Proof

To prove the equation above, we need three basic trig identities

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
2 \cos A \cos B & =\cos (A-B)+\cos (A+B) \\
2 \sin A \sin B & =\cos (A-B)-\cos (A+B)
\end{aligned}
$$

and three Bessel function identities

$$
\begin{aligned}
\cos (z \sin \theta) & =J_{0}(z)+2 \sum_{k=1}^{\infty} J_{2 k}(z) \cos (2 k \theta) \\
\sin (z \sin \theta) & =2 \sum_{k=0}^{\infty} J_{2 k+1}(z) \sin ((2 k+1) \theta) \\
J_{-n}(z) & =(-1)^{n} J_{n}(z)
\end{aligned}
$$

The Bessel function identities above can be found in Abramowitz and Stegun as equations 9.1.42, 9.1.43, and 9.1.5.

And now the proof. We start with

$$
\cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right)
$$

and apply the sum identity for cosines to get

$$
\cos \left(2 \pi f_{c} t\right) \cos \left(\beta \sin \left(2 \pi f_{m} t\right)\right)-\sin \left(2 \pi f_{c} t\right) \sin \left(\beta \sin \left(2 \pi f_{m} t\right)\right)
$$

Now let's take the first term

$$
\cos \left(2 \pi f_{c} t\right) \cos \left(\beta \sin \left(2 \pi f_{m} t\right)\right)
$$

and apply one of our Bessel identities to expand it to

$$
J_{0}(\beta) \cos \left(2 \pi f_{c} t\right)+\sum_{k=1}^{\infty} J_{2 k}(\beta)\left\{\cos \left(2 \pi\left(f_{c}-2 k f_{m}\right) t\right)+\cos \left(2 \pi\left(f_{c}+2 k f_{m}\right) t\right)\right\}
$$

which can be simplified to

$$
\sum_{n \text { even }} J_{n}(\beta) \cos \left(2 \pi\left(f_{c}+n f_{m}\right) t\right)
$$

where the sum runs over all even integers, positive and negative.

Now we do the same with the second half of the cosine sum. We expand

$$
\sin \left(2 \pi f_{c} t\right) \sin \left(\beta \sin \left(2 \pi f_{m} t\right)\right)
$$

to

$$
\sum_{k=1}^{\infty} J_{2 k+1}(\beta)\left\{\cos \left(2 \pi\left(f_{c}-(2 k+1) f_{m}\right) t\right)-\cos \left(2 \pi\left(f_{c}+(2 k+1) f_{m}\right) t\right)\right\}
$$

which simplifies to

$$
-\sum_{n \text { odd }} J_{n}(\beta) \cos \left(2 \pi\left(f_{c}+n f_{m}\right) t\right)
$$

where again the sum is over all (odd this time) integers. Combining the two halves gives our result

$$
\cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right)=\sum_{k=-\infty}^{\infty} J_{k}(\beta) \cos \left(2 \pi\left(f_{c}+k f_{m}\right) t\right)
$$

