% % unvollstaendig.tex -- Plots der unvollständigen elliptischen integrale % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \documentclass[tikz]{standalone} \usepackage{amsmath} \usepackage{times} \usepackage{txfonts} \usepackage{pgfplots} \usepackage{csvsimple} \usetikzlibrary{arrows,intersections,math} \input{unvollpath.tex} \begin{document} \def\skala{1} \begin{tikzpicture}[>=latex,thick,scale=\skala] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=1} \def\dx{12.8} \def\dy{6} \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{blau}{rgb}{0.3,0.3,1} \begin{scope} \begin{scope} \clip (-0.1,-0.1) rectangle ({\dx+0.0},{10.1}); \fill[color=darkgreen!10] \ellEzero -- (\dx,{1.571*\dy}) -- (\dx,0) -- cycle; \fill[color=red!10] \ellEzero -- (\dx,{1.571*\dy}) -- (\dx,10.1) -- (0,10.2) -- cycle; \node[color=red] at ({0.6*\dx},{1.3*\dy}) [scale=2] {$F(x,k)$}; \node[color=darkgreen] at ({0.6*\dx},{0.3*\dy}) [scale=2] {$E(x,k)$}; \draw[color=red!0!blau,line width=1.0pt] \ellFzero; \draw[color=red!10!blau,line width=1.0pt] \ellFone; \draw[color=red!20!blau,line width=1.0pt] \ellFtwo; \draw[color=red!30!blau,line width=1.0pt] \ellFthree; \draw[color=red!40!blau,line width=1.0pt] \ellFfour; \draw[color=red!50!blau,line width=1.0pt] \ellFfive; \draw[color=red!60!blau,line width=1.0pt] \ellFsix; \draw[color=red!70!blau,line width=1.0pt] \ellFseven; \draw[color=red!80!blau,line width=1.0pt] \ellFeight; \draw[color=red!90!blau,line width=1.0pt] \ellFnine; \draw[color=red!100!blau,line width=1.0pt] \ellFten; \draw[color=darkgreen!100!blau,line width=1.0pt] \ellEten; \draw[color=darkgreen!90!blau,line width=1.0pt] \ellEnine; \draw[color=darkgreen!80!blau,line width=1.0pt] \ellEeight; \draw[color=darkgreen!70!blau,line width=1.0pt] \ellEseven; \draw[color=darkgreen!60!blau,line width=1.0pt] \ellEsix; \draw[color=darkgreen!50!blau,line width=1.0pt] \ellEfive; \draw[color=darkgreen!40!blau,line width=1.0pt] \ellEfour; \draw[color=darkgreen!30!blau,line width=1.0pt] \ellEthree; \draw[color=darkgreen!20!blau,line width=1.0pt] \ellEtwo; \draw[color=darkgreen!10!blau,line width=1.0pt] \ellEone; \draw[color=darkgreen!0!blau,line width=1.0pt] \ellEzero; \end{scope} \draw[line width=0.2pt] (\dx,0) -- (\dx,10.1); \begin{scope} \clip ({0.7*\dx},0) rectangle (\dx,10.1); \draw[color=white,line width=0.5pt] \ellEzero -- (\dx,{1.571*\dy}); \end{scope} \draw[->] ({-0.1},0) -- ({\dx+0.3},0) coordinate[label={$x$}]; \foreach \x in {0,0.2,...,1.0}{ \draw ({\x*\dx},-0.1) -- ({\x*\dx},0.1); \node at ({\x*\dx},0) [below] {$\pgfmathprintnumber{\x}$}; } \draw[->] (0,{-0.1}) -- (0,{10.3}) coordinate[label={right:$y$}]; \foreach \y in {0.5,1,1.5}{ %\draw[line width=0.2pt] (0,{\y*\dy}) -- (\dx,{\y*\dy}); \draw (-0.1,{\y*\dy}) -- (0.1,{\y*\dy}); \node at (0,{\y*\dy}) [left] {$\pgfmathprintnumber{\y}$}; } \foreach \c in {0,10,...,100}{ \pgfmathparse{\c/100} \xdef\k{\pgfmathresult} \node[color=red!\c!blau] at ({0.02*\dx},{0.95*\dy+0.04*\c}) [right] {$k=\pgfmathprintnumber{\k}$}; } \foreach \c in {0,10,...,100}{ \pgfmathparse{\c/100} \xdef\k{\pgfmathresult} \node[color=darkgreen!\c!blau] at ({0.98*\dx},{0.75*\dy-0.04*\c}) [left] {$k=\pgfmathprintnumber{\k}$}; } \draw ({\dx-0.1},{1.571*\dy}) -- ({\dx+0.1},{1.571*\dy}); \node at (\dx,{1.571*\dy}) [right] {$\frac{\pi}2$}; \end{scope} \end{tikzpicture} \end{document}