% % teil1.tex -- Beispiel-File für das Paper % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} Die Funktion \begin{equation*} W_{k,m}(z) = e^{-z/2} z^{m+1/2} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} + m - k, 1 + 2m; z) \end{equation*} heisst Whittaker Funktion und ist eine Lösung von der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d z^2} + \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. \label{parzyl:eq:whitDiffEq} \end{equation} \end{definition} Es wird nun die Differentialgleichung bestimmt, welche \begin{equation} w = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{equation} als Lösung hat. Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt woraus \begin{equation} \frac{d^2 w}{dz^2} - \left(\frac{1}{4} z^2 - 2k\right) w = 0 \label{parzyl:eq:weberDiffEq} \end{equation} resultiert. DIese Differentialgleichung ist dieselbe wie \eqref{parzyl:sep_dgl_2} und \eqref{parzyl:sep_dgl_2}, welche somit $w$ als Lösung haben. Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur eine sondern zwei Lösungen. Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. Somit hat \eqref{parzyl:eq:weberDiffEq} \begin{align} w_1 & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ w_2 & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{align} als Lösungen. Ausgeschrieben ergeben sich als Lösungen \begin{align} \label{parzyl:eq:solution_dgl} w_1 &= e^{-z^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{4}} - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ w_2 & = z e^{-z^2/4} \, {}_{1} F_{1} ({\textstyle \frac{3}{4}} - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) \end{align}