\documentclass[ngerman, aspectratio=169, xcolor={rgb}]{beamer} % style \mode{ \usetheme{Frankfurt} } %packages \usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} \usepackage[english]{babel} \usepackage{graphicx} \usepackage{array} \newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} \usepackage{ragged2e} \usepackage{bm} % bold math \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathtools} \usepackage{amsmath} \usepackage{multirow} % multi row in tables \usepackage{booktabs} %toprule midrule bottomrue in tables \usepackage{scrextend} \usepackage{textgreek} \usepackage[rgb]{xcolor} \usepackage{ marvosym } % \Lightning \usepackage{multimedia} % embedded videos \usepackage{tikz} \usepackage{pgf} \usepackage{pgfplots} \usepackage{algorithmic} %citations \usepackage[style=verbose,backend=biber]{biblatex} \addbibresource{references.bib} %math font \usefonttheme[onlymath]{serif} %Beamer Template modifications %\definecolor{mainColor}{HTML}{0065A3} % HSR blue \definecolor{mainColor}{HTML}{D72864} % OST pink \definecolor{invColor}{HTML}{28d79b} % OST pink \definecolor{dgreen}{HTML}{38ad36} % Dark green %\definecolor{mainColor}{HTML}{000000} % HSR blue \setbeamercolor{palette primary}{bg=white,fg=mainColor} \setbeamercolor{palette secondary}{bg=orange,fg=mainColor} \setbeamercolor{palette tertiary}{bg=yellow,fg=red} \setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic \setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) \setbeamercolor{section in toc}{fg=black} % TOC sections \setbeamertemplate{section in toc}[sections numbered] \setbeamertemplate{subsection in toc}{% \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} \setbeamertemplate{itemize items}[circle] \setbeamertemplate{description item}[circle] \setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] \beamertemplatenavigationsymbolsempty \setbeamercolor{footline}{fg=gray} \setbeamertemplate{footline}{% \hfill\usebeamertemplate***{navigation symbols} \hspace{0.5cm} \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} } \usepackage{caption} \captionsetup{labelformat=empty} %Title Page \title{Elliptische Filter} \subtitle{Eine Anwendung der Jacobi elliptischen Funktionen} \author{Nicolas Tobler} \institute{Mathematisches Seminar 2022 | Spezielle Funktionen} % \institute{\includegraphics[scale=0.3]{../img/ost_logo.png}} \date{\today} \input{../packages.tex} \newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}% \newcommand*{\HL}{\textcolor{mainColor}} \newcommand*{\RD}{\textcolor{red}} \newcommand*{\BL}{\textcolor{blue}} \newcommand*{\GN}{\textcolor{dgreen}} \definecolor{darkgreen}{rgb}{0,0.6,0} \makeatletter \newcount\my@repeat@count \newcommand{\myrepeat}[2]{% \begingroup \my@repeat@count=\z@ \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% \endgroup } \makeatother \usetikzlibrary{automata,arrows,positioning,calc,shapes.geometric, fadings} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Inhalt} \tableofcontents \end{frame} \section{Lineare Filter} \begin{frame} \frametitle{Lineare Filter} \begin{center} \scalebox{0.75}{ \input{../tikz/filter.tikz.tex} } \end{center} \begin{equation*} | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} \end{equation*} \pause \begin{align*} |F_N(w)| &< 1 \quad \forall \quad |w| < 1 \\ |F_N(w)| &= 1 \quad \forall \quad |w| = 1 \\ |F_N(w)| &> 1 \quad \forall \quad |w| > 1 \end{align*} \begin{equation*} F_N(w) = w^N \end{equation*} \end{frame} \begin{frame} \frametitle{Beispiel: Butterworth Filter} \begin{equation} F_N(w) = w^N \end{equation} \begin{center} \input{../python/F_N_butterworth.pgf} \end{center} \end{frame} \begin{frame} \frametitle{Arten von linearen filtern} \begin{align*} F_N(w) & = \begin{cases} w^N & \text{Butterworth} \\ T_N(w) & \text{Tschebyscheff, Typ 1} \\ [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ R_N(w,\xi) & \text{Elliptisch (Cauer)} \\ \end{cases} \end{align*} \end{frame} \section{Tschebycheff Filter} \begin{frame} \frametitle{Tschebyscheff-Polynome} \begin{columns} \begin{column}[T]{0.35\textwidth} \begin{align*} T_{0}(x)&=1\\ T_{1}(x)&=x\\ T_{2}(x)&=2x^{2}-1\\ T_{3}(x)&=4x^{3}-3x\\ T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x) \end{align*} \end{column} \begin{column}[T]{0.65\textwidth} \begin{center} \resizebox{\textwidth}{!}{ \input{../python/F_N_chebychev2.pgf} } \end{center} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Tschebyscheff-Filter} \begin{equation*} | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 T_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} \end{equation*} \begin{center} \scalebox{0.9}{ \input{../python/F_N_chebychev.pgf} } \end{center} \end{frame} \begin{frame} \frametitle{Tschebyscheff-Filter} Darstellung mit trigonometrischen Funktionen: \begin{align*} T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\ &= \cos \left(N~z \right), \quad w= \cos(z) \end{align*} \pause \begin{align*} \cos^{-1}(x) &= \int_{x}^{1} \frac{ dz }{ \sqrt{ 1-z^2 } }\\ &= \int_{0}^{x} \frac{ -1 }{ \sqrt{ 1-z^2 } } ~dz + \frac{\pi}{2} \end{align*} \end{frame} \begin{frame} \frametitle{Tschebyscheff-Filter} \begin{columns} \begin{column}{0.2\textwidth} \begin{equation*} z = \cos^{-1}(w) \end{equation*} \vspace{0.5cm} Integrand: \begin{equation*} \frac{ -1 }{ \sqrt{ 1-z^2 } } \end{equation*} \end{column} \begin{column}{0.8\textwidth} \begin{center} \scalebox{0.7}{ \input{../tikz/arccos.tikz.tex} } \end{center} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Tschebyscheff-Filter} \begin{equation*} T_N(w) = \cos \left(z_1 \right), \quad z_1 = N~\cos^{-1}(w) \end{equation*} \begin{center} \scalebox{0.85}{ \input{../tikz/arccos2.tikz.tex} } \end{center} \end{frame} \section{Jacobi elliptische Funktionen} \begin{frame} \frametitle{Jacobi elliptische Funktionen} Elliptisches Integral erster Art \begin{equation*} F(\phi, k) = \int_{0}^{\phi} \frac{ d\theta }{ \sqrt{ 1-k^2 \sin^2 \theta } } % = % \int_{0}^{\phi} % \frac{ % dt % }{ % \sqrt{ % (1-t^2)(1-k^2 t^2) % } % } \end{equation*} \begin{equation*} K(k) = \int_{0}^{\pi / 2} \frac{ d\theta }{ \sqrt{ 1-k^2 \sin^2 \theta } } \end{equation*} \end{frame} \begin{frame} \frametitle{Jacobi elliptische Funktionen} \begin{equation*} \sn^{-1}(w, k) = F(\phi, k), \quad \phi = \sin^{-1}(w) \end{equation*} \begin{align*} \sn^{-1}(w, k) & = \int_{0}^{\phi} \frac{ d\theta }{ \sqrt{ 1-k^2 \sin^2 \theta } }, \quad \phi = \sin^{-1}(w) \\ & = \int_{0}^{w} \frac{ dt }{ \sqrt{ (1-t^2)(1-k^2 t^2) } } \end{align*} \end{frame} \begin{frame} \frametitle{Jacobi elliptische Funktionen} \begin{columns} \begin{column}{0.2\textwidth} \begin{equation*} z = \sn^{-1}(w, k) \end{equation*} \vspace{0.5cm} Integrand: \begin{equation*} \frac{ 1 }{ \sqrt{ (1-t^2)(1-k^2 t^2) } } \end{equation*} \end{column} \begin{column}{0.8\textwidth} \begin{center} \scalebox{0.75}{ \input{../tikz/sn.tikz.tex} } \end{center} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Fundamentales Rechteck} Nullstelle beim ersten Buchstabe, Polstelle beim zweiten Buchstabe \begin{center} \scalebox{0.8}{ \input{../tikz/fundamental_rectangle.tikz.tex} } \end{center} \end{frame} \begin{frame} \frametitle{Jacobi elliptische Funktionen} \begin{equation*} z = \cd^{-1}(w, k) \end{equation*} \begin{center} \scalebox{0.7}{ \input{../tikz/cd.tikz.tex} } \end{center} \end{frame} \section{Elliptisches Filter} \begin{frame} \frametitle{Elliptisches Filter} % \begin{equation*} % z_1 = N~\frac{K_1}{K}~\cd^{-1}(w, k) % \end{equation*} \begin{center} \scalebox{0.75}{ \input{../tikz/cd3.tikz.tex} } \end{center} \end{frame} \begin{frame} \frametitle{Periodizität in realer und imaginärer Richtung} \begin{center} \input{../python/k.pgf} \end{center} \end{frame} \begin{frame} \frametitle{Gradgleichung} \begin{center} \scalebox{0.95}{ \input{../tikz/elliptic_transform2.tikz} } \end{center} \onslide<5->{ \begin{equation*} N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} \end{equation*} } \end{frame} \begin{frame} \frametitle{Elliptisches Filter} \begin{equation*} R_N = \cd(z_1, k_1), \quad z_1 = N~\frac{K_1}{K}~\cd^{-1}(w, k), \quad N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} \end{equation*} \begin{center} \scalebox{0.75}{ \input{../tikz/cd2.tikz.tex} } \end{center} \end{frame} \begin{frame} \frametitle{Elliptisches Filter} \begin{columns} \begin{column}[T]{0.5\textwidth} \begin{center} \resizebox{\textwidth}{!}{ \input{../python/F_N_elliptic.pgf} } \end{center} \end{column} \begin{column}[T]{0.5\textwidth} \begin{center} \resizebox{\textwidth}{!}{ \input{../python/elliptic.pgf} } \end{center} \end{column} \end{columns} \end{frame} \end{document}