# # pk.m -- Punkte und Kanten für sphärisches Dreieck # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # A = [ 1, 8 ]; B = [ -3, 3 ]; C = [ 4, 4 ]; P = [ 0, 0 ]; global fn; fn = fopen("dreieckdata.tex", "w"); fprintf(fn, "\\coordinate (P) at (%.4f,%.4f);\n", P(1,1), P(1,2)); fprintf(fn, "\\coordinate (A) at (%.4f,%.4f);\n", A(1,1), A(1,2)); fprintf(fn, "\\coordinate (B) at (%.4f,%.4f);\n", B(1,1), B(1,2)); fprintf(fn, "\\coordinate (C) at (%.4f,%.4f);\n", C(1,1), C(1,2)); function retval = seite(A, B, l, nameA, nameB) global fn; d = fliplr(B - A); d(1, 2) = -d(1, 2); # Zentrum C = 0.5 * (A + B) + l * d; # Radius: r = hypot(C(1,1)-A(1,1), C(1,2)-A(1,2)) # Winkel von winkelvon = atan2(A(1,2)-C(1,2),A(1,1)-C(1,1)); # Winkel bis winkelbis = atan2(B(1,2)-C(1,2),B(1,1)-C(1,1)); if (abs(winkelvon - winkelbis) > pi) if (winkelbis < winkelvon) winkelbis = winkelbis + 2 * pi else winkelvon = winkelvon + 2 * pi end end # Kurve fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n", nameA, nameB, A(1,1), A(1,2), winkelvon * 180 / pi, winkelbis * 180 / pi, r); fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n", nameB, nameA, B(1,1), B(1,2), winkelbis * 180 / pi, winkelvon * 180 / pi, r); endfunction seite(A, B, -1, "A", "B"); seite(A, C, 1, "A", "C"); seite(A, P, -1, "A", "P"); seite(B, C, -2, "B", "C"); seite(B, P, -1, "B", "P"); seite(C, P, 2, "C", "P"); fclose(fn);