1-k^2x^2)}} \end{aligned} \] mit $0